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Quantum key distribution (QKD) offers the promise of absolutely secure communications. However,

proofs of absolute security often assume perfect implementation from theory to experiment. Thus, existing

systems may be prone to insidious side-channel attacks that rely on flaws in experimental implementation.

Here we replace all real channels with virtual channels in a QKD protocol, making the relevant detectors

and settings inside private spaces inaccessible while simultaneously acting as a Hilbert space filter to

eliminate side-channel attacks. By using a quantum memory we find that we are able to bound the secret-

key rate below by the entanglement-distillation rate computed over the distributed states.
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In 1982 Richard Feynman conjectured the use of quan-
tum systems as a technological platform for solving diffi-
cult calculations in physics. Eventually this insight lead to
the field of quantum information processing. As part of the
field’s growth, it has partly diverged into the two main
application domains: computation and communications,
though much fundamental and technical overlap still ex-
ists. Interestingly, the key application that has started to
mature and is now commercially available is quantum
cryptography, or more precisely quantum key distribution
(QKD) which has quickly moved from the purely theoreti-
cal [1–4] to a practical technology [5–8].

How can we explain the impressive industrial uptake of
quantum cryptography and its ultimate aim to take over
classical systems? The answer lies in the claim of ‘‘abso-
lute security’’ [9]. Unfortunately, while the idea is very
compelling, subtle details in implementation may intro-
duce flaws that could, potentially, be open to attack.
Specifically, attacks from so called ‘‘side channels’’ repre-
sent one of the most elusive threats in practical quantum
cryptography, because a system could be vulnerable to
side-channel attacks even if it is unbreakable in theory
[10,11]. In fact, the recent approach of ‘‘device-
independent QKD’’ [12] makes important advances in
handling imperfect implementations, and can even be
made by untrusted parties, but does not directly address
all possible side-channel attacks, where, for example, de-
tectors may directly receive external probing aimed at
seeding or gleaning their readout.

In principle side-channel attacks affect both classical
and quantum cryptography, but could be especially devas-
tating for quantum cryptography, precisely because of the
proclaimed absolute security ‘‘guarantee’’. The threat from
such attacks has been demonstrated in both lab and in-
stalled field settings [11]. Thus, while practical QKD sys-
tems have been fighting a trade-off between distance and
key generation rate, they are still facing the fundamental
problem of guaranteed security, choosing to rely on

theoretical promises of absolute security without having
any way of authenticating them in practice.
Private spaces: general model.—Let us consider the

scenario of Fig. 1. Two authenticated parties, Alice and
Bob, control two private spaces, A and B, respectively.
Conventionally, these spaces are assumed completely in-
accessible from the outside; i.e., no illegitimate system
may enter A or B. For this reason every kind of side-
channel attack upon the private spaces is assumed
excluded. In practice, however, any port can allow a side-
channel to enter possibly probing any detector, state-
generation or detector settings. To prevent or overcome
such attacks, the QKD system must effectively isolate its
private spaces: the private space must not be directly
involved in either state preparation (for sending) or detec-
tion (of incoming states). To overcome such probing side-
channel attacks, we propose performing state generation by
collapse of a bipartite entangled state, so that any probe
from outside is perfectly isolated from the state-generation
‘‘machinery’’ (see Ref. [13] for an extended discussion).
Thus, in a manner akin to teleportation, we replace all real
channels with virtual channels. This allows us to physically
(and ‘‘topologically’’) separate all detectors and settings
within the private space from external probing, while also
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FIG. 1. Private space to private space. The UTP acts as a
correlator.
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acting as a Hilbert space filter [14] against any side
channel.

Within its own private space, each party (Alice or Bob)
has a bipartite state �which entangles two systems: fA; A0g
for Alice, and fB;B0g for Bob. Systems fA; Bg are kept
within the private spaces, while systems fA0; B0g are sent
to an untrusted third party (UTP), whose task is to perform
a quantummeasurement and communicate the correspond-
ing result. This untrusted LOCC then allows the creation of
correlations between the private systems fA; Bg that Alice
and Bob can exploit to generate a secret key. In its simplest
form an ideal side-channel free QKD scheme reduces to an
entanglement swapping setup [15], with the dual telepor-
tation channel acting as an ideal Hilbert space filter. What
is unique about our protocol is the ability to completely
protect private space settings and detectors from probing
side-channel attacks.

In the worst case scenario, the UTP must be identified
with Eve herself, whose aim is to eavesdrop the key, or
even prevent Alice and Bob from generating the key (i.e., a
denial of service). In the most general case, Eve applies a

quantum instrument T ¼ fTlglmax

l¼1 to the incoming systems

fA0; B0g. This is a quantum operation with both classical
and quantum outputs. For each classical outcome l, there is
a corresponding completely positive (CP) map Tl applied
to the systems fA0; B0g [16]. This means that the global
input state �AA0 � �BB0 is transformed into the conditional
output state

�ABEðlÞ � 1

pðlÞ ðIA � IB � TlÞð�AA0 � �BB0 Þ; (1)

where E represents an output quantum system in the hands
of Eve, while IA � IB is the identity channel acting on the
private systems fA; Bg. Cleary each outcome lwill be found
with some probability pðlÞ, depending both on Tl and the
input state. As a consequence the classical output of T can
be simply represented by the stochastic variable L �
fl; pðlÞg. The quantum output of T is represented by the
system E which is correlated with the private systems
fA; Bg via the conditional state �ABEjL specified by

Eq. (1). E is the system that Evewill use for eavesdropping.
For instance, most generally Eve can store all the output
systems E (generated in many independent rounds of the
protocol) into a big quantum memory. Then, she can detect
the whole memory using an optimal quantummeasurement
(corresponding to a collective attack).

According to the agreed protocol, the UTP must send a
classical communication (CC) to both Alice and Bob in
order to ‘‘activate’’ the correlations. Here, Eve has another
weapon in her hands, i.e., tampering with the classical
outcomes. In order to decrease the correlations between
the honest parties, Eve may process the output stochastic
variable L via a classical channel

pðl0jlÞ:L ! L0; (2)

and then communicate the fake variable L0 ¼ fl0; pðl0Þg to
Alice and Bob, where

pðl0Þ ¼ X

l

pðl0; lÞ; pðl0; lÞ ¼ pðl0jlÞpðlÞ: (3)

This process projects the private systems fA; Bg onto the
conditional state

�ABjL0 ¼ TrEð�ABEjL0 Þ; (4)

where

�ABEðl0Þ � 1

pðl0Þ
X

l

pðl0; lÞ�ABEðlÞ¼
X

l

pðljl0Þ�ABEðlÞ: (5)

Notice that, if L0 is completely unrelated to L, then Eve
realizes a denial of service, being the communication of the
fake variable equivalent to tracing over systems fA0; B0g. In
other words, for pðl0; lÞ ¼ pðl0ÞpðlÞ, we have �ABjL0 ¼
�A � �B, where �A � TrA0 ð�AA0 Þ and �B � TrB0 ð�BB0 Þ.
Secret-key rate: General analysis.—After M rounds of

the protocol, Alice and Bob will share M copies
ð�ABjL0 Þ�M. Note that, in general, Alice and Bob do not

know anything about the physical process within the UTP;
i.e., they do not know the couple fT; L ! L0g. For this
reason, what they actually get areM copies of an unknown
state �?

AB plus classical information L0. However, by mea-
suring a suitable number M0 of these copies, they are able
to deduce the explicit form of the conditional state �ABjL0

for the remaining N ¼ M�M0 copies (here M, M0 and N
are large numbers). Then, by applying local measurements,
Alice on her private systems and Bob on his, they are able
to extract two correlated classical variables, X and Y.
Finally, from these variables, they can derive a shared
secret key via the classical techniques of error correction
(EC) and privacy amplification (PA). These procedures can
be implemented using one-way classical communications
between these two parties.
Let us bound the secret-key rate of the protocol. For

simplicity we omit here the conditioning on L0, so that
Eq. (4) simply becomes �AB ¼ TrEð�ABEÞ. It is understood
that the final result must be averaged over L0.
Independently from its generation, the (generally) mixed
state �AB can be purified in a pure state�ABe ¼ j�ih�jABe
by introducing a suitable system ‘‘e’’ to be assigned to Eve
(this is generally larger than the E system considered
before). After this purification, the scenario is the one
depicted in Fig. 2. Here, for every bipartition of the sys-
tems, fAB; eg, fAe; Bg, or fBe; Ag, the corresponding re-
duced states have the same von Neumann entropy. In
particular, we have Sð�ABÞ ¼ Sð�eÞ.
Now suppose that Alice performs a POVMMA¼fÂðxÞg

on her system A with classical outcome x. This measure-
ment projects �ABe onto the conditional state

�BeðxÞ ¼ 1

pðxÞ TrA½ÂðxÞ�ABeÂðxÞy�; (6)
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where

pðxÞ ¼ TrABe½ÂðxÞ�ABeÂðxÞy�: (7)

Thus Alice encodes the stochastic variable X ¼ fx; pðxÞg in
the nonlocal ensemble EBe � f�BeðxÞ; pðxÞg. Given the
conditional state �BejX of Eq. (6), Bob and Eve can only

access their local states, respectively, given by

�BðxÞ ¼ Tre½�BeðxÞ�; �eðxÞ ¼ TrB½�BeðxÞ�: (8)

Thus, on his side, Bob has the ensemble EB �
f�BðxÞ; pðxÞg, whose measurement estimates Alice’s vari-
able X. Assuming that Bob has a quantum memory, he can
collect all the private systems B associated to the N rounds
of the protocol. Then, asymptotically for N ! 1, Bob can
reach the Holevo bound [17]

IðX:BÞ ¼ Sð�BÞ �
X

x

pðxÞS½�BðxÞ�: (9)

At the same time, Eve’s information is bounded by

IðX: eÞ ¼ Sð�eÞ �
X

x

pðxÞS½�eðxÞ�: (10)

Assuming one-way CCs from Alice to Bob (for imple-
menting EC and PA), we can write the secret-key rate as a
difference of Holevo informations [18], i.e.,

R ¼ IðX:BÞ � IðX: eÞ: (11)

If we now assume that Alice’s POVM is rank one, then the
conditional state �BejX is pure and, therefore, �BjX and

�ejX have the same entropy, i.e., S½�BðxÞ� ¼ S½�eðxÞ�. As a
consequence, we can write

R ¼ Sð�BÞ � Sð�eÞ ¼ Sð�BÞ � Sð�ABÞ ¼ IðAiBÞ; (12)

where IðAiBÞ is the coherent information between Alice
and Bob. Thus the secret-key rate is lower bounded by the
entanglement-distillation rate.

Secret-key rate: Detailed analysis.—Here we make a
more detailed analysis which is more closely connected
to the scenario of Fig. 1. In fact, the rate R of Eq. (12)
comes from the general configuration of Fig. 2, which is
independent from the actual process generating the final
state of Alice and Bob. If we explicitly consider the pecu-
liarities of the scheme of Fig. 1, then we could achieve a
larger rate R� � R. This new rate can be achieved if Alice
and Bob have some knowledge of the classical unreliability

of the UTP, i.e., of the amount of information which is
‘‘absorbed’’ by the classical channel L ! L0. Thus, if Eve
tries to tamper with the overall security by employing fake
CCs, then Alice and Bob can potentially extract a secret-
key with rate larger than the entanglement-distillation rate.
In this section, we take the different conditionings (by L

and L0) explicitly into account. After the CC of L0 ¼
fl0; pðl0Þg, Alice and Bob possess the conditional state
�ABðl0Þ of Eq. (4). Let us assume that Alice performs a

POVM MA ¼ fÂðxÞg on her system A with classical out-
come x. This generates the doubly conditional state

�Bðx; l0Þ ¼ 1

pðxjl0Þ TrA½ÂðxÞ�ABðl0ÞÂðxÞy�; (13)

where

pðxjl0Þ ¼ TrAB½ÂðxÞ�ABðl0ÞÂðxÞy�: (14)

Averaging over the CCs, the output of Alice’s measure-
ment is the unconditional variable X ¼ fx; pðxÞg, where

pðxÞ ¼ X

l0
pðxjl0Þpðl0Þ ¼ TrA½ÂðxÞ�AÂðxÞy�: (15)

This is the secret variable to be estimated by Bob. In his
private system B, Bob has the ensemble

E B ¼ fpðx; l0Þ; �Bðx; l0Þg; (16)

where pðx; l0Þ ¼ pðxjl0Þpðl0Þ. Clearly, this ensemble de-
pends on both X and L0. Exploiting his knowledge of L0,
Bob applies a conditional measurement MBjL0 to his sys-

tem B which estimates the value x encoded by Alice.
Asymptotically (i.e., for N ! 1), using a quantum mem-
ory and averaging over the CCs (i.e., over L0), Bob can
reach the conditional Holevo information [19]

IðX:BjL0Þ ¼ X

l0
pðl0ÞIðX:BjL0 ¼ l0Þ: (17)

For Eve we have to consider the different conditioning
given by L. Thus, the conditional state that Eve shares
with Alice is

�AEjL ¼ TrBð�ABEjLÞ; (18)

which becomes �EjXL after Alice’s projection. Explicitly

this state is given by

�Eðx; lÞ ¼ 1

pðxjlÞ TrA½ÂðxÞ�AEðlÞÂðxÞy�; (19)

where

pðxjlÞ ¼ TrAB½ÂðxÞ�AEðlÞÂðxÞy�: (20)

Thus, Eve has the ensemble

E E ¼ fpðx; lÞ; �Eðx; lÞg; (21)

where pðx; lÞ ¼ pðxjlÞpðlÞ. Asymptotically, Eve can
eavesdrop IðX:EjLÞ bits per copy [20].
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FIG. 2. Purified scenario.
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As a result, we can write the secret-key rate

R� ¼ IðX:BjL0Þ � IðX:EjLÞ: (22)

This quantity can be rewritten as R� ¼ R0 þ�, where

R0 � IðX:BjL0Þ � IðX:EjL0Þ; (23)

and � � IðX:EjL0Þ � IðX:EjLÞ, quantifies the informa-
tion which is absorbed by the classical channel L ! L0.
We call � the ‘‘classical cheating’’ by Eve. Clearly, we
have � ¼ 0 for L0 ¼ L. R0 is the ‘‘apparent rate’’, which
refers to the apparent scenario where Alice, Bob and Eve
are all subject to the same conditioning L0. In other words,
R0 is computed assuming the total state �ABEjL0 , which is

then projected onto �BEjXL0 by Alice’s measurement (see

Fig. 3).
We can now easily prove that the secret-key rate is larger

than the entanglement-distillation rate. We have the fol-
lowing result (see Ref. [13] for the proof).

Theorem.—Suppose that Eve measures the incoming
systems but cheats on the results using a classical channel
L ! L0. Then, Alice and Bob’s secret-key rate satisfies

R� � IðAiBjL0Þ þ�; (24)

where IðAiBjL0Þ is the coherent information conditioned to
Eve’s fake variable L0, and � is the classical cheating.

Our analysis leaves an intriguing open question. It would
be wonderful to provide an explicit example where simul-
taneously �> 0 and IðAiBjL0Þ ¼ 0, so that R� > 0. This
would imply secret-key distillation without entanglement
distillation. More generally, we cannot exclude the possi-
bility that R� > IðAiBjL0Þ by using POVMs which are not
rank one.

Conclusion.—We have shown that virtual channels may
replace real channels in the QKD setting so as to remove
any possibility of side-channel attacks. In its simplest
setting, our QKD protocol corresponds to an entanglement
swapping experiment, where the dual teleportation chan-
nels act as ideal Hilbert space filters to wipe out side-
channel attacks. The authenticated users’ private spaces
are designed so that any incoming quantum signal is topo-
logically excluded from access to detectors, detector set-
tings or state-generation settings, thus side-channel

probing attacks of the private spaces are eliminated.
Finally, an external untrusted party performs a suitable
LOCC (such as a Bell-state measurement) to create corre-
lations necessary for shared key generation.
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