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Abstract— In this paper, we tackle the task of symbolic
gesture recognition using inertial MicroElectroMechanicals Sys-
tems (MEMS) present in Smartphones. We propose to build
a non-linear similarity metric based on a Siamese Neural
Network (SNN), trained using a new error function that models
the relations between pairs of similar and dissimilar samples
in order to structure the network output space. Experiments
performed on different datasets regrouping up to 22 individuals
and 18 gesture classes, targeting the most likely real case
applications, show that this structure allows for an improved
classification and a higher rejection quality over the con-
ventional MultiLayer Perceptron (MLP) and Dynamic Time
Warping (DTW) similarity metric.

I. INTRODUCTION

Nowadays, inertial sensors are present in most existing

Smartphones and many other handheld devices. While the

accelerometer keeps track of the linear accelerations of the

device in the 3D space, the gyrometer measures the angular

velocities. These synchronized signals are classically used

in services such as portrait/landscape screen rotation or for

gesture recognition. Three main applications can be then

identified in order to trigger a predetermined functionality:

posture recognition (i.e. flipping, hanging the phone, etc.) ;

activity recognition (i.e. walking, jogging, biking, etc.) ; and

dynamic gesture recognition (i.e. when the user ”draws” a

symbolic gesture in the air, e.g. a circle, a square, etc.). While

posture recognition is relatively straightforward, models used

in gesture and action recognition have to face multiple

challenges. On the one hand, inertial MEMS present inherent

flaws that have to be taken into account, since they can be

deceived by physical phenomena. On the other hand, in a real

open-world application, inertial based gesture recognition

systems have to deal with high variations between users (i.e.

right/left-handed users, dynamic/slow movements, users in

mobility, etc.). To offer more functionality to final users, such

a system should propose a large vocabulary of interaction and

reject all decision uncertainties and parasite motions.

In this paper, we propose a novel gesture classification and

rejection method based on Siamese Neural Networks (SNN).

This method learns simultaneously auto-extracted features in

order to be more robust to physical phenomena and a non-

linear similarity metric for dealing with numerous gesture

categories. Moreover, we investigate two separate kinds of

rejections: the first one consists in rejecting samples from

known classes whose classification is too uncertain, and the

second type of rejection concerns samples from unknown

classes, showing the ability of our model to process unknown

samples in a sensible manner and isolate them.

This paper is organized as follows. Section II presents

related works on gesture recognition and rejection criteria.

In Section III, we quickly sum up the MLP theory and

notations in order to introduce the SNN, with details of our

modified backpropagation algorithm and training strategy.

Section IV describes our experimental setups and results

when comparing our solution to MLP and DTW based

similarity metric. Finally, our conclusions are drawn and

perspectives are presented.

II. RELATED WORK

Inertial gesture recognition has been researched for the

past ten years, and three main strategies can be identified.

The first strategy relies on geometric similarity metrics

combined with a direct classifier which compares the

sample to be recognized to a gallery of references. Its

main representative [1] is a model constructed from the

Dynamic Time Warping (DTW) similarity distance, suited

for time-series, and a K-Nearest Neighbor (K-NN) classifier.

The second strategy [11] consists in a statistical modeling

approach, with the application of Hidden Markov Models

(HMM). Finally, the last strategy implies the use of

kernel-based models learned from features, such as Support

Vector Machines (SVM) [14] or Bayesian Networks [3]. A

more precise description for each approach can be found in

[10]. In our study, we focused on the geometric similarity

metrics and the neural-based strategies, as well as their

rejection criteria. In [4], Choe et al. apply a DTW-based

model to inertial gesture recognition using mobile phones.

The authors test a KNN classifier based on templates

generated from a dataset gathering 4 subjects and 20

gestures for a total of 2000 samples. The use of a limited

number of templates implies a reduced computational cost

for recognition at around 90% precision, similar to the

case where each sample is used as a template. Moreover,

thresholds depending on the average and standard deviation

of intra-class distances are used, allowing for class-specific

rejection. Neural network-based strategies for inertial gesture

recognition are less frequent. In [10], Lefebvre et al. apply

a bi-directional long short term memory (BLSTM) recurrent

neural network on our dataset of 14 classes and 22 users. A

95.18% accuracy is reached for a multi-user configuration,

while Duffner et al. [6] applied a convolutional neural



network to the same dataset, with correct recognition rates

of 97.9% and 93.4% respectively for user-dependent and

user-independent configurations, proving the relevance of

neural networks for gesture classification.

The notion of rejection in classification has been studied in

other areas and applications. Two kinds of rejection criteria

have been proposed in the literature, with the first criterion

based on the actual input signals of the network, and the

second based on decision boundaries for the output space.

Following the first strategy, Vasconcelos et al. [13], tackling

handwritten digit recognition, suggest using ”guard units” for

each class. These units are defined by their weight vector,

which is composed by the means of the features for every

training pattern belonging to the class. Therefore, after the

activation of the network by a new sample, the guard units

check a similarity score between the input sample and each

class, issuing a ”0” output for neurons corresponding to the

classes that do not meet the rejection criterion. For an input

sample I and a weight vector W corresponding to the class

of the sample, the scalar product I.W should be closer to the

norm of W than the inner product for a sample belonging to

a different class. The rejection criterion is then defined by a

threshold ρ where the input is accepted by a class i only if

I.Wi ≥ (Wi.Wi − ρ).
The second strategy is a lot more represented, and can

be subdivided into threshold-based and custom boundaries

determination methods. Fels et al. [7] apply the MLP model

to the ”Data-Glove” to produce a hand-gesture-to-speech

system. Based on the angles between the fingers as well

as the position and orientation of the hand, 5 MLPs are

trained and combined to represent a vocabulary of 203 words,

constructed on 66 ”root words”. Respectively 8912 and 2178

samples were used for the training and testing phases. In

order to preserve the natural aspect of the interaction, a

special interest is devoted to limiting the number of errors.

A thresholding strategy on the value of the highest Softmax

output is adopted, for a final actual error rate of 0.96%, and

a mean rejection rate of 2.25%. In [12], Singh et al. propose

an additional step to improve this rejection method. Applied

to object recognition using a sequence of still images from

the Minerva benchmark, their rejection criterion relies on

generated patterns. For each feature, given µ the mean and

σ the standard deviation of the training samples, random

numbers are drawn between µ − 2.5σ and µ + 2.5σ, and

removed if comprised between min and max. Thus, the

generated patterns represent the outside boundaries of each

class, and are trained to produce outputs close to zero for

every class. Test samples are then classically rejected if all

of their outputs are under a 0.5 threshold. A thresholding

on the maximum output corresponds to a spheric reliability

zone.

In order to define more flexible boudaries, Gasca et al.

[8] propose to estimate hyperplanes emulating the decision

boundaries in the MLP output space in order to identify

”overlap” regions, where the samples are more likely to be

misclassified. The MLP is combined with a K-NN classifi-

cation, based on the outputs of the training samples correctly

classified after training. When recognizing a pattern, from the

two nearest classes, the label is accepted only if the class

given by the network matches the one selected by the K-

NN, given the sample is not in the overlap area between

hyperplanes. Experiments carried out using the databases

from the repository of University of California show a

decrease error of 50% on the test set, which is explained by

the need to select representative samples for the hyperplanes

definition.

In the light of the state-of-the-art, we assessed the rejection

potential of the SNN when building a non linear similarity

metric between pairs of samples. Two classical models were

chosen to compare the performance of this model. The DTW-

based model stood out as the best immediate comparison

with another similarity metric. Finally, we decided to com-

pare the SNN to the MLP to evaluate their performances as

neural networks.

III. PROPOSED MODEL

Inspired by cognitive science, we propose a model based

on SNN to recognize symbolic gestures on Smartphones.

This non-linear learning strategy is crucial to classify our

gesture vocabulary and to reject others gestures and false

alarms. While the MLP is a classifier, the main idea behind

the SNN is to build a non linear similarity metric from

multiple samples. Thus, although the SNN still keeps the

computational parts of the classical MLP, it essentially differs

from it by an original training strategy with a new error

function for backpropagation. An SNN learns to produce

feature vectors from pairs of samples that are discriminative

for the final classification.

A. MultiLayer Perceptron

An MLP is a feed-forward network composed of multiple

computational neural layers whose behavior mirrors our

understanding of brain neurons: the input layer is directly

activated by the gesture sample to be recognized, with one

artificial neuron for each dimension ; the hidden layers hold

the computational power of the network; the output layer is

formed of one neuron for each training class. The output

neuron with the strongest activation determines the winning

class for that sample.

Let xi be the ith dimension of the input sample x, aLi the

activation of the ith neuron ni of the layer L, ILi the input

of the ith neuron of the layer L, ϕ the activation function

for each neuron, and ωji the connection weight between the

neurons from two consecutive layers, of respective indexes

j and i. For the input layer, the activations of the neuron ni

is equal to the ith feature of the input sample. For any other

layer L, we then define :

{

ILi =
∑n

j=1
ωjia

L−1

j

aLi = ϕ(ILi )
(1)

The MLP training is performed using the backpropagation

algorithm. Following a gradient descent logic, for each train-

ing sample, the network is activated, then the discrepancy



between the activations of the output layer neurons and the

target output is computed. The main error criterion is based

on the cross-entropy between the estimate and the target

distributions for the model. Let X = {x1, ..., xN} the set of

training samples, K the number of classes, tkn the target for

the neuron k of the sample xn, and ykn the corresponding

network output, then the error EW , with W = {ωji} is

defined as follows:

EW = −

N
∑

n=1

K
∑

k=1

tknlog(ykn). (2)

Moreover, given the learning rate λ, the set of weights

W
t at the epoch t is then updated following Equation (3).

ωt+1

ji = ωt
ji − λ

∂E

∂ωji

(ωt
ji). (3)

This error is propagated backwards in the network in order to

update each connection weight, following the delta rule, with

δLj = ∂E
∂IL

j

for a neuron nL
j and its input ILj . Classically, the

output layer generally uses a Softmax activation function in

order for its activations to represent estimates of the posterior

probabilities for each class.

B. Siamese Neural Networks

Fig. 1. Architecture of the original Siamese Neural Network

As shown in Figure 1, the principal SNN model was in-

troduced by Bromley et al. [2] for signature verification, and

applied to face verification by Chopra et al. [5]. It contains

two feed-forward neural networks with shared weights that,

given respectively two input vectors X and Y , structure the

output space such that the distance between the two sample

outputs OX and OY reflects a semantic similarity. The SNN

inherits some MLP characteristics. However, the output layer

activations are not considered as posterior probabilities, but

as a feature vector.

The SNN error function originally relies on the cosine

similarity distance. Let C = {C1, .., CK} be the set of

classes represented in the training data, OR(W ) the output

vector of the network for a reference sample xR from class

Ci, OP the output vector of a second positive sample xP

from the same class, and ONl
, l 6= k the output vector

of a negative sample xNl
, l 6= k from a different class.

The goal of the SNN is to maximize inter-class variances

while minimizing intra-class variances, meaning OR and OP

should be collinear while OR and ONl
should be orthogonal.

Consequently, one sample is not enough any longer to define

an estimate of the error, and training pairs have to be selected.

While Bromley et al. in [2] defined separate positive and

negative pairs, whose number was arbitrary, Lefebvre et al.

in [9] proposed an error criterion based on triplets, with one

reference example, one negative and one positive examples.

In order to keep symmetric roles for every class and

optimize the efficiency of every update, we propose here

to minimize an error criterion for training subsets T =
{xR, xP , {xNl

, l = 1..K, l 6= k}} involving one reference

sample, one positive sample and one negative sample from

every other class. The error estimation EW (T ) becomes:

EW (T ) = (1− cos(OR, OP ))
2 +

∑

l

(0− cos(OR, ONl
))2.

(4)

For numerical stability reasons, we also propose to replace

the cosine distance for each pair by a combination of multiple

factors. The scalar product O1.O2 between two sample

outputs O1 and O2 was used instead of the cosine, and

additional constraints are added on the norms of both outputs,

forcing them to one. These conditions ensure that the cosine

distance between these outputs is still equal to the original

target, while preventing any saturation of the outputs, given:

cos(O1, O2) =
O1.O2

‖O1‖ . ‖O2‖
. (5)

Thus, we define the final error estimation over all the chosen

training subsets Ts, s ∈ J1, τK EW as:

EW =
∑

s∈J1,τK

EW (Ts), (6)

with

EW (Ts) =(1−OR.OP )
2 +

∑

l

(0−OR.ONj
)2

+
∑

k

(1− ‖Ok‖)
2.

(7)

The backpropagation algorithm is then modified in order

to take into account the part played by all samples. Thus, we

define, for a neuron ni, δRi
, δPi

, {δNli
}, generalized versions

of the δ defined earlier, in relation to their corresponding

input sample in the training subset. Given the activations of

the neuron ni for all the samples of a training subset, the

error for a weight ωji can then be computed by the following

equation :

∂E

∂ωji

= δRi
aRi

+ δPi
aPi

+
∑

l

δNli
aNli (8)

Since an SNN is trained to evaluate multiple gesture simi-

larities, our assumption to be experimented is that unknown

samples are projected into a feature space in a coherent

manner with known classes. This hypothesis is then tested

in an SNN rejection strategy, presented in the following

paragraph.



C. Rejection strategies

Once the SNN is trained, the output layer gives a feature

vector representing a similarity measure of a set of samples.

Any classifier can be used on these feature vectors. We

choose a K-NN classification based on the cosine similarity

metric in order to prove the validity and reliability of the

learned SNN projection. Indeed, while the K-NN classifier

does not scale efficiently for larger datasets, it stays relevant

for the domain of gesture recognition. Finally, our rejection

criterion consists in a single threshold, common to all classes,

on the distance to the closest known sample. A similar

thresholding criterion is also applied to a DTW-based model

in order to get a fair comparison and to a MLP rejection

strategy based on the maximum posterior probability. Two

kinds of rejection are then studied. The first kind encom-

passes all incorrect classifications, and tests the ability of

a system to identify samples whose classification is too

uncertain to be accepted. The main challenge for the model

is to isolate the misclassified samples first. The second kind

of rejection concerns the ”rest of the world” paradigm, and

aims at evaluating a model performance in isolating elements

it was not trained for from the rest of the known classes.

This rejection is only rarely taken into account by existing

methods, or is taken care of by another model specifically

trained for this task.

IV. EXPERIMENTS

A. Datasets and preprocess

To our knowledge, no public dataset is available for

3D gesture recognition benchmarks to this date. Thus, we

collected two datasets, using an Android Samsung Nexus S

device, at a sampling rate of 40Hz. The first dataset, DB1,

gathers 40 repetitions of 18 different classes performed by

a single individual, for a total of 720 records. DB1 is the

base for testing personalised models, fitted for a particular

user. The second dataset, DB2, gathers 5 repetitions of 14

different classes performed by 22 individuals, for a total of

1540 records. DB2 allows for a more generalized testing, in

an open-world with multiple users. The 14 classes of DB2 are

formed of linear gestures, with horizontal translations (’flick

North, South, East, West’) and vertical translations (’flick

Up, Down’); curvilinear gestures (’clockwise’ and counter-

clockwise’ circles, ’alpha’, ’heart’, ’N’ and ’Z’ letters, ’pick’

gesture towards the user, and ’throw’ gesture away from the

user). The 4 additional classes in DB1 are the number ’8’,

the symbol ’infinity’ and the letters ’V’ and ’W’.

The accelerometer and gyrometer signals are then prepro-

cessed in 3 steps in order to build a non-temporal vector

for MLP and SNN learning. First, amplitude scaling, where

each component of every sample (3D accelerometer and

3D gyrometer) forming a gesture record is divided by the

maximum norm over all the samples of this gesture, reduces

amplitude variations between different gestures dynamics,

and ensures that input values are between -1 and +1, which is

recommended for an efficient neural network training. Then,

a low-pass filter is applied to increase the signal-noise ratio.

Finally, gestures are normalized over time by forcing the

same fixed size, set to 45 after preliminary experiments, for

every gesture. This is done by computing the curvilinear

distance of the whole gesture, before linearly interpolating

or extrapolating the final samples at fixed coordinates.

Temporal input data are filtered, normalized and vectorized

for the implementation of the DTW based method [15] in our

comparative protocols.

B. Testing protocols

Two types of rejection are studied in this paper. First, we

test the rejection quality for misclassified samples whose

outputs are too far from what the network learned. The

test protocol P1 is based on DB2: all the records from

one individual are used for training, while the other 21

individuals’ records are used for testing. This allows for

testing the generalization potential of the trained model, as

well as its capacity for rejecting samples when variations

with the reference individual are too important. It is the

most challenging representation of an open-world, where

not every user can be taken into account when training the

model. Finally, we test the ability for a model to reject

unknown gestures. The test protocol P2 is based on DB1.

14 gesture classes are used during the training phase, with 5

repetitions per class. The test data comprises 16 repetitions

from each of these classes, as well as every record available

from the 4 additional classes, for a total of respectively 224

and 160 records from known and unknown classes. This

test embodies a realistic personalization paradigm, used in a

natural user interface where the user does not specify when

they make a gesture, and the system has to determine whether

to trigger an event even before selecting the corresponding

event. In our experiments, every protocol is repeated 10 times

in order to get meaningful average classification results.

C. SNN Parameter determination

The following meta parameters have to be tuned to op-

timize the learning sample representation: the learning rate,

the number and sizes of the different layers and the number

of training sets presented to the model at each epoch. The

final parameters were decided to be the same for every

configuration to prevent any specific unrealistic tuning to the

test data. In the first place, the learning rate was set to a low

value of 5.10−5 in order to improve the convergence of our

modified backpropagation algorithm. Then, after preliminary

tests, the number of hidden layers was set to 1, with 45

hidden neurons, which seems coherent with the preprocessed

samples of temporal length equal to 45.

Finally, we studied the influence of the size of the output

layer, since a higher size corresponds to a higher number of

descriptors available for the classifier. In order to evaluate the

performances of each model for every protocol, we consider

the classification rate relative to the rejection rate applied.

The classification rate is defined as the ratio between the

number of samples accepted and correctly classified, and the

total number of accepted samples; and the rejection rate,

as the ratio between the number of rejected samples and



the total number of samples. A higher area under the curve

implies a better rejection and classification quality.

Our evaluations show that increasing the SNN output

size is beneficial to the network discrimination capacity.

A threshold was quickly reached from 10 to 100 for the

single-user configuration (cf. Fig. 2.a), whereas an increased

size of the output layer was beneficial for the multi-user

configuration (cf. Fig. 2.b). The final size was set to 80 for

both protocols. In the case of P2, since 41.6% of the samples

are unknown in the test dataset, no classifier can achieve

a 100% accuracy under a 41.6% rejection rate threshold.

This score limitation is depicted with the filled area, and the

perfect score lines on 2.b and 3.b.
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Fig. 2. SNN classification for different outputs size on P1 (a) and P2 (b).

D. Results

In the following, we compare the SNN results obtained

with the final parameter configuration to our best DTW

and MLP performances. P1 shows that, while the SNN

outperforms the MLP for misclassification detection, it is

still less efficient than the DTW based model, which can

be explained by the lack of data necessary for ensuring the

generalization properties of a neural network. For a realistic

10% rejection rate, the DTW correct classification rate is

equal to 84%, while the SNN and the MLP get a respective

score of 82% and 79% (cf. Fig. 3.a). However, P2 shows the

superior capacity of the SNN to isolate unknown samples.

Around the 41.6% landmark, where every unknown sample

can be rejected, the SNN presents a correct classification

rate of 94%, while the DTW and the MLP get lower

respective scores of 92% and 88%. Furthermore, in its best

configurations, depicted by the means of the deviation, the

SNN is the closest to the perfect rate (see the yellow line in

Fig. 3.b) as the rejection rate increases.
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Fig. 3. DTW, MLP, SNN comparison on P1 (a) and P2 (b).

The figure 4 shows the rejection performance for the

three tested methods on P2. The evolution of three types of

rejection is followed as the rejection rate increases. Rejected

misclassifications and samples from unknown classes form

the right rejection, while rejected samples which would

have been correctly classified form the wrong rejection.

It is very interesting to observe then that the SNN-based

method presents the lowest area for the mean wrong rejec-

tion rate, with a steady right rejection rate that only starts

to degrade after the 41.6% landmark, showing its greater

selection ability compared to the other two methods where

the degradation is a lot more spread with the increase of

the rejection rate. The gap with the perfect rejection model,

where the area under the perfect rejection line on 4 would

be dedicated entirely to unknown classes rejection, is also

a lot smaller for the SNN. Thus, we can conclude that our

goal to minimize intra-class distances and maximize inter-



class distances is reached, and in a more efficient way than

the classical geometric or machine learning approaches.

V. CONCLUSIONS AND FUTURE WORKS

We presented an inertial gesture recognition and rejection

approach based on a non-linear similarity metric. Using

different datasets in order to cover realistic challenging

cases, we showed that the suggested modified SNN proves

to be superior for unknown and novel gesture detection

to the main similarity based model used in state-of-the-art

methods. It also outmatches its neural counterpart, the MLP,

both in classification and rejection capabilities. Nevertheless,

the DTW based model still outperforms our model for

misclassifications rejection, which can be explained by the

temporal aspect of the data giving an edge to the DTW. This

is the reason why we aim at developing an improved SNN

model which will be able to handle time series, simplifying

further the preprocess step and increasing the network’s

discrimination capacity.
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Fig. 4. DTW, MLP, SNN rejection details on P2




