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Abstract. In the recent years, DPA attacks have been widely investi-
gated. In particular, 2-nd order DPA have been improved and successfully
applied to break many masked implementations. In this context a higher
order masking scheme has been proposed by Schramm and Paar at CT-
RSA 2006. The authors claimed that the scheme is resistant against d-th
order DPA for any arbitrary chosen order d. In this paper, we prove that
this assertion is false and we exhibit several 3-rd order DPA attacks that
can defeat Schramm and Paar’s countermeasure for any value of d.
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1 Introduction

For a long time, cryptographic algorithms have been studied to thwart mathe-

matical attacks which try to recover secret keys from some ciphertexts. Big ef-
forts have been made to design resistant algorithms and to prove their security.
In recent years, new attacks have been developed that target physical imple-
mentations of cryptographic algorithms. Those physical attacks are referred to
as side channel attacks and are often much more efficient than the mathematical
attacks.

Side channel attacks exploit information that leaks from physical implemen-
tations of cryptographic algorithms. The analysis of this leakage (e.g. the power
consumption or the electro-magnetic emanations) reveals information on the se-
cret data manipulated by the implementation. Among the side channel attacks,
the Differential Power Analysis (DPA) [11] is one of the most powerful against
unprotected cryptographic implementations: it allows to recover the value of a
secret key with only a few leakage measurements. A DPA is a statistical at-
tack that correlates a physical leakage with the values of intermediate variables
(called here sensitive variables) that depend on both the plaintext and the secret
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key. To avoid information leakage, the manipulation of sensitive variables must
be protected by adding countermeasures to the algorithm.

A very common countermeasure for block ciphers implementations is to ran-
domize sensitive variables by masking techniques [5,9]. All of these are essen-
tially based on the same principle which can be stated as follows: every sensitive
variable Y is randomly split into d shares V1,..., Vd in such a way that the com-

pleteness relation Y = V1 ⋆ ... ⋆ Vd is satisfied for a group operation ⋆ (e.g. the
x-or or the modular addition). Such a technique, here called d-th order masking,
ensures that every single variable is masked with at least one random value and
then, a classical (1-st order) DPA attack cannot be successfully carried out any-
more. However other attacks, such as the Higher Order DPA (HO-DPA) attacks,
exist that can defeat d-th order masking.

Higher order DPA are attacks that combine multiple leakage signals. When a
d-th order masking is used, a d-th order DPA can be performed to combine the
leakage signals L(Vi) resulting from the manipulation of the d shares Vi. This
enables the construction of a signal that is correlated to the targeted sensitive
variable Y . Such an attack can theoretically bypass any d-th order masking.
However, the noise effects imply that the difficulty of carrying out a HO-DPA in
practice increases exponentially with its order and an attacker has to deal with
several issues.

The main issue of HO-DPA is to determine how to combine the d leakage
signals L(Vi) in such a way that the combination is highly correlated to the
sensitive variable Y . In [5], Chari et al. propose to perform the product L(V1)×
... × L(Vd) of d leakage signals. Messerges proposes in [13] another combining
method for d = 2. It consists in processing the absolute value of the difference
of the two leakage signals |L(V1) − L(V2)|. This can be generalized to the d-th
order as |L(V1) − ... |L(Vd−1) − L(Vd)|...|. Such attacks, which combine several
leakage signals, will be called Combining HO-DPA in this paper.

An alternative to these attacks exists when the attacker is allowed to profile
the leakage in order to exhibit a relationship between the statistical distribution
of the leakage and the value of a sensitive variable. Once this relationship is
determined, the likelihood of key guesses is estimated given the distribution of
the uplet (L(V1), · · · , L(Vd)). Such attacks are based on the same principle as the
Template attacks introduced by Chari et al. in [6]. They have been successfully
applied by Peeters et al. in [17] and by Oswald et al. in [15] to break some
masked implementations more efficiently than any combining 2-nd order DPA.
In this paper we will call Profiling HO-DPA any HO-DPA attack that assumes
a profiling of the leakage.

The recent works [1,10,15,16,17,20,19,22] show that 2-nd order DPA attacks
not only allow to theoretically invalidate some countermeasures, but can some-
times break them in practice. HO-DPA of order greater than 2 will also likely
become a real practical threat in foreseeable future. Therefore, there is a need
for countermeasures thwarting not only 2-nd order DPA but more generally d-th
order DPA for d > 2.
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At CT-RSA 2006, Schramm and Paar propose in [19] a higher order masking
scheme of AES which aims to thwart d-th order DPA for any d. However, we show
in the present paper (Sections 3 and 4) that Schramm and Paar’s Scheme admits
several flaws which actually make it vulnerable to 3-rd order DPA for any value
of d. Therefore, as opposed to what is claimed in [19], the countermeasure does
not protect against d-th order DPA for d ≥ 3. In Section 5, the flaws of Schramm
and Paar’s Scheme are used to exhibit 3-rd order DPA attacks. Simulations are
provided that demonstrate the practicability of our attacks.

2 Preliminaries

DPA attacks exploit a dependency between a subpart of the secret key and the
variations of a physical leakage as function of the plaintext. This dependency
results from the manipulation of some sensitive variables by the implementation.
We say that a variable is sensitive if it depends on both the plaintext and the
secret key. For example, the x-or between a key byte and a plaintext byte is a
sensitive variable.

If an algorithm manipulates a sensitive variable directly, then a physical im-
plementation of this algorithm can be broken by a 1-st order DPA. The imple-
mentation can be rendered resistant against 1-st order DPA by masking every
sensitive variable with a single random mask. However a higher order DPA is
still possible. The next definition formalizes the notion of security with respect
to d-th order DPA for a cryptographic algorithm.

Definition 1. A cryptographic algorithm A is secure against d-th order DPA if

every family of at most d intermediate variables of A is independently distributed

from any sensitive variable.

If a family of d intermediate variables depends on a sensitive variable then we
say that the algorithm admits a d-th order flaw. A DPA attack that exploits
such a flaw is a d-th order DPA. In Sections 3 and 4, we recall the Schramm and
Paar’s Scheme and we show that it has 3-rd order flaws.

In the rest of the paper, we will use the calligraphic letters, like X , to denote
finite sets. The corresponding large letter X will then be used to denote a random
variable over X , while the lowercase letter x - a particular element from X .

3 The Generic Masking Scheme

3.1 Description

Schramm and Paar propose in [19] a masking scheme for AES [7] which aims
to thwart d-th order DPA for any arbitrary chosen d. Every sensitive byte Y

appearing in the algorithm is never directly manipulated and is represented by
d + 1 values M0, M1, ..., Md. To ensure the DPA-resistance, the shares (Mi)i≥1

take random values and to ensure completeness, M0 satisfies
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M0 = Y ⊕
d

⊕

i=1

Mi . (1)

When a transformation S must be applied to Y , d + 1 new values N0, N1, ...,
Nd must be processed from the Mi’s such that

N0 = S(Y ) ⊕
d

⊕

i=1

Ni . (2)

The critical point of such a method is to deduce the Ni’s from the Mi’s when
S is non-linear, without compromising the security of the scheme against d-th
order DPA.

To tackle this issue, Schramm and Paar propose to adapt a method, called
table re-computation, which has been widely used to protect implementations
against 1-st order DPA (see for instance [12,2]). In their proposal, the d output
masks (Ni)i≥1 are randomly generated and a new table S∗ is derived from M1,
..., Md and N1, ..., Nd in such a way that S∗ satisfies for every x:

S∗(x) = S

(

x ⊕
d

⊕

i=1

Mi

)

⊕
d

⊕

i=1

Ni . (3)

Then, one lets N0 ← S∗(M0); using (1) this gives N0 = S(Y ) ⊕
⊕d

i=1 Ni as
required.

To ensure that the design of S⋆ induces no flaw with respect to d-th order
DPA, it involves d successive table re-computations from S0 = S to Sd = S∗.
For every j ∈ {1, · · · , d}, the j-th re-computation produces a new S-Box Sj from
Sj−1 such that for every x:

Sj(x) = Sj−1(x ⊕ Mj) ⊕ Nj = S

(

x ⊕

j
⊕

i=1

Mi

)

⊕

j
⊕

i=1

Ni , (4)

which for j = d satisfies (3).
In [19], different table re-computation algorithms are proposed. The attack

described in this paper focus on the straightforward algorithm recalled below.
We discuss the security of the other algorithms in Appendix A.

Algorithm 1. Re-computation
Input: the look-up table Sj−1, the input mask Mj , the output mask Nj

Output: the look-up table Sj

1. for x from 0 to 255 do

2. Sj(x) ← Sj−1(x ⊕ Mj) ⊕ Nj

3. end
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3.2 The 3-rd Order Flaw

Before describing the flaw, and to simplify the presentation, we will denote M =
⊕d

i=1 Mi and N =
⊕d

i=1 Ni.
During the re-computation of Sd from Sd−1, the variables Sd(0) = S(M)⊕N

and Sd(1) = S(M⊕1)⊕N are respectively manipulated during the first iteration
and the second iteration of the loop (see Algorithm 1.). The manipulation of
these two variables together with M0 induces a 3-rd order flaw. In fact, recalling
that M0 satisfies M0 = Y ⊕ M , we have

(M0, Sd(0), Sd(1)) = (Y ⊕ M, S(M) ⊕ N, S(M ⊕ 1) ⊕ N) . (5)

It can be checked from (5) that (M0, Sd(0), Sd(1)) and Y are not indepen-

dent, which implies that a 3-rd order DPA is potentially feasible. Namely, given
Sd(0) and Sd(1), one can compute ∆ = Sd(0) ⊕ Sd(1) = S(M) ⊕ S(M ⊕ 1).
This allows to recover M with high probability since the number of values z

satisfying ∆ = S(z) ⊕ S(z ⊕ 1) is small when S has good cryptographic prop-
erties (e.g. this equation admits at most 4 solutions if S is the AES S-Box).
Then, knowing the value of M allows to recover Y from M0 since they satisfy
Y = M0 ⊕ M .

The discussion above demonstrates that the use of Algorithm 1. to perform the
table re-computations makes Schramm and Paar’s Countermeasure vulnerable
to 3-rd order DPA for any value d.

Even if the 3-rd order flaw above has been exhibited for the first and the sec-
ond loop iterations, the generic scheme admits more generally a flaw (M0, Sd(e1),
Sd(e2)) for every pair (e1, e2) ∈ {0, .., 255}2 of loop indices such that
e1 �= e2.

The importance of the 3-rd order flaw depends on the amount of informa-
tion that (M0, Sd(e1), Sd(e2)) provides about Y . As proved in Appendix B,
this amount depends on the cryptographic properties of S and on the value
e1 ⊕ e2. In fact for every S-Box S defined from F

n
2 into F

m
2 and for every sub-set

{e1, e2} ⊆ F
n
2 , the mutual information I(Y, (M0, Sd(e1), Sd(e2))) between Y and

(M0, Sd(e1), Sd(e2)) satisfies

n − log(δ) ≤ I(Y, (M0, Sd(e1), Sd(e2))) ≤ n , (6)

where δ denotes maxe∈F
n
2
∗,z∈F

m
2
{x ∈ F

n
2 ; S(x) ⊕ S(x ⊕ e) = z} (see Proposition

2 in Appendix B).
To resist against differential cryptanalysis [3], the AES S-Box (n = 8, m = 8)

has been designed in such a way that δ = 4. Consequently, if S is the AES S-Box
then (6) implies that the mutual information between Y and (M0, Sd(e1), Sd(e2))
is lower bounded by 6. In fact, we computed that this mutual information equals
7 − 1

64 ≈ 6.98 for every sub-set {e1, e2} ⊆ F
n
2 , which means that knowing the

values of M0, Sd(e1) and Sd(e2) reveals almost 7 bits of Y (out of 8).
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4 The Improved Masking Scheme

4.1 Description

Schramm and Paar’s generic Scheme recalled in Section 3.1 is very costly as it
involves d table re-computations for each S-Box access for each round of the
cipher (which implies 160 × d table re-computations for AES).

Therefore, Schramm and Paar propose in [19] an improvement of the method.
In the new solution, d successive re-computations are still preformed to process
the first masked S-Box in the first round. Then, each time S must be applied
on a new byte M ′

0 = Y ′ ⊕
⊕d

i=1 M ′
i , a new masked S-Box S∗

new, satisfying

S∗
new(x) = S(x ⊕

⊕d
i=1 M ′

i) ⊕
⊕d

i=1 N ′
i for every byte x, is derived from the

previous S∗ with a single re-computation. This re-computation firstly requires
to process two values called chains of masks in [19] and denoted here by ICM

and OCM :

ICM =
d

⊕

i=1

Mi ⊕
d

⊕

i=1

M ′
i , (7)

OCM =
d

⊕

i=1

Ni ⊕
d

⊕

i=1

N ′
i . (8)

Once the values of the chains of masks have been computed, the masked S-Box
S∗

new is derived from S∗ by performing one single re-computation such that the
following relation is satisfied for every x:

S∗
new(x) = S∗(x ⊕ ICM) ⊕ OCM . (9)

To construct a S-Box S∗
new that satisfies (9), a re-computation algorithm may be

called with the input parameters (S∗, ICM, OCM). The variable ICM removes

the previous sum of input masks
⊕d

i=1 Mi and adds the new sum of input masks
⊕d

i=1 M ′
i while OCM removes the previous sum of output masks

⊕d

i=1 Ni and

adds the new sum of output masks
⊕d

i=1 N ′
i .

For the whole AES implementation, this improved scheme replaces the 160×
d table re-computations required in the generic scheme by d + 159 table re-
computations. For d ≥ 2, this represents a substantial gain.

4.2 The 3-rd Order Flaws

Here we show that the computation of the chains of masks induces two 3-rd
order flaws. In fact, one obtains from (1) and (7) that the input chain of masks
ICM satisfies

Y ⊕ Y ′ = ICM ⊕ M0 ⊕ M ′
0 . (10)

Since Y ⊕ Y ′ is a sensitive variable (because it depends on both the plaintext
and the secret key), and since the variables ICM , M0 and M ′

0 are manipulated
by the implementation, this immediately gives a 3-rd order flaw.
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The second 3-rd order flaw is derived as follows: from (2) and (8) we deduce
that the output chain of masks OCM satisfies

S(Y ) ⊕ S(Y ′) = OCM ⊕ N0 ⊕ N ′
0 . (11)

This shows that the manipulation of OCM , N0 and N ′
0 gives a 3-rd order flaw

which leaks information on the sensitive variable S(Y ) ⊕ S(Y ′).

To summarize, we have shown that the improved Schramm and Paar’s coun-
termeasure is vulnerable to 3-rd order DPA for any value of d.

5 The 3-rd Order DPA Attacks

In previous sections, we have shown that an attacker who can obtain the exact
values of 3 intermediate variables of the (generic or improved) Schramm and
Paar’s masking Scheme, can recover the value (or a part of the value) of a sensi-
tive variable. This is sufficient to show that the countermeasure is theoretically
vulnerable to 3-rd order DPA. However, the physical leakage of an implementa-
tion does not reveal the exact values of the variables manipulated but a noisy
function of them. Thus, a leakage model must be considered when DPA attacks
are addressed. In this section, we firstly recall two generic d-th order DPA at-
tacks in a classical leakage model. Then we apply each of them against Schramm
and Paar’s Countermeasure and we present experimental results.

5.1 Leakage Model

We assume that the physical leakage L(Vt) resulting from the manipulation of a
variable Vt at a time t satisfies

L(Vt) = ϕt(Vt) + Bt , (12)

where ϕt(Vt) is the deterministic leakage of Vt and Bt is a noise. In the sequel,
we refer to the ϕt as leakage functions.

In the next section, two generic d-th order DPA attacks are described for the
leakage model (12). Both of them assume that there exists a d-uplet (V1, ..., Vd) of
variables manipulated by the algorithm which is correlated to a sensitive variable
Y = f(X, K). The Vi’s depend on a part of the plaintext X , on a part of the
secret key K and possibly on random values generated during the execution
of the algorithm. The random values involved in the Vi’s are represented by a
random variable R which is assumed to be uniformly distributed over R. Thus,
the Vi variables considered in the rest of the paper can be expressed as functions
of (X, K, R), which will be denoted Vi(X, K, R).

5.2 Two Generic Higher Order DPA

We recall hereafter two generic d-th order DPA attacks: the combining higher

order DPA and the profiling higher order DPA. In the first one, the attacker
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combines the d leakage signals and performs a 1-st order DPA on the obtained
combined signal. The second one assumes a stronger adversary model where the
attacker is able to profile the implementation leakage. Once it is computed, the
profile is involved to launch an optimal probabilistic attack.

Combining Higher Order DPA. A combining d-th order DPA first applies
a combining function C (e.g. the product or the absolute difference -see Sec-
tion 1-) to the d leakage signals L(V1), ..., L(Vd). Then it uses classical DPA
techniques (see for instance [4]) to exhibit a correlation between the combined
signal C (L(V1), ..., L(Vd)) and the prediction Pk of this signal, according to a
guess k on the value of the targeted key part K. To perform such a prediction,
the attacker needs a mathematical representation of the leakage functions ϕi.
Usually, he supposed that ϕi(v) is an affine function of the Hamming weight
H(v) for every pair (i, v). Thus, we will consider in the sequel that for every
(k, x) ∈ K × X the attacker prediction equals the expected value of the random
variable C (H (V1 (x, k, R)) , .., H (Vd (x, k, R))) when R ranges over R:

Pk(x) = ER [C (H (V1 (x, k, R)) , .., H (Vd (x, k, R)))] . (13)

The attack consists in the following steps:

1. Perform the leakage measurements (lj(v1), .., lj(vd))j=1..N corresponding to
random plaintexts (xj)j=1..N .

2. For every x ∈ X , process the average leakage:

A(x) =
1

#{j | xj = x}

N
∑

j=1

xj=x

C(lj(v1), .., lj(vd)) . (14)

3. For every key guess k ∈ K, compute the empirical correlation coefficient ρk

between the prediction and the average leakage:

ρk =
2n

∑

x Pk(x) · A(x) −
∑

x Pk(x) ·
∑

x A(x)
√

2n
∑

x Pk(x)
2 − (

∑

x Pk(x))2
√

2n
∑

x A(x)
2 − (

∑

x A(x))2
. (15)

4. Select the key guess k such that ρk is maximal.

Profiling Higher Order DPA. In a profiling attack (see for instance [6,18]),
the attacker has unrestricted access to an implementation for which he knows
all the parameters (i.e. the plaintext, the secret key and eventually the random
values generated). The attack consists in two steps. In the first step (the profiling
step), the leakage functions and the noises are characterized via the implemen-
tation under control. This allows to precisely estimate the leakage distribution
according to some manipulated variables. In the second step, the leakage of the
implementation under attack is measured and a maximum likelihood test [8] is
performed to recover the secret parameter (namely the secret key).
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We assume hereafter that the profiling step provides the attacker with the
exact distribution (L(Vi))i of the leakage corresponding to the manipulation of
the Vi’s. The knowledge of this distribution allows him to compute the prob-
ability density function f(.|x, k) of (L(Vi))i given X = x and K = k. As the
Vi’s satisfy (12) for every i, assuming that the Bi’s have independent Gaussian
distributions, f(.|x, k) satisfies

f(l(v1), .., l(vd)|x, k) =
1

#R

∑

r∈R

d
∏

i=1

φσ (l(vi) − ϕi(Vi(x, k, r))) , (16)

where #R denotes the cardinality of R and φσ denotes the probability den-
sity function of the Gaussian distribution N (0, σ) which satisfies φσ(x) = 1√

2πσ

exp
(

− x2

2σ2

)

.

Then, the attack consists in the following steps:

1. Perform the leakage measurements (lj(v1), .., lj(vd))j=1,..,N corresponding to
random plaintexts (xj)j=1,..,N .

2. For every k ∈ K, process the likelihood L(k|(lj , xj)j) of the key guess k given
the observations of the leakage (lj(v1), .., lj(vd))j=1,..,N corresponding to the
plaintexts (xj)j=1,..,N :

L(k|(lj , xj)j) =

N
∏

j=1

f(lj(v1), .., lj(vd)|xj , k) . (17)

3. Select the key guess k such that L(k|(lj , xj)j) is maximal.

5.3 Application to Schramm and Paar’s Scheme

We launch hereafter the two attacks described in Section 5.2 against the
Schramm and Paar’s countermeasure recalled in Sections 3 and 4. Each attack is
a 3-rd order DPA targeting three variables V1, V2 and V3 appearing during the
computation. The measurements (lj(v1), lj(v2), lj(v3))j are simulated according
to a noisy Hamming weight model. Thus for our simulations, the leakage is
assumed to satisfy

L(Vi) = εH(Vi) + Bi , (18)

where the Bi’s have independent Gaussian distributions N (0, σ). The coefficient
ε is set to 3.72 and the noise standard deviation σ is set to 1.961.

For the combining 3O-DPA attacks, we selected among the product and
the absolute difference, the combining function which allows the most efficient
attack.

Before presenting the attacks, we recall that during the first round, every
input Y of the S-Box S satisfies Y = X ⊕ K, where X is a plaintext byte and
K is a secret key byte.

1 These values are the ones used by Schramm and Paar in their experiments [19].
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Attacks on the Generic Scheme. We have shown in Section 3.2 that a
3-rd order flaw results from the manipulation of V1 = M0, V2 = Sd(e1) and
V3 = Sd(e2). Hereafter, we apply our attacks for e1 = 0 and e2 = 1. In this case,
we recall that V1, V2 and V3 satisfy:

V1(X, K, R) = X ⊕ K ⊕ M ,

V2(X, K, R) = S(M) ⊕ N ,

V3(X, K, R) = S(M ⊕ 1) ⊕ N .

where R denotes the pair (M, N) of involved random masks.
Figure 1 shows the result of a combining 3O-DPA which uses the product as

combining function to exploit the flaw. The different curves represent the dif-
ferent key guesses; the curve corresponding to the correct key guess is plotted
in black. We noticed that this curve also corresponds to three other wrong key
hypotheses (additionally, four wrong key hypotheses result in correlation peaks
with equal magnitude and opposite sign). It can be observed that the correla-
tion for the correct key guess comes out after about 4.106 measurements. This
implies that several millions of measurements are required to recover the secret
key byte. However this assertion must be mitigated. Indeed, we noticed that
the correlation curve corresponding to the correct key guess is quickly among
the top curves, which implies a significant loss of entropy for the secret key
value.

Figure 2 shows the results of a profiling 3O-DPA. The likelihood of the
correct key guess is clearly remarkable after 2800 measurements which shows
that the profiling 3O-DPA is much more efficient than the combining
3O-DPA.

These attacks allow to recover the value of the targeted key byte K. They
must be performed 16 times to recover the whole first round key.

Fig. 1. Combining 3O-DPA : evolu-
tion of the correlation (ordinate axis)
over an increasing number of measure-
ments (abscissa axis)

Fig. 2. Profiling 3O-DPA : evolution
of the likelihood (ordinate axis) over
an increasing number of measurements
(abscissa axis)
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Attacks on the Improved Scheme. As argued in Section 4.2, a 3-rd order
flaw results from the manipulation of V1 = ICM , V2 = M0 and V3 = M ′

0. We
recall that these 3 variables satisfy

V1(X
′′, K ′′, R) = X ′′ ⊕ K ′′ ⊕ M0 ⊕ M ′

0 ,

V2(X
′′, K ′′, R) = M0 ,

V3(X
′′, K ′′, R) = M ′

0 .

where X ′′ denotes the plaintext part X ⊕ X ′, K ′′ denotes the secret key part
K ⊕ K ′ and R denotes the pair (M0, M

′
0) of involved random masks.

The flaw above corresponds to a “standard” 3-rd order flaw since the sensitive
variable X ′′ ⊕ K ′′ is masked with two random masks (M0 and M ′

0).

Fig. 3. Combining 3O-DPA : evolu-
tion of the correlation (ordinate axis)
over an increasing number of measure-
ments (abscissa axis)

Fig. 4. Profiling 3O-DPA : evolution
of the likelihood (ordinate axis) over
an increasing number of measurements
(abscissa axis)

Figure 3 shows the result of a combining 3O-DPA which uses the absolute
difference as combining function and Figure 4 shows the result of a profiling
3O-DPA. The combining 3O-DPA allows to recover the targeted secret key part
with 2.105 measurements, whereas the profiling 3O-DPA only requires 600 mea-
surements.

These attacks allow to recover the value of the targeted key part K ′′ = K⊕K ′,
where K and K ′ correspond to two successive key bytes. As for the attacks
against the generic scheme, the entropy of the round key is decreased by 8 bits.
If performed for the 15 pairs of successive key bytes, the attacks decrease the
entropy of the first round key by 120 bits and an exhaustive search can be carried
out to recover the remaining 8 bits.

Results Analysis. We performed each attack 100 times and we recorded the
obtained success rates.2 Table 1 summarizes the number of measurements re-
quired to reach a success rate equal to 50%. We list hereafter our observations:

2 A success is obtained if the attack selects the correct key guess.
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Table 1. Number of measurements required to achieve a success rate of 50%

Implementation Attack Measurements

No countermeasure DPA 100

S&P generic scheme combining 3O-DPA 6.106

S&P generic scheme profiling 3O-DPA 2.103

S&P improved scheme combining 3O-DPA 105

S&P improved scheme profiling 3O-DPA 103

– The most efficient of our 3O-DPA requires a number of measurements which
is only 10 times larger than for a 1-st order DPA against an unprotected
implementation.

– The profiling 3O-DPA is much more efficient than the combining 3O-DPA.
This result was predictable. Indeed, the profiling 3O-DPA exploits all the
information provided by the 3 leakage signals to derive the likelihood of a
key candidate, whereas combining the 3 leakage signals in a single signal
implies a significant loss of information whatever the combining function.
However, the adversary model of profiling 3O-DPA is very strong and in
such a model, an attacker may break an implementation without exploiting
the kind of flaws exhibited in the paper.

– The profiling 3O-DPA requires a quite small number of measurements. This
shows the practicability of such an attack when the attacker owns a profile
that matches well the real leakage of the implementation.

– The combining 3O-DPA is fairly efficient against the improved scheme but
is less suitable against the generic scheme. This is not surprising: combining
techniques have been especially designed to attack Boolean masking and
the flaw in the improved scheme involves a doubly masked variable and two
Boolean masks. The flaw in the generic scheme has not this particularity
and the combining techniques involved in this paper are less appropriate to
exploit it.

6 Conclusion

In this paper, we have exhibited several flaws in Schramm and Paar’s higher or-
der masking scheme that makes it vulnerable to 3-rd order DPA. In particular,
the general approach consisting in processing d table re-computations has been
invalidated. Indeed, we have pointed out that such an approach is vulnerable to
3-rd order DPA. We have also invalidated the Schramm and Paar’s improvement
of the general approach and we have argued that its use also makes the counter-
measure vulnerable to 3-rd order DPA. Finally, simulations have been provided
which show the practicability of our attacks. To summarize, the scheme is always
vulnerable to 3-rd order DPA for any value of d, but it can be used for d = 2 to
thwart 2-nd order DPA.

The conclusion of this paper is that the design of a higher order DPA-resistant
scheme is still an open problem. Moreover, we think that the DPA-resistance of
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the future proposals should be proved as other security properties. This field needs
to be more investigated to determine the best efficiency/security trade-offs.
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A Further Re-computation Algorithms

In this appendix we focus on the different re-computation algorithms given by
Schramm and Paar in [19] and we analyze how they impact the security of the
Schramm and Paar’s countermeasure recalled in Sections 3.1 and 4.1.

In [19], a variant of Algorithm 1. is given in which Step 2 is replaced by

Sj(x ⊕ Mj) ← Sj−1(x) ⊕ Nj .

If this variant is used in Schramm and Paar’s countermeasure, the 3-rd order
flaw presented in Section 3.2 becomes a 4-th order flaw. Indeed, the values stored
in memory during the first and the second loop iteration of the d-th table re-
computation are not more Sd(0) and Sd(1) but Sd(Md) and Sd(Md ⊕ 1). The
two last variables satisfy

Sd(Md) = S(M ⊕ Md) ⊕ N and Sd(Md ⊕ 1) = S(M ⊕ Md ⊕ 1) ⊕ N .

Thus, by analogy with Section 3.2, knowing the values of these two variables
reveals information about M ⊕ Md (instead of M in Section 3.2). Therefore, in
addition to these two variables, an attacker needs to target not only M0 = Y ⊕M

but also Md in order to unmask Y . This results in a 4-th order flaw.
Schramm and Paar recall in [19] another algorithm which has been introduced

in [21]. However, this algorithm is not suitable as its execution time depends on
the input mask value. Such a dependency induces a flaw with respect to 1-st order
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DPA. Indeed, as the re-computation duration depends on the mask value, the
manipulation date of the masked variable after the re-computation also depends
on the mask value. This implies that the distribution of the mask given the
manipulation date of the masked variable is not uniform. Consequently, a first
order flaw occurs at this date.

Finally, Schramm and Paar propose in [19] a new table re-computation algo-
rithm. This algorithm does not require to allocate memory for the output table
because it modifies the input table itself to compute the new one.

Algorithm 2. Schramm and Paar’s re-computation
Input: the look-up table S

∗, the input mask Mj , the output mask Nj

Output: the modified look-up table S
∗

1. l = ⌊log2(Mj)⌋

2. for x1 from 0 to 255 by 2l+1 do

3. for x2 from 0 to 2l − 1 do

4. A ← S
∗(x1 ⊕ x2) ⊕ Nj

5. B ← S
∗(x1 ⊕ x2 ⊕ Mj) ⊕ Nj

6. S
∗(x1 ⊕ x2) ← B ⊕ Nj

7. S
∗(x1 ⊕ x2 ⊕ Mj) ← A ⊕ Nj

8. end

9. end

Despite its practical interest, this algorithm cannot be used because it does not
take the case Mj = 0 into account. This is problematic since the mask Mj must
be uniformly distributed to ensure the DPA-resistance. Moreover Algorithm 2.
cannot be patched to take this case into account. Indeed, when Mj equals 0, the
re-computation should apply the output mask Nj to every value in the table
: S∗(x) ← S∗(x) ⊕ Nj . However, for Mj = 0 and whatever the value of l, it
can be checked that Steps 4 to 7 of Algorithm 2. perform twice the operation
S∗(x1⊕x2) ← S∗(x1⊕x2)⊕Nj. Thus, when Mj equals 0, Steps 2 to 9 apply the
output mask Nj only to the half of the table values. Therefore the only solution
to patch Algorithm 2. is to perform a particular re-computation when Mj equals
0. This would induce a dependency between the value of Mj and the execution
time of the re-computation algorithm which, as remarked above, is a flaw with
respect to 1-st order DPA.

B The Flaw vs. the S-Box Properties

In what follows, we show how the 3-rd order flaw presented in Section 3.2 in-
terestingly depends on the S-Box properties. We firstly notice that the mutual
information I(Y, (Y ⊕ M, S(M ⊕ e1) ⊕ N, S(M ⊕ e2) ⊕ N)) can be rewritten
I(Y, (Y ⊕M, S(M)⊕N, S(M ⊕ e1⊕ e2)⊕N)) when M is uniformly distributed
and mutually independent with Y and N .
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Proposition 1. Let S be a (n, m)-function and let e be an element of F
n
2 . Let Y

and M be two random variables defined over F
n
2 and let N be a random variable

defined over F
m
2 . If the three variables Y , M and N are mutually independent

and have a uniform distribution, then the mutual information I((Y ⊕M, S(M)⊕
N, S(M ⊕ e) ⊕ N), Y ) satisfies:

I(Y, (Y ⊕ M, S(M) ⊕ N, S(M ⊕ e) ⊕ N)) = n −
1

2n

∑

z∈F
m
2

δS(e, z) log (δS(e, z)) ,

where, for every z ∈ F
m
2 , δS(e, z) denotes the cardinality of the set {x ∈ F

n
2 ; De

S(x) = z}

Proof. Let V denote the 3-uplet (Y ⊕ M, S(M) ⊕ N, S(M ⊕ e) ⊕ N) and let
us denote by H() the entropy of a random variable. The mutual information
I(V, Y ) equals H(V )−H(V |Y ). As V equals (Y ⊕M, S(M)⊕N, S(M ⊕e)⊕N),
it can be easily checked that the conditional entropy H(V |Y ) equals H(M) +
H(N), which is equivalent to

H(V |Y ) = m + n . (19)

From H(V ) = −
∑

v=(v1,v2,v3)
P(V = (v1, v2, v3)) log(P (V = (v1, v2, v3)), we

deduce that the probability P (V = (v1, v2, v3)) can be rewritten P(M = Y ⊕
v1, N = S(Y ⊕ v1) ⊕ v2, DeS(Y ⊕ v1) = v2 ⊕ v3), we have

P(V = v|Y = y) = P(M = y ⊕ v1, N = S(y ⊕ v1) ⊕ v2, DeS(y ⊕ v1) = v2 ⊕ v3)

As M and N are independent, the right-hand side of the relation above equals
P(M = y ⊕ v1)P(N = S(y ⊕ v1) ⊕ v2) if v1 ∈ {x ∈ F

n
2 ; DeS(x ⊕ y) = v2 ⊕ v3}

and equals 0 otherwise. After noticing that M and N are uniformly distributed
over F

n
2 and F

m
2 respectively, we get

P(V = v | Y = y) =

{

1
2n+m if v1 ∈ {x ∈ F

n
2 ; DeS(x ⊕ y) = v2 ⊕ v3}

0 otherwise.
(20)

From relation P (V = v) =
∑

y∈F
n
2

P (Y = y)P (V = v | Y = y) and since Y has a

uniform distribution over F
n
2 , (20) implies P(V = v) = δS(e,v2⊕v3)

22n+m . One deduces

H(V ) = − 1
22n+m

∑

v1∈F
n
2

∑

v2,v3∈F
m
2

δS(e, v2 ⊕ v3) log
(

δS(e,v2⊕v3)
22n+m

)

that is

H(V ) = 2n + m − 2−n
∑

v3∈F
m
2

δS(e, v3) log(δS(e, v3)) , (21)

since
∑

v3∈F
m
2

δS(e, v3) equals 2n.

As a consequence of (19) and (21), the mutual information I(V, Y ) satisfies
the Inequality of Proposition 1. �

From Proposition 1, one deduces that the greater the summation
∑

z∈F
m
2

δS(e, z)

log (δS(e, z)), the smaller the amount of information (Y ⊕M, S(M)⊕N, S(M ⊕
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e)⊕N) brings about Y . The summation is upper bounded by n2n and the bound
is tight for e = 0 whatever the function S. Indeed, if e equals 0, then DeS is the
null function and δS(e, z) equals 2n if z = 0 and equals 0 otherwise. However,
the case e = 0 has no interest from an attacker viewpoint, since it is already
clear that the mutual information between (Y ⊕ M, S(M) ⊕ N) and Y is null.
For every e ∈ F

n
2
∗, summation

∑

z∈F
m
2

δS(e, z) log (δS(e, z)) is smaller than or

equal to
∑

z∈F
m
2

δS(e, z)max(e,z)∈F
n
2
∗×F

m
2

(log (δS(e, z))) and we get

∑

z∈F
m
2

δS(e, z) log (δS(e, z)) ≤ 2n max
(e,z)∈F

n
2
∗×F

m
2

(log (δS(e, z)) ,

since
∑

z∈F
m
2

δS(e, z) equals 2n. The value max(e,z)∈F
n
2
∗×F

m
2

δS(e, z) is usually

denoted by δ and S is said to be δ-uniform. It plays a central role in the area of
block ciphers since differentially δ-uniform SBoxes with smallest possible value
of δ are those (n, m)-functions which contribute to a maximum resistance to
differential cryptanalysis [14]. The number δ is lower bounded by 2n−m and the
bound is tight if and only if S is perfect nonlinear.

In the following proposition, we exhibit a relationship between the differential
properties of S and the mutual information I((Y ⊕ M, S(M) ⊕ N, S(M ⊕ e) ⊕
N), Y ).

Proposition 2. Let S be a δ-uniform (n, m)-function. Let Y and M be two

random variables defined over F
n
2 and let N be a random variable defined over

F
m
2 . If the three variables Y , M and N are mutually independent and have

uniform distributions, then for every e �= 0, we have

I((Y ⊕ M, S(M) ⊕ N, S(M ⊕ e) ⊕ N), Y ) ≥ n − log(δ) . (22)

Moreover, if S is perfect nonlinear then I((Y ⊕M, S(M)⊕N, S(M⊕e)⊕N), Y )
equals m for every e ∈ F

n
2
∗.

The proposition above shows that the quantity of information the uplet (Y ⊕
M, S(M)⊕N, S(M⊕e)⊕N) provides on Y increases when the value δ decreases.
This establishes that the resistance against differential attacks and the resistance
against the attack described in Section 3.2 are two opposite notions.
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