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Abstract—In-situ data collection for mobile wireless sensor
network deployments has received little study, such as in the
case of floating sensor networks for storm surge and innundation
monitoring. We demonstrate through quantitative study that
traditional approaches to routing in mobile environments do not
work well due to volatile topology changes. Consequently, we
propose Sidewinder, a predictive data forwarding protocol for
mobile wireless sensor networks. Like a heat-seeking missile, data
packets are guided towards a sink node with increasing accuracy
as packets approach the sink. Different from conventional sensor
network routing protocols, Sidewinder continuously predicts the
current sink location based on distributed knowledge of sink
mobility among nodes in a multi-hop routing process. More-
over, the continuous sink estimation is scaled and adjustedto
perform with resource-constrained wireless sensors. Our design
is implemented with nesC and evaluated in TOSSIM. The per-
formance evaluation demonstrates that Sidewinder significantly
outperforms state-of-the-art solutions in packet delivery ratio,
time delay, and energy efficiency.

I. INTRODUCTION

While most existing wireless sensor network deployments
are still terrestrial networks with static sensor nodes, mobile
wireless sensor networks have received increasing attention.
During the past few years, several mobile wireless sensor
networks have been successfully deployed in which sensor
nodes are either equipped with motors for active mobility or
attached to mobile objects for passive mobility. For example,
researchers have attached wireless sensor devices to MicroAir
Vehicles [1], bikes [2], vehicles [3] [4], and animals [5] [6]. In
addition, wireless sensors are equipped with motors to move
underwater to collect data from static sensor devices [7].

A general observation from these new deployments is
that conventional routing solutions designed for static sensor
networks have been discarded. For example, although tree-
based routing protocols can tolerate minor topology changes
in static deployments due to lossy links [8] [9], but they cannot
survive excessive topology changes in mobile deployments
[9]. Geographic forwarding-based routing protocols [10] [11]
[12] [13] [14] are also discarded in these new deployments
as intermediate nodes may not know the precise location of a
mobile sink during a routing process.

Without choosing conventional solutions from static deploy-
ments, many mobile deployments [4] [3] [7] [2] employ delay-
tolerant designs in which data collected by sensors is stored
locally when connectivity is not available. The data is then
opportunistically delivered to mobile sinks when connectivity
is restored. While a delay-tolerant design serves the purpose

of data collection for offline data analysis, it is not suitable
for in-situ data collection in a more general mobile wireless
sensor network application.

We now use an example of a buoyant sensor network for in-
situ inundation monitoring to motivate the need for a holistic
forwarding protocol for mobile wireless sensor networks.
Since inundation prediction is largely based on modeling
and simulation, it is imperative to collect runtime flooding
information as in-situ feedback to simulation models. This
prediction allows for correction of any simulation errors as
well as adjusting simulation parameters for improved accuracy
in following inundation predictions. A mobile wireless sensor
network is an ideal platform for such in-situ data collection,
in which sensors placed on buoys float with water currents.
Hence, tracking individual sensors’ locations gives the ability
to compute the current inundation location, scope, moving
speed, and direction. Sensors’ location information can be
obtained from GPS sensors and reported back to a few mobile
sinks through multi-hop routing. A sink then communicates
with onshore Internet access via long-range radio.

Before proposing our solution for a general mobile wireless
sensor network that requires in-situ data collection, we first
examine whether existing solutions for general mobile ad
hoc networks can be directly used. Several classic routing
protocols like [15] [16] [17] [18] have been developed for
general mobile ad hoc networks. However, these solutions
adopt the same strategy: establishing a routing path from the
source to the sink before any data communication. Though this
strategy works well with small topology changes due to node
mobility, it does not apply with excessive topology changes.

More dynamic topology changes can be addressed using
the techniques proposed in [19], where data is forwarded to
an estimated area based on distance to the sink and mobility.
However, routing decisions are only made independently at
each hop using the information local to the current forward-
ing node. Most wireless sensor radios have a much smaller
communication range (e.g. 10∼40m in MicaZ) than that in
general mobile ad hoc networks (e.g. 150∼250m in 802.11).
This smaller radio range generates more topology changes than
in mobile ad hoc networks; a holistic estimation is needed
to more accurately predict the sink location by aggregating
information collected at each hop.

For these reasons, we propose Sidewinder, an in-situ data
collection protocol for mobile sensor networks. Like a heat-
seeking missile, Sidewinder data packets “home in” on the sink



via a combination of sink location prediction and estimation
techniques. The main contributions of this work are:

• In wireless sensor network literature, there has been
very little study on in-situ data collection with excessive
topology changes due to sensor mobility. We perform
a quantitative evaluation of traditional mobile ad hoc
and wireless sensor routing protocols and determine that
increased network dynamics cause the performance of
these protocols to degrade significantly. The Sidewinder
solution we propose is geared towards increased network
dynamics due to node mobility and can handle cases of
both random and group mobility.

• The Sequential Monte Carlo (SMC) theory is integrated
into Sidewinder to handle intensive topology changes
in mobile sensor networks. During a multi-hop data
forwarding process, the distributed knowledge of a mobile
sink location among intermediate nodes is integrated
under SMC to make smart routing decisions. This ag-
gregated approach contrasts with most traditional routing
protocols in that Sidewinder continuously updates its
routing path based on multiple sink location predictions.

• The SMC prediction approach in Sidewinder is scaled
to reduce computation and bandwidth overhead, thus
making it ideal for wireless sensor networks. Sink lo-
cation estimates are clustered in such a way to minimize
overhead while maintaining accuracy from hop to hop.
This novel clustering technique surpasses other clustering
and compression methods in minimizing computational
complexity and communication overhead to allow sink
location information to be piggybacked in data packets.

• Sidewinder is implemented with nesC [20] and evalu-
ated in TOSSIM [21]. Extensive performance evaluation
demonstrates that Sidewinder significantly outperforms
existing solutions for in-situ data collection under inten-
sive topology changes in mobile sensor netowrks.

This paper is organized as follows: Section II motivates
this work with simulation and discussion of related work.
Section III gives an overview of the Sidewinder design. In
Section IV, we discuss the Sequential Monte Carlo Prediction-
based data forwarding strategy. The performance evaluation is
presented in Section V. In Section VI, we present conclusions.

II. L ITERATURE STUDY AND MOTIVATION

In general wireless ad hoc and sensor networks, a group
of existing routing protocols perform a one-way [9] [22] or
two-way [15] [16] [17] [18] [23] path discovery and use the
discovered path for consecutive data communication. A sensor
network has a much smaller radio range, typically10 ∼ 40m,
compared to a general wireless ad hoc network,150 ∼ 250m.
When excessive topology changes are observed in a sensor
network, continuous maintenance of fixed routing paths be-
comes impractical for supporting effective communication.
The approach in [19] provides a mobility-induced time and
space adaptive beaconing mechanism to provide destination
location information, but routing decisions are only made
at each hop. We illustrate the detrimental effects of these

topology changes on traditional wireless ad hoc protocols in
Section II-A, which motivates the need for a protocol that
makes routing decisions based on information accumulated at
each hop to ensure data reaches the sink.

Another group of routing protocols [10] [11] [12] [13] [14]
use periodic beaconing messages to discover neighbors, and
use neighbors’ geographic locations for local forwarding to
achieve multi-hop communication. Some solutions exist to
modify the neighbor table in the mobility case, such as [24]
and [19]. When geographic locations are not available, some
variants [25] [26] [27] use virtual coordinates or landmarks
compared to selected anchor nodes for local forwarding. Like
[19], [28] also provides a mobility-induced time and space
adaptive beaconing mechanism to provide destination location
information, but still makes use of a neighbor table. [29] [30]
[31] use zone-based forwarding to address mobility, which
still suffers in highly mobile environments. In Section II-B,
we show through quantitative study how highly mobile envi-
ronments cause traditional wireless sensor routing protocols to
fail. This illustrates the need for a dynamic routing protocol
with low overhead that does not rely on a neighbor table or
fixed routes.

The results of the following quantitative studies illustrate
new challenges that cannot be handled by traditional routing
methods and motivate the design of our new routing protocol.
In Section II-A, we show the impact of radio ranges on
topology changes when nodes are mobile, concluding that
traditional mobile ad hoc routing protocols do not work well
for wireless sensors. In Section II-B, we show the detri-
mental performance impact of sink mobility on geographic
forwarding-based protocols like GF [10] and its mobility-
oriented enhancements [24].

A. Impact of Radio Ranges on Topology Changes

Taking AODV [15] as an example, we study how a rout-
ing protocol designed for general mobile wireless networks
performs in a mobile wireless sensor network context. We im-
plement AODV with nesC [20] in TOSSIM [21], and evaluate
it with 500 nodes. A source-sink pair is chosen from the 500
nodes, and a multi-hop (∼6 hops) path is established between
them using AODV. We measure the path lifetime, which is
defined as the time from which a path is established until
it is broken, and study it under different node mobilities and
radio ranges. For node mobility, we use the Random Waypoint
[32] model without pause time [33]. We increase the radio
range from 25m to 250m with 25m increments. To eliminate
any effect of changing node density on end-to-end routing
performance, we keep the node density at approximately 20
one-hop neighbors per node. To help focus on performance
study of mobility, we do not simulate node failures or lossy
links [8] [34] [9] so that their impact on routing performance
can be separated. Two interesting observations are identified
in Figure 1. First, the multi-hop end-to-end link has a much
longer lifetime when the radio range is150 ∼ 250m than
when the radio range is10 ∼ 40m. For example, the observed
link lifetime goes up to 109s when the radio range is 250m,
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Fig. 1. Performance Impact of Radio Ranges on Topology Changes

but it reduces to 18s when the radio range is 25m. This
84% link lifetime reduction indicates that even though AODV
works well in general mobile wireless networks, it leads to
very poor performance when it is applied to mobile wireless
sensor networks. Second, when the node mobility is high,
AODV leads to poor performance in both general mobile
wireless and sensor networks. For instance, when the node
mobility increases to 5+m/s, the path lifetime reduces to≤ 11
seconds in general mobile wireless networks and≤ 3 seconds
in sensor networks. Routes with such a short lifetime are
useless in practical systems, therefore, routing protocols that
are originally designed for general mobile wireless networks
[15] [16] [17] [18] can not be directly applied in mobile
wireless sensor networks. Thus, a new protocol is required for
wireless sensor networks that can handle high node mobility
and accurately guide data from source to sink.

B. Impact of Sink Mobility on Geographic Forwarding

Geographic forwarding-based protocols [10] [11] [12] [13]
[14] have been widely used in static wireless sensor networks,
because they only maintain local information to achieve end-
to-end routing. However, a common assumption of these
geographic forwarding-based protocols is that all intermediate
nodes in a routing path know the exact sink location and use
it for multi-hop routing. This assumption is reasonable when
the sink is static, but leads to poor performance when the
sink is mobile. In this experiment, we use the same TOSSIM
configuration as presented in the previous experiment to eval-
uate one of the most representative geographic forwarding-
based protocols, GF [35], in mobile environments. GF is
implemented with the Destination Location Prediction (DLP)
mobility enhancement in [24]: when a forwarding node is a
one-hop neighbor of the sink, the forwarding node selects the
sink as the next hop. DLP is designed to eliminate local max-
imums, where a forwarding node is a one hop sink neighbor,
but the forwarding node neighbor table indicates that it is the
node closest to the sink location. As shown in Figure 2, when
all nodes are static, the end-to-end packet delivery ratio is
100%. However, when nodes are mobile, the end-to-end packet
delivery ratio drops sharply. For example, when the maximum
node speed is 1m/s, which means a 0.5m/s average speed,
the GF packet delivery ratio goes down to 50%. When the
maximum node speeds increases further to 5m/s, 10m/s and
20m/s, the end-to-end packet delivery ratio reduces to≤ 20%.
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Fig. 2. Performance Impact of Sink Mobility on Geographic Forwarding

There are two reasons why GF performs so poorly when
nodes are mobile. First, the geographic forwarding direction is
not continuously corrected based on distributed sink mobility
knowledge among nodes in the routing path, so a source
may fail to find a route to a mobile sink. Second, it is too
costly to keep updating a neighbor table to deal with mobility,
and an inadequate update usually leads to failure of data
forwarding. Neighbor Location Prediction, presented in [24],
predicts neighbor locations based on movements and attempts
to reduce the beaconing frequency; zone-based forwarding
described in [28] presents a more efficient alternative without
the use of a neighbor table. While zone-based forwarding
is integrated into our Sidewinder design, our performance
evaluation in Section V shows that by itself, it is still lacking.

We have shown that traditional ad hoc routing solutions
suffer with frequent topology changes in mobile environments.
We also illustrate that traditional wireless sensor routing
solutions face routing difficulties in mobile environmentsdue
to reliance on local decisions and costly neighbor tables. To ad-
dress these concerns, we propose the use of Sequential Monte
Carlo (SMC) estimation to increase the prediction accuracyof
the sink location over multiple hops. We are aware that SMC
estimation has been used to improve tracking/localization[36]
[37] and sensor fusion [38] performance. These previous
studies also point out that SMC is a better choice than other
prediction techniques, for it is more accurate than Kalman
filters and incurs less overhead than Markov models. We
integrate this SMC estimation technique into Sidewinder in
a low-overhead manner to account for the computational and
bandwidth restrictions present in wireless sensor networks.

III. S IDEWINDER OVERVIEW

Our Sidewinder protocol lies between the transport and
MAC layers, as shown in Figure 3. It gets data from the
transport layer and forwards it to sink nodes. It also gets
global time and individual node location information from the
time synchronization and localization protocols, which have
been extensively studied in wireless sensor networks. Any
existing MAC protocols, like B-MAC [39], can be used below
Sidewinder. The predictive multi-hop forwarding functionality
is achieved through combined efforts of four modules: Se-
quential Monte Carlo (SMC) Prediction, Limited Flooding,
Mobility Monitor and Adaptive Update.
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The SMC Prediction module utilizes partial knowledge of
sink location from all intermediate nodes in the routing path
to make a combined sink location estimate, and hence makes
the informed local data forwarding decision dynamically.
This holistic prediction of sink location based on distributed
knowledge among intermediate nodes facilitates in-situ data
forwarding to a mobile sink. This module enables Sidewinder
to achieve high packet delivery ratio and low time delay in
mobile sensor network environments.

While the SMC Prediction module enables Sidewinder to
forward data close to a mobile sink, the Limited Flooding
module ensures that data finally reaches the sink. When a
forwarding node is a one-hop neighbor of the sink node, data
packets received are passed to the Limited Flooding module,
which broadcasts them to all the node’s two-hop neighbors,
ensuring the data reaches the sink even if the sink has moved
out of range of the forwarder.

Since group mobility is a common characteristic of buoyant
sensor networks or mobile sensor networks such as ZebraNet
[6] it is important to measure individual nodes’ mobility
as well as group mobility. Mobility can be measued based
on nodes’ locations, which are obtained from localization
protocols. The Mobility Monitor module serves this purpose,
providing the measured ground truth for SMC Prediction. The
Adaptive Update module provides a link between the Mobility
Monitor and SMC Prediction, disseminating sink location and
mobility information to the network. The Adaptive Update
module updates the network in a time and space adaptive
manner to save energy and reduce communication overhead.

We now explain in detail SMC Prediction, Mobility Mon-
itor, and Adaptive Update. The Limited Flooding module is
comparatively simple and hence not elaborated.

IV. D ETAILED SIDEWINDER DESIGN

In this section, we first discuss the general idea of how the
Sequential Monte Carlo theory can be integrated into multi-
hop data forwarding. Then, we discuss how this design can
be trimmed to fit into sensor network environments, where
bandwidth and energy are limited. Finally, we present details
of each phase in SMC Prediction-based data forwarding along
with adaptive sink update.

A. SMC Prediction Concept

During multi-hop data forwarding toward a mobile sink, the
goal of the SMC Prediction module is to determine the current

sink location using possible locations estimated by previous
hops as well as the current hop. It consists of four phases:
initialization, prediction, filtering, and resampling.

In initialization,N possible sink locations are generated by
a source node based on the last heard sink location, group and
random velocities. TheseN locations form a possible location
distribution of the mobile sink. In the prediction phase, a
forwarding node uses both theN sink locations generated
by the previous node as well as its own knowledge of sink
location, group and random velocities to predict current sink
locations. The filtering phase allows a forwarding node to use
both the previous node’s and its own sink location predic-
tions to eliminate impossible sink locations. Finally, in the
resampling phase, a forwarding node uses its own sink location
information to generate new possible sink locations to replace
those eliminated in the filtering phase. In this way, a data
packet can be forwarded towards a continuously corrected,
predicted sink location, using the knowledge distributed on
the nodes in the path.

Several papers [28] [29] [30] [31] show that to deal with
frequent topology changes, it is better to let all nodes that
overhear the forwarded data to compete for the next hop
forwarding, rather than assigning a specific node among a
frequently updated neighbor table to forward the data. We
incorporate this zone-based forwarding wisdom in Sidewinder:
if a node hears a data forwarding packet and also finds itself
currently within the 60◦ forwarding zone facing the sink, it
competes for the next hop forwarding; Otherwise, it ignores
the data packet. A 60◦ forwarding area has been shown in
[29] to reduce redundant forwarding, so we integrate this
forwarding area size into Sidewinder. When a node competes
to forward to the next hop, it sets a backoff timer with respect
to the forward progress to the estimated sink area center. A
competitor within this 60◦ zone overhears this data forwarding
and cancels its backoff timer.

B. SMC adapted to Wireless Sensor Networks

Since communication is far more expensive than compu-
tation in sensor networks, it is necessary to minimize the
communication overhead of integrating SMC Prediction into
multi-hop routing. The main overhead is to send theN
estimated sink locations to the next hop. If 4 bytes are used
to represent a node location (x,y), 4N bytes are needed
to representN locations. AssumingN = 8 for achieving
reasonable prediction accuracy, 32 bytes are needed for each
data forwarding decision. Considering that a typical sensor
network packet size is∼ 40 bytes, this is too much overhead,
and hence alternative representations are needed.

One alternative is to consider a Convex Hull algorithm like
Quickhull [40]. Instead of using allN locations, QuickHull
usesQ edges to represent the potential sink area. However,
Quickhull is not able to represent the real location distribution
of the sink within the potential Convex Hull area, and hence
reduces the prediction accuracy.

Another alternative is to consider clustering techniques,
such as QT [41], that can groupN predicted sink locations



into Q clusters. To represent each cluster, 4 bytes are needed
for the center location, 1 byte is needed for the radius, and 1
byte is needed for the number of locations in this cluster. So
representingQ clusters needs 6Q bytes. If Q = 3 ∼ 4, then
18∼24 bytes are needed to forward a data packet in each hop,
which is also too much overhead. So, a conventional clustering
technique is also not a good choice.
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Fig. 4. A sink node S computes its group,
random, and neighbor velocities.

Therefore, we
propose a sector
method that uses a one-
dimension, rather than
the conventional two-
dimension, clustering
technique to reduce
communication and
energy overhead while
preserving the sink
location distribution
in the predicted area.
Although reducing clustering from two dimensions to one
loses some information, it does not produce a noticeable
performance impact. This is because a multi-hop data
forwarding decision only needs to know the orientation
and distribution of the predicted sink locations from the
forwarding node. The distances from the forwarding node
to these possible locations are unnecessary. Therefore, in
our sector method, a 60◦ forwarding area focused on the
estimated sink area center is used and is also split intoQ
sectors, with the number of possible sink locations inside each
sector calculated to represent the sink location distribution in
the forwarding direction. It is effective to just transmit the
number of possible sink locations in each sector, rather than
all possible sink locations, so the total cost is reduced to just
Q bytes.

C. Mobility Monitor

To understand the SMC forwarding approach and its rela-
tionship with node mobility, we first describe the calculation
of group and random velocities. We determine the general
movement of network as a whole as well (group veloc-
ity) as individual nodes’ random deviations from that group
movement (random velocity). Since there exists an extensive
study of retrieving accurate sensor locations through GPS or
localization algorithms, in Sidewinder, we assume that each
node can get its own location from the localization module
as denoted in Figure 3. Based on location history, each node
can compute its own velocity. A sink node can also obtain its
neighbors’ velocities through local beaconing, and combine
them with its own velocity−→vs to compute its group and random
velocities. As shown in Figure 4, when sink S obtains its
own velocity−→vs and its neighbors’ velocities−→va, −→vb , −→vc , −→vd,
and−→ve , its group velocity can be computed as the averaged
velocity:

−→
VG = (−→va + −→vb + −→vc + −→vd + −→ve + −→vs)/6, and the

its random velocity
−→
VR can be computed as the difference

between absolute and group velocities:
−→
VR = −→vs −

−→
VG. With

this concept in mind, we now explain our SMC approach.

D. SMC Initialization

In initialization, a source node predicts sink locations. It also
forwards the predicted locations together with application data
towards a mobile sink. The source node’s neighbors overhear
the forwarded data, and those currently lying in the specified
60◦ forwarding zone compete for the next hop forwarding.

Fig. 5. A source node constructs an estimated sink area basedon the last
known location, group and random velocities of a sink node.

As shown in Figure 5, a source node (A) computes an esti-
mated sink area, based on the stored sink location (S), group
velocity (

−→
VG), and random velocity (

−→
VR), received through

the last sink update, which will be discussed in Section IV-F.
The group velocity (

−→
VG) is multiplied by the time (t) elapsed

since the time that A receives the last adaptive update. The
displacement due to group mobility (

−→
VG · t), combined with

the last known location (L) of the sink node yields the center
(S) of the estimated sink area. The random velocity (

−→
VR) of

the sink node multiplied by the time (t) elapsed since the last
update yields the sink random mobility (

−→
VR · t), or the radius

of the estimated sink area.
After computing the estimated sink area, the source node

constructs a 60◦ forwarding area focused on the estimated
sink area center, and also splits it into1 ≤ Q ≤ 8 sectors with
a central angle of60

Q
, as shown in Figure 5.Q is specified

at runtime and it is determined through evaluation that more
than 8 sectors results in significant communication overhead in
comparison with any accuracy gains. Each sector has an inner
boundary,lic (clockwise) orlia (counter-clockwise), and outer
boundary,li+1c or li+1a, with respect to the source-estimated
sink area center linel0.

As shown in Figure 6, the slopes of sector boundaries are
first computed froml0 to l⌈Q

2
⌉c sequentially in a clockwise

manner, and then froml0 to l⌈Q

2
⌉a sequentially in a counter-

clockwise manner.
Denoting locations of the source and estimated sink center

as(xA, yA) and(xB , yB), respectively, the slope ofl0 (or line
AB) can be computed as:

tan(α) =
|yA − yB|

|xA − xB |
(1)



The slope ofl0 is then used in combination with the sector
central angleθ to computetan(γ), the slope ofl1c. Since1 ≤
Q ≤ 8, and hence there is a fixed, small number of possible
θ values, the value oftan(θ) can be obtained from a table
lookup, rather than using the limited computation resources
of small sensor devices.

tan(γ) = tan(α − θ) =
tan(α) − tan(θ)

1 + tan(α) tan(θ)
(2)

Using Equation 2, for a given sector boundarylic with known
slopetan(α), the slope for the adjacent sector boundaryli+1c

can be calculated astan(γ).
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(b) Calculating the slope of
counter-clockwise boundaries

Fig. 6. The slope of a boundaryl1j , wherej ∈ {c, a}, can be calculated
using the known valuestan(θ) and slope ofl0, tan(α). The slope ofl2j

can then be calculated from the slope ofl1j .

Once all the sector boundaries froml1c to l⌈Q

2
⌉c have

been computed, the sector boundaries froml1a to l⌈Q

2
⌉a are

computed sequentially in a counter-clockwise fashion. The
process mirrors that used for sector boundariesl1c to l⌈Q

2
⌉c.

For example, using Equation 1 and the sector central angleθ,
the slope ofl1a, or tan(γ) can be calculated as:

tan(γ) = tan(α + θ) =
tan(α) + tan(θ)

1 − tan(α) tan(θ)
(3)

With the boundaries determined for each sector, the source
node then generatesN random locations,8 ≤ N ≤ 64,
uniformly within the estimated sink area (dashed circle in
Figure 7), to represent possible sink locations (white points).
As with the number of sectors, it is determined during evalu-
ation that using more than 64 locations incurs a great amount
of computational overhead in comparison to a small increase
in forwarding accuracy. For each generated locationR, we
compute which sector in which it is located by comparing the
slope of the line that connects this location and the sourceA
(line AR) with that of sector boundaries. With the number of
possible sink locations in each sector computed, a source node
piggybacks this information in a data packet, together with
locations of the source and estimated sink center. Compared
with existing geographic forwarding-based protocol like GPSR
[10], only Q extra bytes are needed for forwarding to a mobile
sink. In Algorithm 1, we summarize the initialization phase.

Algorithm 1 Initialization
Input: The number of possible sink locations to predictN , the

source locationA(xA, yA), the estimated sink centerS(xS, yS),
and radiusrS (rS = VR · t as shown in Figure 5).

Output: The number of possible sink locations in each sector,Ci,
1 ≤ i ≤ Q
cntLocations = 0;
while (cntLocations < N ) do

Generate random locationR(xR, yR) inside circle (S, rS);
if (R is in sectori) then

Ci++;
cntLocations++;

end if
end while

Fig. 7. The source (A), generates 8 possible sink locations (white) in its
estimated sink area (dashed circle) and determines the number of points in
each sector before transmitting. Node F, the forwarder, creates a new estimated
sink area (solid circle) and node A’s sectors. F generates new possible sink
locations (gray) in overlapping areas of A’s and its own predictions, based
on the number of points in A’s corresponding sectors. Remaining points (P1
and P2) are created uniformly within the estimated sink areauntil there are
N possible sink locations.

E. SMC Prediction, Filtering, and Resampling

After a data packet is forwarded from a source to the next
hop, three things happen: 1) Prediction: the N sink locations
generated by the source is used to predict current sink locations
again1. Also, the current node predicts sink locations based on
its own knowledge; 2) Filtering: the current node makes use of
both the previous node’s and its own sink location predictions
to filter out impossible sink locations; 3) Resampling: the
current node uses its own knowledge to generate new possible
sink locations to replace those eliminated in the filtering phase.

Since the three phases are closely related, we explain them
together. As shown in Figure 7, when node F receives a
data packet from node A, several items are reconstructed.
From the information piggybacked in the data packet, node
F determines the following: the 60◦ forwarding zone from

1The elapsed time between when the previous node predicts thesink
location and when the current node needs to predict the sink location is the
same as a single hop data forwarding time. It is usually a few milliseconds.
Since the elapsed time is so small, the sink movement within such a period
can be ignored. Therefore, an intermediate forwarding nodecan just use the
N possible sink locations generated by a previous node to reconstruct, rather
than predict, the current sink location.



node A, the 4 sectors in the forwarding zone, and also the
2/3/3/0 sink location distribution within the sectors. Node F
also predicts possible sink locations (gray points), basedon
its own knowledge of the sink location as well as its group
and random velocities received in the last sink update.

In the filtering process, the accumulated sink prediction,
which is represented by the number of locations in each sector,
is filtered using node F’s prediction. The accumulated sink
predictions are plotted within the solid circle in Figure 7.
For instance, since sector 1 and 2 overlap with node F’s
prediction circle, the 3/3 location distribution is regenerated
in the corresponding overlapping area between sectors and
the solid circle. Also, since sector 0 has no overlapping with
the circle predicted by node F, the 2 locations in this sector
are filtered out. Since this filtering phase only regenerates6
sink locations, 2 more locations are needed to form the new
prediction. As shown in Figure 7, these new locations P1 and
P2 are resampled uniformly from node F’s prediction.

With a similar technique as presented in subsection IV-D, 4
sectors can be formed at F towards the newly estimated sink
center. Then, the location of F, the estimated sink center ofF,
and the number of locations in each sector are piggybacked
again in the data packet and forwarded to the next hop.

The core of the filtering and resampling phases is summa-
rized in Algorithm 2. One important aspect of this algorithm
is that we do not directly generate the specified number (Ci)
of locations within the overlapping area of each sector and
the new estimation area (S, rS), since that requires too much
computation for sensor nodes. Instead, we generate enough
random locations (10 times the expected numberN ) within
the circular area, and determine the sector in which they are
located. We are aware that if an overlapping area of a sector
and the new estimation area is very small, it may not get any
location generated inside, even though itsCi value is not zero.
This does not have an noticeable impact on accuracy since only
a tiny overlapping area is ignored when the total number of
random locations is 10 times that of what is expected.

F. Adaptive Update

The SMC Prediction module is updated with sink location,
group and random mobilities in a time and space adaptive
manner via the Adaptive Update module. The method used is
similar to that in [19], where nodes notify each other of their
location at a rate based on distance and relative velocity in
order to reduce bandwidth and energy costs. In Sidewinder, a
sink node updates its location and mobility behavior according
to Equation 4 so that all Limited Flooding initiated two hops
away will be successful.

|
−→
VR | ×t ≥ 2r (4)

In Equation 4,
−→
VR refers to the sink random velocity,t is the

time since the last sink update, andr is the radio range, which
is empirically configured. With this time-adaptive update,all
one-hop neighbors of the sink at its last update will be no
more than two hops away from the sink before the sink updates
again, allowing all Limited Flooding packets to reach the sink.

Algorithm 2 Filtering and Resampling
Input: The number of possible sink locations to predictN , the

previous node locationA(xA, yA), the estimated sink center
S(xS, yS) and radiusrS (rS = VR · t as shown in Figure 5)
of the current nodeF , the number of possible sink locations in
sectori of nodeA, Ci, 1 ≤ i ≤ Q.

Output: Newly predictedN sink locations for nodeF .
cntLocations = 0; cntSectorNodes = 0;
{Filtering}
while (cntSectorNodes < N ∗ 10) do

Generate random locationR(xR, yR) inside circle (S, rS);
if (R is in sectori of nodeA) then

Ci- -;
cntLocations++;
If Ci ≥ 0, mark R as an estimated sink location;

end if
cntSectorNodes++;

end while
{Resampling}
while (cntLocations < N ) do

Generate random locationR(xR, yR) inside circle (S, rS);
Mark R as an estimated sink location;
cntLocations++;

end while

Bandwidth and energy are further reduced by decreasing
the sink update frequency as distance to the sink increases.To
achieve this, each node has a probabilityP for forwarding a
sink update packet. The value ofP for a given node is based
on its number of hops from the sink,h. If a node ish hops
away from the sink, the probability for it to forward a sink
update packet,Ph, is computed as:

Ph = αh−1, (0 < α ≤ 1) (5)

In Equation 5,α is set as 1 for the first update, so that
all nodes in the network have initial knowledge of sink
location and movement behavior. After system initialization,α
is reduced to an empirical value (0.2 is used in our evaluation)
so that nodes farther away from the sink receive fewer updates.
Nodes farthest away from the sink need only a general idea of
the sink location and movement behavior; nodes that forward
the data have a more accurate picture of the sink location and
movement. As data makes its way from the network edge to
the sink, more accurate sink information is used at each hop
to precisely route data to the sink.

V. PERFORMANCEEVALUATION

Sidewinder is implemented in TinyOS-2.x [42] with nesC
[20] and evaluated in TOSSIM [21] using B-MAC [39]. Two
mobility models are used in evaluation: Random Waypoint
without pause time [33], and the Reference Point Group
[43] mobility model. Though more advanced mobility models
exist [44], we choose Random Waypoint and Reference Point
Group since they are simple and apply to a large number of
possible scenarios, ranging from flood tracking to movements
of search and rescue teams [32]. When Random Waypoint
mobility is used, 500 nodes are uniformly deployed in an
area of 215m x 215m, with the radio range of 25m. When



Reference Point Group mobility is used, the deployment region
is increased to 2000m x 2000m to allow for group movement.
Also for Reference Point Group mobility, the group radius is
set to 120m to maintain the same node density as Random
Waypoint and each node’s random movement is set to the
maximum group speed. In both mobility cases, 3 sources are
randomly chosen to report sampled readings to the same sink,
at the frequency of one packet per second. In Sidewinder,
the Mobility Monitor module beacons location information
every 10s and the maximum backoff window in zone-based
forwarding competition is 128ms. In GF, each node beacons
every 1.5s and a neighbor table entry expires every 6.7s, which
is identical to the evaluation of GF in [10]. We also replace
the neighbor table maintenance in GF with a 60◦ zone-based
forwarding strategy [28] [29] [30] [31], but without SMC pre-
diction, and call the modified protocol Beaconless GF. In GF
and Beaconless GF, a sink node floods its location every 10s.
We repeat each evaluation 100 times and present the averaged
results in Figure 8, together with 90% confidence intervals.As
shown in Figure 8 (a), Sidewinder significantly outperforms
GF and Beaconless GF when nodes are mobile. For instance,
when node speed is 20m/s, Sidewinder achieves 92% packet
delivery ratio in group mobility, which is 52% higher than that
of Beaconless GF and 42% higher than that of GF. Sidewinder
also exhibits an 82% packet delivery ratio in random mobility,
which is 20% higher than that of Beaconless GF and 72%
than that of GF. This is because Sidewinder’s SMC prediction
continuously corrects the data forwarding direction towards the
mobile sink and the zone-based forwarding tolerates excessive
topology changes due to mobility. GF does not have any of
these mobility-aiding techniques and Beaconless GF does not
have the SMC prediction technique. For the same reasons,
Sidewinder always maintains a high packet delivery ratio,
≥ 80, while GF and Beaconless GF suffer from increasing
node mobility.

In Figure 8 (a), we also observe that Beaconless GF achieves
a higher packet delivery ratio than GF in random but not group
mobility. Beaconless GF achieves 50% higher performance
than GF in random mobility, because GF’s neighbor table
maintenance is negatively impacted by excessive topology
changes. These topology changes are tolerated by the zone-
based forwarding in Beaconless GF. In group mobility, GF
achieves 10% higher performance than Beaconless GF. This
is because the relative movement between nodes is small in
comparison with a random mobility model with the same
average node velocity. However, with group mobility, the
60◦ forwarding area constraint in Beaconless GF eliminates
possible routing paths that GF can find. This also explains
why Sidewinder achieves less than a 100% packet delivery
ratio when there is mobility. We plan to address this issue in
future, e.g., by borrowing the wisdom of face routing [10].

We also measure the end-to-end time delay and energy
consumption per successfully delivered data byte to the sink,
and present results in Figure 8 (b) and (c). Figure 8 (b) demon-
strates that Sidewinder and Beaconless GF achieve similar but
much lower time delay than GF, especially in random mobility.
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Fig. 8. Performance Evaluation

This is due to routing loops in GF. Such loops are caused
by the comparative random movement between neighboring
nodes, and that also explains why the measured time delay in
the random mobility case is significantly higher than that inthe
group mobility case. Since energy conservation is of utmost
concern in wireless sensor networks, we depict Figure 8 (c)
as the amount of overhead used by Sidewinder, Beaconless
GF, and GF. Increases in number of radio transmissions,
packet sizes, and computation will result in increased energy
consumption. Figure 8 (c) demonstrates that Sidewinder and
Beaconless GF consume similar but much less energy than GF,
which is due to two reasons. First, GF expends significant
energy on high frequency beaconing for updating neighbor



tables. Second, GF wastes more energy on packets that fail to
be delivered to the mobile sink. GF also demonstrates better
energy efficiency in group than random mobility, since multi-
hop routing failures are more prevalent with the increased
number of topology changes in random mobility.

VI. CONCLUSIONS ANDFUTURE WORK

This paper presents Sidewinder, a novel protocol for in-
situ data collection in mobile wireless sensor networks. We
show through quantitative evaluation that traditional ad hoc
and wireless sensor routing solutions fail in highly mobile
environments. Thus, Sidewinder addresses the issues of highly
dynamic network topologies and static route failures with
Sequential Monte Carlo prediction of sink locations. As a data
packet makes its way from source to sink, the sink location
prediction computed at each node is combined and updated
with each successive hop, increasing prediction accuracy.We
integrate this forwarding mechanism into Sidewinder using
a one-dimensional clustering technique that preserves sink
location prediction accuracy while minimizing bandwidth and
energy overhead. Our performance evaluation in TOSSIM
demonstrates that Sidewinder significantly outperforms state-
of-the-art solutions in packet delivery ratio, time delay,and
energy efficiency.
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