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Under iron-limited conditions, Pseudomonas putida WCS358 produces a siderophore, pseudobactin 358,
which is essential for the plant growth-stimulating abiity of this strain. Cells of strain WCS358, provided that
they have been grown under Fe3+ limitation, take up 55Fe3+ from the 5sFe3 -labeled pseudobactin 358 complex
with Km and V,, values of 0.23 ,uM and 0.14 nmol/mg of cell dry weight per min, respectively. Uptake
experiments with cells treated with variods metabolic inhibitors showed that this Fe3+ uptake process was
dependent on the proton motive force. Furthermore, strain WCS358 was shown to be able to take up Fe3+
complexed to the siderophore of another plant-beneficial P. fluorescens strain, WCS374. The tested pathogenic
rhizobacteria and rhizofungi were neither able to grow on Fe3+-defitcient medium in the presence of
pseudobactin 358 nor able to take up "5Fe3+ from 55Fe3 -pseudobactin 358. The same applies for three
cyanide-producing Pseudomonas strains which are supposed to be representatives of the minor pathogens.
These results indicate that the extraordinary ability of strain WCS358 to compete efficiently for Fe3+ is based
on the fact that the pathogenic and deleterious rhizosphere microorganisms, in contrast to strain WCS358
itself, are not able to take up Fe3+ from Fe3+-pseudobactin 358 complexes.

Frequent cultivation of monocultures on the sarne field is
a practical demand of modern agriculture. However, fre-
quent cultivation of, e.g;, potato in the same field results in
yield decreases of up to 30% (11, 12, 22). The causal agents
of these yield decreases are assumed to be deleterious,
cyanide-producing Pseudomonas spp. (1, 23). The rhizo-
sphere also harbors various pathogenic microorganisms
which influence the potato yield, e.g., bacteria like Erwinia
carotovora, which can cause rotting of the potato tubers,
and fungi like Verticillium spp., which may cause wilting of
the potato plants (12, 23).

Bacterization of seed potatoes with certain fluorescent
Pseudomonas spp. has a beneficial effect on potato yield (2,
11). These plant-beneficial Pseudomonas strains have been
selected after screening of large numbers of fluorescent,
root-colonizing Pseudomonas spp. on antibiosis activity
against a series of rhizosphere microorganisms (10). For
some Pseudomonas spp. this antibiosis activity is primarily
based on the production of antibiotic compounds (5), while
for other Pseudomonas spp., like Pseudomonas putida
WCS358, antibiosis is based on successful competition for
Fe3" by strain WCS358 in comparison with that by the
pathogenic or deleterious microorganisms (9, 22, 23). Under
Fe3" limitation, the beneficial Pseudomonas cells produce
powerful fluorescent siderophores (7, 17, 18, 25), Fe3+-
chelating compounds, which are part of high-affinity Fe3+
uptake systems. Recently, it has been demonstrated that
these beneficial Pseudomonas strains actually produce these
siderophores in the rhizosphere (3, 23). Also the ability of
the beneficial Pseudomonas strain to produce siderophores
was shown to be a prerequisite for the increase in potato
tuber yield in the field (2). These results suggest that the iron
metabolism in soil plays an essential role in plant growth
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stimulation. Supposedly, the outcome of the competition for
limiting Fe3+ in soil between the plant, the deleterious (or
pathogenic) organisms, and the beneficial microorganismls is
of prime importance. This paper focuses on the Fe3+ uptake
mediated by the siderophore of strain WCS358, pseudobac-
tin 358, in plant growth-stimulating Pseudomonas strains
and in deleterious or pathogenic rhizosphere microorgan-
isms. The results strongly support previous assumptions that
the plant-beneficial P. putida strain WCS358 acts as a
microbial pesticide.

MATERIALS AND METHODS

Bacteria, fungi, and growth conditions. The plant growth-
stimulating strains P. putida WCS358 and P. fluorescens
WCS374 and their siderophore-negative mutantS have been
described elsewhere (7, 10, 18). Cyanide-producing Pseudo-
monas strains All, A14, and A63 were isolated from potato
roots by A. W. Bakker. Pathogenic Erwinia carotovora
subsp. carotovora and E. carotovora subsp. atroseptica
were obtained from the Plant Protection Service in Wage-
ningen, The Netherlands. AR strains were maintained on
King B medium (16). Cells to be used in uptake assays were
grown in half-strength standard succinate medium (SSM)
(19) after inoculation with approximately 107 bacteria per ml
by incubation on a rotary shaker at 200 rpm for 16 h at 28°C.
When appropriate, the medium was supplemented with 50
,uM FeCl3 from a 100 mM FeCl3 stock solution in 1 N HCl.
The pathogenic fungi Verticillium dahliae and V. albo-

atrum were obtained from the Phytopathological Laboratory
Willy Commelin Scholten in Baarn, The Netherlands. These
fungi were grown on solid YMG medium, which contains
0.4% yeast extract, 1% malt extract, and 0.4% glucose, at
28°C (V. dahliae) or 23°C (V. albo-atrum). The conidia were
harvested with PBS (10 mM sodium phosphate [pH 7.2], 155
mM NaCl) and washed three times with PBS (26). Subse-
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quently, SSM was inoculated with 5 x 107 conidiospores per

ml and incubated for 20 h on a rotary shaker (150 rpm) at

28°C, after which more than 80% of the conidiospores had

germinated. For uptake assays, the young mycelia were

harvested by centrifugation and resuspended in fresh half-

strength SSM.
Antibiosis assay. To test the antagonistic activity of one

microorganism towards another, the method described by

Geels and Schippers (10) was slightly modified. The antago-

nistic Pseiudoinonas strain or its siderophore-negative mu-

tant was spot-inoculated on SSM agar. After incubation for

48 h at 28°C, the cells were killed by chloroform vapor.

Subsequently a suspension of the test organism (108 bacterial

CFU per ml of 107 fungal spores per ml) was sprayed over

the agar surface. After incubation at 28°C for 20 h (bacteria)

or 4 days (fungi), the inhibition zones were judged.

Purification of siderophores. Siderophores were isolated

from culture supernatants of 64-h-old cultures in SSM, as

described by van der Hofstad et al. (25). Briefly, contami-

nating proteins in the culture supernatant were removed by

precipitation with 100% ammonium sulfate. Pseudobactins

were extracted from the resulting supernatant fluid with

phenol-chloroform (1:1, wt/vol) and subsequently precip-

itated with diethylether. Pseudobactin 358 was further puri-

fied to homogeneity by DEAE-Sephadex chromatography,

and the structure of pseudobactin 358 was determined

(G. A. J. M. van der Hofstad, A. M. M. van Pelt,

G. M. G. M. Verjans, C. A. van der Mast, R. Amons, B.

Schippers, and P. J. Weisbeek, manuscript in preparation).

The concentration of pseudobactin 374 in the preparation

was determined by its specific absorbance at 400 nm, with

pseudobactin 358 used as a standard.
Fe3+ uptake. Logarithmically growing bacteria (A620, 0.4)

were harvested by centrifugation at 3,000 x g for 15 min at

room temperature. The cells were resuspended in fresh

half-strength SSM to an A620 of 0.2 (approximately 7 x 108

cells per ml and 0.15 mg of cell dry weight per ml) and

incubated for 1 h at 28°C on a rotary shaker at 200 rpm prior

to use. When appropriate, inhibitors were added from con-

centrated stock solutions and incubated with the cells for 20

min at 28°C prior to the start of the uptake experiment. The

influence of arsenate was tested in phosphate-free succinate

medium, in which the phosphate buffer was replaced by an

equimolar concentration of morpholinopropanesulfonate,
pH 7.2. To study whether these compounds interact with the

energy metabolism, their influence on bacterial motility was

determined as described by Shoesmith (24). Motility was

quantified by counting the number of bacteria moving across

a small aperture in a microscope lens. Motility was reduced

by 10 FLM nigericin, 10 ,uM valinomycin, and 1 mM sodium

azide by 49, 63, and 45%, respectively, and abolished by 50

,uM carbonyl cyanide m-chlorophenylhydrazone (CCCP)

and 50 ,um 2,4-dinitrophenol (DNP) (both more than 90%

inhibition).
55FeCl3 (specific activity, 10 to 35 mCi/mg) in 0.5 N HCl

was purchased from New England Nuclear Corp., Boston,

Mass. The 55Fe3+-labeled pseudobactin 358 and 55Fe3 + -

labeled pseudobactin 374 stock solutions (50 nmol of Fe3+

per ml; 25 ,uCi/ml) were prepared with a 20% excess of

pseudobactin and passed through polyvinylidene difluoride

membrane filters of 0.45 p.m pore size (Millex disposable

filter units, 4 mm; Millipore).
Uptake was started by adding 0.5 to 1.0 p.M 55Fe3t-

pseudobactin (final concentration) from the stock solution to

the cell suspension in a waterbath at 28°C under continuous

stirring. At regular time intervals, 0.5-ml samples of the cell

suspension were taken in duplicate and treated as described

below. Initially, membrane filters were used to trap the

bacteria as described by Cox (6). However, high background

levels (10 to 20% of the total "5Fe added) were found with

membrane filters of a variety of compositions and origins:

cellulose nitrate from Sartorius (type SM113), Nalgene (type

200), and Schleicher & Schuell (type BA85), cellulose ace-

tate from Sartorius (type SM111), filters of mixed cellulose

nitrate and cellulose acetate from Millipore (type HA), and

polysulfone filters from Gelman (type HT). With membrane

filters of polyvinylidene difluoride from Millipore (type

HVLP), background levels were lower (3 to 8%) but very

variable within one experiment, resulting in differences of 8

to 20% between duplicate measurements.
Excellent reproducibility was observed in an assay in

which bacteria are separated from the medium by centrifu-

gation through a layer of silicone oil as described by Kashket

(15) with minor modifications. Samples (0.5 ml) were layered

on 0.3 ml of a silicone oil mixture (type AR20-type AR200,

9:6; Wacker silicone, Wacker Chemie, Munich, Federal

Republic of Germany) in an Eppendorf vial at 4°C. The cells

were immediately separated from the medium by centrifu-

gation for 3 min in an Eppendorf centrifuge (type 5414S),

which resulted in a cell pellet below the silicone oil layer.

The vial was turned upside down, after which the bottom

part containing the bacterial pellet was cut off and mixed

vigorously with 0.5 ml of water until the cell pellet was

resuspended. Scintillation fluid (8 ml; Quickszint212; Zinsser

Analytic) was added, and the radioactivity of the mixture

was determined by using the tritium channel of an LKB type

1214 Rackbeta liquid scintillation counter with 34% effi-

ciency. Background levels, i.e., radioactivity migrating with

cells unable to take up the 55Fe (e.g., cells of strain WCS374,
see Results), were below 1.5% of the input radioactivity, and

the variation between duplicate measurements was usually

below 3%. The results shown are representative of at least

three separate experiments which yielded essentially the

same results.

RESULTS

Characteristics of pseudobactin 358-mediated Fe3+ uptake

by P. putida WCS358. When 55Fe3+-pseudobactin 358 was

supplied to cells of strain WCS358 grown under Fe3 t

limitation,55Fe3 was taken up rapidly at 28°C (Fig. 1).

Bacteria grown with excess Fe3+ were hardly able to take up

the Fe3` from the 55Fe3 t-pseudobactin 358 complex. At 4°C,

Fe3+ uptake in Fe3 -limited cells was drastically reduced

(Fig. 1). Determination of rates of pseudobactin 358-medi-

ated Fe3+ uptake at temperatures ranging from 4 to 42°C and

at pH values from 6.0 to 8.0 showed that temperatures
between 28 and 32°C and pH values between 7.0 and 7.5

were optimal for uptake. Therefore, all subsequent experi-

ments were carried out at 28°C and pH 7.2.

From a Lineweaver-Burke plot, a K,?l value of 0.23 ,uM

and a Vmax value of 0.14 nmolUmg of cell dry weight per min

were calculated. The rate of uptake of the 55Fe3+ from

35Fe3+-pseudobactin 358 (0.6 ,uM) was not influenced at all

by the presence of a threefold excess of unlabeled desferri-

pseudobactin 358 (1.8 ,uM), while a similar excess of unla-

beled Fe3 + -pseudobactin 358 reduced the initial rate of

uptake of the labeled Fe3t approximately threefold (Fig. 2).

Energy source for pseudobactin 358-mediated Fe3+ uptake.

The low rate of uptake at 4°C (Fig. 1) suggests that the

uptake of Fe3+ from the 55Fe3 +-pseudobactin 358 is an

energy-dependent process. Several inhibitors of energy me-
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FIG. 1. Pseudobactin 358-mediated 5sFe uptake by P. putida
WCS358. Cells grown under Fe3" limitation were used in uptake
experiments at 28°C (A) or 4°C (L). Cells grown in excess Fe3+ were

used in an uptake assay at 28°C (0). Data are presented as the means
and standard errors of duplicate samples.

tabolism were tested to get information about the energy
source which drives the uptake process (Table 1). Neither in

phosphate-containing nor in phosphate-free medium was the
rate of Fe3+ uptake influenced by the presence of arsenate,
which reduces intracellular ATP concentrations without

01 2.0-

Z 1.6-

E

0.8

.

25 10 15

Time (mfin)
FIG. 2. Effect of the addition of excess desfelTipseudobactin 358

or Fe3+-complexed pseudobactin 358 on the pseudobactin 358-
mediated Fe3+ uptake by cells of P. putida WCS358. Fe3+ uptake
was measured in cell suspensions containing 0.6 ,uM "5Fe3+-pseu-
dobactin 358 without further additions (0), supplemented with 1.8
,uM desfenripseudobactin 358 (0), and supplemented with 1.8 IlM
Fe3+-pseudobactin 358 (/X). Data are presented as the means of
duplicate samples. Standard errors (not shown) are within the size of
the symbols.

TABLE 1. Effect of various inhibitors on the pseudobactin
358-mediated uptake of Fe3" by cells of P. putida WCS358

Inhibitor Final concn (mM) % Inhibition'

Sodium azide 1 >95
DNP 0.05 >95
CCCP 0.05 81
Arsenateb 10 <3
Nigericin 0.01 <3
Valinomycin 0.01 36
HgCl2 0.01 >95
N-Ethylmaleimide 0.1 >95

a Percent inhibition was calculated from values measured 15 min after the
addition of 0.5 ,uM .5Fe3+-pseudobactin 358.

b Identical results were obtained in phosphate-containing and phosphate-
free medium.

decreasing the proton motive force. Sodium azide, which
inhibits generation of the proton motive force, appeared to
be a very potent inhibitor of Fe3+ uptake. The uncouplers
CCCP and DNP also markedly reduced Fe3+ uptake (Table
1). These results indicate that the proton motive force drives
the uptake process. To establish which component of the
proton motive force is the actual driving force, the influence
of the presence of the ionophores nigericin and valinomycin
was determined. Nigericin did not influence uptake of Fe3+,
but valinomycin reduced the uptake of Fe3+ substantially.
The sulfhydryl reagents N-ethylmaleimide and HgCl2 abol-
ished the uptake of Fe3+ (Table 1).

Interactions of pseudobactin 358 with deleterious and patho-
genic rhizosphere microorganisms. In an antibiosis assay
(Fig. 3), the cyanide-producing Pseudomonas strains All,
A14, and A63, the pathogenic bacteria E. carotovora subsp.
carotovora and E. carotovora subsp. atroseptica, and the
pathogenic fungi V. dahliae and V. albo-atrum were unable
to grow around the spot of inoculation of the wild-type strain
WCS358. Since no or only a small inhibition zone was
observed around the inoculation spot of the siderophore-
negative mutant of strain WCS358, the growth inhibition
observed around the wild-type strain must have been caused
by the presence of pseudobactin 358. The small zone of
inhibition sometimes observed around the siderophore-neg-
ative mutant was most likely caused by nutrient limitation
around the bacterial inoculation spot, since no growth inhi-
bition was observed by the siderophore-negative mutant in
growth assays performed on nutrient-rich agar surfaces
(e.g., King B medium or YMG). For the cyanide-producing
Pseudomonas spp. and the two E. carotovora subsp., the
reciprocal experiment (inhibition of P. putida WCS358 by
the plant-deleterious strain) was performed, but no inhibition
of growth of strain WCS358 was observed (data not shown).

All these bacterial and fungal strains were tested for
pseudobactin 358-mediated uptake of Fe3+ for 25 min. Only
background levels of 55Fe label (<1.5%) were found to be
associated with the cells or the young mycelia (data not
shown).

Interactions of the high-affinity Fe3+ uptake systems of two
plant growth-stimulating Pseudomonas strains. As described
previously (3), strain WCS358 is able to grow on solid King
B medium in the presence of the siderophore of strain
WCS374, pseudobactin 374, while strain WCS374 is unable
to grow on these plates in the presence of pseudobactin 358.
In order to be able to correlate inhibition on plates with
uptake, the experiment was repeated on solid SSM medium.
Results similar to those on solid King B medium were
obtained (data not shown). The observed difference in anti-
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4696 DE WEGER ET AL.

FIG. 3. Antibiosis assay on solid SSM medium with P. putida WCS358 and its siderophore-negative (Sid-) mutant spot-inoculated at the
left and right of the plate, respectively. The plates were later sprayed with suspensions of the cyanide-producing strains A63 (A), the
pathogenic strain E. carotovora subsp. carotovora (B), or the pathogenic fungus V. albo-atrum (C).

biosis between these two strains appeared to be caused by
differences in uptake characteristics: strain WCS358 was
able to take up Fe3" from Fe3+-pseudobactin 374 com-
plexes, even to a level similar to that reached by strain
WCS374 with its own pseudobactin. In contrast, strain
WCS374 was unable to incorporate Fe3+ from the Fe3+-
pseudobactin 358 complex (Fig. 4). Similar results were
obtained when siderophore-negative mutants were used in-
stead of the wild-type strains (data not shown).

DISCUSSION

Under the optimal condition of a temperature of 28°C and
a pH value of 7.2, pseudobactin 358-mediated Fe3+ uptake in
strain WCS358 had a Km value of 0.23 ,uM and Vmax value of
0.14 nmol/mg of cell dry weight per min. No kinetic param-
eters are available for Fe3" uptake in Pseudomonas spp.
mediated by a pyoverdine-type siderophore, but our results

strongly resemble published uptake profiles (14, 20). Since
Fe3+-pseudobactin 358, and not the free form of pseudobac-
tin 358, competes with 55Fe3+-pseudobactin 358 for uptake
(Fig. 2), complex formation of pseudobactin 358 with Fe3+
apparently transforms the former molecule into a form
recognizable for the uptake system.

Pseudobactin 358-mediated Fe3" uptake in WCS358 re-
quires an energized membrane, as demonstrated by the
strong inhibition of Fe3+ uptake by sodium azide, DNP, and
CCCP. Phosphate bond energy does not seem to be in-
volved, since arsenate had no effect on uptake (Table 1).
Nigericin, which reduces the proton gradient (ApH) over the
cytoplasmic membrane by exchange of K+ ions for H+ ions
(21), did not significantly influence Fe3+ uptake. Valinomy-
cin, however, a potassium ionophore reducing the electro-
chemical potential (A%i) over the cytoplasmic membrane
(21), reduced Fe3 +uptake substantially (Table 1). These

1.4-

1.2-
E

~ 0
E

00.8-

0.6-
Le.

0.4-

0.2-

0 5 10 15 2 0 5 10 1'5 20

Time (min)

FIG. 4. 55Fe uptake mediated by pseudobactin 358 (0) or pseudobactin 374 (O) by cells of strains P. putida WCS358 (A) and P.fluorescens
WCS374 (B) grown under Fe3+ limitation. 55Fe3+-pseudobactins were used at a final concentration of 1 ,uM. Data are presented as the means
and standard errors of duplicate samples.
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results indicate that for the pseudobactin 358-mediated Fe3"
uptake, the electrochemical gradient (Ad) is important, while
the proton gradient (ApH), at least under our standard
conditions (pH 7.2), is of minor importance.

This Fe3" uptake system of strain WCS358 seemed to be
highly efficient, allowing not only uptake from its own Fe3"
siderophore complex, but also from the Fe3" siderophore
complex of another plant growth-stimulating strain, P. fluo-
rescens WCS374. Furthermore, strain WCS358 was able to
take up Fe3+ from the Fe3+-pseudobactin complexes of at
least four other root-colonizing Pseudomonas strains (un-
published results), showing that this strain can make use of
various pseudobactins for its iron nutrition. This latter
property can be useful in the rhizosphere, where a variety of
pseudomonads are present (7, 8). The ability to use the
siderophores of neighboring species for its iron nutrition may
be an important factor in the competition of strain WCS358
with other microorganisms in the rhizosphere (3, 23).

In order to study the reaction of deleterious and patho-
genic rhizosphere microorganisms on the siderophore of the
plant growth-stimulating P. putida strain WCS358, seven
representatives (five bacterial and two fungal species) were
chosen from the group of plant-deleterious or plant-patho-
genic microorganisms. None of these organisms was able to
grow on Fe3"-limited medium in the presence of pseudobac-
tin 358 (Fig. 3). Furthermore, using Fe3" uptake assays, we
showed that these fungal and bacterial species were unable
to incorporate Fe3+ complexed by pseudobactin 358. This
latter result demonstrates that the inability to grow in the
presence of pseudobactin 358 (Fig. 3) (4) is determined at the
level of Fe3+ uptake from the Fe3+-pseudobactin 358 com-
plex. So far, models on the role of pseudomonads in com-
petition for Fe3+ were based only on growth inhibition
experiments on Fe3+-deficient solid medium (4, 10, 17). In
our experience, the results of antibiosis assays obtained on
different media (e.g., King B medium and SSM) are much
more variable than the results of uptake experiments. There-
fore, conclusions about the ability of a strain to antagonize
other microorganisms by virtue of its siderophore are more
accurate when they are based on antibiosis assays in com-
bination with Fe3+ uptake experiments. Another reason to
interpret antibiosis assays carefully is the recent finding of a
fluorescent Pseudomonas strain whose antibiotic activity
towards fungal growth is due to an antibiotic which is only
active under low-iron conditions (13).

Recently, the production of siderophores in the rhizos-
phere by strain WCS358 was demonstrated (3, 23). This
result, combined with those of the antibiosis on Fe3+_
deficient medium (Fig. 3) and of Fe3+ uptake, indicates that
the presence of pseudobactin 358 in the rhizosphere deprives
other plant-deleterious and -pathogenic rhizosphere micro-
organisms of the essential element Fe3+, resulting in a
reduction of their activity or growth. Consequently, these
results indicate that competition for Fe3+, at the level of
uptake of Fe3+ from Fe3+-siderophore complexes, is the
basis for the action of P. putida WCS358 as a microbial
pesticide.
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