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Abstract. In this paper, we investigate the security of Rainbow and Unbalanced
Oil-and-Vinegar (UOV) signature schemes based on multivariate quadratic equations,
which is one of the most promising alternatives for post-quantum signature schemes,
against side-channel attacks. We describe correlation power analysis (CPA) on the
schemes that yield full secret key recoveries. First, we identify a secret leakage of
secret affine maps S and T during matrix-vector products in signing when Rainbow
is implemented with equivalent keys rather than random affine maps for optimal
implementations. In this case, the simple structure of the equivalent keys leads to
the retrieval of the entire secret affine map T . Next, we extend the full secret key
recovery to the general case using random affine maps via a hybrid attack: after
recovering S by performing CPA, we recover T by mounting algebraic key recovery
attacks. We demonstrate how this leakage on Rainbow can be practically exploited
on an 8-bit AVR microcontroller using CPA. Consequently, our CPA can be applied
to Rainbow-like multi-layered schemes regardless of the use of the simple-structured
equivalent keys and UOV-like single layer schemes with the implementations using
the equivalent keys of the simple structure. This is the first result on the security
of multivariate quadratic equations-based signature schemes using only CPA. Our
result can be applied to Rainbow-like multi-layered schemes and UOV-like single
layer schemes submitted to NIST for Post-Quantum Cryptography Standardization.

Keywords: Side-channel attack · Correlation power analysis · Key recovery attack ·

Multivariate-Quadratic problem

1 Introduction

Security of the most widely used public-key cryptosystems (PKCs), such as RSA and
ECDSA, is based on the hardness of the integer factorization problem or the (elliptic
curve) discrete logarithm problem. However, these hard problems are known to be
solvable by Shor’s quantum algorithm in polynomial time [Sho97]. This means that the
widely-used PKCs are susceptible to a large-scale quantum computer. Several types
of cryptographic primitives exist, which are believed to be secure against a quantum
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computer including lattice-based, code-based, hash-based, and multivariate quadratic
equations (MQ)-based cryptography. These cryptographic primitives are believed to be
resistant against both classical and quantum attacks, and this has been increased confidence
in their adoptability as post-quantum alternatives. Recently, the National Security Agency
(NSA) has updated its Suite B algorithms to explicitly emphasize the importance of the
migration to post-quantum cryptographic algorithms [NSA15]. NIST has started initiatives
to develop post-quantum cryptographic standards. Submissions to NIST’s Post-Quantum
Cryptography Standardization are for post-quantum public-key encryption, key exchange
and digital signature [NIS16a].

Multivariate quadratic public-key cryptosystem (MQ-PKC) relies on the hardness of
solving large systems of multivariate quadratic equations, called the MQ-problem. In
MQ-PKC, a public key is given by a system of multivariate quadratic equations, and
a trapdoor is hidden in secret affine layers of the affine-substitution (quadratic)-affine
(ASA) structure. Security of this ASA structure depends on the hardness of the Extended
Isomorphism of Polynomials (EIP) problem [Pat96]. To build MQ-PKC, one starts with
an easily invertible quadratic map F : Fn

q → F
m
q called a central map. Then one composes

it with two invertible affine maps S : Fm
q → F

m
q and T : Fn

q → F
n
q to hide the special

structure of F . A public key is P = S ◦F ◦T and the secret key is (S, F , T ) that allows the
inversion of the public key. A main challenge in MQ-PKC is the selection of the nonlinear
quadratic part F which is invertible.

In 1988, Imai and Matsumoto proposed the first MQ-based encryption scheme [MI88].
Since then, several MQ-schemes have been proposed, however, most MQ-schemes have
been broken by targeting the IP-problem. There are two main types of signature schemes:
HFEv- variants [PCG01, PCY+15] and Unbalanced Oil-and-Vinegar (UOV) variants
[KPG99,DS05]. The operations of UOV type MQ-schemes comprise matrices and vectors,
and they are simple and computed on small fields. Hence, MQ-schemes do not require much
computational resources. Consequently, they are attractive for use on resource-limited
devices such as smart cards [BERW08, CCC+09]. MQ-signature schemes surpass other
alternatives in terms of speed and signature size. At CHES 2012, Czypek et al. [CHT12]
demonstrated the feasibility of MQ-signature schemes on an 8-bit AVR microprocessor.
They showed that the MQ-signature schemes, Rainbow, and enTTS outperform RSA
and ECDSA in terms of speed. On the practical side, such an MQ-signature scheme is a
promising alternative to classical schemes, such as RSA, DSA, and ECDSA.

Side-channel attacks (SCAs) focus on the capabilities of an attacker to break a crypto-
graphic algorithm by exploiting vulnerabilities in the underlying implementations rather
than its mathematical structure. SCAs can be divided into invasive, semi-invasive, and
non-invasive attacks based on the interface that is exploited by the attack. An invasive
attack has no limits to what is done on a cryptographic device, whereas a non-invasive
attack does not physically transform the cryptographic device. Timing attacks [Koc96],
power analysis (PA) [KJJ99], and electromagnetic (EM) attacks [GMO01] are non-invasive
attacks. Further, the attacker can maliciously inject faults into the cryptographic algorithm
and investigate the faulty outputs, which can reveal some information about the secret key.
This attack is known as the fault attack which is a semi-invasive attack. It is well-known
that any implementation of a cryptographic algorithm not protected against SCAs can be
easily broken. Hence, if a cryptographic algorithm is used in embedded systems then it
should be protected against SCAs.

Many SCAs against post-quantum cryptography have been proposed. For example, tim-
ing attacks and PA against McEliece encryption based on Goppa codes [EGHP09,HMP10,
MSSS11] and on MDPC codes on a low-cost microcontroller [vMG14a,vMG14b,CEvMS15]
have been proposed. Timing attacks, PA, and fault attacks against NTRUEncrypt
[LSCH10,SW07,ZWW13,KY11] based on lattices also have been proposed. Recently, at
ACM CCS 2017, Pessl et al. [PBY17] and Espitau et al. [EFGT17] presented practical
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SCAs on lattice-based signature schemes, BLISS and BLISS-B variants. Furthermore, the
results of SCAs on hash-based signature schemes, a fault attack on XMSS, and differential
power analysis (DPA) of XMSS and SPHINCS, have been proposed [CMP18,KGB+18].
There are a few results on implementation security of MQ-schemes. One is SCAs against
SFLASH [SGB01, HTS11], which recovers a random seed ∆ used for the hash func-
tion SHA-1, not the secret key (S, T ). Another result comprises fault attacks on MQ-
schemes [HTS11, YL17]. Hashimoto et al. [HTS11] presented general fault attacks on
MQ-PKC including Big Field type, such as Matsumoto-Imai, HFEv-, and SFLASH, as
well as Single Field type, such as UOV, Rainbow, STS, and TTM/TTS. Yi and Li [YL17]
proposed a fault attack with DPA on enTTS which is a special case of Rainbow. No
investigation has been conducted on the security of the MQ-schemes using only PA. In
this paper, we provide the first results on the security of MQ-signature schemes using
correlation power analysis (CPA) and algebraic key recovery attacks (KRAs).

Our Contributions. Our main contributions are as follows:

− CPA on Rainbow Implementation with Equivalent Keys in the form of
Fig. 1. We recover a full secret key of Rainbow by performing CPA on its
implementation with equivalent keys in the form of Fig. 1 to reduce the secret key size
as presented in [CHT12]. The first source of side-channel leakage is a matrix-vector
product obtained by a secret affine map S in signing. After recovering S, we recover
the other secret affine map T using the special structure of the equivalent keys, This
leads to the second source of the side-channel leakage, although we cannot know
intermediate values via the central map F . We demonstrate how this leakage can be
practically exploited on an 8-bit AVR microcontroller using CPA.

− Hybrid Attack on Rainbow Implementation with Random Affine Maps.
We extend our attack to Rainbow implementation with random affine maps instead
of the equivalent keys in the form of Fig. 1. In this case, after recovering S via CPA,
we recover T by mounting algebraic KRAs using good keys.

− CPA on UOV Implementation with the Equivalent Key in the form of
Fig. 2. Our attack can be applied to the single layer MQ-signature, UOV, if it is
implemented with the equivalent key in the form of Fig. 2 as presented in [CHT12]
because the structure of equivalent keys is similar to those of Rainbow.

− CPA on Other MQ-signature Schemes. This is the first result on the security
of MQ-signature schemes, Rainbow and UOV, against the non-invasive attacks. Our
CPA can be applied to UOV-like single layer scheme LUOV, as the equivalent key T

in the form of Fig. 2 was used in its design and implementation used. Our hybrid
attack can also be applied to Rainbow-like multi-layered schemes, Rainbow, and
HiMQ-3.

Organization. The rest of the paper is organized as follows. In Section 2, we describe
UOV and Rainbow signature schemes, and CPA. In Section 3, we present a full secret key
recovery on Rainbow implementation with the equivalent keys in the form of Fig. 1 via
CPA. We then describe how this leakage in Rainbow can be practically exploited on an
8-bit AVR microcontroller using CPA. In Section 4, we demonstrate a hybrid attack on
Rainbow implementation with random affine maps combining CPA with algebraic KRAs.
CPA on other MQ-signature schemes is discussed in Section 5. We also discuss possible
countermeasures to protect our proposed attacks in Section 6. Finally, concluding remarks
are given in Section 7.
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2 Preliminaries

Here, we first describe two MQ-signature schemes, UOV [KPG99] and its layered version
Rainbow [DS05]. We then introduce the concept of equivalent keys of MQ-schemes and
CPA.

2.1 UOV

Let Fq be a finite field with q elements. We define a system of multivariate quadratic
equations P = (P(1), · · · , P(m)) with m equations in n variables as

P(k)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(k)
ij xixj +

n∑

i=1

p
(k)
i xi + p

(k)
0 ,

for k = 1, . . . , m and p
(k)
ij , p

(k)
i , and p

(k)
0 are randomly chosen in Fq. It is very important

to choose a system F : Fn
q → F

m
q of m quadratic equations in n variables, called a central

map, which must be easily inverted in the MQ-signature schemes.
We set V = {1, . . . , v}, |V| = v and O = {v + 1, . . . , n}, |O| = o. We call x1, . . . , xv

as Vinegar variables and xv+1, . . . , xn as Oil variables. A system F = (F (1), . . . , F (m))
of multivariate quadratic equations in n variables x1, . . . , xn is defined by

F (k)(x) =
∑

i∈O,j∈V

α
(k)
ij xixj +

∑

i,j∈V,i≤j

β
(k)
ij xixj +

∑

i∈V ∪O

γ
(k)
i xi + η(k),

where x = (x1, . . . , xn), k = 1, . . . , o, n = v + o, and m = o. Note that Oil and Vinegar
variables are not fully mixed, just like oil and vinegar in salad dressing. The central map
F can be easily inverted: first, choose a vector v = (x1, . . . , xv) ∈ F

v
q of Vinegar values

at random and plug v into F (k) for k = 1, . . . , o. Then, one gets a linear system of o

equations with o variables xv+1, . . . , xn and solves the linear system by using the Gaussian
elimination. To hide the structure of the central map F in the public key, it is composed
with an invertible affine map T : Fn

q → F
n
q . A public key is given by P = F ◦ T and a

secret key is (F , T ) which allows to invert the public key. Let H : {0, 1}∗ → F
m
q be a

collision-resistant hash function.

� UOV

− KeyGen(1λ)

1. For a security parameter λ, a public key is PK = P = F ◦ T and a secret key
is SK = (F , T ).

− Sign(SK, m)

1. Given a message m, compute h = H(m) ∈ F
m
q .

2. To compute α = F−1(h), i.e., F(α) = h, choose Vinegar values (s1, . . . , sv) ∈
F

v
q at random and substitute (s1, . . . , sv) into o polynomials F (k) (1 ≤ k ≤ o)

by obtaining a system of o linear equations with o variables. Find a solution
(sv+1, . . . , sv+o) of the linear system using Gaussian elimination. If the linear
system does not have a solution, choose another vector of Vinegar values and
try again, otherwise, α is (s1, . . . , sn).

3. Compute σ = T̃ (α), where T̃ = T −1. Output σ is a signature of m.

− Verify(PK, m, σ)

1. Given (σ, m), check P(σ) = H(m). If it holds, accept the signature, otherwise
reject it.
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2.2 Rainbow

Ding and Schmidt [DS05] proposed a layered MQ-signature scheme, Rainbow, based on
UOV to improve efficiency and reduce the key sizes. It has been submitted to NIST
for Post-Quantum Cryptography Standards. Let v1, . . . , vu+1 (u ≥ 1) be integers such
that 0 < v1 < v2 < . . . < vu < vu+1 = n. Define sets of integers Vi = {1, . . . , vi} for
i = 1, . . . , u and set oi = vi+1 − vi and Oi = {vi + 1, . . . , vi+1} (i = 1, . . . , u). Then
|Vi| = vi and |Oi| = oi. For k = v1 +1, . . . , n, we define multivariate quadratic polynomials
in n variables x1, . . . , xn as follows:

F (k)(x) =
∑

i∈Ol,j∈Vl

α
(k)
ij xixj +

∑

i,j∈Vl,i≤j

β
(k)
ij xixj +

∑

i∈Vl∪Ol

γ
(k)
i xi + η(k),

where x = (x1, . . . , xn) and l is the only integer such that k ∈ Ol. These are Oil and
Vinegar polynomials with xi for i ∈ Vl being Vinegar variables and xj for j ∈ Ol being
Oil variables. The central map F(x) = (F (v1+1)(x), . . . , F (n)(x)) can be inverted using
the Oil-Vinegar method as in UOV. Then, two invertible affine maps S : Fm

q → F
m
q and

T : Fn
q → F

n
q are chosen to hide the special structure of the central map F in the public key,

where T mixes the variables and S mixes the polynomials. A public key is the composition
of three maps, P = S ◦ F ◦ T , and a secret key is (S, F , T ). In general, Rainbow is denoted
by Rainbow(Fq, v1, o1, . . . , ou) with m =

∑u

i=1 oi and n = v1 + m. For u = 1, it is the
original UOV scheme. We describe Rainbow with two layers, Rainbow (Fq, v1, o1, o2) with
m = o1 + o2 and n = v1 + m.

� Rainbow

− KeyGen(1λ)

1. For a security parameter λ, a public key is PK = P = S ◦ F ◦ T and a secret
key is SK = (S, F , T ).

− Sign(SK, m)

1. Given a message m, compute h = H(m) ∈ F
m
q .

2. Compute α = S̃(h), where S̃ = S−1.

3. Compute β = F−1(α), i.e. F(β) = α.

(a) First, choose (s1, . . . , sv1
) ∈ F

v1

q at random, substitute (s1, . . . , sv1
) into

o1 polynomials F (k) (v1 +1 ≤ k ≤ v2 = v1 +o1) and obtain (sv1+1, . . . , sv2
)

by solving a system of o1 linear equations with o1 variables xv1+1, . . . , xv2

via Gaussian elimination.

(b) Next, substitute (s1, . . . , sv2
) into o2 polynomials F (k) (v2 + 1 ≤ k ≤ n)

and obtain (sv2+1, . . . , sn) by solving the linear system of o2 equations
with o2 variables xv2+1, . . . , xn through Gaussian elimination. Then, β =
(s1, . . . , sn). If one of the linear systems does not have a solution, choose
another vector of Vinegar values and try again.

(c) Compute σ = T̃ (β), where T̃ = T −1. Output σ is a signature of m.

− Verify(PK, m, σ)

1. Given (σ, m), check P(σ) = H(m). If it holds, accept the signature, otherwise
reject it.
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2.3 Equivalent Keys in UOV and Rainbow

The existence of numerous different secret keys corresponding to a given public key is a
special feature of MQ-schemes [DYC+08,WP05]. The concept of equivalent keys is defined
by Definition 1. Let GLm(Fq) be a general linear group of degree m over Fq.

Definition 1. [Equivalent Key] Let S, S′ ∈ GLm(Fq), T, T ′ ∈ GLn(Fq), and F , F ′ ∈
Fq[x1, ..., xn]m. We say that (F , S, T ) is equivalent to (F ′, S′, T ′) if and only if S ◦ F ◦ T =
S′ ◦ F ′ ◦ T ′ and F|I = F ′|I , i.e., F ′ and F have the same structure when restricted to a
fixed index set I = {I(1), · · · I(m)}.

Assume that P is given by P = S ◦ F ◦ T . If P = S′ ◦ F ′ ◦ T ′ and F ′ preserves all zero
coefficients of F then we call (S′, T ′) equivalent keys of P . The concept of equivalent keys
plays an important role in breaking MQ-schemes. If an adversary can find any equivalent
key then he can forge signatures on any messages for the public key P. KRAs exploit the
special structure of the central map, i.e., zero entries at certain known places, to obtain
equations with variables in S and T . If one can find simpler equivalent keys, S′ and T ′,
then one has to solve a large structured system of multivariate quadratic equations to
recover S′ and T ′ by reducing the number of variables. If one can find two invertible linear
maps Σ ∈ GLm(Fq) and Ω ∈ GLn(Fq) such that

P = S ◦ Σ−1 ◦ (Σ ◦ F ◦ Ω) ◦ Ω−1 ◦ T,

and F ′ and F have the same structure, then (S′, F ′, T ′) is an equivalent key, where
F ′(= Σ ◦ F ◦ Ω), S′ = S ◦ Σ−1, and T ′ = Ω−1 ◦ T . Note that, we set the preserving index
set as all quadratic terms with zero coefficients in the Oil × Oil part. Fig. 1 presents the
forms of the equivalent keys of Rainbow, where gray parts denote arbitrary entries and
white parts denote zero entries and there are ones at the diagonal. For UOV, if one can
find Ω ∈ GLn(Fq) such that

P = F ◦ T = (F ◦ Ω) ◦ (Ω−1 ◦ T ),

and F ′ and F have the same structure then (F ′, T ′) is an equivalent key, where F ′ = F ◦Ω
and T ′ = Ω−1 ◦ T . The form of equivalent keys of UOV is given in Fig. 2.

We will use these special structures of equivalent keys for CPA on UOV and Rainbow,
if UOV and Rainbow are implemented with the equivalent keys of the forms in Fig. 1 and
Fig. 2, respectively, as in [CHT12].

Figure 1: [CHT12], Equivalent keys of Rainbow

2.4 Correlation Power Analysis

PA exploits power consumption, which is measured when a cryptosystem operates on an
electronic device. The two main classes of PA are simple power analysis (SPA) and DPA.
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Figure 2: [CHT12], Equivalent key of UOV

Here, we introduce the properties of DPA. Typically, only knowledge of the cryptographic
algorithm is sufficient. DPA is based on a divide and conquer scheme. Generally, this
approach involves forming a hypothesis value and then comparing the hypothesis against
measured power traces. An attacker repeats this process for all sub-key candidates and
determines the value of each sub-key to recover the full key.

Power consumption is typically modeled by estimating the number of 1′s in a register
using a Hamming weight or Hamming distance power model. If Pearson’s correlation
coefficient is used in DPA, it is referred to as CPA. DPA is summarized as follows [MOP07].

1. Choosing an intermediate result of the executed cryptographic algorithm.
This intermediate result is computed by a known non-constant data value di, a small
part of the secret value kj , and a target function f (di, kj). In most attack scenarios,
di is either plaintext or ciphertext.

2. Measuring the power consumption.
The second step is to measure the power consumption of the target device while it
encrypts (or decrypts). First, the attacker finds the position of the target function
chosen in Step 1, and then, measures the power consumption at that position.

3. Calculating hypothetical intermediate values.
This step calculates hypothetical intermediate values for every possible kj .

4. Mapping hypothetical intermediate values to hypothetical power con-
sumption values.
Typically, hypothetical power consumption values are modeled using the Hamming
weight or Hamming distance power model.

5. Statistically comparing the hypothetical power values with the measured
power traces.
This step compares the hypothetical power consumption values of each key hypothesis
with the recorded traces at every position.

The correlation coefficient is an excellent choice when DPA is performed as it is the most
common way to determine linear relationships between data. The correlation coefficient
used in Step 4 is expressed as follows:

ρ (X, Y ) =
Cov (X, Y )√

V ar (X) · V ar (Y )
,

where Cov (X, Y ) and V ar(X) denote the covariance between random variables X and Y

and the variance of random variable X, respectively.
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3 CPA on Rainbow Implementation Using the Equivalent

Keys in the Form of Fig. 1

3.1 General Leakage Model

Here, we present a general leakage model against CPA on Rainbow implementation that
operates on embedded devices.1 As seen in §2.1 and §2.2, both UOV and Rainbow perform
matrix-vector product operations for their signature generations. In Rainbow, the matrix-
vector product is computed at the second step of signature generation to compute α with
S̃ and the hash value of message m. The matrix-vector product is also calculated at the
final step to compute a signature in both UOV(σ = T̃ (α)) and Rainbow(σ = T̃ (β)).

To recover the secret affine map, we target the location where the matrix-vector product
operates. It is easy to reveal the secret affine map S̃ using CPA as we can control (or

know) the vector multiplied by S̃. Unfortunately, a technical hurdle must be overcome to

recover the other secret affine map T̃ , as we cannot find intermediate values, which are
multiplied by T̃ . However, if Rainbow and UOV are implemented with their equivalent
keys in the forms of Fig. 1 and Fig. 2, respectively, for efficiency, we can also retrieve T̃

using CPA, although we cannot find all intermediate values.
Let a matrix-vector product with matrix A ∈ F

n×n
q and x ∈ F

n
q be x

′ = Ax
T =

(x′
1, x′

2, . . . , x′
n) ∈ F

n
q . Each element of x

′ is calculated as follows:

x
′ =




x′
1

x′
2
...

x′
n


 = Ax

T =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...
an1 an2 · · · ann







x1

x2

...
xn


 ,

x′
i =

n∑

j=1

aij · xj = ai1 · x1 + ai2 · x2 + · · · + ain · xn, 1 ≤ i ≤ n. (1)

First, if we can control all elements of the vector x to recover affine map S̃, then we
use the intermediate results in Table 1 to obtain all elements of the ith row of matrix A.

Table 1: Intermediate results to recover S̃

Target element Intermediate result

ai1 Guess · x1

ai2 ai1 · x1 + Guess · x2

...
...

ain

∑n−1
k=1 aik ·xk +Guess ·xn

In Table 1, Guess represents a hypothetical key. The intermediate results can always be
used regardless of using the equivalent keys in the form of Fig. 1.

Second, if the equivalent keys in the form of Fig. 1 are used at the final step of signature
generation, we can find some information regarding the intermediate values. Here, let the
matrix A be an equivalent key in the form of Fig. 1 which consists of two submatrices A1

and A2 as shown Fig. 3. Assume that the equivalent key A in the form of Fig. 1 is used
in Rainbow implementation.
As can be seen in Fig. 3, v1 vinegar variables of x

′ are affected by A1 and A2, and the
first o1 oil variables of x

′ are only affected by A2. The last o2 oil variables, which are used

1As implementations in the SIMD environment increases, the study of SCA characteristics for this
environment is needed. We will study SCA characteristic in the SIMD environment later.
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Figure 3: Matrix-vector product using the equivalent key in the form of Fig. 1 in Rainbow
with two layers

in the second layer of Rainbow, do not change. Therefore, it is possible to recover A2

because the last o2 elements of x that were computed using the submatrix A2 are identical
to the last o2 elements of x

′. In other words,

x′
v1+o1+1 = xv1+o1+1, x′

v1+o1+2 = xv1+o1+2, . . . , x′
n = xn.

Thus, we can reveal all elements of A2, i.e., the elements from the (v1 + o1 + 1)th to the
nth column. Here, we use the following intermediate result to recover A2:

Guess · xk, v1 + o1 + 1 ≤ k ≤ n.

After recovering A2, we compute xv1+1 to xv1+o1
using the following equation:

x′
v1+t = 1 · xv1+t +

o2∑

k=1

A
(2)
v1+t,k · xv1+o1+k, 1 ≤ t ≤ o1,

where A
(2)
i,j (1 ≤ i ≤ v1 + o1, 1 ≤ j ≤ o2) represents the (i, j)

th
element of the submatrix

A2. As xv1+1, xv1+2, . . . , xv1+o1
is multiplied with A1, we can reveal all elements of A1

using the following intermediate result:

Guess · xk, v1 + 1 ≤ k ≤ v1 + o1.

Algorithm 1 Matrix-vector product

Input: matrix A ∈ F
n×n
q , vector x ∈ F

n
q

Output: vector x
′
(
= Ax

T
)

∈ F
n
q

1: for i = 1 to n do
2: x′

i = 0
3: end for
4: for i = 1 to n do
5: for j = 1 to n do
6: x′

j = x′
j + aji · xi // +: field addition, ·: field multiplication

7: end for
8: end for
9: return x

′
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� Experimental Setup

Algorithm 1 is the most commonly used efficient matrix-vector product method because
it can reduce the number of load operations. We analyze the C code of Rainbow at an 80-bit
level, which also uses the matrix-vector product in Algorithm 1, over Fq with q = 28 [COD].
Clearly, the addition operation of Eq. (1) can be replaced by the exclusive OR operation.
To explain simply, we assume that the matrix-vector product is implemented as shown in
Algorithm 1 with m = 6, n = 8, and two layers in the Rainbow signature scheme with
o1 = 2 and o2 = 4. Note that, even though the parameters do not match the currently
accepted security parameters, if CPA succeeds against this parameter set, the result can
be easily extended to larger parameters. Moreover, we can retrieve secret key even if the
size of o2 is small.

We port the matrix-vector product code on the ChipWhisperer-Lite evaluation plat-
form [New]. ChipWhisperer-Lite was developed to support embedded hardware security
research. It is comprised of two main parts, a multi-purpose PA capture instrument and
a target board. The target board is an Atmel XMEGA128 programmable chip with a
fixed clock frequency of 7.37 MHz. The signal is amplified up to 55dB gain, and the power
traces are sampled at a rate of 96 MS/s. To obtain power consumption traces of S̃, we
first generate random hashed messages h

(1), h
(2), . . . , h

(N) ∈ F
8
28 , and then perform the

matrix-vector product operations. Here, h
(i) represents the hash value of ith message

which is used in the ith signature generation. To recover T̃ , we use outputs of signature
generation, i.e., σ(1), σ(2), . . . , σ(N). For convenience, we drop the exponent of h and σ in
the remaining paper.

3.2 Case Study: Recovering S and T

Now, we present a case study on the recovery of S̃ and T̃ in Rainbow. The second step of
the Rainbow signature algorithm is to multiply S̃ ∈ F

8×8
28 by the hashed message h ∈ F

8
28 .

Figure 4: Possible attack positions to reveal s̃13
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S̃h =




01 00 s̃13 s̃14 s̃15 s̃16 s̃17 s̃18

00 01 s̃23 s̃24 s̃25 s̃26 s̃27 s̃28

00 00 01 00 s̃35 s̃36 s̃37 s̃38

00 00 00 01 s̃45 s̃46 s̃47 s̃48

00 00 00 00 01 00 00 00
00 00 00 00 00 01 00 00
00 00 00 00 00 00 01 00
00 00 00 00 00 00 00 01







h1

h2

h3

h4

h5

h6

h7

h8




When the hashed message h and matrix S̃ are multiplied, h contains known values, and
each element of S̃ is a secret value that the attacker wants to find. If we perform CPA using
the intermediate result discussed in §3.1, it is easy to find all elements of S̃. However, the
obtained traces must be split into partial matrix-vector product traces owing to Algorithm
1.

There are two attack positions to find for each s̃ij . For example, if we target s̃13, then
the first position is where the value of h1 ⊕ (s̃13 · h3) is calculated and stored. The second
position is where the value of h1 ⊕ (s̃13 · h3) is loaded to calculate h1 ⊕ (s̃13 · h3)⊕ (s̃14 · h4).
Fig. 4 shows the correlation coefficient for the intermediate result h1 ⊕ (s̃13 · h3) with the
correct value. As can be seen in Fig. 4, there are two positions with high peaks.

When we attack the first position, loading of the message h1 to calculate h1 ⊕ (s̃13 · h3)
would encumber us. CPA results for s̃13 at the first attack position are represented in Fig.
9a and 9b (Appendix A). The correlation coefficient for h1, i.e., the correlation coefficient
of s̃13 = 0, is higher than that for a right key. We have compared the locations where h1 is
loaded and h1 ⊕(s̃13 · h3) is calculated. Peaks occurred in almost similar positions, however,
one point difference was observed between loading h1 and calculating h1 ⊕ (s̃13 · h3). The
right key should be distinguished by substituting the key candidates in the intermediate
result of s̃14. However, we use the second position for simplicity as it is unaffected by the
loading of h1.

To recover the other secret map T̃ , we consider the computation of the product T̃ β for
β ∈ F

8
28 , where β is the intermediate value obtained from F̃(α) for α = S̃(h). Here, let T̃

be of the same form as S̃.2

Figure 5: Top: Power consumption trace of the matrix-vector product with 8 × 8 matrix
and vector; Bottom: Expansion of the top trace

2We express the elements of T̃ as t̃ij .
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T̃ β =




01 00 t̃13 t̃14 t̃15 t̃16 t̃17 t̃18

00 01 t̃23 t̃24 t̃25 t̃26 t̃27 t̃28

00 00 01 00 t̃35 t̃36 t̃37 t̃38

00 00 00 01 t̃45 t̃46 t̃47 t̃48

00 00 00 00 01 00 00 00
00 00 00 00 00 01 00 00
00 00 00 00 00 00 01 00
00 00 00 00 00 00 00 01







β1

β2

β3

β4

β5

β6

β7

β8




=




σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8




Note that σ5 = β5, σ6 = β6, σ7 = β7, and σ8 = β8. Thus, we can reveal the elements
of T̃ from columns 5 to 8. In fact, we still do not have information regarding β3 and β4,
which will encumber us when we perform CPA to find t̃3j and t̃4j . However, we can reveal
t̃4j(and t̃3j) because there are positions where t̃ij ·βj is computed. After these positions are
found, we perform CPA with the intermediate result Guess · βj . If we find the elements

of T̃ from columns 5 to 8, we can also calculate β3 and β4 as follows:

β3 = σ3 ⊕ t̃35 · β5 ⊕ t̃36 · β6 ⊕ t̃37 · β7 ⊕ t̃38 · β8,

β4 = σ4 ⊕ t̃45 · β5 ⊕ t̃46 · β6 ⊕ t̃47 · β7 ⊕ t̃48 · β8.

Simialrly, we can recover the remaining elements of T̃ from t̃j3 to t̃j4 for all 1 ≤ j ≤ 2.

3.3 Experimental Results

The top of Fig. 5 shows a power consumption trace during the multiplication of the 8 × 8
matrix S̃ and vector h. As can be seen, eight operations are performed, i.e., the first
iteration after initialization in Algorithm 1 (steps 4?8), and, if we expand part of the top
of Fig. 5, we will find that eight similar operations are repeated. The bottom of Fig. 5
enlarges positions 2 and 3 in the top of Fig. 5, i.e., the second loop of Algorithm 1 (steps
5?7).

Since the same message is used consecutively, similar to Algorithm 1, we must find
an appropriate target position that effectively reveals all elements of the secret matrices
prior to performing CPA. We then carry out CPA with the collected 500 traces. Fig. 9
(Appendix A) and Fig. 6 show the results of CPA for s̃13. Fig. 9a (Appendix A) shows the
maximum correlation coefficients of all hypothetical keys and Fig. 9b (Appendix A) shows
the maximum correlation coefficients according to an increased number of traces at the
first position. We experiment with traces that increase by 10. Here, even if the number
of traces is increased, the appropriate key cannot be found. Figs. 6a and 6b show the
maximum correlation coefficients of all hypothetical keys and the maximum correlation
coefficients according to an increased number of traces at the second position, respectively.
As can be seen in Fig. 6b, we can find the appropriate key using only 30 traces.

As mentioned previously, we use the signature values to reveal T̃ and only target the
place where t̃ij · βj is computed because we have unknown values. Fig. 7a and Fig. 7b
show the CPA results for t̃45 and t̃46, respectively.

4 Hybrid Attack on Rainbow Implementation with Ran-

dom Affine Maps

In the previous section, we recovered the affine map T using CPA when Rainbow is
implemented with its special equivalent keys of the forms shown in Fig. 1. Now, we show
that full secret key recovery is possible via a hybrid attack when Rainbow is implemented
using random affine maps instead of the equivalent keys in the form of Fig. 1. The hybrid
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(a) Maximum correlation coefficients

(b) Maximum correlation coefficients according to increased number of traces

Figure 6: CPA results for s̃13 at second position

attack is a combination of CPA and algebraic KRAs: we first recover a random affine
secret map S by performing CPA, and then, another affine secret map T is recovered by
mounting algebraic KRAs.

4.1 Recovery of Random Affine Map S via CPA

The recovery of the random affine map S̃ on Rainbow with random affine maps using CPA
is identical to that of Rainbow with the special form of equivalent secret keys. Fig. 10
(Appendix B) shows CPA results for the random secret key S̃ with 500 traces when we
target the position where the s̃11 · h1 value is loaded. As seen in Fig. 10b (Appendix B),
only 30 traces are required to reveal s̃11. Thus, the secret affine map S is recovered in this
manner.

4.2 Recovery of Random Affine Map T via KRAs

Suppose that S is recovered from the public key P = S ◦ F ◦ T . Then we can easily
recover T via the algebraic KRAs. In fact, the role of S is to mix the polynomials in the
first and the second layers since the polynomials have different structures in multi-layered
MQ-signature schemes such as Rainbow. Thus, in layered MQ-signature schemes, the
removal of S means the extraction of each layer that leads to the breaking of the scheme
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(a) Maximum correlation coefficients according to increased number of traces
for t̃45

(b) Maximum correlation coefficients according to increased number of traces
for t̃46

Figure 7: CPA results for t̃45 and t̃46

through several attacks, including rank-based attacks, direct attacks, and KRAs. Here, we
show that T can be retrieved by KRAs using good keys.

Because S and P are known, we can compute S−1 ◦P. Hence, without loss of generality,
we begin with the structure P = F◦T , where T is a random invertible affine map. We denote
F (k) (1 ≤ k ≤ m) by symmetric matrices corresponding to the homogeneous quadratic
part of the k-th component of the central map F . We also denote P (k) (1 ≤ k ≤ m) by
symmetric matrices associated to the quadratic part of the k-th component of the public
key P . As P = F ◦ T , F = P ◦ T̃ , where T̃ = T −1 and certain places with zero coefficients
in F (k) are known, we obtain the following equality:

F (k) = T̃ T · P (k) · T̃ , ∀1 ≤ k ≤ m.

The corresponding system of equations is:

f
(k)
ij =

n∑

y=1

n∑

z=1

P (k)
yz t̃yit̃zj , (2)

where P
(k)
yz the coefficient of xyxz in P (k), because we already know that f

(k)
ij = 0 for some
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i, j, k by the construction of F . For Rainbow(Fq, v1, o1, o2), we obtain a system of

o1m(n + v1 + 1) + o2
2(o2 + 1)

2
− o2

1v1

quadratic equations with n2 variables. The complexity of solving such a system using
HF5 is very large, where HF5 is an efficient Gröbner basis algorithm for solving the
MQ-problem [BFP09].

To improve this complexity, we can find an equivalent key (F ′, T ′) such that P = F ′ ◦T ′,

where F
′(k)
ij = 0 if and only if F

(k)
ij = 0. The equivalent key F ′ and T̃ ′ have the form

shown in Fig. 8a and Fig. 8b, respectively. Then, we obtain a system of

o1m(n + v1 + 1) + o2
2(o2 + 1)

2
− o2

1v1

quadratic equations with v1m+o1o2 variables. For the dotted part of Fig. 8, the equations
determined from the part are linear because the first v1 columns of T̃ ′ do not have any
variables of the form t̃yi. Thus, we obtain a linear system of v1o1o2 equations with
o2(v1 + o1) variables. From (2), these equations are of the form

f
(k)
ij =

v1+o1∑

z=1

P
(k)
iz t̃zj + P

(k)
ij (3)

for 1 ≤ i ≤ v1 and v1 + o1 + 1 ≤ j ≤ n. Note that all variables of each equation in (3)

are in a column of T̃ ′. For each j with v1 + o1 + 1 ≤ j ≤ n, we obtain a smaller linear
system of v1o1 equations with v1 + o1 variables in the j-th column of T̃ ′. Hence, we obtain
o2 in such linear systems with v1 + o1 variables (observe that v1o1 ≥ v1 + o1) that are
easily solvable. Note that solving each linear system is eventually equivalent to the KRAs

using good keys on Rainbow in [Tho13]. Let T̃ ′′
j be a good key, where it preserves the j-th

column of T̃ ′ and the other parts are the same as the identity map. Then, it is enough to

solve each linear system from (3) to find unknown variables in T̃ ′′
j . In our attack, we need

to find such good keys as T̃ ′′
j for o2; this is slightly different from the approach of KRAs

using good keys in [Tho13].
After substituting the obtained variables into the remaining equations, we obtain a

linear system of o2
1o2 equations with the remaining v1o1 variables in the following form:

f
(k)
ij =

v1∑

y=1

t̃yi

(
v1+o1∑

z=1

P (k)
yz tzj + P

(k)
yj

)
+

n∑

z=1

P
(k)
iz tzj . (4)

As in (3), all variables in each equation are in a column of T̃ ′. For each i with v1 + 1 ≤
i ≤ v1 + o1, we obtain a smaller linear system of o1o2 equations with v1 variables in the
i-th column of T̃ ′. Hence, we obtain for o1 such linear systems with v1 variables that are
easily solvable (observe that o1o2 ≥ v1 for most of the suggested parameters of Rainbow).

Finally, we can find T̃ ′ in polynomial time by solving o2 linear systems of v1o1 vari-
ables and then solving o1 linear systems of v1 variables. After recovering T , F ′ is
also easily computable as F ′ = P ◦ T̃ ′. Practically, we consider a specific parameter,
Rainbow(F28 , 36, 21, 22), which achieves a 128-bit security level. We are able to recover its
equivalent key in less than 0.46 milliseconds on Intel Xeon E5-2687W CPU 3.1 GHz with
256GB RAM.

5 CPA on Other MQ-Signature Schemes

We have shown that full secret key recovery on Rainbow-like multi-layered signature
schemes via CPA is possible regardless of using the equivalent keys in the form of Fig. 1.
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(a) F
′(k) in the first layer (1 ≤ k ≤ o1) (b) Easily computable part in T̃ ′

Figure 8: The forms of the equivalent key F ′(k) and T̃ ′

Our CPA can also be applied to the single layer MQ-scheme, UOV, if it is implemented
with the equivalent key in the form of Fig. 2. Unlike Rainbow, as all forms of secret central
polynomials in UOV are the same, S is unnecessary, i.e., P = F ◦ T . Furthermore, our
attack on Rainbow can be applied to UOV because the structure of the equivalent key
T ′ in the form of Fig. 2 is similar to that of Rainbow. However, if the random invertible
affine map T is used in UOV implementation, we cannot recover T using the same attack.

Now, we discuss the applicability of our attacks to MQ-schemes submitted to NIST.
Seven MQ-signature schemes, LUOV, Rainbow, HiMQ-3, MQDSS, DualModeMS, Gui,
and GeMSS, have been submitted to NIST’s Post-Quantum Cryptography Standardization
[NIS16b]. Our CPA can be applied to the UOV-like single layer scheme LUOV as its design
and implementation use the equivalent key in the form of Fig. 2. Our hybrid attack can
also be applied to Rainbow-like multi-layered schemes, Rainbow and HiMQ-3. However,
our attacks cannot be applied to MQDSS because it does not use the ASA structure.

Finally, by choosing input messages, our CPA can be applied to the other three MQ-
signature schemes, DualModeMS, Gui, and GeMSS, based on the ASA structure. More
precisely, partial information of the first affine secret map corresponding to S for the
other three MQ-signature schemes can be retrieved by the chosen message 1 bit CPA. We
cannot control all bits of h as they use HFEv- schemes. Therefore, we can only recover
partial information of the first affine secret map. We believe that the recovery of partial
information of S would weaken the security of the schemes. However, for each scheme,
depending on additional structures of the central map or the other affine map T , exact
analysis should be conducted on the effect of the recovery of S on the recovery of T or
some forgery attacks.

6 Countermeasures Against the Proposed CPA

The algebraic KRAs in our attack can only be used when the secret affine map S̃ is
retrieved by CPA. Here, we discuss countermeasures against our CPA to protect the secret
affine map S̃.

� UOV-like single layer schemes

UOV-like single layer schemes are vulnerable to our attack only when it is implemented
using the equivalent key in the form of Fig. 2. If they use random affine maps T instead
of the equivalent keys in their implementations, they are secure against our CPA attack.

� Rainbow-like multi-layered schemes

Unfortunately, Rainbow-like multi-layered schemes are vulnerable to our attack re-
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Algorithm 2 Matrix-vector product using shuffling

Input: matrix A ∈ F
n×n
q , vector x ∈ F

n
q

Output: vector x
′
(
= Ax

T
)

∈ F
n
q

1: for i = 1 to n do
2: x′

i = 0
3: end for
4: κ1 : Z∗

n+1
R

−→ Z
∗
n+1 , κ2 : Z∗

n+1
R

−→ Z
∗
n+1 // Generate random permutations

5: for i = 1 to n do
6: for j = 1 to n do
7: x′

κ2(j) = x′
κ2(j) + aκ2(j)κ1(i) · xκ1(i)

8: end for
9: end for

10: return x
′

gardless of the use of equivalent keys in the form of Fig. 1. Therefore, we must focus
on implementing a secure algorithm against PA. PA exploits the fact that the power
consumption of cryptographic devices depends on intermediate values of the operated
cryptographic algorithms. There are some types of countermeasures to eliminate or reduce
these dependencies. A good overview of DPA countermeasures is available in [MOP07].
The most commonly used countermeasures are hiding and masking techniques at the
algorithmic level. Random insertion of dummy operations and shuffling of operations are
commonly used as a hiding technique because of flexibility in software. For example, each
time the algorithm runs, the order of the loading rows or columns of the matrix A in
Algorithm 1 can be changed.

Algorithm 2 shows the matrix-vector product using the shuffling countermeasure.
Here, κ1 and κ2 are random permutations of a set of length n. The classical algorithm
for random permutation generation can be found in [Knu81], which has been known
as a linear complexity. The statistical effects of shuffling in terms of PA have been
studied [CCD00,Man04]. It is generally known that if the probability that an intermediate
value occurs at a certain time is p, then the number of traces needed for a successful attack

increases by a factor of
1

p2
[HOM06]. In Algorithm 2, the probability that an intermediate

value in our proposed matrix-vector product using shuffling occurs at a certain time is
1

n2
.

Therefore, the number of traces needed for a successful attack increases by (n2)2 times.
Another approach is to use a logical masking method with random numbers. For

example, message randomization is a widely used method to prevent DPA against RSA,
which can be expressed as:

A ≡ md mod N ≡ (mre)
d

r−1 mod N,

where r and m represent a random number and a message, respectively. N is the public
modulus, and the public key e and the private key d are linked to each other by the
equation e · d ≡ 1 mod ϕ(N), where ϕ(·) denotes Euler’s function. Similarly, we can use

message randomization to prevent our attack when S̃ and h are multiplied.

S̃h =
(

S̃ (h ∗ r)
)

∗ r−1,

where ∗ denotes a vector and scalar product. Algorithm 3 shows the pseudo-code of the
matrix-vector product obtained using message randomization, and Table 2 shows the
comparison of operation counts for Algorithm 1 and 3. As can be seen in Table 2, the
matrix-vector obtained using message randomization uses more 2n field multiplications
and a field inversion as compared with the general matrix-vector product.



Aesun Park, Kyung-Ah Shim, Namhun Koo and Dong-Guk Han 517

Table 2: Comparing operation counts for Algorithm 1 and 3

Algorithm 1 Algorithm 3

Field Multiplication n2 n2 + 2n

Field Addition n2 n2

Field Inversion − 1

Algorithm 3 Matrix-vector product using the message randomization

Input: matrix A ∈ F
n×n
q , vector x ∈ F

n
q

Output: vector x
′
(
= Ax

T
)

∈ F
n
q

1: for i = 1 to n do
2: x′

i = 0
3: end for
4: r ∈R F

∗
q // The notation ∈R stands for randomly sampling and F

∗
q means Fq\{0}

5: for i = 1 to n do
6: xi = xi · r

7: end for
8: for i = 1 to n do
9: for j = 1 to n do

10: x′
j = x′

j + aji · xi

11: end for
12: end for
13: for i = 1 to n do
14: x′

i = x′
i · r−1

15: end for
16: return x

′

This countermeasure ensures the prevention of our proposed attacks, however, the
scheme would still be vulnerable to sophisticated attacks (such as high-order DPA). We
do not discuss countermeasures against sophisticated attacks here as they are out of the
scope of this paper. Finding the optimal method is not easy, hence, our future work
includes designing a masking scheme that adapts to the limitations of each implementation
platform.

7 Conclusion

We showed that, only via CPA, we succeeded in recovering a full secret key on Rainbow
implemented by the equivalent keys in the form of Fig. 1 due to the special structure of the
equivalent keys. We also demonstrated how this leakage on Rainbow can be exploited in
practice on an 8-bit AVR microcontroller using CPA. Next, we extended the full secret key
recovery to the general case using random affine maps via a hybrid attack: after recovering
S by performing CPA, we recovered T by mounting algebraic KRAs. The same attack
can be applied to UOV when it is implemented with the equivalent key T̃ ′ in the form of
Fig. 2. Our attacks can also be applied to Rainbow-like multi-layered signature schemes
regardless of using the equivalent keys in the form of Fig. 1 and UOV-like single layer
signature schemes with the implementations using the equivalent key T̃ ′ in the form of
Fig. 2 submitted to NIST for Post-Quantum Cryptography Standardization. It is the first
result on the security of MQ-signature schemes only using CPA.
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Appendix A CPA Results for s̃13 at First Attack Point

(a) Maximum correlation coefficients

(b) Maximum correlation coefficients according to increased number of traces

Figure 9: CPA results for s̃13 at first position



Aesun Park, Kyung-Ah Shim, Namhun Koo and Dong-Guk Han 523

Appendix B CPA Results for Random s̃11

(a) Maximum correlation coefficients for s̃11

(b) Maximum correlation coefficients according to increased number of traces
for s̃11

Figure 10: CPA results for random s̃11
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