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Clı́nicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Bahia, Brasil,

4 Fundação de Hematologia e Hemoterapia do Estado da Bahia, HEMOBA, Salvador, Bahia, Brasil

* mari@bahia.fiocruz.br

Abstract

Sickle cell disease (SCD) consists of a group of hemoglobinopathies in which individuals

present highly variable clinical manifestations. Sickle cell anemia (SCA) is the most severe

form, while SC hemoglobinopathy (HbSC) is thought to be milder. Thus, we investigated the

clinical manifestations and laboratory parameters by comparing each SCD genotype. We

designed a cross-sectional study including 126 SCA individuals and 55 HbSC individuals in

steady-state. Hematological, biochemical and inflammatory characterization was performed

as well as investigation of previous history of clinical events. SCA patients exhibited most

prominent anemia, hemolysis, leukocytosis and inflammation, whereas HbSC patients had

increased lipid determinations. The main cause of hospitalization was pain crises on both

genotypes. Vaso-occlusive events and pain crises were associated with hematological,

inflammatory and anemia biomarkers on both groups. Cluster analysis reveals hematologi-

cal, inflammatory, hemolytic, endothelial dysfunction and anemia biomarkers in HbSC dis-

ease as well as SCA. The results found herein corroborate with previous studies suggesting

that SCA and HbSC, although may be similar from the genetic point of view, exhibit different

clinical manifestations and laboratory alterations which are useful to monitor the clinical

course of each genotype.

Introduction

Sickle cell disease (SCD) consists of a group of hemoglobinopathies in which individuals

inherit hemoglobin variants derived from single point mutations, that causes morphological

abnormalities in the red blood cells (RBC) [1]. Sickle cell anemia (SCA) is characterized by the

homozygosity for hemoglobin S (HbS) and is the most frequent and severe form of the disease.
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The point mutation of GAG to GTG in the sixth codon of the β (beta) globin gene (HBB),

which replaces the glutamic acid for a valine, leading to HbS formation [2]. HbS forms long

polymers when the oxygen tension is low, due to the hydrophobic interaction of valine (at 85

position in the globin chain) and phenylalanine (at 88 position in the globin chain) [3]. RBC of

SCA individuals are less flexible since the polymers lead to rheological and biochemical

changes and hence they impair the blood flow causing vaso-occlusion (VO) [1].

In addition to SCA, hemoglobin SC disease (HbSC) is another genotype of SCD. In this

case, individuals inherit HbS in association with hemoglobin C (HbC). The molecular basis of

HbSC disease is similar to SCA; however, the point mutation is GAG to AAG, which replaces

the glutamic acid for lysine, in the globin chain [2]. The HbC tends to form amorphous aggre-

gate within the RBC which also leads to morphological modifications [4]. In addition, K–Cl

cotransporter is also altered in HbSC disease contribute to RBC dehydration, which increases

the intracellular hemoglobin concentration, and makes it more dense than HbAA-containing

RBC [4].

SCD patients exhibit a wide range of clinical manifestations including acute episodes of

pain, pulmonary hypertension (PH), stroke, priapism, leg ulcer, acute chest syndrome (ACS),

osteonecrosis and cholelithiasis [1–3]. It is thought that PH, leg ulcer and stroke are associated

to the chronic hemolytic feature of SCD, while acute pain crises, osteonecrosis and ACS are

associated to VO, which could drive to different subphenotypes [5]. However, this dichotomi-

zation is not restricted, very often they overlap and may not be useful for SCA and HbSC indi-

vidually [5–7]. Moreover, recently it has been suggested that abnormal lipid homeostasis

would be surrogate subphenotype, considering the association with both hemolysis and VO

[6]. SCA patients usually present clinical events more frequently when compared to HbSC dis-

ease, which is considered a milder form of SCD [1,4,8]. Alternatively, retinopathy is more fre-

quently associated to HbSC disease [9].

In addition to different clinical manifestations, laboratory parameters are also important

biomarkers useful for the patients’ follow-up due to the possibility to monitor anemia, hemoly-

sis, leukocytosis, endothelial dysfunction and to predict many clinical manifestations [10]. In

SCA, RBC count and Hb levels are commonly decreased while complete white blood cells

(WBC) counts lactate dehydrogenase (LDH) and reticulocyte counts are increased. Regarding

HbSC, RBC counts and Hb levels are usually increased whereas mean corpuscular volume

(MCV), mean corpuscular hemoglobin (MCH) and red blood cell distribution width (RDW)

are decreased [1,4,8,11]. Laboratory determinations seem to translate the pathophysiological

mechanism underlying SCD. Once the HbS alone or in association with HbC forms the poly-

mer, the RBC membrane is also altered [4,5]. Irreversibly sickle RBC are more adherent and

can bind to vascular endothelial cells as well as to leukocytes and platelets [12]. This heteroge-

neous multicellular aggregate leads to physical obstruction of the capillaries driving VO, which

is a hallmark of SCD [12]. VO is even heightened due to persistent intravascular hemolysis

releasing free heme, hemoglobin (Hb) and arginase which decrease nitric oxide (NO) bioavail-

ability and is directly responsible for endothelial dysfunction [13].

Hemoglobin variants have a high frequency worldwide [14], likewise, SCD is also distrib-

uted in several different countries, especially in Africa [15]. Brazilian population bears a het-

erogeneous genetic background with great admixture, thus SCD prevalence is also diversified

through the states, and the incidence of SCD is approximately 1 in 650 newborn babies

screened in the state of Bahia [16]. Considering the elevated frequency of hemoglobin variants

and prevalence of SCD in our population [17,18], and the peculiarities of SCA and HbSC dis-

ease we aimed to investigate the association of classical laboratory parameters and clinical

manifestations in each of these SCD genotype.
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Methods

Study design and casuistic

A cross-sectional study was performed in 181 pediatric SCD children residing in the state of

Bahia, Brazil, who were seen at Bahia Hemotherapy and Hematology Foundation (HEMOBA),

from October 2016 to September 2017. For inclusion, patients were required to be in steady

state, i.e., none had received a blood transfusion 4 months prior to inclusion and no acute

events, hospitalization, or infections were reported 3 months prior to blood sampling. Blood

samples were taken during a regular clinical visit. Patients with confirmed HbSS or HbSC

genotype were included; all the other hemoglobin genotypes were excluded. One hundred and

twenty-six patients with SCA (HbSS genotype) aged 14.5 ± 3.5 years of whom 60 (47.6%) were

female were enrolled in the study, while 55 with HbSC disease aged 14.1 ± 2.8 years of whom

29 (47.2) were female were also included.

Regarding therapy approaches 62 SCA and 9 HbSC individuals were taking hydroxyurea

(HU), moreover, all patients were taking folic acid supplementation. This study received

approval from the Institutional Research Board of the São Rafael Hospital (protocol number:

1400535) and was conducted in compliance with the ethical principles established by the

revised Declaration of Helsinki. Informed written consent was obtained from each SCD

patient’s guardian. When applicable, the children’s acceptance was also registered.

Clinical data. Data regarding the occurrence and frequency of previous clinical manifesta-

tions were collected using a standardized and confidential questionnaire (self-reported or reported

by the parents) at the time of the study enrollment and confirmed by the medical records.

Laboratory determinations. Hematological parameters were assessed using a Beckman

Coulter LH 780 Hematology Analyzer (Beckman Coulter, Brea, California, USA) and blood

smears were stained with Wright’s stain and examined by light optical microscopy. Reticulo-

cytes were counted after staining supravitally with brilliant cresyl blue dye. Hemoglobin pat-

terns were confirmed by high-performance liquid chromatography employing an HPLC/

Variant-II hemoglobin testing system (Bio-Rad, Hercules, California, USA).

Biochemical determinations, including lipid profile, total bilirubin and fractions, LDH,

iron, hepatic metabolism and renal profile were determined in serum samples using an auto-

mated A25 chemistry analyzer (Biosystems S.A, Barcelona, Catalunya, Spain). Ferritin levels

were determined using Access 2 Immunochemistry System (Beckman Coulter Inc., Pasadena,

California, USA). C-reactive protein (CRP) and alpha-1 antitrypsin (AAT) levels were mea-

sured using IMMAGE1 Immunochemistry System (Beckman Coulter Inc., Pasadena, Cali-

fornia, USA). Determination of NOmetabolites (NOm) in serum samples was carried out

with the Griess reagent as previously described [19]. Allele-specific PCR was used to investi-

gate the -α3.7Kb-thal as previously described [20]. Laboratory parameters were analyzed at the

Clinical Analyses Laboratory of the College of Pharmaceutical Sciences (LACTFAR, Universi-

dade Federal da Bahia).

Statistical analysis. Statistical analyses were performed using the Statistical Package for

the Social Sciences (SPSS) version 20.0 software (IBM, Armonk, New York, USA) and Graph-

Pad Prism version 6.0 (Graphpad Software, San Diego, California, USA), which was also used

to assemble the graphs. Baseline values of selected variables are expressed as means with their

respective standard variation. We tested each variable distribution employing the Shapiro-

Wilk test. The Mann-Whitney U test and independent t-test were used to compare the groups

according to the normality of the distribution for each variable. Hierarchical clustering of the

laboratory parameters was performed using the Ward method and the square Euclidean dis-

tance was measured between the variables. All the parameters were standardized by the Z

score. P values<0.05 were considered statistically significant.
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Results

Hematological and biochemical parameters are different in SCA and HbSC
disease

In order to first distinguish SCA and HbSC individuals we compared laboratory parameters of

both groups. We observed that SCA patients had most prominent anemia, hemolysis and

increased leukocyte counts, in addition, α3.7kb thalassemia genotype identification was avail-

able for 111 SCA individuals and 49 HbSC patients (Table 1). Moreover, SCA patients also pre-

sented increased systemic inflammatory mediators. However, HbSC patients exhibited

increased lipid profile as well as renal biomarkers, while NOm levels were decreased (Table 2).

Severe clinical manifestations are more frequent in SCA

We investigated the frequency of clinical manifestations in each group. SCA patients had

most cases of hospital admissions, pneumonia, splenomegaly, stroke, painful crises (PC),

vaso-occlusive events (VO), infections, leg ulcer, acute chest syndrome (ACS), bone alter-

ations and cholelithiasis (Table 3). The main cause of hospital admission in both groups was

acute pain crises (Table 3); although some patients underwent hospital admission for more

than one cause. Comparing SCA and HbSC disease, we found statistical significance for PC,

VO and cholelithiasis. Considering the physiopathological relevance of both PC and VO for

the pathogenesis of SCD we decided to further investigate which laboratory parameters

would be associated by comparing the groups who had the clinical manifestation with those

who had not.

Hematological parameters are associated with clinical manifestations in
HbSC disease

Although HbSC individuals presented less complicated anemia and hemolysis, hematological

parameters were associated to clinical manifestations. Patients with HbSC and previous history

of PC had decreased mean corpuscular hemoglobin concentration (MCHC) (Fig 1A). HbSC

patients with previous history of VO exhibited decreased RBC counts (Fig 1B), as well as Hb

(Fig 1C) and Ht (Fig 1D) levels.

Considering the association between hematological parameters and clinical manifestations

in HbSC disease we also performed a multivariate linear regression model with pain crises as

dependent variable. Our model has shown that MCHC, Hb and Ht were independently associ-

ated with pain crises in HbSC disease (Table 4).

Hematological and inflammatory determinations are associated to clinical
manifestations in SCA

SCA patients exhibit the most severe form of SCD. PC was associated to increased RBC (Fig

2A) and reticulocyte (Fig 2B) counts; in addition to decreased NOm levels (Fig 2C). VO also

seems to be associated to a chronic inflammatory response since patients with previous history

of VO had increased C-RP (Fig 2D) and AAT (Fig 2E) levels.

Considering the association between hematological and inflammatory parameters and clin-

ical manifestations in SCA we also performed a multivariate linear regression model with pain

crises as dependent variable. Our model has shown that NOm was independently associated

with pain crises in SCA (Table 4).
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Cluster analysis reveals different groups of laboratory parameters in SCA
and HbSC disease

We also tested which laboratory parameters would be clustered in each genotype. In HbSC dis-

ease cluster analysis reveals that in the distance 25 two large groups were formed. In the upper

part of the cluster, in the distance 17 two other groups were formed. The upper, in the distance

Table 1. Hematological characterization of SCA and hemoglobin SC disease patients.

Laboratory parameters SCA (N = 126) HbSC (N = 55) P value

Mean ± SD Mean ± SD

Sex, % of females 60 (47.6) 29 (47.2) -

Age, years 14.5 ± 3.5 14.1 ± 2.8 -

Hemolysis markers

RBC, 106/mL 2.74 ± 0.46 4.26 ± 0.47 0.000

Hemoglobin, g/dL 8.47 ± 1.03 11.53 ± 0.89 0.000

Hematocrit, % 25.15 ± 3.38 33.09 ± 6.99 0.000�

MCV, fL 92.42 ± 11.63 80.94 ± 5.76 0.000

MCH, ρg 31.33 ± 3.97 27.18 ± 2.08 0.000

MCHC, g/dL 33.92 ± 1.02 33.56 ± 0.56 0.004�

Reticulocyte count, % 5.16 ± 2.31 3.34 ± 1.28 0.000

Reticulocyte counts, /mL 139781 ± 63905 140882 ± 51713 0.636

RDW, % 22.67 ± 3.77 17.19 ± 2.38 0.000

Total bilirubin, mg/dL 3.00 ± 1.67 1.31 ± 0.74 0.000

Direct bilirubin, mg/dL 0.41 ± 0.16 0.28 ± 0.11 0.000

Indirect bilirubin, mg/dL 2.62 ± 1.63 1.09 ± 0.16 0.000

LDH, U/L 1250.72 ± 1292.86 599.33 ± 147.34 0.000

Hb pattern

HbS, % 83.44 ± 10.29 51.53 ± 4.22 -

HbC, % - 43.37 ± 3.11 -

HbF, % 9.05 ± 5.68 1.87 ± 2.20 0.000

Leukocytes

WBC /mL 11473 ± 3445 9064 ± 3238 0.000

Neutrophils /mL 5585 ± 2638 5083 ± 2585 0.124

Monocytes /mL 1098 ± 582 726 ± 350 0.000

Eosinophils /mL 492 ± 488 405 ± 324 0.338

Basophils /mL 93 ± 108 49 ± 75 0.005

Lymphocytes /mL 4130 ± 1329 2798 ± 1014 0.000

Platelets

Platelet count, x103/mL 422 ± 137 291 ± 102 0.000

MPV, fL 7.93 ± 0.86 7.98 ± 1.84 0.840�

PCT, % 0.32 ± 0.10 0.22 ± 0.07 0.000

PDW, % 16.29 ± 0.64 17.08 ± 0.81 0.000

α3.7kb thalassemia genotype

Wild-type 86 (77.5%) 42 (85.7%) -

Heterozygous 17 (15.3%) 4 (8.2%) -

Homozygous 8 (7.2%) 3 (6.1%) -

RBC: red blood cells; MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; RDW: red cell

distribution width; LDH: lactate dehydrogenase; HbS: hemoglobin S; HbF: fetal hemoglobin; WBC: white blood cell; MPV: mean platelet volume; PCT: plateletcrit;

PDW: platelet distribution width. Bold values indicate significance at p<0.05; p-value obtained using Mann-Whitney U test.
�p-value obtained using independent t-test.

https://doi.org/10.1371/journal.pone.0228399.t001
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7, included PDW, MPV, NOm, triglycerides and VLDL-C while the lower, in the distance 15,

included AST, ALT, GGT, ferritin, LDH, MCV, MCH, total bilirubin, indirect bilirubin,

MCHC and HbF. In the distance 20 two other groups were formed, the first, in the distance

16, included Hb, Ht, RBC, iron, uric acid, creatinine, AAT, total cholesterol, LDL-C, HDL-C,

direct bilirubin, basophils and urea; while in the distance 17 a group was formed consisted of

reticulocytes, RDW, CRP, eosinophils, alkaline phosphatase, leukocytes, neutrophils, mono-

cytes, platelets, PCT and lymphocytes (S1 Fig).

Regarding SCA, cluster analysis reveals that in the distance 25 two large groups were

formed. In the distance 19 two other groups were formed, the upper in the distance 13

included total bilirubin, indirect bilirubin, AST, ALT, MCHC, RDW, lymphocytes, direct bili-

rubin, VLDL-C, triglycerides, NOm and LDH. The other group in the distance 14 included

platelets, PCT, reticulocytes, leukocytes, neutrophils, monocytes, eosinophils, basophils, MPV,

total cholesterol, LDL-C, urea, CRP, PDW, alkaline phosphatase, GGT, AAT, HDL-C and fer-

ritin. The lowest cluster in the distance 14 was consisted of MCV, MCH, iron, creatinine, uric

acid, Hb, Ht, RBC and HbF (S2 Fig).

Discussion

Although the molecular basis of each SCD genotype is clear, the mechanisms contributing to

clinical manifestations and to the maintenance of inflammation are not fully understood. This

Table 2. Biochemical characterization of SCA and hemoglobin SC disease patients.

Laboratory parameters SCA (N = 126) HbSC (N = 55) P value

Mean ± SD Mean ± SD

Lipid metabolism

Total Cholesterol, mg/dL 120.92 ± 24.74 135.00 ± 29.53 0.002

HDL-C, mg/dL 35.81 ± 8.72 40.74 ± 11.34 0.008

LDL-C, mg/dL 62.10 ± 21.95 72.17 ± 27.64 0.019

VLDL-C, mg/dL 22.51 ± 11.26 20.50 ± 6.46 0.984

Triglycerides, mg/dL 109.45 ± 50.48 102.54 ± 32.32 0.905

Iron metabolism

Iron, mcg/dL 111.89 ± 55.03 91.00 ± 32.46 0.030

Ferritin, ηg/mL 259.70 ± 437.89 98.83 ± 100.96 0.287

Renal profile

Urea, mg/dL 17.54 ± 6.54 18.10 ± 5.76 0.130

Creatinine, mg/dL 0.43 ± 0.14 0.62 ± 0.14 0.000

Uric Acid, mg/dL 3.81 ± 1.20 4.23 ± 1.08 0.014

Hepatic profile

AST, U/L 48.10 ± 18.05 26.69 ± 14.16 0.000

ALT, U/L 21.22 ± 14.00 14.89 ± 14.52 0.000

GGT, U/L 27.30 ± 22.41 23.19 ± 17.81 0.112

Alkaline phosphatase, U/L 135.53 ± 71.10 180.81 ± 101.85 0.007

Inflammatory profile

CRP, mg/L 5.63 ± 6.78 3.87 ± 4.33 0.001

AAT, mg/dL 82.49 ± 47.32 69.37 ± 49.32 0.029

NOm, μM 23.87 ± 14.22 17.50 ± 7.52 0.000

HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; VLDL-C: very low-density lipoprotein cholesterol; AST: aspartate amino-

transferase; ALT: alanine amino-transferase; GGT: gamma glutamyl-transferase; CRP: C-reactive protein; AAT: alpha-1 antitrypsin. NOm: nitric oxide metabolites.

Bold values indicate significance at p<0.05; p-value obtained using Mann-Whitney U test. �p-value obtained using independent t-test.

https://doi.org/10.1371/journal.pone.0228399.t002
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study was conducted to perform a wide characterization of SCD assessing the two most fre-

quent genotypes.

Baseline laboratory characteristics of SCA patients are consistent with previous evaluation,

revealing anemia, hemolysis, leukocytosis and the increase of systemic inflammation [8,21,22].

Importantly, total leukocyte counts above 15,000 cells/mL3 as well as low HbF levels were asso-

ciated with an increased risk of early death [21]. Likewise, intravascular hemolysis is also asso-

ciated to the severity of clinical outcomes [23]. Acute phase proteins, such C-RP and AAT, are

produced especially by the liver during infections or inflammatory conditions [24]. C-RP and

AAT levels were shown to be elevated among SCD patients even during steady-state [25]. Alto-

gether, our data reinforce the notion that SCA is the most severe SCD genotype. Laboratory

investigation of HbSC individuals revealed increased lipid, creatinine and uric acid levels as

well as decreased NOm. Our findings are in agreement with previous laboratory profile of

HbSC disease [26], including increased creatinine levels [27] and increased total cholesterol,

HDL-C and LDL-C as well as decreased NOm determinations [8]. This lipid profile among

HbSC individuals has also been show in other populations [28].

Clinical events in SCD are driven by the pathophysiological mechanism of VO. Indeed, all

the clinical manifestations investigated were more prevalent in the SCA group than in HbSC

disease. This is in agreement with previous clinical and laboratory characterization of SCA and

HbSC disease patients [8], which corroborate that SCA is more severe. An evaluation of a

cohort of ten years has also found that the onset of the complications was earlier in SCA com-

pared to HbSC patients, especially for painful crises and acute chest syndrome [29]. Acute pain

Table 3. Frequency of clinical events in SCA and hemoglobin SC disease patients.

Clinical manifestation SCA
(N = 126)

HbSC
(N = 55)

P value

Hospital admissions 118 40 -

Causes of hospital admissions�

Acute pain crises 93 29

Pneumonia/ACS 36 10

Infections 32 13

Surgery 5 -

Neurology 4 1

Cardiology 1 -

Angiology 1 -

Nephrology 1 -

Other clinical manifestation 17 12

Infections 86 31 0.128

Painful crises 78 46 0.005

Pneumonia 69 24 0.195

Splenomegaly 59 26 1.00

Vaso-occlusive events 46 9 0.008

Cholelithiasis 39 7 0.014

Acute chest syndrome 33 8 0.086

Stroke 13 2 0.155

Leg ulcer 12 7 0.600

Bone alterations 10 4 1.000

Bold values indicate significance at p<0.05. P-value obtained with Fisher’s exact test.
�Of note: some patients underwent hospital admission due to multiple clinical complications.

https://doi.org/10.1371/journal.pone.0228399.t003
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crises are the most common cause of hospitalization among SCD patients. In our population

we have found that the most frequent cause of hospital admission was acute pain crises in SCA

and HbSC disease, which was also observed in different populations where the major cause of

Fig 1. Hematological laboratory parameters are associated to clinical manifestations in HbSC disease. A) Patients with previous history of painful crises
(PC) had decreasedMCHC; B) Patients with previous history of vaso-occlusion (VO) had decreased red blood cell counts; C) hemoglobin and D) hematocrit
levels. p-value obtained using Mann-WhitneyU test.

https://doi.org/10.1371/journal.pone.0228399.g001
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hospital admission was acute painful episodes accounting for 94.6% of the admissions [30]. A

survey carried out in England has identified that primary diagnoses for admission was sickle

cell crises, followed by acute lower respiratory tract infection and asthma [31]. In addition,

cholelithiasis is a frequent complication in SCD patients due to the ongoing hemolysis which

results in the production of large amounts of bilirubin, which is conjugated in the liver and its

accumulation, may form calcium bilirubinate gallstones [32]. Collectively, these findings sug-

gest that regardless of the SCD genotype, pain crises are the most important clinical event

patients have experienced.

PC and VO were statistically different when SCA was compared to HbSC disease, which

lead us to examine laboratory parameters in each group. Hematological and inflammatory

parameters were shown to be associated with PC and VO in both HbSC disease and SCA.

Reticulocyte and RBC counts as well as MCHC levels were associated with pain crises in

our SCA and HbSC patients which allow us to suggest that hemolysis and anemia are thought

to contribute to clinical outcome in SCD. Reticulocytosis has been associated to increase in

hospitalization during the first three years of life of children with SCA [33]. Moreover, an

extensive hemolysis evaluation has shown that absolute reticulocyte counts and reticulocyte

percentage had a strong inverse correlation with mean RBC survival [34]. Correspondingly,

HbF levels were shown to be decreased in children with SCA with absolute reticulocyte counts

greater than 200 000 cells/mL [35]. Altogether, these findings suggest that hemolysis may be

measured through routine hematological evaluation, such as reticulocyte counts, which is

important to monitor the patient outcome.

Several pain mediators have been described in SCD such as interleukin-1, bradykinin, hista-

mine, substance P and calcitonin gene related peptide [36]. Pain crises in SCDmay be acute,

chronic or a combination of both and is usually secondary to vaso-occlusion [36]. Hemolysis

leads to endothelial dysfunction since it causes the release of Hb and heme which limits NO bio-

availability as well as arginase, which consumes L-arginine, decreasing NO levels even more

and contributing to VO [13]. Thus, the association of both pathophysiological mechanisms to

the triad of factors (VO, inflammation and nociception) may help to initiate the acute painful

crises [37]. Abnormal lipid homeostasis has also been associated with decreased NOm levels [6].

Chronic inflammatory response is a hallmark of SCD influenced by leukocytes, platelets

[38], intravascular hemolysis and innate immune response [13] and increased pro-inflamma-

tory mediators [39]. Our cohort of patients with previous history of VO exhibited laboratory

parameters associated to anemia and systemic inflammation. Increased AAT levels were found

Table 4. Multivariate linear regression model of history of pain crises in association with confounding variables in hemoglobin SC disease and SCA patients.

Independent variables Dependent variable β p-value R2 p-value of the model

HbSC

RBC, 106/mL -0.201 0.343

MCHC, % Pain crises -1.274 0.003 0.223 .015

Hemoglobin, g/dL 4.284 0.024

Hematocrit, % -4.066 0.029

SCA

RBC, 106/mL 0.064 0.507

Reticulocytes, /mL 0.171 0.073

CRP, mg/L Pain crises 0.106 0.249 0.125 .012

AAT, mg/dL 0.120 0.194

NOm, μM -0.190 0.046

R2: coefficient of determination; β: coefficient of regression.

https://doi.org/10.1371/journal.pone.0228399.t004
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to be associated to infections, gallstones and blood therapy in SCD [40]; moreover, C-RP levels

were progressively increasing as SCA severity score was higher [41]. Our findings are in agree-

ment with the pathophysiological mechanism of VO due to i) heightened ability of sickle RBC

to adhere to the vascular endothelium and promote activation of endothelial cells and leuko-

cytes and ii) sickle RBC have the lifespan shortened which also contributes to anemia [42].

Cluster grouping is a very useful approach to identify biomarkers of SCD severity [43]. We

designed a cluster analysis in order to group the laboratory parameters of each genotype. Clus-

ter analysis among HbSC disease patients has shown 4 different cluster agglomerations with

participation of hemolytic and endothelial dysfunction parameters in the two first, as well as

hematological and inflammatory parameters in the latter two. Contrarily, cluster analysis

among SCA patients has shown 3 different cluster agglomerations with participation of hemo-

lytic parameters in the first cluster, leukocytes, lipid metabolism and inflammatory parameters

in the second cluster and markers of iron metabolism and anemia in the last cluster.

HbSC patients are known to exhibit a phenotype with increased viscosity [4,9,27] which

may be corroborated by our findings of clustering hemolysis and endothelial dysfunction mark-

ers in the similar groups in these genotype [8,10,13]. As they also present less severe anemia,

clustering of hematological and inflammatory markers in similar groups is in agreement with

the literature [8,10,13]. SCA patients present the most severe phenotype of SCD and our cluster

analysis demonstrate tree groups: hemolysis, inflammation and anemia. These markers are sug-

gestive of the main underlying pathophysiological mechanisms of the disease, which often over-

lap [1]. In the first cluster the association of NOm and hemolytic markers reinforces the role of

endothelial dysfunction [13,44], while in the second the association of leukocytes counts and

CRP and AAT highlights the role of inflammation [40,41] and in the last cluster, grouping of

RBC counts along with Hb, Ht and iron levels suggest the importance of anemia [21,22]. Curi-

ously HbF was differentially clustered in each genotype. In HbSC patients HbF was clustered

along with biomarkers of hemolysis (LDH, AST, indirect bilirubin), while in SCA it was clus-

tered along with biomarkers of anemia (RBC counts, Hb, Ht, MCV andMCH levels). HbF lev-

els are one of the most important biomarker for disease prognostic in SCD [10,35,45],

altogether our results suggests that different mechanisms may be associated with HbF in the dif-

ferent SCD genotypes. The different classification of the same laboratory parameters on HbSC

disease and SCA suggests that, indeed, the same measurement obtained with one genotype may

have a different relevance when compared with the other genotype of the same disease.

Our data suggest that SCA patients exhibit increased hemolysis and inflammatory parame-

ters as well as more clinical complications. In addition, HbSC patients exhibit altered lipid

metabolism and milder hemolysis. Moreover, laboratory parameters are also important to

monitor the disease. Of note, it is important to point that our cohort is composed by pediatric

patients and the clinical course is usually more complicated in the greater ages. Nevertheless,

our findings support the differences between SCA and HbSC disease that should be taken into

account when considered clinical management.

Supporting information

S1 Fig. Cluster analysis of laboratory biomarkers among HbSC disease. Dendogram dem-

onstrating cluster agglomeration of laboratory parameters in the group of patients with HbSC

disease. The interval was measured by the square Euclidean distance and measurements were

Fig 2. Hematological and inflammatory laboratory parameters are associated to clinical manifestations in SCA.A) Patients with previous history of
painful crises (PC) had increased red blood cells and B) increased reticulocyte counts, and C) decreased nitric oxide metabolites (NOm). D) Patients with
previous history of vaso-occlusion (VO) had increased C-reactive protein and E) Alpha-1 antitrypsin levels. p-value obtained using Mann-WhitneyU test.

https://doi.org/10.1371/journal.pone.0228399.g002
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standardized by the Z score.

(TIF)

S2 Fig. Cluster analysis of laboratory biomarkers among SCA patients.Dendogram demon-

strating cluster agglomeration of laboratory parameters in the group of patients with SCA. The

interval was measured by the square Euclidean distance and measurements were standardized

by the Z score.

(TIF)
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