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Abstract

Depression is one of the global leading causes of disability, but treatments remain limited and classical antidepressants were
found to be ineffective in a substantial proportion of patients. Thus, novel effective therapies for the treatment of depression
are urgently needed. Given the emerging role of inflammation in the etiology and pathophysiology of affective disorders, we
herein illustrate how experimental endotoxemia, a translational model of systemic inflammation, could be used as a tool to
develop and test new therapeutic options against depression. Our concept is based on the striking overlap of inflammatory,
neural, and affective characteristics in patients with inflammation-associated depression and in endotoxin-challenged healthy
subjects. Experimental administration of endotoxin in healthy volunteers is safe, well-tolerated, and without known long-
term health risks. It offers a highly standardized translational approach to characterize potential targets of therapies against
inflammation-associated depression, as well as to identify characteristics of patients that would benefit from these
interventions, and, therefore, could contribute to improve personalization of treatment and to increase the overall rate of
responders.

Introduction

Depression is a highly prevalent mental disorder and one of
the leading causes of disability worldwide. Globally, an
estimated 322 million people are affected by depression [1].
Although effective therapies are available, about one-third
of patients with depression fail to respond to treatment with
classical first-line antidepressants, such as selective ser-
otonin reuptake inhibitors (SSRIs) [2]. Consequently, there
is a pressing need to identify new targets for the

development of tailored therapies for those patients who
exhibit resistance to the existing treatments.

During the last decade, an extensive body of experi-
mental and clinical evidence has accumulated demonstrat-
ing that inflammation is an important factor in the etiology
and pathophysiology of major depressive disorder (MDD),
at least in a subgroup of patients [3–7]. Consistent with a
view of depression as a multifactorial condition, it is thus
now well accepted that inflammation contributes to so-
called “inflammation-associated depression” [8, 9]. General
population studies demonstrate that about 30% of the
individuals who were taking antidepressants or who were
hospitalized for depression had increased levels (i.e., >3 mg/
L) of C-reactive protein (CRP), a clinical marker of
inflammation [10, 11]. This subgroup of patients also
exhibits increased systemic levels of pro-inflammatory
cytokines compared to healthy individuals [12]. Given that
patients suffering from inflammation-associated depression
typically show resistance to classic antidepressants such as
SSRIs [13, 14], this sub-population of patients represents a
particular challenge to treat.

Herein, we propose to take advantage of experimental
endotoxemia, a well-characterized model of experimental
systemic inflammation, to support the development of
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therapies for this subgroup of patients. Employing this
model in healthy volunteers has already provided valuable
insights into the mechanisms underlying inflammation-
associated depression and could, in the next step, be used to
identify new therapeutic targets and to test new treatment
strategies that are specifically directed against
inflammation-associated depression.

Endotoxin-induced inflammation: effects on
mood and behavior

Systemic inflammation can be experimentally elicited in
both animals and healthy humans by administration of
purified bacterial endotoxin (lipopolysaccharide [LPS]).

LPS is a cell-wall component of Gram-negative bacteria and
a prototypical pathogen-associated molecular pattern that
activates the innate immune system through a Toll-like
receptor 4-dependent pathway [15]. Intravenous endotoxin
injection to healthy humans rapidly triggers a well-
described inflammatory cascade, with increased blood
and cerebrospinal fluid (CSF) concentrations of cytokines
and acute phase proteins [16]. Importantly, a similar sig-
nature of inflammatory changes, including elevated blood
levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α,
and CRP, was also found in inflammation-associated
depression [12, 17, 18]. Experimental studies in animals
have identified several pathways by which peripheral
cytokines can propagate their signal to the brain to induce
behavioral and mood changes (Fig. 1a, see ref. [19] for

Fig. 1 Immune-to-brain

communication pathways

and cytokine-induced brain

and behavioral changes.

a Immune cells produce
cytokines that circulate in the
blood and signal the brain via
multiple afferent pathways that
can act in parallel. These routes
comprise activation of vagal
sensory neurons projecting to
the brainstem, active transport of
cytokines across the blood-brain
barrier (BBB) via cytokine-
specific saturable transporters,
and passive diffusion of
cytokines in brain areas with
incomplete BBB (e.g.,
circumventricular organs and
choroid plexus). The peripheral
cytokine signal also activates
microglia, which can, in turn,
produce cytokines. b Cytokine
signals reaching the brain trigger
functional changes in brain areas
involved in emotion processing
and mood regulation, such as the
insula, amygdala (Amy), ventral
striatum (VS), anterior cingulate
cortex (ACC), and prefrontal
cortex (PFC). This leads to the
behavioral reorganization of the
individual and to affective
changes. The figure was
generated using images
purchased from Motifolio Inc.
(Ellicott City, MD, USA).

Sick for science: experimental endotoxemia as a translational tool to develop and test new therapies. . . 3673



review). Engagement of these afferent pathways triggers
inflammatory changes within the brain, affecting neural
activity and neurotransmitter release in brain areas involved
in emotion processing and mood regulation, such as limbic
and cortical regions (Fig. 1b, see refs. [20–23] for reviews).
This ultimately leads to the behavioral reorganization of the
sick individual, who exhibits reduced locomotion, food
consumption, and social exploration, commonly referred to
as “sickness behavior” [24]. Interestingly, sick animals also
exhibit depressive-like behaviors, such as increased immo-
bility in the forced swim and the tail suspension tests [25],
as well as reduced incentive motivation [26].

In humans, the endotoxin-induced inflammatory
response is accompanied by negative affective and beha-
vioral changes that resemble core symptoms of depression.
Within two hours, individuals challenged with endotoxin
typically develop depressive symptoms and negative mood,
characterized by an increase in sadness, lassitude, anhe-
donia, and anxiety, which last for about 4–5 h [16, 27–31].
LPS-treated individuals additionally feel tired and sleepy,
have reduced appetite, and engage less in social interac-
tions [32–37]. Experimental endotoxemia also affects
incentive motivation [38, 39], and alters the cognitive
processing of negative information [40]. The magnitude of
the inflammatory response in the circulation and CSF has
been found to correlate with these affective changes
[16, 27, 28, 34, 38]. Since LPS induces a well-described
cascade of inflammatory changes together with behavioral
and affective symptoms that are highly relevant for
depression, experimental endotoxemia represents a unique
model to investigate the role of inflammation in core
symptoms of depression and their underlying mechanisms
in humans [23, 41, 42].

Interestingly, such as with depression [43], there is some
evidence for sex differences in the inflammatory and beha-
vioral responses to experimental endotoxemia [44], but so far
the findings are inconsistent. Some studies found a heighted
pro-inflammatory response and more pronounced mood dis-
turbances after LPS administration in women compared to
men, while others did not [45–50]. It is possible that this
heterogeneity is related to the hormonal status of the female
volunteers, but this needs to be confirmed in future studies.

Endotoxin-induced inflammation and
neuroimaging findings

Several studies have used experimental endotoxemia in
healthy human volunteers to investigate the brain mechan-
isms underlying inflammation-induced behavioral and
mood changes relevant for depression [22, 51]. These stu-
dies have analyzed, for example, alterations in the neural
processing of social stimuli or rewards [30, 52–55], brain

functional connectivity, glucose metabolism, and activation
of glial cells [32, 33, 56, 57].

Regarding social and emotional functioning, a study
investigated the neural correlates of inflammation-induced
social disconnection and increased emotional responsive-
ness, and could show that the LPS-induced rise in circu-
lating IL-6 levels was significantly positively correlated
with the activity in the dorsal anterior cingulate cortex
(dACC) and anterior insula during a social exclusion task in
females (but not males) [53]. Furthermore, negative social
feedback after endotoxin injection led to more pronounced
BOLD responses in the amygdala, dACC, and the dor-
somedial prefrontal cortex, although these changes were not
reflected in behavioral measures [58]. On a related note, a
functional magnetic resonance imaging (fMRI) study
addressing neural responses to emotional stimuli during
endotoxin-induced immune activation revealed increased
activation of prefrontal regions, i.e., the inferior orbito-
frontal, medial and superior prefrontal cortices, which are
closely connected to the amygdala [55]. In another endo-
toxin study, increased amygdala responses were found in
response to socially threatening stimuli such as fearful
faces, with amygdala responses being related to feelings of
social disconnection [59]. Altogether, endotoxin-induced
inflammation seems to increase neural responses in the
amygdala, ACC, and prefrontal regions during the proces-
sing of social and emotional information. These brain
regions are—beside other functions—key contributors to
emotion processing and regulation, and structural and
functional alterations in these regions have been implicated
in depression pathology. Indeed, amygdala responses to
negative stimuli are more pronounced and longer lasting in
depressed patients [60], which could be at least partially
explained by altered inhibitory control from prefrontal
regions [61]. In addition, increased ACC activation to
emotional stimuli has been reported in depression [22, 62].

Furthermore, significant reductions in ventral striatal
activity to reward cues have been found during experi-
mental endotoxemia [30], indicating that endotoxin-induced
inflammatory activation alters the brain’s sensitivity to
rewards [30]. The clinical validity of such findings is
indirectly supported by the observation that increased CRP
levels were associated with reduced corticostriatal con-
nectivity in patients with MDD [63]. In depression,
increased sensitivity to negative feedback has been repeat-
edly observed [22], but its potential relationship to inflam-
mation has so far only been experimentally explored in a
model of typhoid vaccination, showing a shift in relative
sensitivity to punishment as compared to reward [64]. If
such effects could be also induced by endotoxin adminis-
tration, this opens up possibilities to manipulate a core
feature of depression and to use neuroimaging to study its
neural signatures. As early changes in reward sensitivity
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predict treatment outcomes [65], and because inflammation
is indicative of treatment-resistant depression [14], a model
to better understand this shift would be valuable.

Recently, a number of studies have shown that experi-
mental inflammation results in rapid modulation of inter-
oceptive pathways, including the insular and cingulate
cortices [56, 57, 66, 67]. Importantly, altered functioning in
these pathways is also a central feature in major depression
[68, 69], and is believed to represent neural substrates of
psychological states common to depression and sickness,
such as fatigue, malaise, and social disconnect [70]. These
fMRI findings were supported by the results of a positron
emission tomography (PET) study, in which changes in
glucose metabolism in the insula (and to some extent also in
the cingulate) were correlated with increased depressive
symptoms after endotoxin injection [33].

PET imaging also has recently been used to measure
microglia activity by selectively targeting the 18 kDa
mitochondrial translocator protein (TSPO), which is upre-
gulated in activated microglia. A series of studies have
shown increases in TSPO binding after immune provoca-
tion and in MDD patients [32, 71–74]. Building on an initial
study in baboons [75], a PET study in healthy humans using
the radioligand [11C]PBR28 observed increased TSPO
binding throughout the brain together with more pro-
nounced sickness symptoms after endotoxin injection [32].
This TSPO binding pattern was similar to those in patients
with MDD, for which a meta-analysis reported increased
TSPO expression in ACC, frontal lobe, prefrontal and
temporal cortices, insula, and hippocampus when compared
to healthy controls [71]. Interestingly, a recent study
showed that higher TPSO values in patients with treatment-
resistant depression predicted better treatment response to
Celecoxib [76]. However, these findings need to be inter-
preted with caution, as results of TSPO PET studies in
neuroinflammatory conditions or states have shown incon-
sistent results [77], challenging the general assumption that
altered TSPO expression or binding unequivocally mirrors
neuroinflammation [78, 79]. In line with this, no changes in
TSPO binding were found after IFN-α immune challenge in
healthy human volunteers [80], or in patients with rheu-
matoid arthritis [81], or severe seasonal allergy [82].

Taken together, neuroimaging techniques can provide
important insights into the neural pathways and physiolo-
gical processes involved in behavioral and mood-related
symptoms during endotoxin-induced inflammation. The
above findings suggest that these symptoms are at least
partially mediated by functional changes in subcortical and
prefrontal brain regions. Importantly, the activation of these
regions show a striking overlap to neural changes found in
inflammation-associated depression, suggesting that the
chronic alteration of these pathways by inflammation leads
to the development of clinical depression [22, 51]. While

there is some support for specific neural substrates of
inflammation-associated depression, including alterations of
ACC activity while processing negative affective stimuli, and
inhibited activity of the ventral striatum during reward tasks
(as outlined in ref. [83]), future imaging studies implement-
ing identical experimental tasks and techniques to compare
behavioral and brain responses between healthy endotoxin-
treated individuals, and patients with inflammation-
associated and “typical” depression are suggested.

Experimental endotoxemia as a tool to
develop and test therapies for inflammation-
associated depression

Thus far, experimental endotoxemia has been used in ani-
mals and humans to mainly identify the afferent (immune-
to-brain) communication pathways and to characterize
inflammation-induced behavioral and neural changes.
Given the overlap of inflammatory, neural, and affective
characteristics in patients with inflammation-associated
depression and in endotoxin-challenged healthy subjects,
we herein emphasize that experimental endotoxemia con-
stitutes a useful translational model for the development of
therapies for inflammation-associated depression (Fig. 2), as
previously suggested for inflammatory diseases [84]. Fur-
thermore, we propose that this model could also serve as a
tool to define the characteristics of populations of patients
that would benefit most from therapies targeting
inflammation-associated depression.

Ever since the role of inflammation in the pathophy-
siology of depression gained interest, various potential
pharmacological targets have been identified for the treat-
ment of inflammation-associated depression (see refs.
[4, 85, 86] for reviews). Such targets include molecules
involved in immune-to-brain communication such as pro-
inflammatory cytokines and prostaglandins [87]. In this
regard, the prostaglandin synthesis inhibitors celecoxib
(cyclooxygenase [COX]-2 inhibitor) and aspirin (COX-1
and COX-2 inhibitor) have been found to enhance the
therapeutic efficacy of classical antidepressants [88, 89].
Furthermore, depressed patients with signs of inflammation
showed better improvement in depressive symptoms when
treated with selective cytokine antagonists, such as the
TNF-inhibitors etanercept and infliximab, compared to
patients receiving placebo [90, 91]. Two meta-analyses also
indicate potential beneficial effects of anti-inflammatory
treatments on depressive symptoms [92, 93], although the
number of studies included in these meta-analyses was
limited (less than 20). Other studies have suggested to
directly targeting neuroinflammatory processes by drugs
that inhibit microglia activation such as the tetracycline
antibiotic minocycline [5, 94, 95].
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Alternative potential targets for therapies against
inflammation-associated depression could be neuro-
transmitter metabolism pathways that are demonstrably
affected by inflammation, as extensively reviewed pre-
viously [3, 96]. For instance, activation of the enzyme
indoleamine 2,3-dioxygenase (IDO), which degrades tryp-
tophan into kynurenine (KYN) to the detriment of serotonin
synthesis, appears to be one key mechanism for
inflammation-induced changes in depressive symptoms
[21]. Activated microglia converts kynurenine (KYN) into
quinolinic acid (QUIN), a highly potent N-methyl-D-
aspartate (NMDA) receptor agonist that triggers the
release of the excitatory neurotransmitter glutamate.
Increased brain glutamate, notably in the basal ganglia and
dACC, has recently been shown in inflammation-associated
depression [97]. The current use of low-dose ketamine as
antidepressant therapy in patients with treatment-resistant
depression is based on ketamine-blocking effects on
NMDA-mediated glutamate transmission. Interestingly,
particularly patients with elevated levels of inflammatory
markers seem to benefit from low-dose ketamine treatment
[98, 99], which is in line with the findings from rodent
studies showing that ketamine prevents LPS-induced
depressive-like behavior [100–102].

Potential therapies for inflammation-associated depression
are not restricted to pharmacological therapies. Nutritional
interventions such as supplementation with anti-inflammatory

omega-3 polyunsaturated fatty acids can improve inflamma-
tory states/conditions [103], or favor a good gut microbiota
balance [104]. This, in turn, is likely to modulate mood
symptoms [105, 106]. In the same way, exercise interventions
have anti-inflammatory effects [107] and could, thus, improve
inflammation-associated depressive symptoms [108]. Fur-
thermore, non-pharmacological therapies can target the
behavioral changes associated with inflammation rather than
inflammation per se. Such therapies would focus on
improving psychological factors that could confer vulner-
ability to inflammation-induced mood changes, such as sleep
disturbances [46], pre-existent anxiety [31] and depressive
symptoms [109], trait sensitivity to social disconnection
[110], and negative affectivity [111]. Importantly, psycholo-
gical and mind-body therapies appear to also have positive
impact on the inflammatory state [112, 113], and there-
fore arise as an interesting tool for inflammation-associated
depression.

Altogether, the challenge to treat inflammation-
associated depression does not seem to come from a lack
of possible targets (Fig. 2), but rather from the difficulty to
determine the efficacy of such therapies. In particular,
clinical trials are highly challenging with respect to time,
achievability, as well as financing. Furthermore, clinical
trials addressing inflammation-associated depression might
lead to false-negative results, as only a sub-population of
depressed patients would benefit from these therapies, and

Fig. 2 Potential

treatment targets and

therapeutic approaches that

can be studied and tested using

human experimental

endotoxemia. Administration of
endotoxin leads to a cascade of
inflammatory, neural, and
affective changes that are highly
relevant for depression and that
can be measured and treated at
different levels. Potential
treatment options include
pharmacological and non-
pharmacological therapies
targeting the peripheral and
central inflammatory responses,
neurotransmitter metabolism, or
the behavioral/psychological
vulnerability. The figure was
generated using images
purchased from Motifolio Inc.
(Ellicott City, MD, USA).
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positive effects might be diluted in the overall group of
depressed patients. Thus, we believe that experimental
endotoxemia could be an important tool to countervail these
issues. The model might be particularly useful in the pre-
clinical phase to test whether a particular drug/treatment is
effective in preventing affective and behavioral changes in
endotoxin-challenged healthy humans. This would nicely
complement animal studies (e.g., [100–102, 114–116]), by
developing tailored therapies for patients with
inflammation-associated depression, and testing them in a
human population free of comorbidities and in a limited
period of time.

Two previous studies have tested whether a pre-
treatment with an SSRI or with bupropion prevents mood
alterations induced by endotoxin [29, 117], with limited
effects, in line with the notion that inflammation-associated
depression is resistant to classic antidepressant therapies
[13]. Future studies will need to investigate the potential
usefulness of the therapies described above against
inflammation-associated depression.

Characterization of the patient target
population

Although the above therapeutic options might be to some
extent promising for the treatment of inflammation-
associated depression, the success of such therapies lar-
gely depends on the proper identification of patients that
benefit from this kind of interventions. One of the bio-
markers that have gained strong interest in the quest for
selecting depressed patients with inflammation is CRP
[118]. Measuring circulating CRP concentrations has
already been suggested as a marker to identify depressed
patients that would benefit most from anti-inflammatory
treatments [91]. A major advantage of CRP is that it is
highly standardized and relatively easy to measure in the
blood (when following recommendations [119]). However,
CRP has two isoforms, one that is not soluble in plasma,
with pro-inflammatory properties (mCRP), and one highly
soluble and possessing anti-inflammatory properties
(pCRP). The standard CRP assays measure both CRP iso-
forms [120]. Consequently, although clinically high levels
of CRP (>10 mg/L) probably relate to increased production
of mCRP, it is less clear when only a slight elevation in
CRP is observed [120]. Thus, it remains unclear whether
moderate increases in CRP levels can indicate with con-
fidence a risk for inflammation-associated depression.

Experimental endotoxemia could help identifying the
characteristics of patients that would benefit from therapies
targeting inflammation-associated depression. Arguably,
these patients would exhibit an increased inflammatory
state, but also higher target cell sensitivity to the effects of

cytokines, and thus would show a stronger behavioral
response to endotoxin [44, 121]. Using experimental mod-
els of inflammation, recent studies have provided clues
regarding variables possibly associated with higher emo-
tional and behavioral response to cytokines, such as base-
line psychological state (e.g., state anxiety, negative
affectivity, perceived stress) [31, 40, 111, 121], sleep dis-
turbances [46], and baseline activity of some transcription
factors [122]. Identifying further the characteristics that
predict a higher and/or prolonged emotional response to
inflammation would help determining which subgroup of
patients would benefit the most from therapies for
inflammation-associated depression.

Demarcation from other models of
inflammation-associated depression

In addition to experimental endotoxemia, two other models
have provided valuable insights into inflammation-
associated depression: the IFN-α model and the typhoid
vaccination model. IFN-α treatment has been clinically
used, and about half of the patients develop depressive
symptoms within 8–12 weeks after the onset of IFN-α
treatment [123]. Studies in IFN-α-treated patients have
greatly expanded knowledge on the role of inflammation in
depression [96]. Interestingly, chronic IFN-α treatment in
hepatitis C patients [124] induced a comparable pattern of
CSF cytokine changes as in endotoxin-treated healthy
subjects [16]. Moreover, both acute LPS administration and
chronic IFN-α administration induced similar changes in
brain function, including reduced activation of ventral
striatum in response to reward [125], increased glutamate in
the ACC [126], and reduced functional connectivity [127].
In addition, changes in basal ganglia were observed acutely
(4 h) after the administration of IFN-α, and predicted the
long-term development of fatigue [128, 129]. Although
the model of chronic IFN-α administration allows assessing
the long-term effects of inflammatory activation, IFN-α
cannot be applied chronically to healthy volunteers for
ethical reasons.

Administration of typhoid vaccine can be safely used in
healthy subjects, and triggers a mild immune activation and
very subtle changes in mood in a small proportion of sub-
jects [130, 131]. Changes in brain functions have been also
observed after typhoid vaccination, such as increased acti-
vation of the ACC during emotional face processing [130],
increased activity in the amygdala and in the insula [132],
and reduced activity in the ventral striatum in response to
reward [64], in line with those observed during experi-
mental endotoxemia. However, because of the response
being very mild and not as reproducible as in experimental
endotoxemia, this model seems less useful as a tool for the
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development and testing of new treatments against
inflammation-associated depression.

Advantages and limitations of the
experimental endotoxemia model

The model of experimental endotoxemia offers many
advantages. First, because of the transient nature of the
endotoxin-induced inflammatory and behavioral responses,
the efficacy of a potential therapeutic intervention can be
assessed within a relatively short period of time. Second,
dose-effect relationships can be easily obtained by mod-
ulating the dose of endotoxin [28, 133, 134]. For example, a
dose of 0.4 ng/kg body weight (bw) induces very slight
behavioral changes that are imperceptible to participants,
while a dose of 2.0 ng/kg bw triggers very strong sickness
symptoms and emotional distress in the majority of parti-
cipants. Note that the majority of studies assessing LPS-
induced changes in mood and negative affect used doses
between 0.4–1.0 ng/kg bw, while higher doses (2.0–4.0 ng/
kg bw) are mainly used in studies focusing on sepsis-related
symptoms. Third, since the response to LPS is highly
conserved across vertebrate species, the model allows for-
ward and reverse translation of the findings from animals to
humans [135]. Using experimental endotoxemia in humans
additionally provides an evident benefit of assessing feeling
states, which are not necessarily reflected in objective
behavioral changes (e.g., a feeling of fatigue does not
necessarily translate into lower physical activities) [135].
Even though this model is not a model of depression per se
(see below), the model of experimental endotoxemia pro-
vides crucial information about inflammation-induced
affective changes and the underlying mechanisms.

Some limitations of the human experimental endotox-
emia model as a model of depression need to be considered
as well. The main limitation lies in the discrepancy of the
severity and chronicity of the LPS-induced emotional
symptoms compared to the symptoms of MDD. While
emotional symptoms in MDD last for at least two weeks,
the behavioral and emotional changes induced by endotoxin
are acute and subside completely 6–8 h after endotoxin
injection. Repeated or chronic administration of very low
doses of endotoxin have been attempted to extend the LPS-
induced behavioral and physiological symptoms [136], but
these approaches were hampered by endotoxin tolerance.
One critical question is whether the acute changes observed
during experimental endotoxemia would turn into clinical
depression if inflammation and activation of the immune-to-
brain pathways would persist for a longer period of time.
Despite similarities in the emotional and neural changes
observed under acute experimental inflammation and in
inflammation-associated depression [22, 23, 41, 42, 51],

one can only speculate if such changes would become
chronic with ongoing inflammation, as the acute LPS-
induced mood effects last only for a few hours. However,
findings from IFN-α treatment studies suggest that this
indeed might be the case, by demonstrating that acute IFN-
α-induced changes predicted the later development of
neuropsychiatric symptoms [128, 129, 137]. An important
research question to investigate would be to which extent
the emotional and neural responses to LPS predict the later
development of depression. In any case, phase-I studies
to determine the potential usefulness and safety of a therapy
do not require having a model that reflects precisely the
disease. Given the characteristics and advantages of the
model of experimental endotoxemia described above,
phase-I studies of therapies against inflammation-associated
depression would benefit from using this model.

Another limitation is that experimental endotoxemia has
only been used in very healthy subjects, without physiolo-
gical diseases, medications, or mood, sleep, and stress dis-
orders, apart from one recent study in obese but
metabolically healthy individuals [138]. Thus, endotoxin-
induced neural and behavioral changes in populations that
are at higher risk at developing depression, for instance
individuals suffering from diabetes, chronic pain, or cancer
[139], and in depressed individuals, remain unknown and
need to be investigated.

Methodological considerations

Although experimental endotoxemia is a safe model of
systemic inflammation when performed under controlled
conditions, some technical recommendations need to be
considered. As endotoxin-induced systemic inflammation
leads to increases in heart rate and body temperature, and
can (depending on the dose) induce nausea, headache, as
well as dizziness and acute drop in blood pressure, medical
supervision is necessary. Furthermore, only low doses of
LPS can be used when studying neural mechanisms using
brain imaging, to limit shivering and nausea in the scanner.
In addition, individuals should be monitored until the
sickness response has subsided (i.e., until 6–8 h after
endotoxin injection) before being discharged after a medical
examination to insure their safety.

Various research groups have used the model of
experimental endotoxemia in humans, with variations in
experimental procedures. Although it is unclear how each
parameter of the procedure affects the response to endo-
toxin, some parameters are likely to modulate the immune
and/or brain outcomes, such as time of injection [140],
individuals’ expectations [134], and fasting state [141].
Furthermore, various tools have been used to measure the
depressive response, including semi-structured interviews
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(e.g., Montgomery-Åsberg Depression Inventory MADRS)
and self-administered questionnaires (e.g., Profile of Mood
States POMS). Lassitude and fatigue have rarely been
assessed specifically [142], but rather as subscale from the
MADRS or POMS. State anxiety seems as the only
symptom that was measured across studies consistently with
the State-Trait Anxiety Scale (STAI). While it is difficult
to advise on the choice of specific scales, we recommend to
compile scales designed to assess specific symptoms, to
have an overview of the inflammation-induced specific
neuropsychiatric changes and how they relate to a general
state of sickness [143]. Furthermore, it can be useful to
assess objective behavioral aspects, such as objective
motivational [38, 39] and appetite [37] changes, as they
provide additional information on the specific mechanisms
underlying the development of affective symptoms [135].
Such procedures might overcome the limitation of sickness
as a generalized behavioral response to the inflammatory
stimulus, and increase precision and specificity for
depression-relevant behavioral changes. We also urge to
report protocol details when using human experimental
endotoxemia, and call for a standardization of the procedure
to make the best use of this model for the proposed purpose.

Conclusion

Experimental administration of endotoxin to healthy
volunteers offers a highly standardized translational model
of systemic inflammation that has been successfully used to
investigate the mechanisms underlying inflammation-
associated behavioral and mood changes. It has been pro-
ven to be safe, well-tolerated, and without any known long-
term health risks. The overlap of inflammatory, neural and
affective characteristics in endotoxin-challenged healthy
subjects and patients suffering from inflammation-
associated depression emphasizes that human experi-
mental endotoxemia might serve as a suitable tool in the
quest to develop personalized and thereby more effective
therapies for major depression.
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