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This work seeks to provide a closed-form analytical solution for the transverse vortical wave generated at the

sidewall of a circular cylinder with headwall injection. This particular configurationmimics the conditions leading to

the onset of traveling radial and tangential waves in an idealized liquid rocket engine chamber. Assuming a short

cylindrical enclosure with axisymmetric injection, regular perturbations are used to linearize the problem’s

conservation equations. Flow decomposition is subsequently applied to the first-order disturbance equations, thus

giving rise to a compressible, inviscid, acoustic set responsible for driving the unsteady motion and to an

incompressible, viscous, vortical set driven by virtue of coupling with the acoustic mode along both the sidewall and

headwall.While the acousticmode is readily recovered from thewave equation, the induced vortical mode is resolved

using boundary-layer theory and an expansion of the rotational equations with respect to a small viscous parameter,

δ. At the outset, an explicit formulation for the leading-order vortical field is derived and verified numerically. A

radial penetrationnumber akin to the Stokes orWomersley numbers is identified and found to control thepenetration

depth of the viscous boundary layer forming above the inert sidewall. This parameter is based on the transverse

oscillation mode frequency and scales with the squared ratio of the Stokes layer and the chamber’s characteristic

radius.

Nomenclature

a0 = �γRT0�1∕2, speed of sound of incoming flow
L = chamber length
Mb = average blowing Mach number at the headwall
Pr = Prandtl number, ratio of kinematic viscosity to thermal

diffusivity
p = pressure
R = chamber radius
Rea = a0R∕ν0, acoustic Reynolds number
Rek = ωmnR

2∕ν0, kinetic Reynolds number
r, θ, z = radial, tangential, and axial coordinates
Sr = radial penetration number
T = temperature
t = time
U = mean flow velocity vector
Ub�r� = blowing velocity profile at the headwall
u = total velocity vector
α = R�ωmn∕ν0�1∕2, Womersley number

δ = Re
−1∕2
a , viscous parameter

δd = δ�η0∕μ0 � 4∕3�1∕2, dilatational parameter
δBL = boundary-layer thickness
γ = ratio of specific heats
ε = wave amplitude
η = bulk viscosity
λS = R

����������������������

ωmn∕�2ν0�
p

, Stokes number
μ = dynamic viscosity

ν = μ∕ρ, kinematic viscosity
ρ = density
Ω = mean vorticity
ω = unsteady vorticity
ωmn = a0kmn∕R, circular frequency

Subscript

0 = mean chamber properties

Superscripts

� = dimensional variables
0 = unsteady flow variable
− = steady flow variable

I. Introduction

ACOUSTIC instability has long beenviewed as a principal hurdle
hampering the development of large-scale combustors,

especially those intended for heavy lift and power generation. In
fact, given the violent oscillations that instability mechanisms can
engender, they have been universally recognized among the chief
impediments resulting in the frequent cancellation of new rocket
launch programs. Thus motivated by the need to predict and prevent
the occurrence of these anomalies, a series of studies involving solid,
liquid, and hybrid rockets has been carried out with the underlying
theme of quantifying the various sources of instability. These have
encompassed all three means of investigations, namely those based
on experimental, numerical, and theoretical considerations.
Historically, some of the earliest analytical studies of oscillatory

phenomena in cylindrical tubes with injecting walls may have been
undertaken by Hart and McClure [1,2] and Culick [3,4]. These
models led to several analytical approximations that could be used to
describe the behavior of acoustic waves in porous chambers.
Subsequent studies have emphasized the limitations of inviscid-
irrotational models and emphasized the need to observe the no-slip
requirement at the propellant surface [5–7]. For example, the
classical experiments byBrown et al. [8] andDunlap et al. [9] showed
that irrotational models failed to reproduce the actual behavior
directly above the propellant surface. Moreover, the computational-
fluid-dynamics simulations of Vuillot and Avalon [10] predicted a
thick boundary layer at the sidewall, specifically one that
could extend over the majority of the chamber volume. Other
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asymptotic investigations led to closed-form approximations of the
vorticoacoustic waves and their penetration within a rocket motor,
and these showed a strong dependence on the chamber’s mean flow
and acoustic modes [11–14].
Despite the variety of mathematical formulations devoted to the

description of either mean [15–19] or oscillatory waves in solid
rocket motor (SRM) internal flows [20–22], substantially fewer
models seem to have tackled the liquid rocket engine (LRE) case [23–
25]. Some exceptions may be found, and these may be identified in
studies such as those by Flandro et al. [26,27] and Fischbach et al.
[28]. The latter considers the transversewave propagation problem in
a simulated LREwith the aim of better understanding themechanism
of acoustic streaming. Assuming waves generated by uniform
headwall injection, these researchers also analyze the vorticoacoustic
boundary layer forming above the injector faceplate. Later studies by
Haddad andMajdalani [29,30] introduce a framework for describing
the transverse evolution of vorticoacoustic waves and their
dependence on variable headwall injection patterns. However,
despite the ability of their solutions to satisfy the no-slip requirement
at the headwall and partially at the sidewall, their tangential motion
still permits slippage along the sidewall. To overcome this technical
deficiency, the main focus of the present study will be placed on a
boundary-layer treatment of the sidewall.
In seeking to overcome the deficiency of former transverse wave

models in the tangential direction, this sequel devotes itself to the
asymptotic treatment of the tangential motion in the vicinity of the
sidewall. To this end, the unsteady flowfield is considered in a short
cylindrical chamber with a porous headwall that permits the injection
of axisymmetric mean flow patterns. Then, following the small
perturbation approach introduced by Chu and Kovásznay [31], the
equations of motion are split into two sets that control the mean and
unsteady flow components, respectively. Similarly, using the
Helmholtz decomposition theorem, the first-order fluctuations are
separated into a pair of acoustic and vortical fields. Presently, these
techniques are used to derive an improved asymptotic solution for the
oscillatory motion in a circular chamber in general, and a simulated
LRE in particular. In fact, based on a systematic application of
boundary-layer theory, a mathematical formulation will be achieved
for the sidewall boundary layer, which complements our previous
analysis of the headwall region. Through this effort, a more complete
and accurate description of the vorticoacoustic waves in simulated
LREs will be realized.

II. Formulation

A. Geometry

To simulate the unsteady motion in a liquid rocket engine, an
idealized version of the latter must be conceived. The thrust chamber
is thus modeled as a horizontal cylinder extending from z� � 0 to L,
with a small aspect ratio that is assumed to be less than or equal to
unity. Radially, the domain extends from the centerline at r� � 0 to
the sidewall at r� � R. In addition to schematically illustrating a
right-cylindrical chamber with an injecting headwall, Fig. 1 shows
the azimuthal coordinate θ and the transverse direction of unsteady
velocity disturbances, u 0

θ and u 0
r, which define both tangential and

radial oscillations.

B. Acoustic and Vortical Systems of Equations

A normalization of the governing equations is required to genera-
lize the problem at hand and highlight the terms pertinent to our
analysis. A nondimensional version of the conservation equations
can be obtained by normalizing the flow variables according to

�

p� p�∕P0 u� u�∕a0 r� r�∕R T� T�∕T0

ρ� ρ�∕ρ0 t� t�∕�R∕a0� z� z�∕R ω�ω�∕�a0∕R�
(1)

where reference properties are defined in the Nomenclature. The
normalized governing equations for a viscous compressible fluid,
with no body forces acting on it, may be expressed as follows.
Mass:

∂ρ

∂t
� ∇ · �ρu� � 0 (2)

Momentum:

ρ

�

∂u

∂t
� 1

2
∇�u · u� − u × ∇ × u

�

� −
1

γ
∇p − δ2∇ × �∇ × u� � δ2d∇�∇ · u� (3)

Energy:

ρ

�

∂T

∂t
� u · ∇T

�

� γ − 1

γ

�

∂p

∂t
� u · ∇p

�

� δ2

Pr0
∇2T (4)

State:

p � ρT (5)

wherePr is the Prandtl number, γ is the ratio of specific heats, and the
viscous parameters δ and δd are given by

δ �
���������

ν0

a0R

r

�
���������

1

Rea

s

; δd � δ

��������������

η0

μ0
� 4

3

s

(6)

The next steps involve a decomposition of the flow variables in terms
of mean flow and oscillatory components, followed by the expansion
of all unsteady terms with respect to the primary perturbation
parameter ε. As shown by Chu andKovásznay [31], the variables can
be split using

u � MbU � u 0; ω � �Ω� ω 0; p � 1� p 0

ρ � 1� ρ 0; T � 1� T 0 (7)

Each fluctuating term may then be written as

a 0 � εa�1� � ε2a�2� � ε3a�3� �O�ε4� (8)

Here, a alludes to a generic flow variable, and ε denotes the ratio of
the superimposed oscillatory pressure amplitude to the traditionally
larger mean chamber pressure. The last step consists of collecting the

Fig. 1 Chamber geometry and coordinate system showing an axisymmetric profile. Also shown is a front viewdepicting the coupled tangential and radial
(i.e., transverse) wave motions.
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first-order fluctuations and separating them into acoustic and vortical
fields [32,33]. As a result, the acoustic part gives rise to a
compressible and inviscidmotion, while the vortical part produces an
incompressible but viscous field [34]. Using a circumflex to denote
the pressure-driven potential part and a tilde for the boundary-driven
vortical component, the unsteady flow variables may be once more
decomposed into

a�1� � â� ~a (9)

This step leads to two independent sets of equations that remain
coupled by virtue of the no-slip requirement, whichmust be achieved
along the boundaries [33]. These are as follows.
Acoustic set:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

∂ρ̂

∂t
� −∇ · û −MbU · ∇ρ̂

∂û

∂t
� −

1

γ
∇p̂ −Mb�∇�U · û� − û × �Ω�

p̂ � T̂ � ρ̂

p̂ � γρ̂

(10)

and vortical set:

8

>

>

<

>

>

:

∇ · ~u � 0
∂ ~u

∂t
� −

1

γ
∇ ~p −Mb�∇�U · ~u� − U × ~ω − ~u × �Ω� − δ2∇ × ~ω

� δ2d∇�∇ · ~u�
(11)

C. Boundary Conditions

The acoustic and vortical fields require the use of two dissimilar
sets of boundary conditions. In the case of an acoustic wave, a closed
boundary must be maintained, as usual, along all solid surfaces,
including the injection site (i.e., at r � 1, z � 0, and z � L∕R). In the
case of a rotational wave, the satisfaction of the no-slip condition at
the headwall is usually of primary importance, being the counterpart
of the sidewall boundary in the inverted analog of an axially traveling
wavewithin an elongated porous cylinder [28,33]. In both geometric
configurations, the velocity adherence constraint is imposed at the
injecting surfaces, and these correspond to either the headwall or the
sidewall of the simulated LRE and SRM, respectively. However,
because the vortical waves driven by the injecting surfaces are
determined in previous studies [28–30], slippage along the
noninjecting surface (sidewall) must not be allowed in an improved
formulation. Consistent with other boundary-layer studies,
attenuation of the unsteady vorticity component is expected away
from the sidewall. Therefore, at the centerline, the vorticoacoustic
wave must reduce to its potential form. A summary of the physical
constraints entailed in the resulting model is given in Table 1.

III. Solution

This section focuses on the boundary-layer approach that we
follow to reduce the time-dependent vortical system into a more
manageable set. The ensuing formulations are provided for
axisymmetric mean flow profiles. However, before tackling the
vortical set, it is helpful to resolve the acoustic wave first.

A. Acoustic Formulation

Although Eq. (10) consists of an assortment of four equations,
these can be systematically reduced to a single PDE,which represents
a modified form of the wave equation. By subtracting the derivative

of the acoustic mass conservation from the divergence of the
momentum equation, an extended form of the wave equation [28]
may be readily revealed, specifically

∂2p̂

∂t2
�∇2p̂�Mb�γ∇2�U · û�− γ∇ · �û× �Ω�− ∂

∂t
�U ·∇p̂�� (12)

Several detailed solutions of Eq. (12) are widely available in the
literature. Here, we employ a solution that suitably describes the
acoustic motion in a simulated LRE, where transverse waves
dominate over their longitudinal counterparts. In this case, the
complete leading-order acoustic field may be reproduced from

p̂ � e−ikmntJm�kmnr� cos�mθ� (13)

ûr �
i

kmnγ
e−ikmntJ 0

m�kmnr� cos�mθ� (14)

ûθ �
i

kmnγ

m

r
e−ikmntJm�kmnr� sin�mθ� (15)

ûz � 0 (16)

where m and n are positive integers that refer to the tangential and
radial mode numbers, respectively. In the same vein, kmn designates
the transverse wave number, where the numerical values of kmn may
be extracted from J 0�kmn� � 0. Equation (17) enumerates the roots
of kmn for the first eight wave numbers:

8

<

:

k01≈3.83170597 k10≈1.84118378 k11≈5.33144277

k02≈7.01558667 k20≈3.05423693 k22≈9.96946782

k12≈8.53631637 k21≈6.70613319 etc:

(17)

In the interest of clarity, the four parts of Fig. 2 are intended to
illustrate the instantaneous pressure distribution in a cylindrical
chamber using four sequential mode numbers. These correspond to
four zeroes of J 0�kmn� listed in Eq. (17). Everywhere, the pressure
contours represent snapshots taken in a polar plane at t � 0 s; ∀ z,
where red and blue colors denote positive and negative acoustic
pressures, respectively. It is interesting to note the evolution of the
nodal lines going from Figs. 2a–2d, thus giving rise to double-D and
alternating cross patterns that characterize the acoustic mode shapes.
In Figs. 2a and 2b, the first and second radial modes are featured
along with the first tangential mode where alternating double-D
contours appear either a) once or b) twice, with the second set
brushing along the outer periphery. In Figs. 2c and 2d, the second
tangential configuration is depicted at the first and second radial
modes. The last contour clearly captures the symmetrically
alternating wave structure in both tangential and radial directions.

B. Vortical Formulation

Before proceeding with the formulation of the vortical wave
structure, it may be useful to clarify the origin of the driving
mechanisms for the waves in question. To this end, we recall that the
acoustic waves are induced by pressure gradients within the chamber,
and these remain immune to the effects of the no-slip requirement at
the boundaries. They also display no sensitivity to the mean flow
when taken at the leading order in Mb. In contrast, the traveling
vortical waves are generated by the acoustic motion due to the
presence of solid boundaries. They appear as a necessary correction
that depends on the geometry at hand, themean flow, and the acoustic

Table 1 Boundary conditions for the acoustic and vortical fields

Boundary

r � 0 r � 1 z � 0 z � L∕R

Acoustic field No condition imposed n · ∇p̂ � 0 n · ∇p̂ � 0 n · ∇p̂ � 0
Vortical field ~ur � ~uθ � ~uz � 0 u 0

r � u 0
θ � u 0

z � 0 No condition imposed No condition imposed
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mode shapes. From this perspective, it may be argued that the vortical
pressure distribution may be dismissed, and this may be attributed to
the pressure differential beingmainly prescribed by the acoustic field
[13]. The foregoing assumption will be useful while solving for the
vortical disturbance. However, at this stage, we find it necessary to
retain the small vortical pressure wave ~p in the momentum equation
as we put

∇ · ~u � 0 (18)

∂ ~u

∂t
� −

1

γ
∇ ~p −Mb�∇�U · ~u� − U × ~ω − ~u × �Ω� − δ2∇ × ~ω (19)

In seeking an ansatz for ~u, we note that, in Eqs. (18) and (19), the
rotational velocity disturbance stands as a function of time and three
spatial variables. Moreover, it is necessary to choose ~u�t; r; θ; z� in a
manner to offset the acoustic motion at the headwall, ∀ t. The time
dependence of the vortical field will then match that of the acoustic
motion in the injection plane. This can be achievedwhen the unsteady
vortical wave exhibits the form

~u � e−ikmntf�r; θ; z�

or
∂ ~u

∂t
� −ikmne

−ikmntf�r; θ; z� � −ikmn ~u (20)

This particular ansatz will be used to secure a closed-form vortical
approximation.

C. Boundary-Layer Approach

In-depth formulations that focus on wave characterization are
presented by Haddad and Majdalani [29,30], where detailed
solutions for axisymmetric injection profiles are constructed. In both
studies, the vortical wave is generated at the headwall and propagates
downstream. The present approach applies a similar perturbation
expansion to a well-established variant of the conservation equations
with the aim of capturing the development of the vortical wave at the
sidewall. For the case of axisymmetricmean flows, Eqs. (18) and (19)
may be expanded to produce

~ur

r
� ∂ ~ur

∂r
� 1

r

∂ ~uθ
∂θ

� ∂ ~uz
∂z

� 0 (21)

− ikmn ~ur �MbF
∂ ~ur
∂z

� −
1

γ

∂ ~p

∂r
� δ2

�

∂2 ~ur

∂z2
� 1

r2
∂2 ~ur

∂θ2
−

1

r2
∂ ~uθ
∂θ

−
1

r

∂2 ~uθ
∂r∂θ

−
∂2 ~uz
∂r∂z

�

(22)

− ikmn ~uθ �MbF
∂ ~uθ
∂z

� −
1

γr

∂ ~p

∂θ
� δ2

�

1

r2
∂ ~ur
∂θ

−
1

r

∂2 ~ur
∂r∂θ

−
~uθ

r2
� ∂2 ~uθ

∂z2
� 1

r

∂ ~uθ
∂r

� ∂2 ~uθ

∂r2
−
1

r

∂2 ~uz
∂θ∂z

�

(23)

− ikmn ~uz �MbF
∂ ~uz
∂z

−Mb

∂F

∂r
~ur

� −
1

γ

∂ ~p

∂z
� δ2

�

−
1

r

∂ ~ur

∂z
−
∂2 ~ur

∂r∂z
−
1

r

∂2 ~uθ

∂θ∂z
� 1

r2
∂2 ~uz

∂θ2

� 1

r

∂ ~uz

∂r
� ∂2 ~uz

∂r2

�

(24)

Recognizing that the vortical wave is most noticeable near solid
surfaces, Eqs. (21–24) may be transformed using boundary-layer
theory, with the no-slip boundary condition being enforced at the
sidewall. Because the vortical wave can grow or decay in the radial
direction, it is helpful to rescale the radial variable using a stretched
inner coordinate of the form

ξ � 1 − r

δ
(25)

This spatial magnification is necessary because the near-wall
boundary-layer correction cannot be captured when using the
original variable r. Rescaling the radial coordinate serves a purpose
similar to zooming onto the near wall region; only then would the
inner behavior of the solution be revealed. The outer inviscid solution
remains adequate except in the boundary-layer region, where viscous
forces dominate. Moreover, being the inverted square root of the
acoustic Reynolds number, the viscous parameter δ << 1 can be
suitably employed as a perturbation parameter. On this note, our
subsequent step consists of expanding the vortical variables that
appear in Eqs. (21–24)with respect to theviscous parameter. This can
be accomplished using

~a � ~a�0� � δ ~a�1� � δ2 ~a�2� � δ3 ~a�3� �O�δ4� (26)

The process of collecting terms of the same order in δ and rearranging
leads to a vortical set that must be solved to determine the leading
order viscous correction. In doing so, caution must be exercised in
handling terms of order Mb∕δ. Because the Mach number and
viscous parameters can appear at about the same order, their ratio can
be of order unity and, hence, nonnegligible. At O�1�, Eqs. (21–24)
yield

∂ ~u
�0�
r

∂ξ
� 0 (27)

∂ ~p�0�

∂ξ
� 0 (28)

ikmn ~u
�0�
θ � ∂2 ~u

�0�
θ

∂ξ2
� 1

γ

∂ ~p�0�

∂θ
(29)

ikmn ~u
�0�
z � ∂2 ~u

�0�
z

∂ξ2
� 1

γ

∂ ~p�0�

∂z
(30)

Fig. 2 Pressure contours in a polar slice for transverse oscillations corresponding to a) k11, b) k12, c) k21, and d) k22.
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Clearly, Eqs. (27–30) appear to be nearly decoupled, with the
exception of the vortical pressure term appearing on the right-hand
side of both the tangential and axial equations. Solving Eq. (28)
yields a radially invariant ~p�0� � ~p�0��t; θ; z�. By analogy to the
headwall correction at this order, the no-slip condition at the sidewall
may be viewed as the main driver behind the bulk radial propagation
of the vortical wave. The vortical pressure remains immaterial to the
wave generated and can be set equal to zero. We therefore take

~p�0� � 0 (31)

Forthwith, solving Eq. (27) leads to a radially invariant ~u
�0�
r that must

be suppressed to satisfy the no-slip condition at the sidewall. The
value of ~u

�0�
r can hence be deduced as

~u
�0�
r � 0 (32)

Now that ~p�0� has been settled, Eqs. (29) and (30) can be collapsed
into a single equation. The general solution of the resulting ordinary
differential equation (ODE) proves to be identical for both velocities.
The differences emerge when applying the boundary conditions
corresponding to each vortical component. For example, either axial
or tangential equations reduce to

ikmn ~u
�0�
θ;z �

∂2 ~u
�0�
θ;z

∂ξ2
� 0 (33)

Equation (33) precipitates

~u
�0�
θ;z � A

�0�
θ;z�t; θ; z�eϕmn�r−1� � B

�0�
θ;z�t; θ; z�eϕmn�1−r� (34)

where the radial parameter ϕmn depends on the acoustic mode and
Reynolds numbers according to

ϕmn �
�������������

−ikmn

p

δ
(35)

By ensuring that the vortical wave vanishes at the centerline, Eq. (34)
becomes

~u
�0�
θ;z � A

�0�
θ;z�t; θ; z��e−ϕmn�1−r� − e−ϕmn�1�r�� (36)

Finally, the velocity adherence condition at the sidewall can be
applied to each velocity component separately. This enables us to
fully determine the axial and tangential components, namely

~u
�0�
θ � −

im

kmnγ
Jm�kmn�

�

e−ϕmn�1−r� − e−ϕmn�1�r�

1 − e−2ϕmn

�

e−ikmnt sin�mθ�

(37)

~u
�0�
z � 0

IV. Results and Discussion

The analytical approximations obtained heretofore can be
collected into one set of expressions for the vorticoacoustic velocity
and pressure distributions. It is worth noting that, at leading order, the
vortical wave generated at the sidewall provides a correction for just
the tangential component of the acoustic field. An evaluation of the
remaining velocity components show that the latter vanish at r → 1.
Therefore, the following section focuses on the significance of the
tangential correction and its properties.
To start, a summary of the vorticoacoustic wave components is

provided by superimposing both potential and rotational contrib-
utions. The resulting unsteady disturbances may be presented as

p 0 � e−ikmntJm�kmnr� cos�mθ� �O�Mb; δ� (39)

u 0
r � −

i

kmnγ
e−ikmntJ 0

m�kmnr� cos�mθ� �O�Mb; δ� (40)

u 0
θ�

im

kmnγ

�

Jm�kmnr�
rJm�kmn�

−
e−ϕmn�1−r�−e−ϕmn�1�r�

1−e−2ϕmn

�

×e−ikmntJm�kmn�sin�mθ��O�Mb;δ� (41)

u 0
z � 0�O�δ� (42)

For the sake of illustration, Fig. 3 is used to compare the behavior of
the tangential disturbances for the strictly acoustic and its
vorticoacoustic counterpart versus the radial coordinate at decreasing
values of the viscous parameter. This is achieved at t � 0.1, r � 0.4,
θ � 1

3
π, Mb � 0.03, and a thrust chamber with a unit aspect ratio

[28]. The corresponding plots capture the oscillatory motion for the
first tangential with first radial modes using k11.

A. Numerical Verification

Byway of verification, a numerical solver iswritten to compute the
solution corresponding to Eq. (33). The solver uses a shooting
scheme in conjunction with Mathematica’s built-in numerical
integrators to perform the necessary calculations. To ensure
numerical stability and reduce interpolation errors, we find it
essential to begin integrating at the end of the domain, where r � 1,
and work our way backward to the centerline.
To ensure conformity between the derived analytical solutions and

their numerical counterparts, we evaluate the tangential vortical
equation for the cases described in the previous section. The
numerical results are shown using dash-dots in Fig. 3. Given that the
level of agreement between numerics and asymptotics is favorable,
we nowproceed to characterize thevorticoacousticwave based on the
analytical solution given by Eq. (41).

0 0.2 0.4 0.6 0.8 1

 acoustic

 vorticoacoustic

 numerical

r

u
θ
'

0.9 0.92 0.94 0.96 0.98 1

 acoustic

 vorticoacoustic

 numerical

r

u
θ
'

-0.03

0

0

0.2

a) b)

Fig. 3 Acoustic and vorticoacoustic tangential velocities at k11 and δ corresponding to a) 0.5, and b) 0.005.
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B. Wave Characterization

A fundamental distinction differentiates the sidewall boundary
layer from its headwall counterpart: its independence from the
injection Mach number and showerhead patterns. At leading order,
this behavior may be attributed to the dissimilar forms of the
dissipation mechanisms occurring near each boundary. Because the
bulk streamwise motion of the fluid remains axial, a contribution of
the injectionmechanism is expected to be significant (and is therefore
captured) in the leading-order solution [30]. In contrast, the radial
direction represents a secondary axis with respect to the mean flow
motion. It then follows that the bulk development of the boundary
layer at the sidewall remains unaffected by the mean flow at leading
order. Such contributions are expected to start appearing atO�δ2� and
higher.
Figure 3 illustrates the dependence of the wave’s boundary-layer

thickness on the viscous parameter. It is apparent that viscous forces
dominate over inertial forces as the viscous parameter is increased.
Conversely, when the latter is reduced, the boundary layer diminishes
in the vicinity of the sidewall region. This behavior is consistent with
the predictions of classical boundary-layer theory, namely of an
increased boundary-layer thickness with successive increases in δ or,
alternatively, decreases in the Reynolds number [34].
It should be noted that, in some cases, the satisfaction of the no-slip

requirement at a solid boundary induces an abrupt change in the outer
(acoustic) flow. This change manifests itself in an overshoot taking
place in the near-wall region [30,34]. As usual, the phase shift
between the vortical and acoustic fields leads to a positive coupling of
the tangential velocity. This behavior is illustrated in Figs. 3b and 4.
The latter showcases the velocity vectors resulting from the pressure
fields in Fig. 2. In Fig. 4, the top part represents the transverse
acoustic velocities in the first quadrant, while the bottom part features
the vorticoacoustic fields at δ � 0.1. It may beworth noting that, near
thewall, the vorticoacoustic velocities display a sharp tangential peak
before depreciating to zero at the sidewall, in fulfillment of the no-slip
requirement at r � 1.

C. Radial Penetration Number

The behavior of vortical waves usually depends on a multitude of
flow parameters such as the injection Mach number, the viscous

parameter, and acoustic parameters such as the Strouhal and wave
numbers. In studies pertaining to vorticoacousticwaves in SRMs [34]
and LREs [30], these parameters are shown to collapse into the
Strouhal and penetration numbers, which strongly control the
frequency and magnitude of the waves, respectively.
Along similar lines, a close examination of Eqs. (35–37) enables us

to infer that the behavior of the tangential waves depends on a
combination of the mode number kmn and the viscous parameter δ. In
fact, the expression for the radial control parameter may bewritten as

ϕmn �
������

−i

Sr

s

where Sr � δ2∕kmn represents the radial penetration number.
Figure 5 depicts the radial distribution of the vortical wave for

different values of the control parameters. This graph also confirms
the importance of the penetration number in prescribing the
magnitude of the viscous boundary layer generated at the sidewall.
On one hand, Fig. 5a shows that, given a fixed acoustic wave number
of k11, successive reductions in the radial penetration number (or
viscosity) lead to corresponding decrements in the rotational depth of
penetration. This result confirms the observations in Fig. 3a, wherein
a viscous parameter of 0.5 can be seen to produce a wave that is
almost swept through the entirety of the chamber; conversely, a value
of 0.005 in Fig. 3b leads to a wave decaying rapidly in the vicinity of
the sidewall.
On the other hand, Fig. 5b shows that the depth of penetration (i.e.,

the size of the boundary-layer thickness) depends solely on the radial
penetration number.When fixed to a certain value such as 1000 in the
case of Fig. 5b, the vortical wave decays at the same location
irrespective of the particular values of kmn and δ. Physically, a
constant value of the penetration number ensures that the increase in
the amount of friction between shear layers due to faster rates of flow
reversals at higher frequencies is offset by a decrease inviscosity. The
overall fixed attenuation level proves to be a byproduct of both
mechanisms whose relative importance dictates the value of Sr and,
consequently, the radial boundary-layer thickness δBL. Therefore, the
radial penetration number can be seen as a measure of the relative

a) d)b) c)

Fig. 4 Unsteady velocity vectors in the first polar quadrant for the acoustic (top row) and vorticoacoustic oscillations (bottom) corresponding to a) k11,

b) k12, c) k21, and d) k22.
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importance of viscous and unsteady forces. In this study, we find δBL
to be proportional to the penetration number, or

δBL ≈ Sr �
1

kmnRea
� 1

kmn

ν0

a0R
�
�

a0

ωmnR

��

ν0

a0R

�

�
�

����������������

ν0∕ωmn

p

R

�2

� 1

Rek
(44)

where ωmn is the circular frequency associated with a given
transverse mode number. Clearly, the radial penetration number
scales with the ratio of the Stokes layer

������������������

2ν0∕ωmn

p

and the
characteristic length R. Furthermore, it proves to be identical to the
reciprocal of the kinetic Reynolds number Rek. Using the transverse
frequency as a basis, Sr may be connected to theWomersley number,
α � R

����������������

ωmn∕ν0
p

, or the Stokes number, λS � R
����������������������

ωmn∕�2ν0�
p

, via

Sr �
1

2

�

������������������

2ν0∕ωmn

p

R

�2

� 1

2λ2S
� 1

α2
(45)

This result is somewhat reassuring, given the relevance of the Stokes
and Womersley numbers to oscillatory motions over nontranspiring
surfaces.

V. Conclusions

In this study, asymptotic expansion tools are used to capture small-
amplitude oscillations that are dominated by their transversemotion in
short cylindrical chambers that mimic the cold-flow environment of a
simple liquid rocket engine. After decomposing the unsteady wave
into potential and rotational fields, the latter is resolved using a
boundary-layer formulation that depends in large part on a small
viscous parameter δ. At the outset, several fundamental flow char-
acteristics of the tangential component of motion are evaluated and
described.Asbefore, the pseudopressure associatedwith the rotational
motion is determined systematically and shown to be immaterial to the
present analysis. The radial penetration number, a fundamental
parameter that controls the depthof penetrationof unsteadyvorticity, is
clearly identified. Its connection to the Stokes orWomersley numbers
is also affirmed. The advent of this parameter enables us to fully
characterize the depth of penetration in the radial direction.
With the vorticoacoustic solution at hand, thevelocity distributions

in different polar cross sections are carefully examined. These are
found to be strongly dependent on the radial penetration number,
which combines the transverse wave number and the viscous
parameter Sr � δ2∕kmn � 1

2
λ−2S . The latter, though different from its

axial counterpart, represents an essential parameter that recurs
whenever oscillatory wave motion is considered near a solid boun-
darywith or without surface transpiration. In futurework, a combina-
tion of sidewall and headwall corrections will be considered with the
aim of providing a complete representation of the vortical field in a
liquid rocket engine. It is also hoped that a similar mathematical

strategywill be pursued to achieve asymptotically accuratemodels of
vorticoacoustic waves in various physical settings.
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