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Abstract

Side milling is a process that enables machining time and thus costs, to be reduced. This type of
machining is particularly well suited to ruled surfaces and all surfaces where one of the principal curvatures
is very small compared to the tool radius and changes little oiler the entire surface. These surfaces must be
treated with great care, as they are often on parts with high added value such as turbine blades, aircraft
wings or helicoidal parts as used in fluid dynamics.

We then need to calculate and minimise interference that may arise if the I ruled surface cannot be
developed. Whereas machining is usually carried out by setting the tool according to a rule, we suggest a
new setting of the tool allowing interference to be reduced considerably. The computation algorithms for
this setting were developed so as to be used in real-time by CAD/CAM software.

A comparative study of errors made with each type of setting is also presented. This shows a considerable
reduction in errors when the setting we suggest is implemented.

Keywords: five-axis machines; interferences; NURBS; ruled surfaces; side milling

1 Introduction

Side milling has been less frequently addressed by re-
searchers than end milling (see [1–4]), but it may be
very useful, especially for ruled surfaces. We shall
first briefly recapitulate the principle for ruled sur-
faces and settings that are currently adopted in ex-
isting CAD/CAM software before going on to intro-
duce a new setting for the tool, allowing interference
to be reduced considerably. The second part of the
article is devoted to determining the parameters for
this setting. We shall then make a comparative anal-
ysis based on the calculation of interference for each
type of setting.

1.1 Ruled Surfaces

A ruled surface is generated by a set of straight lines
based on two directrices.

The equation corresponding to the ruled surface in

Fig. 1 is:

S(u, v) = (1− v)C0(u) + vC1(u) (u, v) ∈ [0, 1]2

C1(u)

C0(u)

S(u, v)

P0

P1

(v = 0)

(v = 1)

Figure 1: Ruled surface

1.2 ”Standard” setting

With ”standard” setting the tool axis is collinear
with the rule under consideration. The tool can then
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(a)
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C1(u)

ρ1
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α
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(b)

C0(u) ρ0

C1(u)

ρ1

N1

P0

N0 N2

α0 α1

ε

ε

Figure 2: ”Standard” tool setting.

be placed at a tangent to one of the two directrices
(Fig. 2a) or so as to distribute the error between its
two extremities (solution proposed by Rubio [5, 6];
Fig. 2b).

According to [5], we then obtain in case (a):

ε = ρ1 +R−
√

R2 + ρ21 + 2Rρ1 cos(α)

in case (b):

ε = ρ0 +R−
√

R2 + ρ20 + 2Rρ0 cos(α0)

= ρ1 +R−
√

R2 + ρ21 + 2Rρ1 cos(α1)

These equations can be used to determine the tool
radius R needed to respect a given tolerance. In the
case of infinite curvature radii (straight directrices),
error calculation for the standard setting will give
(see [6]):
in case (a):

ε = R(1− cos(α))

in case (b):

ε = R(1− cos(α0))

1.3 Optimum Setting

The setting we suggest is the fruit of a trade-off be-
tween two contradictory objectives:

1. To reduce interference by a more complex tool
setting that therefore takes longer to calculate
than the standard setting.

2. To be able to calculate this setting rapidly
enough to enable real-time utilisation in
CAD/CAM type software.

This optimum setting as described in Fig. 3 is
based on 3 tangential points:

– Tangency of the tool lower generating line to the
rule P0P1: point M2.

– Tangency to the two directrices C0(u) and
C1(u) on both sides of the extreme points of the
rule: points M0 and M1.

S(u, v)

C1(u)

C0(u)

P1

P0

γM2

M1

M0

Figure 3: Optimum setting

Marciniak first proposed that the tool may be
shifted along the rule (see [1] pp. 233,234), but the
extra degree of freedom introduced in this way needs
an additional drive surface to be eliminated. In [7],
Liu presents a method based on two offset points (the
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double point offset method) introducing an angle be-
tween the rule and the tool axis. In Section 4.2 we
shall compare the results obtained using each method
for the test surface presented in this paper.

With our setting, the tool position can thus be
completely defined by two parameters: the angle γ
made between the tool axis and the rule, and the po-
sition of the point M2 on the rule P0P1 (once the
direction of the rotation axis is established).

2 Determining Setting Parameters

2.1 Preliminary Calculations

We first carry out the following preliminary calcula-
tions [8–10]: The position of the rule is defined by
u = up. We then consider the vectors T0 and T1

tangent to the directrices C0(u) and C1(u) at the
extremities of the rule P0 and P1, and the vectors
N0 and N1 perpendicular to the directrices C0(u)
and C1(u) at P0 and P1 and also perpendicular to
the rule P0P1, such that

N0 = T0 ×P0P1 and N1 = T1 ×P0P1

We establish
R = tool radius
hp = length of the rule at position up
h0 = distance P0, M2

h1 = distance P1, M2

and obtain h0 + h1 = hp
We then define the following references (see Fig. 4):

1. Reference R1 related to the rule:

– origin P2: at the centre of the rule
– vector z1: along the direction of the rule
– vector y1: along the direction of the bisector

of the angle formed by the projections of
N0 and N1 in the plane perpendicular to
z1 going through P2 (vectorN2 in Fig. 2b
with α0 = α1)

– vector x1: result of the vector product be-
tween y1 and z1

We can then calculate the matrices for passage
between the overall reference in which the geo-
metrical entities are defined and R1.

2. Reference R2 related to the tool:

– origin P2: tangential point of the tool on the
rule

– vector y2: equal to y1

– vector z2: projection of the tool axis on the
plane P2, z1, x1

– vector x2: result of the vector product be-
tween y2 and z2

a0
L0

h0

θ0

γ0

M2

P0

x2

z2 x1

z1

x2a

z2a

plane of
projection of
C0(u) = plane of
ellipse Ell0(w)

view along direction y1 = y2 = y2a = y2b

Figure 4: Definition of references.

In this reference, the equation for the tool will
be:

F(s, t) =





R cos(s)
R(sin(s) + 1)

t





with s ∈ [0, 2π] and t ∈
[

−h
2 ,

h
2

]

where h is large enough to cover the entire de-
sired length (h > hp cos(γ)).

Rotation between R1 and R2 will then be γ.
Translation between R1 and R2 will be given
by hp/2− ho.

3. Reference R2a related to P0:

– origin P0

– vector y2a: equal to y1

– vector x2a: perpendicular to y2a and con-
tained in the plane defined by y2a and
C0(u)

– vector z2a: result of the vector product be-
tween x2a and y2a.

4. Reference R2b related to P1: defined as R2a for
P1 and C1(u)

3



Rotation between references R2a and R1 will be
given by

θ0 = arctan

(

T0 · z1
T0 · x1

)

Similarly, between R2b and R1 we obtain

θ1 = arctan

(

T1 · z1
T1 · x1

)

As translation between these references is hp/2, we
can therefore calculate the passage matrices between
R1 and R2a or R2b.

We can thus express C0(u) and C1(u) in the ref-
erences R2a and R2b: C0r2a(u) and C1r2b(u).

2.2 Resolution

The condition for tangency between the tool and the
directrice C0(u) is translated by the unicity of the in-
tersection between C0(u) and the ellipse Ell0(w) de-
fined as the intersection of the tool and the plane (P0,
x2a, y2a). By defining tanEll0(w) as the vector tan-
gent to the ellipse Ell0(w) we can express the unicity
of the intersection by the fact that tanEll0(w) and
C0(u) have the same slope in reference R2a, at the
point of intersection.

We can calculate the coefficients for sign µ, λ0 and
λ1 such that:

If γ > 0, µ = 1, if γ < 0, µ = −1 where γ is the
angle oriented (z1, z2)

If θ0 > 0, λ0 = 1, if θ0 < 0, λ0 = −1 where θ0 is
the angle oriented (z1, z2a)

If θ1 > 0, λ1 = 1, if θ1 < 0, λ1 = −1 where θ1 is
the angle oriented (z1, z2b)

Further, we can postulate

γ0 = |γ| whence γ = µγ0

The equation for Ell0(w) will be as follows, in the
reference R2a, (see Fig. 5):

Ell0(w) =





a0 cos(w) + µL0

R sin(w) +R
0



 w ∈ [0, 2π] (1)

The vector tanEll0(w) tangent to Ell0(w) will be
as follows, in the reference R2a (see Fig. 5):

tanEll0(w) =
∂Ell0(w)

∂w
∥

∥

∥

∂Ell0(w)
∂w

∥

∥

∥

=





−a0 sin(w)
R cos(w)

0





w ∈ [0, 2π] (2)

Ell0(w)

P0

C0(u)

tanEll0(w0)

M0

x2a

y2a

R

a0

L0

w0

β0

view along direction z2a

Figure 5: Ellipse Ell0(w)

The vector T0(u) tangent to C0(u), in the refer-
ence R2a will be defined by

T0(u) =
∂C0(u)

∂u
∥

∥

∥

∂C0(u)
∂u

∥

∥

∥

u ∈ [0, 1]

and its slope β0 will be given by

β0 = arctan

(

T0 · y2a

T0 · x2a

)

(3)

Further, we shall obtain (see Fig. 4):

tan(γ0) =
L0 cos(λ0θ0)

h0 − µλ0L0 sin(λ0θ0)

whence:

L0 =
h0 tan(γ0)

cos(λ0θ0) + µλ0 tan(γ0) sin(λ0θ0)
(4)

and (see Fig. 4):

cos(λ0θ0 − µλ0γ0) =
R

a0

whence:

a0 =
R

cos(λ0(θ0 − µγ0))
(5)

Similarly, in the reference R2b we have: The equa-
tion for Ell1(w):

Ell1(w) =





a1 cos(w)− µL1

R sin(w) +R
0



 w ∈ [0, 2π] (6)
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The vector tanEll1(w) tangent to Ell1(w):

tanEll1(w) =

∂Ell1(w)
∂(w)

∥

∥

∥

∂Ell1(w)
∂(w)

∥

∥

∥

=





−a1 sin(w)
R cos(w)

0





w ∈ [0, 2π] (7)

The vector T1(u) tangent to C1(u):

T1(u) =
∂C1(u)

∂u
∥

∥

∥

∂C1(u)
∂u

∥

∥

∥

u ∈ [0, 1]

whence its slope

β1 = arctan

(

T1 · y2b

T1 · x2b

)

(8)

In the same way as in R2a reference, we obtain:

L1 =
h1 tan(γ0)

cos(λ1θ1) + µλ1 tan(γ0) sin(λ1θ1)
(9)

and:

a1 =
R

cos(λ1(θ1 − µγ0))
(10)

Using (4) and (5) in (1) and (2), we obtain the equa-
tions at the point of contact M0:

The intersection at M0 will be translated by

C0r2a(u0) · x2a = Ell0(w0) · x2a

and

C0r2a(u0) · y2a = Ell0(w0) · y2a

That is,

C0r2a(u0) · x2a =
R

cos(λ0(θ0 − µγ0))
cos(w0)

+ µ
h0 tan(γ0)

cos(λ0θ0) + µλ0 tan(γ0) sin(λ0θ0)
(11)

and

C0r2a(u0) · y2a = R sin(w0) +R (12)

The equality of slopes between tanEll0(w) and
C0r2a(u) will be translated by

β0 =
tanEll0 · y2a

tanEll0 · x2a

That is

β0 =
− cos(λ0(θ0 − µγ0))

tan(w0)
(13)

Similarly, we shall obtain the following in reference
R2b:

C1r2b(u1) · x2b =
R

cos(λ1(θ1 − µγ0))
cos(w1)

− µ
h1 tan(γ0)

cos(λ1θ1) + µλ1 tan(γ0) sin(λ1θ1)
(14)

C1r2b(u1) · y2b = R sin(w1) +R (15)

β1 =
− cos(λ1(θ1 − µγ1))

tan(w1)
(16)

Further, we know that

h0 + h1 = hp (17)

Whence a system of 7 equations with 7 unknown val-
ues (u0, u1, w0, w1, h0, h1 and γ) that can be resolved
numerically in a sufficiently short time.

3 Error Calculation and Analysis

3.1 Error Calculation Methodology

The errors on both sides of point M2 are calculated
separately.

Comment: the iteration increment between two
successive rules will then be considered small enough
for the two successive positions of the tool to be in-
cluded within the envelope of tool positions. Other-
wise, the error would need to be calculated in relation
to this envelope, which would require an excessively
long calculation time.

The calculation is carried out by postulating

S(u, v) = F(si, ti) + εnT(si, ti)

where F(si, ti) is the point of the tool where the cal-
culation is carried out, si and ti are values for pa-
rameters at that point, nT(si, ti) the unit vector per-
pendicular to the tool at that point, and ε the value
sought for. This equation can thus be reduced to a
system of three equations and three unknown values:
u, v and ε. In this equation, si and ti are taken be-
tween the limits of the parametric interval for calcula-
tion determined by the contact points. We can then
choose the values for parameters at contact points
M0, M1, and M2 as limits for our calculation inter-
val.

The resolution algorithm adopted will be a dichoto-
mial algorithm with variation in the two parametric
directions s and t.
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Between M2 and M0, we take the following as our
calculation interval:

s2 < si < s0

t2 < ti < t0

While between M2 and M1, we take the following as
our calculation interval:

s1 < si < s2

t1 < ti < t2

3.2 Analysis Principle

Given that we cannot carry out an analytical er-
ror calculation, the error calculation study is made
through a range of representative examples. For this
purpose, we take into account the fact that the main
parameters having an influence on error are:

– The tool radius R.
– The angle α made by the two perpendiculars N0

and N1.
– The length of the rule hp.

We will study the specific influence of each param-
eter on the error made through tests carried out on
a hyperbolic paraboloid, allowing us to change each
parameter independently.

The hyperbolic paraboloid we studied was based
on the two following directrices:

C0(u) =





k u
k tan(α0)

(

u− 1
2

)

hp

2





and

C1(u) =





k u
−k tan(α0)

(

u− 1
2

)

−hp

2





whence the parametered surface

S(u, v) =





k u
−1

2k tan(α0)(4uv − 2u− 2v + 1)
1
2hp − v hp





where k is a parameter for scale, we shall take k = hp.

In order to validate this approach, we compared the
error curves obtained with any ruled surface (that de-
fined in (18), see Fig. 6) and a hyperbolic paraboloid
(see Fig. 7). We can observe qualitatively similar
curve shapes.

E
rr
or

(m
m
)

Radius (mm)

u Standard
r Optimum

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

r r r r r r r r r r r r r r r r r r r r r r

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120

Figure 6: Error curves for any ruled surface
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u
u

u
u

u
u

u

r r r r r r r r r r r r r r r
0
1
2
3
4
5
6
7
8
9
10
11

0 20 40 60

Figure 7: Error curves for a hyperbolic paraboloid
(α = 30°, hp = 80mm)

4 Results and Conclusions

4.1 Qualitative Analysis

The setting we suggest for the tool would appear to
allow for a considerable reduction in interference be-
tween the tool and the surface.

Further, the calculation time needed to determine
setting parameters and error is no greater than a few
seconds, which leads us to think that implementation
in CAD/CAM type software is feasible.

As an example, we carried out comparative analy-
sis for any ruled surface:

6



x1

z1

x1

z1

Figure 8: Error localisation

S(u, v) =





30u2 + 10u+ 30 + 20vu2 − 10vu− 10v
100

√
u− 50− 100v

√
u+ 90v − 60v sin

(

1

2
πu

)

70− 30u2 − 130v + 50vu2





(18)

For this surface, we chose up = 0.4 and R = 40.

With standard setting with error distribution, max
interference will be ε = 4.880mm.

With the optimum setting we suggest max inter-
ference will be ε = 0.181mm.

Figure 8 allows error localisation in each case to be
appreciated qualitatively.

Figure 8 also allows another advantage of the sug-
gested model to be highlighted, which is to respect
the directrices of the ruled surface which can prove
to be extremely useful in a large number of cases,
particularly within the perspective of a circumferen-
tial machining method for any form of surface using
piecewise approximation as proposed in [11]. We can
thus envisage a side milling methodology for complex
surfaces, which is particularly valid for convex and
double curved surfaces, allowing for a considerable
gain in time in relation to conventional end machin-
ing techniques.

Further, this model enabled us to develop a com-
putation algorithm for the optimum tool radius for a
given case. The major difficulty encountered was in
optimising the algorithm to obtain this radius with a
minimum number of iterations.

4.2 Quantitative Analysis

S
td
/O

p
t
er
ro
r
ra
ti
o

Radius (mm)

(α0, hp)
l 30°, 40mm
r 30°, 80mm
u 30°, 120mm

u u u u u u u u u u u u u u u u u
u
u
u
u
u
u

r r r r r r r r
r
r
r
r
r
r

r

l l
l
l
l

l

l

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Figure 9: Performance ratings in relation to hp.

We chose the ratio of error for standard setting over
error for optimised setting as the indicator for per-
formance of our setting as compared with standard
positioning. Figures 9 and 10 show the variation of
this indicator in relation to R for different values of
Oto on the one hand and hp o n the other hand.

All the results obtained hitherto show that the
model we suggest allow errors to be reduced by a
ratio of at least 10 to !.

Further, for the lowest performance indicator ob-
tained (e o = 45), it can be observed that the gain is
greater from a quantitative point of view.
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u 15°, 80mm
r 30°, 80mm
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u u u u u u u u u u u u u u u u u u u u u u u

r r r r r r r r r r r r r r
rl l l l l l l l l l
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20

40

60

80

100

120
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Figure 10: Performance ratings in relation to α0

In [7], Liu describes a method applied to the ruled
surface defined from directrices:

C0(u) =





u
20.429

0



 and C1(u) =





u
0.0382u2

33.995





for 0 6 u 6 23.014 and 0 6 v 6 1

The tool radius R = 100mm.

Using the model described by Liu, the theoretical
error made in machining this surface with this tool
radius is ε = ±0.585mm.

Using the model we suggest, for the same radius
R = 10mm, we obtained ε = 0.22mm, i.e. a perfor-
mance ratio of (0.585 × 2)/0.22 = 5.3.
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