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Abstract—With the increasing population of Industry 4.0,
both AI and smart techniques have been applied and be-
come hotly discussed topics in industrial cyber-physical
systems (CPS). Intelligent anomaly detection for identifying
cyber-physical attacks to guarantee the work efficiency and
safety is still a challenging issue, especially when dealing
with few labeled data for cyber-physical security protec-
tion. In this article, we propose a few-shot learning model
with Siamese convolutional neural network (FSL-SCNN),
to alleviate the over-fitting issue and enhance the accu-
racy for intelligent anomaly detection in industrial CPS. A
Siamese CNN encoding network is constructed to measure
distances of input samples based on their optimized feature
representations. A robust cost function design including
three specific losses is then proposed to enhance the effi-
ciency of training process. An intelligent anomaly detection
algorithm is developed finally. Experiment results based
on a fully labeled public dataset and a few labeled dataset
demonstrate that our proposed FSL-SCNN can significantly
improve false alarm rate (FAR) and F1 scores when detect-
ing intrusion signals for industrial CPS security protection.
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network (CNN), few-shot learning, industrial cyber-physical
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I. INTRODUCTION

C
YBER-PHYSICAL system (CPS), which can usually be

divided into three layers including the physical layer,

transmission layer, and application layer, is a multidimensional

complex system integrating computation, physical processing,

and networking. With the rapid development of Industry 4.0,

signals and messages exchanging through networks based on

industrial Internet of Things (IIoT) empower the functionality

and efficiency of CPS in industrial environments [1], including

real-time perception, dynamic control, and information service

of large-scale engineering systems. However, the diversity of

CPS applications deploying across networks in IIoT makes it

vulnerable to both cyber and physical attacks among different

levels of systems, especially for message transmissions in smart

manufacturing processes.

Currently, due to the new characteristics of different attacks

in industrial CPS, it becomes necessary to involve and develop

advanced intelligent computing, communication and control

technologies to deal with the cyber-physical security issues [2].

Typically, the possibility of industrial CPS compromised by

various attacks becomes higher along with the increase of the

number of physical sensors and I/O interfaces. For example, in

2015, the Ukrainian State Electric Power Department suffered

a malicious code attack and resulted in a power outage, which

has been viewed as a typical case of cyber security shortcoming

[3]. The openness of modern information and communication

technology makes cyberphysical security a significant issue in

developing industrial CPS. In particular, intelligent anomaly

detection becomes a significant way to identify both cyber

and physical attacks among the whole networks for security

protection.

Modern AI technologies, including intelligent sensing, smart

control, etc., are widely used for behavior monitoring in smart

manufacturing. However, there are still several challenges when

detecting abnormal signals in industrial CPS. First, the hybrid

cyber-physical environment constructed with a cloud infrastruc-

ture is a large and complicated distributed system, thus a large

volume of industrial data stream (e.g., instruction, accelerom-

eter, video, image, etc.) is generated via a variety of physical

systems and sensors. To alleviate the damage caused by mali-

cious attacks in industrial CPS, it requires real-time anomaly

detections with high accuracy and timeliness, to facilitate the
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surveillance of overall performance based on the data stream ob-

tained and transferred from different levels of distributed nodes

across the system. Another critical issue in industrial CPS is that

such kinds of abnormal events occur rarely in the real world. The

low occurrence probability of these anomaly activities results in

the lack of well labeled data for model training. In addition,

missing of surveillance data, which may be caused by different

factors, such as sensor failure, data transferring error, etc., is a

common problem in most of industrial systems, but will bring a

more difficult situation for automatic data collection and model

training toward intelligent anomaly detection. Since conven-

tional learning techniques mainly depend on a large labeled

training database, it becomes more challenging when facing

the above problems in the real-time surveillance and anomaly

detection tasks [4]. Therefore, intelligent strategies need to be

designed and developed to deal with the time-consuming issues

especially when multiple sensors are used to extract samples

based on different frequencies during a more complex data

fusion process in industrial CPS [5].

Few-shot learning is an emerging learning paradigm aiming

at tackling issues on the lack of training data, which enables

models to identify novel categories with only a few sample data

provided for them. The key point is that the training sample

needs to be carefully selected in order to perfectly match the

inference during the testing phase. Each step is designed to

simulate a small-sample learning task by subsampling classes

and data points (e.g., sampling five classes at one time, each of

which is with five labeled samples). To complete the few-shot

learning task, a well-trained feature extractor should be devised,

and an effective classifier is essential to mine rich information

from a small number of labeled samples.

In this article, we propose a Siamese neural network based

few-shot learning model to deal with the cyber-physical security

protection issue with few labeled data. In particular, a Siamese

convolutional neural network (CNN) is constructed to improve

the high-dimensional feature learning, and further facilitate the

identification of novel classes, based on an optimized relative-

feature representation. A robust cost function with three specific

losses is designed to enhance the training efficiency, and an im-

proved algorithm is developed for intelligent anomaly detections

in industrial CPS. The main contribution of our article can be

concluded as follows.

1) A few-shot learning model based on Siamese CNN is

designed with a relative-feature representation scheme,

which can alleviate the over-fitting issue especially when

coping with few labeled data in industrial CPS. This

model is later referred to as few-shot learning model with

Siamese convolutional neural network (FSL-SCNN).

2) A robust cost function, considering a combination of the

transforming loss in relative-feature representation, the

encoding loss during CNN encoding process, and the

prediction loss based on the distances between the anchor

sample and the positive and negative samples, is intro-

duced, which may significantly enhance the efficiency of

training process.

3) An intelligent detection algorithm is developed based on

a transformed lower dimensional feature representation,

which can be applied for anomaly detections from large

amount of industrial CPS data with few labeled samples.

The rest of this article is organized as follows. Section II

presents an overview of related works on few-shot learning

techniques for malicious attack detections. The proposed FSL-

SCNN and anomaly detection implementation are discussed in

Section III. Section IV demonstrates the results on performance

evaluation for the proposed method. Section V conclude this

article.

II. RELATED WORK

In this section, several issues relating to this article in in-

telligent industrial systems, including analytics on anomaly

detection techniques for CPS, and models on few-shot learning

in industrial applications, are discussed respectively.

A. Anomaly Detection Techniques for CPS

In current years, researchers have paid great efforts to tackle

the vulnerability and security issues for CPS, which were im-

plemented in a variety of applications ranging from data acqui-

sition, surveillance, and industrial control systems. There are

various kinds of cyber and physical attacks which may affect

the reliability and security of CPS. For example, to explore

vulnerabilities in industrial CPS, Alan et al. [6] considered a

covert attack for service degradation, and introduced a back-

tracking search optimization algorithm to deal with the sys-

tem identification attack in cyberphysical control systems. Beg

et al. [7] focused on the false-data injection attack, and designed

a detection framework, to identify changes based on a set of

candidate invariants inferred from Simulink/Stateflow diagrams

in cyber-physical dc microgrids. To cope with a typical type of

denial-of-service (DoS) attacks in CPS, Sun et al. [8] proposed

a resilient control strategy with a dual-mode algorithm, which

could be used for the optimization problem in model predictive

control without the consideration of model uncertainties and

measurement noises.

Particularly, anomaly detection has been analyzed extensively

for purposes of cyber security and system reliability. It becomes

crucial to develop appropriate security protection frameworks

or control systems to tackle vulnerabilities in industrial CPS

under different attack scenarios. Several AI-based approaches

have been investigated for cyber-physical security protection in-

cluding attack identification, fault detection, and tolerant control

[9]. Kim et al. [10] analyzed the cyber-physical vulnerability,

and presented a software-defined networking-based architec-

ture for man-in-the-middle attack. They applied it in a specific

communication-based train control system, to improve the re-

siliency for attack detections. Li et al. [11] built a dual deep learn-

ing (DL) model with an energy auditing mechanism, to monitor

and identify cyber and physical attacks in IoT environments.

They designed a disaggregation-aggregation structure to learn

the system behaviors for the attack detection. The disaggregation

part was used to analyze the energy consumption for cyber-attack

identification, and the aggregation part was used to measure the

power consumption for physical attack identification. Pearce

et al. [12] introduced a framework to prevent different kinds



5792 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 8, AUGUST 2021

of cyber-physical attacks based on the runtime enforcement,

in which the bidirectional timed policies were specified in an

industrial CPS application.

Obviously, previous researches have shown the success in

applying DL techniques to identify a variety of cyber-physical at-

tacks. However, conventional supervised learning models heav-

ily rely on the prior knowledge and well labeled training samples,

which may be difficult in handling the over-fitting issue, and even

result in poor performance when detecting new categories with

a few samples for anomaly detection in intelligent industrial

environments.

B. Few-Shot Learning in Industrial Applications

Few-shot learning is an emerging type of transfer learning

technique. By reusing the transferrable knowledge of existing

models, a classifier can be built to identify the novel category

using only a few labeled training samples [13]. Along with the

popularity of DL, few-shot learning model is increasingly drawn

attention in modern industrial applications. Gu et al. [14] built a

recognition network to deal with the few-shot density problem

for industrial safety and environmental protection. They em-

ployed the model-agnostic meta-learning algorithm to optimize

the initial parameters, which could achieve better classification

results with only a small number of gradient steps in flare soot

applications. Sun et al. [15] constructed a feature fusion model

based on the so-called focus-area location and high-order inte-

gration for few-shot tasks. The few-shot learning was utilized to

identify similar regions and extract more discriminative features.

Perez-Cabo et al. [16] proposed a deep metric learning method

for the generalized presentation attack detection problem, in

which a triplet focal loss was defined to regularize a new “metric-

softmax” loss. They used the few-shot learning to improve the

feature representation and distinguish attacks only using the

image data. Huang et al. [17] developed a few-shot learning

model for imbalanced data problems. They designed a gated

network structure to analyze the known types and unknown types

in anomaly detection, and tested their method in identifying new

anomaly types for few-shot learning tasks. Chowdhury et al.

[18] introduced a DL approach to few-shot intrusion detection.

The CNN model, linear support vector machine, and one-nearest

neighbor classifier were integrated together in a training model

for new feature representations. They argued that their method

could be used to identify some minority attack types. Shen et al.

[19] presented a machine learning-based framework for resource

management in wireless communications. The idea of few-shot

learning was used in a self-imitation mechanism, which could

optimize a new task with a few unlabeled samples based on a

pre-trained learning model. Lu et al. [20] defined two types of

outliers: representation outlier and label outlier, and constructed

an attentive profile network model for outlier suppression based

on few-shot learning using user-provided data.

Comparing with previous researches, in this article, we con-

struct a few-shot learning model to overcome the overfitting

issue, in which a Siamese CNN structure is designed and con-

structed to alleviate the loss of key features. The proposed model

can be applied to enhance the anomaly detection performance

for security protection in industrial CPS.

III. FEW-SHOT LEARNING MODEL WITH SIAMESE

CNN IN CPS

In this section, we first introduce the system architecture for

cyber-physical security protection in industrial CPS. A few-

shot learning framework is constructed and presented with a

CNN-based Siamese network. An intelligent anomaly detection

algorithm is then developed based on a relative-feature repre-

sentation scheme and a robust cost function design.

A. Problem Definition

Fig. 1 illustrates a typical architecture for security protection

in AI-enhanced industrial CPS. Usually, attackers may hack

into the CANbus network and send the malicious code to com-

promise systems. The supervisory control and data acquisition

(SCADA)system is involved to monitor and collect signals (e.g.,

vibration, temperature, and TX&RX packet data) generated

across the cyber network, in which the DL-based anomaly

detection module is deployed to identify anomalies. Since it is a

costly task to collect anomalies with large enough set of samples

for traditional model training, a Siamese CNN encoding network

model is designed to facilitate the real-time analysis based on

few-shot learning, which can improve the intelligent anomaly

detection with higher efficiency and accuracy in industrial CPS.

Given an anomaly detection problem in the industrial CPS,

two general datasets, Dnor and Dano, are taken into consid-

ered to indicate the normal and anomaly samples, respectively.

Dnor = {(xnori , ynori)| i = 12, . . . Nnor}, contains Nnor la-

beled normal samples, in which xnori is the data sample

and ynori is the corresponding class label. Likewise, Dano =
{(xanoi , yanoi)| i = 12, . . . Nano}, contains Nano labeled

anomaly samples, in which xanoi is the data sample and yanoi
is the corresponding class label. We assume Nnor ≫ Nano to

describe the few-shot learning scenario. Thus a set of samples

from Dano is selected to form the support set in each training

episode, and the corresponding query set Q, which is used

to indicate the unobserved samples of novel classes between

different episodes, can be described as = {(xanoj , yanoj )| j =
12, . . . Nq}. Summarily, in each episode, we randomly select

K malicious attack classes, each of which includes C labeled

samples, to form the K-wayC-shot learning problem, aiming to

enhance the generalization of detection capability of our model

especially for novel attack identification.

B. Few-Shot Learning Framework for Anomaly Detection

The proposed FSL-SCNN is designed to tackle the issue

on lacking adequate labeled anomaly samples in our detection

tasks. Differing from conventional classification models, our

FSL-SCNN do not predict the class for an input sample data

directly, but calculate the distance between the input samples in

terms of their optimized feature representations. In particular,

a CNN-based Siamese network is constructed to cope with the

few-shot learning problem, thus the novel classes can be identi-

fied even with only a few sample data supported. The framework

of FSL-SCNN for anomaly detection in CPS is illustrated in

Fig. 2.
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Fig. 1. Typical architecture of security protection for industrial CPS.

Fig. 2. CNN-based Siamese network for few-shot learning in anomaly
detections.

As shown in Fig. 2, to train this DL model, two input sample

data (i.e., one from support set and one from query set) for each

class will be sent into two identical CNN simultaneously. A

relative-feature representation scheme is applied to transform

their original features into a lower dimensional representation,

which can help the neural network alleviate the overfitting issue,

and consequently enhance the detection performance. In the

Siamese network, two combinations of convolution layer and

pooling layer are introduced to extract feature embeddings. Dur-

ing the testing process, the distance between these two feature

embeddings will be calculated to identify whether these two

input samples belong to the same class.

Given xi as one input sample sent to the FSL-SCNN, the

feature embedding f(xi) extracted by the Siamese CNN can be

represented as follows:

f(xi) = CNNecd (xi, θencoding) (1)

where θencoding is the encoding parameter of CNN.

The distance between two feature embeddings from two input

samplesxi andxj is defined and calculated based on the pairwise

Euclidean distance, which can be described as follows:

D (f(xi) , f(xj)) =‖ f(xi)− f(xj)‖
2. (2)

Finally, the output of the FSL-SCNN is generated based on the

fully connected layer and SoftMax layer, which can be expressed

as follows:

P (xi, xj) = SoftMax (FC (D (f(xi) , f(xj))) (3)

where SoftMax (∗) indicates the function of SoftMax and

FC (∗) indicates the function of fully connected layer.P (xi, xj)
represents the probability whether xi and xj belong to the same

class.

C. Robust Cost Function Design

To ensure the prediction accuracy and false alarm rate (FAR)

for anomaly detections from large volume of industrial CPS data

with few labeled samples, three losses are considered in our cost

function design. As shown in Fig. 2, the transforming loss Lrel

is issued in the relative-feature representation. The encoding

loss Lecd is generated during the CNN encoding process, which

is designed to measure the variance between the transformed

relative-features and extracted feature embeddings. The predic-

tion loss Lpre is a triplet loss based on the distances between the

anchor sample, and the positive and negative samples.

Considering we only have a few samples in the support

set, the dimensionality of original features for input samples
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becomes relatively large compared to the total number of support

samples, which thus usually leads to the overfitting and poor

generalization performance for the model. Motivated by [21],

a relative-feature representation for input samples is applied to

reduce the dimensionality of original features. Specifically, the

transformed features with relatively low dimensionality of an

input sample is calculated based on the distance between itself

and all the other samples using (2). Given n samples as the input

for the model,
n(n−1)

2
sets of distances need to be calculated.

The detailed relative-feature can be calculated and expressed as

follows:

xi
′ = [D(xi, x1)

2
, D(xi, x2)

2
, . . . , D(xi, xn)

2]. (4)

For example, given four samples, x1, x2, x3, x4, with

their corresponding pairwise distance: D(x1, x2) = 1,

D(x1, x3) = 2, D(x1, x4) = 3, D(x2, x3) = 2,

D(x2, x4) = 4, D(x3, x4) = 1, the transformed relative-

features can be generated in a four-dimensional feature vector

as: x′
1 = [0, 1, 4, 9], x′

2 = [1, 0, 4, 16], x′
3 = [4, 4, 0, 1],

and x′
4 = [9, 16, 1, 0]. Obviously, the dimensionality of the

input sample can be effectively reduced no matter how large the

original sample is.

Therefore, for each input (xi, yi), the loss in relative-feature

representation can be defined and calculated as follows:

Lrel =
1

Nq

∑

(xi,yi)

−log

(

exp (−d (f (xi) , pm))
∑K

m′ = 1 exp (−d (f (xi) , pm′))

)

(5)

where d(∗, ∗) is the Euclidean distance. pm is calculated by aver-

aging the samples of classm for relative-feature representations,

while pm′ is calculated for the corresponding representations in

each training episode.

The loss for CNN encoding is employed to measure if there

is any loss of key information within the Siamese network.

Following the encoding process described in (1), The decoding

function based on the Siamese CNN is defined as follows:

xi
′′ = CNNdcd (f (xi) , θdecoding) . (6)

Since it is difficult to observe the information loss directly

during the encoding process, motivated by [22], the relative en-

tropy theory can be used to measure the loss of information based

on the real distribution and theoretical distribution. Thus, given

a probability distribution of an input sample xi, the encoding

loss is designed to minimize the number of feature embeddings,

while retaining the key information of features in the original

data. The detailed calculation based on the Kullback–Leibler

(KL) divergence can be described as follows:

Lecd = E

[

∑

xi

p (xi|f (xi)) log

(

p (xi|f (xi))

q (xi|f (xi))

)

]

(7)

where p(xi|f(xi)) indicates the real distribution of the sample

data. q(xi|f(xi)) is the calculated distribution and can be treated

as an approximate to p(xi|f(xi)).
Furthermore, distances between the anchor sample and the

positive and negative samples are considered to measure the

prediction loss based on the Siamese network. The detailed

calculation can be formulated as follows:

Lpre = max(

(

D (f(xa
i ) , f (xp

i ))−
D (f(xa

i ) , f (xn
i )) + α

)

, 0) (8)

where xa
i x

p
i and xn

i indicate the anchor, positive, and negative

samples respectively.α ∈ (0, 1) is a coefficient to adjust the FAR

in anomaly detection. Usually, it is empirically set as α > 0.5

during the training process. The maximum function is used to

ensure a minus loss for Lpre, thus the anchor sample can be

more similar to the positive sample than the negative one, based

on this adversarial design.

D. Intelligent Anomaly Detection for Cyber-Physical
Security Protection

To pursue an efficient training performance, the cost function

LFSL−SCNN in the FSL-SCNN is composed based on a combi-

nation of the three losses discussed above, which can be defined

and expressed as follows:

LFSL−SCNN = Lrel + τ · Lecd + Lpre (9)

where τ is a balance coefficient to control the encoding lossLecd

during the training process.

Specifically, LFSL−SCNN is designed to tackle the follow-

ing challenges during the few-shot learning process: retain-

ing the critical information when transforming original high-

dimensional features into a relatively low dimensionality during

the relative-feature representation; and enabling the learning

model to present reasonable feature embeddings in the Siamese

network, thereby alleviate the overfitting problem when the

training data is insufficient. The concrete anomaly detection

algorithm is shown in Algorithm 1.

The training process via the proposed FSL-SCNN is divided

into three steps: feature transformation, feature encoding and

distance comparison. In each training episode, the raw data x is

transformed to xi′ based on the relative-feature representation

scheme first. xi′ is then formalized into the structured feature

embedding f(xi′) through the CNN encoder. According to a

selected Anchor sample xa
i ′ a positive sample x

p
i ′ and a negative

sample xn
i ′, the corresponding classes yai ′, y

p
i ′, and yni ′are

predicted via the constructed Siamese network respectively. The

losses generated during relative-feature representation, CNN en-

coding, and prediction process, are calculated using the designed

cost function as addressed by (5), (7), and (8). Consequently,

the model M will be finalized by minimizing the total loss

LFSL−SCNN .

IV. EXPERIMENT AND ANALYSIS

In this section, evaluations are conduced to demonstrate the

performance of our proposed method for anomaly detection,

comparing with other similar mechanisms based on two different

datasets.

A. Dataset and Experiment Design

To investigate the effectiveness of the proposed FSL-SCNN,

both a fully labeled public dataset and a few labeled dataset

are considered in our experiment evaluation. The fully labeled
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Algorithm 1: FSL-SCNN Based Anomaly Detection.

Input: A set of anomalies samples Dano = {(xanoi , yanoi)
|i = 1, 2, . . . Nano}

A set of normal signal samples Dnor =
{(xnori , ynori)| i = 1, 2, . . . Nnor}

A set of query samples Q = {(xanoj , yanoj )
| j = 1, 2, . . . Nq}

Output: A trained anomaly detection model M

1: Initialize hyper parameter α, τ , and loss threshold ε

2: while LFSL−SCNN > ε do

3: for each episode do

4: Choose k class with c samples from Dnor and

Dano to build support set

5: Choose k class from Q to build query set

6: for xi in support set do

7: Transform xi into relative representation xi′
8: Calculate transforming loss by Eq. (5)

9: Transform xi′ into feature embedding f(xi′) via

the CNN Encoder by Eq. (1)

10: Calculate encoding loss by Eq. (6)

11: Select anchor sample xa
i and predict yai based on

f(xa
i ′) by Eq. (3)

12: Select another positive sample x
p
i and negative

sample xn
i , predict y

p
i and yni by Eq. (3)

13: Calculate prediction loss by Eq. (8)

14: Update network to minimize LFSL−SCNN by

Eq. (9)

15: end for

16: end for

17: end while

18: return M

public dataset UNSW-NB15, generated by the Australian secu-

rity laboratory for CPS [23], is applied to evaluate the general

prediction performance of the proposed method. This dataset is

composed of network traffic packets created using IXIA Per-

fectStrom tool, including realistic modern normal activity and

synthetic contemporary attack behavior packets. It contains nine

categories of cyber-physical attacks including: analysis; fuzzers;

DOS; generic; backdoor; exploit; reconnaissance; worm; and

shellcode. The few labeled dataset used in the experiment is

generated in an intelligent CPS for smart manufacturing as

illustrated in Fig. 1, in which the network transmission packet is

collected via the SCADA system, and contains a small number

of randomly generated abnormally high or low transmission rate

signals. The average packet amount per second is fluctuated with

a normal state of 0.05 KB/s. Specifically, the former dataset is

used to evaluate the training efficiency and anomaly detection

performance of the proposed method, while the latter one is used

to investigate the effectiveness of our method in a cyber-attack

scenario.

We selected several classical and widely used machine learn-

ing methods, and a Siamese model for anomaly detection in CPS

as the baseline methods. Specifically, the time series analysis

(TSA) which is introduced as a non-machine learning technique,

classical machine learning methods including Naïve Bayes

(NB), random forest (RF), and one-shot support vector machine

(OS-SVM), are compared in this article. It is noted that OS-SVM

is a kernel-based variation of SVM method with only one-shot

data sample for each class, thus is selected to compare with

the proposed FSL-SCNN. In addition, a Siamese convolutional

autoencoder (SCAE) model [24], comprising twin convolutional

autoencoders, is involved for comparison evaluations as well.

Four widely used metrics, precision, recall, F1, and FAR, are

applied and calculated according to whether normal/anomaly

signals have been identified correctly or not, in order to demon-

strate the performances of these mentioned methods based on

the fully labeled public dataset. In particular, FAR is an im-

portant metric to evaluate the anomaly detection performance

in CPS especially in unbalanced dataset. The lower the FAR,

the better performance is achieved by the model in practical

scenarios.

B. Anomaly Detection Performance Evaluation

We chose stochastic gradient descent (SGD) as the optimizer

to train the model. The learning rate was set to 0.1 and we iterated

800 times to investigate the training process in the experiment.

The transforming loss, the encoding loss, and the prediction

loss obtained in each iteration using UNSW-NB15 are shown in

Fig. 3 respectively.

As shown in Fig. 3, the overall performances of the three

losses decline fast and become relatively stable. Relatively, the

error rates of transforming loss and prediction loss fluctuate

greatly during the learning process according to Fig. 3(a) and

(c), while the error rate of encoding loss drops sharply and trends

to stable after 200 iterations according to Fig. 3(b). This training

result indicates the applicability and suitability of our model in

few-shot learning.

Furthermore, to evaluate the feature embedding effect based

on the relative-feature representation and CNN encoding in the

Siamese network, we investigate all the six methods based on the

principal components analysis (PCA) result. The visualization

comparisons based on UNSW-NB15 are shown in Fig. 4.

The distinct difference in terms of data distributions shown

in Fig. 4 demonstrates the imbalance in the dataset, as well

as the corresponding features. In other words, the number of

normal samples is much more than the number of the attack

samples. It can be observed that feature embeddings based on our

proposed FSL-SCNN result in a better clustering performance.

The better the clustering performance, the better effect of the

feature extraction will be. Moreover, comparing with other five

methods, the method generates an obvious clustering result

with few overlaps among features in two distinguished classes.

This result indicates the effectiveness of the combination of

relative-feature representation and CNN encoding in reducing

dimensionality and retaining the key feature information during

the learning process within our Siamese network.

We go further to evaluate the overall performance of anomaly

detection, based on precision, recall, F1, and FAR in an imbal-

anced dataset. Especially, the FAR is a significant indicator to
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Fig. 3. Evaluation on training efficiency. (a) Transforming loss curve. (b) Encoding loss curve. (c) Prediction loss curve.

Fig. 4. Feature embedding evaluation based on PCA. (a) TSA. (b) NB. (c) RF. (d) OS-SVM. (e) SCAE. (f) FSL-SCNN.

TABLE I
ANOMALY DETECTION PERFORMANCE COMPARISONS

demonstrate the performance of anomaly detection in the real

world. The results are compared and given in Table I.

According to Table I, we observe that the proposed FSL-

SCNN has achieved the best results in F1 score and FAR

at 0.936 and 0.047 respectively. Since FAR is an important

indicator to evaluate the performance of anomaly detection in

CPS as we discussed earlier, this result shows that because of

the relative-feature representation scheme and the robust cost

function designed in our model, the FSL-SCNN can not only

distinguish the anomaly signals from the normal ones efficiently,

but also reduce the false detection rate in the few-shot learning

scenario.

In addition, we investigate the effectiveness of the method

in terms of anomaly detection in a real-world cyber-attack

scenario. The comparison experiment was conducted based on

the few labeled dataset collected in a real CPS as illustrated

in Fig. 1. We compared the true attacks and detected anoma-

lies according to the network throughput (bytes per second)

captured in the CPS. The evaluation results are illustrated

in Fig. 5.

As shown in Fig. 5, we observe the true attacks and detected

anomalies respectively, based on the continuous signals gener-

ated in the CPS across the timeline from 0 to 1600 s. Anomalies

are detected via the proposed CNN-based Siamese network.

Obviously, it can be viewed as a few-shot learning problem

because there are only a few attacks within the timeline, as

depicted in Fig. 5(a). Comparing with the detected anomalies

in Fig. 5(b), it is found that most of the cyber-attacks have

been effectively identified, which indicates the usefulness of the
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Fig. 5. Cyber-attack analysis based on throughput statistics. (a) True
attacks. (b) Detected anomalies.

proposed FSL-SCNN in the real few-shot learning scenario for

anomaly detection in industrial CPS.

V. CONCLUSION

In this article, to enhance the cyber-physical security pro-

tection in intelligent industrial systems, we proposed the

FSL-SCNN to deal with the few labeled and imbalanced

dataset generated in industrial CPS for intelligent anomaly

detection.

A Siamese CNN encoding network were constructed to mea-

sure the distance for input samples based on their optimized

feature representations, instead of returning the prediction re-

sult directly. The Siamese network structure was capable of

identifying novel classes of cyber-physical attacks, even with a

few labeled training samples. To alleviate the overfitting issue, a

relative-feature representation scheme was utilized to transform

original features into a lower dimensional representation. A

robust cost function design was introduced, in which three spe-

cific losses, including the transforming loss in relative-feature

representation, the encoding loss during CNN encoding process,

and the prediction loss based on the distances between the

anchor sample, and the positive and negative samples, were

seamlessly integrated together to enhance the training efficiency.

An intelligent anomaly detection algorithm was then devel-

oped to deal with the few labeled data generated in industrial

CPS. Experiments and evaluations based on a fully labeled

public dataset and a few labeled dataset demonstrated that the

method could significantly improve the F1 score and reduce

the FAR score comparing with other related methods, which

indicated the effectiveness of the proposed model in detecting

intrusion signals with few labeled samples in industrial CPS

environments.

In future studies, we will go further to conduct more evalua-

tions in different situations to improve the algorithm with better

accuracy and efficiency.
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