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Abstract 
In recent years, face recognition in the unconstrained environment has attracted 

increasing attentions, and a few methods have been evaluated on the Labeled Faces 
in the Wild (LFW) database. In the unconstrained conditions, sometimes we cannot 
obtain the full class label information of all the subjects. Instead we can only get the 
weak label information, such as the side-information, i.e., the image pairs from the 
same or different subjects. In this scenario, many multi-class methods (e.g., the well-
known Fisher Linear Discriminant Analysis (FLDA)), fail to work due to the lack of 
full class label information. To effectively utilize the side-information in such case, 
we propose Side-Information based Linear Discriminant Analysis (SILD), in which 
the within-class and between-class scatter matrices are directly calculated by using 
the side-information. Moreover, we theoretically prove that our SILD method is 
equivalent to FLDA when the full class label information is available. Experiments 
on LFW and FRGC databases support our theoretical analysis, and SILD using 
multiple features also achieve promising performance when compared with the state-
of-the-art methods. 

1 Introduction 
In the past few decades, face recognition has received increasing attentions due to its wide 
potential applications in various fields. As surveyed in [1, 2, 3, 4], numerous methods have 
been proposed, such as Eigenface [5], Fisherface [6], Bayesian face recognition [7], Elastic 
Bunch Graph Matching [8], Gabor Fisher Classifiers [9], Sparse representation [10], and so 
on. Most of them work well in constrained environments as evaluated on some public 
databases, such as ORL [11], AR [12], PIE [13], XM2VTS [14] and FERET [15]. 
However due to the large appearance variations in pose, aging, lighting, occlusion, 
expression and so on, many of them degenerate seriously when applied to the 
unconstrained environment [16]. 
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In order to promote face recognition in the unconstrained environment, a large scale 
database, Labeled Faces in the Wild (LFW) [17] is released recently. LFW is collected 
with “natural” variability that may be encountered in our daily life including pose, lighting, 
expression, age, gender, race and so on which makes this database suitable for evaluating 
the face recognition technologies in unconstrained environment. LFW has two different 
training modes: image-restricted mode and image-unrestricted mode. In the former mode, 
only side-information, i.e., whether a pair of images belongs to the same class (also 
referred as image pairs hereafter), is available, while in the latter mode, the full class label 
information is provided. Compared with the latter case, the former case is more common in 
real world and also more challenging since only partial information is provided. 

After the release of LFW database, a few methods [18, 19, 20, 21, 22, 23, 24, 25, 26, 
27, 28, 29, 30] have been specifically designed for it, and evident progress can be observed 
from the reported results in [21, 22, 23, 29, 30]. These methods can be generally 
categorized into two categories: feature-oriented approaches and similarity-oriented 
approaches. The former category aims to extract effective features for face representation, 
while the latter focuses more on the face similarity computation.  

Among the feature-oriented methods, local descriptor based methods are more popular. 
For instance, Wolf et al. [19] proposed three-patch Local Binary Pattern (LBP) and four-
patch LBP to encode the similarities between neighbouring patches of pixels in order to 
capture the information complementary to the original LBP features. In [20], each face was 
described in terms of multi-region probabilistic histograms of visual words. In [21], Cao et 
al. encoded the micro-structures of face by using an unsupervised learning-based encoding 
method. In [25], a discriminative and robust feature descriptor called Patterns of Oriented 
Edge Magnitudes (POEM) was built by applying a self-similarity based structures on the 
oriented magnitudes. In [30], N. Pinto et al. used the biologically-inspired visual 
representations selected by feature search. Moreover, the similarities among face images 
were also exploited as features. In [22], Kumar et al. proposed a simile classifier using the 
similarity of faces to some specific reference people as features. In [23], Wolf et al. used 
the ranking of the images most similar to a query image as the descriptor of this query 
image. Additionally, Pinto et al. [24] investigated the capability of face recognition system 
with a modern face recognition test set using only simple features. 

Similarity-oriented methods aim at novel metric computation between two face images. 
Typically, in [19, 31], one-shot similarity was employed to measure the likelihood of each 
sample belonging to the same class as the other. It was further extended to two-shot 
similarity [23] and multiple one-shot similarity by utilizing class label information [28] 
respectively. In [26], Nowak et al. obtained the similarity using characteristic difference of 
local descriptors sampled from images that are quantized with an ensemble of extremely 
randomized binary trees. In [27], two distance measures were proposed, including a 
logistic discriminant based approach and a nearest neighbour based approach which 
computed the probability of two images belonging to the same class. In [29], an metric 
learning method designed for cosine similarity was proposed and it achieved promising 
performance. 

Many of the above methods deal with the side-information scenario by employing the 
typical two-class SVM classifier. However the multi-class methods including Fisherface 
[6] and its numerous extensions cannot be used in this scenario because the crucial class 
label information are not provided in the image-restricted evaluation mode. 

In this work we propose a Side-Information based Linear Discriminant Analysis 
(SILD) method that can work well only with side-information, in which the within-class 
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and between-class scatter matrices are computed by directly using the side-information. It 
is worth mentioning that our method is different from the two-class FLDA, specifically 
only one projection direction can be obtained by using two-class FLDA while much more 
projection directions can be obtained by using our method. Moreover, we theoretically 
prove that, our SILD method is equivalent to multi-class FLDA when class labels are 
provided. 

The remainder of this paper is organized as follows. Section 2 describes the side-
information based linear discriminant analysis. Section 3 details the experimental 
evaluations of SILD on LFW database. Finally, conclusions are given in section 4. 

2 Side-Information based Linear Discriminant 
Analysis 
In this section, we first give a brief description of FLDA, and then present the definition of 
our SILD method that is applicable in scenario of side-information. Finally we prove that 
the new definition is equivalent to the traditional definition when class label is provided. 

2.1  Fisher Linear Discriminant Analysis (FLDA) 
Fisher Linear Discriminant Analysis aims to find a set of most discriminative linear 
projections by maximizing the ratio of the determinant of the between-class scatter matrix 
to that of the within-class scatter matrix: 

 arg max
T

B
opt T

W W

W S W
W

W S W
  

The within-class scatter matrix SW and between-class scatter matrix SB are defined as: 

   
1 1

inc T

W ij i ij i
i j

S x m x m
 

    

   
1

c
T

B i i
i

S m m m m


    

where c is the number of classes in the training set, xij is the jth sample from ith class, ni 
is the number of samples from the ith class, mi is the mean of the ith class, and m is the 
mean of all samples in the training set. The problem in (1) can be solved by a two-step 
method [32]. 

Fisrtly, WS is diagonalized as follows: 

 T
WS H H   

    1 2 1 2T

WH S H I     

Secondly, BS  is also diagonalized: 

    1 2 1 2T T
BH S H U U      

Finally, the projection matrix can be computed as: 


1 2

optW H U   
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where H and U are orthogonal matrices and  and  are diagonal matrices. As shown 
in [1, 6, 9], FLDA is a simple but effective method for face recognition. 

2.2 Side-Information based Linear Discriminant Analysis (SILD) 
However (see (2) and (3)), the class label of each sample need to be known in FLDA, so it 
cannot work in case that only side-information is available. The same as in [33], side-
information, one type of weak label information, depicts whether a pair of images belong 
to the same class. In this case, FLDA fails to work because the SW and SB cannot be 
computed without the full class label information. 

To address this problem, we propose a new definition for SW and SB that directly 
exploits the side-information. Specifically, the same-class image pairs are directly used to 
calculate the within-class scatter matrix and the different-class image pairs are employed to 
calculate the between-class scatter matrix. 

Let us denote {( , ) : ( ) ( )}i j i jS x x l x l x  as the set of same-class image pairs and 
{( , ) : ( ) ( )}m n m nD x x l x l x   as the set of different-class image pairs, with ( )l x

representing the class label of image x . Then, the within-class and between-class scatter 
matrices can be respectively defined as follows: 


  

( , )i j

Tsild
W i j i j

x x S
S x x x x



  





  

( , )m n

Tsild
B m n m n

x x D
S x x x x



    

Compared with (2) and (3) in FLDA, the new definition do not need know the identity 
of each sample and only use the weakly-supervised side-information to directly calculate 
the total within-class and between-class scatter matrices. 

Similarly to FLDA, the projection matrix in SILD can be obtained by solving the 
following optimization problem: 


arg max

T sild
Bsild

opt T sild
W W

W S W
W

W S W





Similarly as FLDA, SILD in (10) can also be solved by (4)-(7). Obviously, the size of 
set S and D can influence the stability of the new definition for SW and SB. Generally only a 
small fraction of image pairs in SILD can be generated from the class label information. In 
this case, the new within-class scatter matrix may have a large number of very small 
eigenvalues. In order to suppress the instability caused by the small eigenvalues, in our 
implementation, we only use the eigenvectors corresponding to the largest eigenvalues 
when diagonalizing the within-class scatter matrix. As the first step, sild

WS is diagonalized as 
follows: 

 sild T
WS H H   

Let us define  as a small fraction of the columns of  with the eigenvalues 
corresponding to the top part of overall energy. In this work   is used for the consequent 
computations in (5)-(7) instead of   to cope with the instability. As observed in our 
experiment, the less the side information, the larger the number of very small eigenvalues. 
So the  corresponding to a smaller fraction can achieve a better performance given the 
less side-information. Usually   corresponding to the top 80%~90% of overall energy 
can performs well which is about 30% of the columns of  . 
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2.3 Equivalence of FLDA and SILD in case of knowing class label 
In this section, we prove that, the proposed SILD is equivalent to FLDA when the class 
label information is provided. Specifically, if all the classes have the same number of 
samples, SILD is identical to FLDA. Otherwise our SILD can be seen as an interesting 
variant of FLDA. 

Here we assume that there are r samples in c classes and ni samples in the ith class. In 
case that the class label is provided, the set of the same-class image pairs S should consist 
of all the possible image pairs belonging to the same class, while the set of different-class 
image pairs D should be formed by all the image pairs whose class labels are different. 
Then the within-class scatter matrix of SILD can be rewritten as follows (more details can 
be found in appendix A): 


     

1 1 1 1 1
2

i i in n nc c
T Tsild

W ik il ik il i ik i ik i
i k l i k

S x x x x n x m x m
    

         

If all classes have the same number of samples, denoted as n, the within-class scatter 
matrix in SILD can be further formed as: 

   
1 1

2 2
inc

Tsild
W ik i ik i W

i k
S n x m x m nS

 

      

It means the newly defined within-class scatter matrix is equal to that of FLDA only up 
to a scale parameter.  

Similarly, the between-class scatter matrix can be reformulated as (see appendix A for 
more details): 

 2 2sild sild
B B W WS rS S rS    

Given the new definition of within-class and between-class scatter matrices, the 
projection matrix of SILD can be solved as follows (see appendix A for more details): 

 arg max arg max
T sild T

Bsild T
opt T sildT sild

W W WW

W S W W S WW trace
W S WW S W
 

   
 

 

If all classes have the same number of samples, we further have: 

 arg max arg max
2

TT
Bsild T

opt optT T
W WW W

W S WW S WW trace W
nW S W W S W

 
   

 
 

From the above equations, it is obvious that the projection matrix of SILD is identical 
to that of FLDA if the class label information is provided and all classes have the same 
number of samples. If each class has different number of samples, SILD is a variant of 
FLDA by focusing more on the classes with more samples (see the weight ni in (12)). This 
leads to more robust calculation of the within-class scatter matrix by suppressing the 
unreliable classes with fewer samples. When the class label information is unavailable, 
SILD can be considered as an approximation of FLDA by exploiting a small fraction of 
full class label information only. 

2.4 Boundary weighted SILD 
Inspired by [34], a more discriminative model can be learnt if the samples near the 
boundary are emphasized. However, the method in [34] cannot be directly used without the 
class label information. As in (8), if a pair of samples  ,i jx x from the same person are far 
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away from each other, then  i jx x  will have large values and so it plays more 
contribution for sild

WS , otherwise it plays less contribution for sild
WS . So the samples that are 

hard to be classified are emphasized in the definition of sild
WS . On the other hand, for sild

BS , 
 i jx x will be small in this case which means less attention is paid on if the pair of 
samples  ,i jx x from different persons are very similar, i.e., a difficult pair that we should 
pay more attention to. So, we reweight the pairs in sild

BS to emphasize the samples that are 
hard for classification as follows: 


   

( , )

( , )

( , ) ( , )
m n

Tsild
B m n m n m n

x x D

m n m n

S w x x x x x x

w x x cosine x x


  




 

When the sild
BS  is calculated with (17), we refer to our method as ‘Weighted SILD’. 

3 Experiments 
In this section, we first use LFW [17] and FRGC [35] databases to verify the equivalence 
of SILD and FLDA when the class label information is available. Then we compare SILD 
with the state-of-the-art methods on the unconstrained LFW database. The task on both 
databases is face verification. 

LFW database has 13,233 images from 5,749 individuals with the resolution of 250 by 
250. It is divided into two views. View 1 is employed for model selection, and view 2 is 
used for performance evaluation. In view 2, two training modes are designed including 
image-restricted training mode where only pair-wise samples are available and image-
unrestricted training mode where the class label information for each sample is provided. 

In our experiments, all face images are simply cropped to 80x150 pixels by just cutting 
out the centre region of the images provided by Wolf et al. [23]. In order to reduce the high 
dimensionality and suppress noise, PCA is employed as a pre-processing method. The 
dimension after PCA is determined by preserving about 95% energy. The similarity of two 
feature vectors is measured by cosine similarity. 

SILD also is tested on the experiment 4 of FRGC database, which has 12766 training 
images from 222 persons, 16028 target images, and 8014 query images from 466 persons. 
For FRGC database, the images are cropped to a smaller resolution with 40x50 pixels. 
Histogram equalization is used as pre-processing and the grey intensity is exploited as 
features. The PCA is also applied for reducing dimensions with 95% energy preserved. 

3.1 Equivalence of FLDA and SILD under label information 
As proved in previous, SILD can obtain the exact model as FLDA if class label 
information is provided and all classes have the same number of samples. And SILD 
should obtain almost the same model as FLDA if have different number of samples. In this 
section, the class label information is provided to verify this equivalence. Given full class 
label information, FLDA can be directly computed according to (1)-(3). While for SILD, 
about millions of pairs for S and D are formed using the class label information. 
Considering the limited computing resources, only a small part of possible pairs are 
randomly sampled. 

We employ the LFW and FRGC databases for this evaluation. Specifically, 450, 900, 
2700, 4500, 9000 (resp. 100, 300, 500, 1000, 2000, 3000, 5000, 10000) same-class image 
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pairs and the same number of different-class image pairs are randomly selected 
respectively for LFW (resp. FRGC). 

  
(a) LFW           (b) FRGC 

Figure 1: Performance of SILD with different number of pairs. 

As displayed in Fig.1, the result of FLDA is displayed as solid red line, while the 
results of SILD with different number of image pairs are plotted as dashed blue line. From 
Fig. 1, we observe that SILD can achieve comparable performance compared with FLDA 
(only with a small gap less than 1%) when using about 10000x2 sampled image pairs (i.e., 
less than 1% of the total pairs). In indicates that SILD can obtain a model equivalent to 
FLDA if the full class label information is provided and SILD can achieve a comparable 
performance to FLDA if only a small fraction of side-information is provided. 

3.2 Comparison with the state-of-the-art methods 
In this section, the proposed SILD is compared to the state-of-the-art methods on LFW 
database according to the image-restricted protocol, including background samples based 
method [23], attribute and simile classifiers [22], multiple LE [21], cosine similarity metric 
learning [29], biologically-inspired feature based method [30] and other methods listed in 
[36]. 

The proposed SILD is tested using several well-known features. In the default setting, 
only the original intensity feature is used for SILD. To further improve the accuracy of 
SILD, Local Binary Patterns [28, 37] and Gabor wavelet feature [9] are also employed. 
Besides, similar to most of the above state-of-the-art methods on the LFW database, we 
also report the best result of SILD by combining different types of features. 

Feature Name Feature Type SILD Weighted SILD 

Intensity 
Original feature 0.8070 ± 0.0219 0.8020 ± 0.0213 

Square root feature 0.8026 ± 0.0212 0.8010 ± 0.0176 

LBP 
Original feature 0.8007 ± 0.0135 0.8412 ± 0.0108 

Square root feature 0.7958 ± 0.0132 0.8485 ± 0.0112 

Gabor 
Original feature 0.7898 ± 0.0184 0.7902 ± 0.0186 

Square root feature 0.8043 ± 0.0208 0.8102 ± 0.0201 

Block Gabor 
Original feature 0.8221 ± 0.0133 0.8233 ± 0.0164 

Square root feature 0.8443 ± 0.0151 0.8452 ± 0.0139 

After Combination 8 similarities combined 0.8578 ± 0.0205 0.8768 ± 0.0159 

Table 1: Mean accuracy of SILD with different types of feature on the LFW database. 
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The intensity feature is directly extracted by vectoring each grey-scale image to a 
12,000-D feature vector. For LBP features, a histogram of 59 bins is extracted for each 
non-overlap block with the size of 10x10, and then all histograms are concatenated into 
one single 7,080-D vector. The Gabor features are extracted with 5 scales and 8 
orientations, which leads to a quite high dimension. Therefore we adopt a 10x10 scaling 
factor to down-sample them. However, much structure information is lost after such a large 
scale down-sampling process. So Gabor images are also divided into 12 non-overlapping 
blocks as an alternative complement, and in each block a 2x2 down-sampling is employed 
to obtain a lower dimensional feature. 

In this work, ‘Intensity-SILD’, ‘LBP-SILD’, ‘Gabor-SILD’, ‘Block Gabor-SILD’ 
means that SILD is combined with Intensity feature, LBP feature, 10x10 down-sampled 
Gabor feature and block based Gabor features respectively  

In addition, the square root of the original features are also used as suggested in [23, 
29]. Finally, the similarity scores of all the 8 types of features, including 4 types of original 
features and 4 square root features, are combined to further boost the accuracy by using 
SVM with RBF kernel which is denoted as ‘Combined SILD’. 

 
Figure 2: Performance of combined SILD and other state-of-the-art methods on the LFW 

database under image-restricted protocol. 

The mean accuracies of SILD with different features are listed in Table 1. From it we 
can observe that the best accuracy of SILD with Intensity, LBP, Gabor and Block-Gabor 
features are 80.7%, 84.85%, 81.02%, 84.52% respectively. Compared with the single 
feature based method ‘Single LE’, SILD works better when with LBP and Block-Gabor 
feature and performs almost comparable when with Intensity and Gabor feature. It is 
indicates that the proposed SILD can perform well just using single type of low-level 
features. We also observe that the weighted SILD is better than SILD in most cases. 

Table 2 compare SILD with multiple features with the state-of-the-art methods on the 
LFW database, and Fig. 2 shows the corresponding ROC curve. After fusing multiple 
features, SILD can achieve a higher result 87.68%. This result is also comparable to the 
state-of-the-art result 88% from Nguyen et al. [29] and 88.13% from Pinto et al.[30]. 
However, SILD only exploits four types of features without using the complex learning 
and searching process. It demonstrates that SILD achieves the state-of-the-art result by 
effectively exploiting the side-information. 
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Methods Feature Type and similarities combined Mean Accuracy 1 

Combined b/g samples 
based methods [23] 10 feature types, 60 similarities 0.8683 ± 0.0034 

Attribute and Simile 
classifiers [22] 65~3000 similarities as feature 0.8529 ± 0.0123 

Single LE  + holistic [21] 1 feature type, 1 similarity 0.8122 ± 0.0053 

Multiple LE + comp [21] 4 feature types, 9component, 36 similarities 0.8445 ± 0.0046 

CSML + SVM [29] 6 feature types, 6 similarities 0.8800 ± 0.0037 

High-Throughput Brain-
Inspired Features [30] 

11 feature types by feature selection, 3 
rescaled crops, 33 similarities 0.8813 ± 0.0058 

Weighted SILD after 
feature combination 8 feature types, 8 similarities 0.8768 ± 0.0159 

Table 2: Mean accuracy of SILD with different types of feature on the LFW database. 

4 Conclusion 
By redefining the within-class and between-class scatter matrices based on the same-class 
and different-class sample pairs, Side-information based Linear Discriminant Analysis is 
proposed and applied in the scenario when only side-information is available. We have 
theoretically proved the equivalence of SILD to Fisher linear discriminant analysis. The 
comprehensive experiments demonstrate that SILD can achieve comparable results when 
compared with the state-of-the-art results which are obtained by using more type of 
features or learning process. 
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Appendix A 
1. Inference for within-class scatter matrix of SILD in (12) 

  
1 1 1 1 1 1 1 1 1 1 1 1
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1 The mean accuracy is same as in [17] and results of other methods are from their papers shown in [36]. 
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2. Inference for between-class scatter matrix of SILD in (14) 

     

        
1 1 1 1 1 1

1 1 1 1 1 1 1 1

1
2

1 1
2 2
1 1
2 2

ji i

j ji i i

nn nc c cT T
B T W ik jl ik jl ik i ik i

i j k l i k
n nn n nc c c cT T T

ik jl ik jl ik jl ik jl ik i ik i
i j i k l i j i k l i k

sild sild
B W

S S S x x x x x m x m
r

x x x x x x x x x m x m
r r

S S
r r

     

         

       

        

 

 

  

2 2

W

sild sild
B B W W

S

S rS S rS



   

 

3. Inference for model of SILD in (15)  
(refer to [38] for the equivalence of determinant ratio and ratio trace) 
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