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Abstract: This work provides a system capable of obtaining simultaneous inductive signatures of

vehicles traveling on a roadway with minimal cost. Based on Time-Division Multiplexing (TDM) with

multiple oscillators, one for each inductive loop, the proposed system detects the presence of vehicles

by means of a shift in the oscillation period of the selected loop and registers the signature of the

detected vehicles by measuring the duration of a fixed number of oscillator pulses. In order to test

the system in an actual environment, we implement a prototype that we denote as SiDIVS (Simple

Detection of Inductive Vehicle Signatures) and acquire different vehicle inductive signatures under

real scenarios. We also test the robustness of the detector by simulating the effect of noise on the

signature acquisition.

Keywords: data acquisition; inductive loop detector; instrumentation and measurements; intelligent

transportation systems; multiplex systems; vehicle inductive signature

1. Introduction

One of the most important aspects of Intelligent Transportation Systems (ITS) is vehicle traffic

monitoring, essentially those applications whose aim is to count the number of vehicles on a roadway

or to know their speed, occupancy, or structural characteristics like density and type.

The sensors used for these applications can be classified, according to their location in the road,

as in-roadway and over-roadway. In general, in-roadway sensors may have problems of installation

and maintenance, whereas over-roadway sensors suffer from blocking of Line-Of-Sight (LOS) by

weather conditions or obstacles. However, the most frequently-used classification of sensors is done

according to the existence or not of an external energy source. Thus, we can talk of active and passive

sensors [1–3], respectively. Passive sensors measure reflected radiation that has been emitted from

the surrounding environmental elements. Some examples of passive sensors are image processing,

acoustic, seismic or magnetic sensors. Active sensors require their own source of excitation and

measure the reflected energy. Radar, laser, infrared, ultrasound and emerging technologies-based

sensors are some examples that lie in this category.

Since their introduction in the 1960s, the active sensors known as Inductive Loop Detectors (ILD)

are the more commonly used sensors in traffic management systems. This type of sensor has the

advantages of being a highly developed technology; of a simple operation, unaffected by environmental

conditions; and of a low installation cost. Although they have the problem of complex replacement in

case of breakage, with the inevitable interruption of traffic, and need regular calibration, their flexible

design can adapt to a large variety of applications, providing better accuracy in traffic classification

than other commonly used techniques [1]. Thus, ILDs have been widely used for tasks such as vehicle

classification [4–8], vehicle re-identification [9–12], and speed estimation with a single loop [13,14].
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Several works set the basis for the theoretical study of ILDs. In [15,16], an approximate model for

an ILD is shown, and an equivalent circuit model is detailed in [16]. A detailed study on the sensitivity

of an inductive loop and the response time to changes in inductance of different digital detectors is

shown in [1]. The work in [17] addressed the sensitivity problems in dual loops and proposed software

and hardware implementation solutions to identify and correct them. In [18], three-dimensional

maps illustrating the sensitivity of various inductive loops located under the asphalt surface of roads

are obtained.

These works have led to different implementations of ILDs. In the US4680717A patent [19],

a multiplex system for vehicular traffic detection with a single oscillator is presented. A multiple

vehicle detection system incorporating low-cost oscillators and an algorithm to calibrate the device

following changes in environmental conditions is proposed in [20]. However, although both works

allow the detection of the presence of vehicles, neither of them register their inductive signatures.

In [21], a system to detect multiple vehicles is also developed, but it requires multichannel acquisition

of analogue signals, which makes it overly complex. Furthermore, due to the function not being

fully multiplexed and to the use of the same frequencies in near loops, such development causes

significant interferences between channels (also known as crosstalk). The work in [22] also presents

a very complex hardware with a detector that obtains inductive vehicle signatures by measuring

changes in coil impedance, separating its real part (R) from its imaginary part (X). It uses an analogue

hardware, which integrates a self-balanced bridge when no vehicles are present, and two synchronous

demodulators for obtaining the R and X signatures corresponding to each vehicle.

The US691182982 patent [23] presents equipment to produce a vehicle inductive signature by

means of a change in inductance induced in the vehicle-loop when this vehicle passes over the road

loop. Although this amplitude detector allows multiple vehicle detection, it requires complex and

expensive analogue processing and signal acquisition circuits.

Taking into account the drawbacks identified in the aforementioned works, in this paper, we

propose a multiplex system for the Simple Detection of Inductive Vehicle Signatures (SiDIVS).

Our proposal implies a fully multiplexed system that avoids the interference between loops (also

called inter-loop interference) thanks to a very simple and almost fully automatic digital measurement

process. Therefore, it does not require the use of complex and expensive analogue processing circuits

or of analogue signal acquisition methods.

The paper is organized as follows. Section 2 presents a brief theoretical study of ILDs. The models

used to study the impact of noise on amplitude and resonant detectors are presented in Section 3.

Section 4 shows the practical implementation of the SiDIVS prototype using a multiplex detector

with eight channels. Section 5 explains the experimental measurements performed to evaluate

the performance of such digital detectors with the inductive signatures captured by our prototype.

Section 6 presents an analysis of the impact of the noise on these digital detectors. In addition, some

examples of real inductive signatures collected from different vehicles are included. Finally, Section 7

is devoted to the conclusions.

2. Inductive Loop Detectors

Figure 1 depicts the elements of an ILD. It consists of one or more coils with one or more turns

(usually three to five) embedded in the road pavement; isolated cables for the connection from the

coils to the control cabinet; and the electronic equipment (i.e., the detector) inside the cabinet.

The sensitivity S of an inductive loop is a measurement of its ability to detect small changes in

inductance and is defined as the ratio between the change in inductance due to passing traffic and

the initial inductance (i.e., the inductance when a vehicle is not present). Thus, we can express the

sensitivity as

S =
∆L

Lnv
=

Lnv − Lv

Lnv
, (1)
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where Lnv is the initial inductance when no vehicle is present, and Lv is the inductance when a vehicle

is present, so that the change in inductance is defined as ∆L = Lnv − Lv.

 
Cabinet 

Inductive loop 

Electronic detector 

Wire leads 

 

Figure 1. Elements of an inductive loop detector.

Modern inductive detectors of vehicle presence are digital because they provide more reliable,

accurate, and precise measurements than analogue detectors. Although there exist ILDs measuring

other types of variations in the coil, like impedance [22], currently, the majority of ILDs indirectly

measure variations in inductance as indicated in Equation (1). These variations are caused by the

presence of a vehicle in the detection area of the inductive loop, which produces a decrease of

inductance. Two methods are used to measure such variations: one based on measuring the frequency

or period changes of an oscillator resonant circuit, and one based on measuring the voltage amplitude

changes of an RLC circuit operating at a fixed frequency, known as resonant ILDs and amplitude ILDs,

respectively. We briefly describe both ILD types in the following subsections.

2.1. Resonant ILDs

Resonant ILDs are based on the measurement of changes of oscillation frequency or period.

The oscillator frequency is controlled by a parallel resonant circuit, also called tank circuit, which is

constituted by a non-ideal loop with inductance L in serial with a resistor R, and this serial set

connected in parallel with a capacitance C placed in the detector. The complex impedance of this

circuit is given by:

Z(jw) =
R
(

1 − w2LC
)

+ w2RLC + j
(

wL
(

1 − w2LC
)

− wR2C
)

(1 − w2LC)
2 − w2R2C2

. (2)

Since for a resonant circuit it verifies Im[Z(jw)] = 0, we have that w0L(1 − w2
0LC)− w0R2C = 0,

which gives us the resonant angular frequency w0

w0 =

√

L − R2C

CL2
. (3)

Since our detector has R ≈ 1 Ω, L ≥ 50 µH, and C ≤ 100 nF, it verifies L ≫ R2C, and we can

approximate w0 by:

w0
∼=

√

L

CL2
=

1√
LC

, (4)
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so that the oscillation frequency f0 is given by:

f0 =
w0

2π

∼= 1

2π

√
LC

. (5)

It is important to note that the oscillation frequency depends on the inductance as f0 = kL−1/2,

with k = (2π

√
C)−1, and the frequency change is given by ∆ f = fv − fnv, fv being the oscillation

frequency with vehicle presence, and fnv the oscillation frequency without its presence. Thus, we have:

fv = kL
− 1

2
v = k (Lnv − ∆L)−

1
2 = kL

− 1
2

nv

(

1 − ∆L

Lnv

)− 1
2

= fnv

(

1 − ∆L

Lnv

)− 1
2

, (6)

with fnv = kL−1/2
nv , and

∆ f

fnv
=

fv − fnv

fnv
=

fv

fnv
− 1 =

1
√

1 − ∆L
Lnv

− 1. (7)

Since ∆L/Lnv is very small, ∆ f / fnv can be approximated by the first two terms of the Taylor

series, i.e.,
∆ f

fnv
≈ 1

2

∆L

Lnv
=

1

2
S, (8)

where S is the sensitivity of the inductive loop (see Equation (1)). This sensitivity can thus be

approximated by:

S =
∆L

Lnv
≈ 2

∆ f

fnv
= 2

fv − fnv

fnv
= 2

Tnv − Tv

Tv
= 2

∆T

Tv
, (9)

where Tv = 1/ fv is the period of oscillation if a vehicle is over the coil, and Tnv = 1/ fnv denotes

the period of oscillation otherwise. Experimental results have shown that the loop sensitivity S is

extremely repeatable for fixed sizes and geometries of both the loop and the vehicle and for a fixed

distance between them, as can be verified from Equations (1) and (9).

Detectors whose operation is based on period changes (i.e., based on period shifts ∆T), known as

type III or type IV, in which period shifts or relative period shifts are measured, respectively, present a

measurement time that is short enough for their use in applications of inductive signature capturing,

although the characteristics of the oscillation loop have influence on the threshold sensitivity.

Type III detectors based on period shift use a reference clock signal whose frequency is of several

MHz, typically between 20 and 1000 times greater than the oscillation frequency of the inductive loop

we are interested in measuring. The period of the oscillation signal is calculated as the number of

cycles N of the reference clock signal in m cycles of the oscillation signal. When a vehicle stops or

passes over the loop, the oscillation frequency increases; thus, the period (and thus the number of

cycles N) decreases. The counter of clock signal periods without vehicles involved is given by:

Nnv =
mTnv

Tr
, (10)

where Tr is the period of the reference clock signal. On the other hand, with the presence of a vehicle

over the loop, the number of cycles is calculated as:

Nv =
mTv

Tr
. (11)

The shift ∆N can then be calculated as the difference between the values given by Equations (10)

and (11) as:

∆N = Nnv − Nv =
m

Tr
(Tnv − Tv) = m

∆T

Tr
. (12)
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Equating this value to the minimum detection threshold Nt gives us:

∆N = m
∆T

Tr
= Nt → ∆T =

NtTr

m
, (13)

so from Equation (9), we obtain the threshold sensitivity St as:

St
∼= 2

∆T

Tv
= 2

NtTr

mTv
= 2

Nt

Nv
. (14)

From this equation, it can be seen that, for type III detectors, there is a loss in threshold sensitivity

for high oscillation frequencies, although this loss can be easily reduced by increasing the frequency fr

corresponding to the reference clock signal.

Most digital detectors can operate with four or more loops. The problem of crosstalk for resonant

ILDs is solved by separating the loops, in our proposal up to eight directly connected to the detector,

using Time-Division Multiplexing (TDM) [19,21]. The multiplexing could be extended to the detectors

in the surrounding area by using synchronizing signals generated by one of them, which would

work as the master, thus sequencing the time multiplexing of all the detectors. However, this has the

disadvantage of reducing the sampling frequency of the obtained vehicle inductive signatures. These

multiplexed models sequentially feed and analyse the channels more than 100 times per second using

period shift detectors which, as mentioned before, are fast enough to allow these scanning rates.

Our practical implementation is based on a type III detector using TDM, as we will detail in

Section 4. We can see a real vehicle inductive detector of eight loops in Figure 2.

Figure 2. Eight-loop vehicle inductive detector (Afotres–Dimaco).

The oscillation frequency with a negligible resistance R is given by:

f (t) =
1

T(t)
=

1

2π

√

L(t)C
, (15)
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where the equivalent inductance L(t) is Lnv, with no presence of vehicle, or Lv(t), with vehicle. For a

resonant oscillator, when a vehicle is passing over the loop, both the loop inductance and the oscillation

period decrease.

The signal at the oscillator output is expressed as:

x(t) = Asin (2π f (t)) . (16)

Then, the vehicle inductive signature is the period shift, expressed as ∆T = Tnv − Tv ≥ 0.

Then, the shift in the oscillation period (which gives us the inductive signature) is determined

as follows:

∆T(t) = 2π

(

√

LnvC −
√

L(t)C

)

. (17)

2.2. Amplitude ILDs

Amplitude ILDs are based on the measurement of changes in voltage amplitude of an RLC

circuit to which a fixed frequency signal is applied [21,23,24]. The RLC circuit is formed by the loop

inductance L and both the resistance R and the capacity C in the detector, and it is connected to the

sinusoidal voltage generator Vg operating at a fixed frequency f = w/2π. The amplitude of the output

voltage V0 changes with the value of the loop inductance L.

The complex transfer function v(t)/Vg is given by:

v(t)

Vg
=

1

1 − jR
(

1
wL(t)

− wC
) , (18)

and the magnitude of v(t)/Vg, i.e., |v(t)/Vg| is:

|v(t)|
|Vg|

=
1

√

1 + R2
(

1
wL(t)

− wC
)2

, (19)

or equivalently,

|v(t)| = |Vg|
2π f L(t)

√

R2
(

1 − (2π f )2 L(t)C
)2

+ (2π f L(t))2

. (20)

This output voltage amplitude could be approximated as a function of the inductance L(t)

as follows:

V = |v(t)| ≈ 1

k1L(t) + k2
, (21)

and the amplitude change is given by:

∆V = Vv − Vnv, (22)

Vv being the voltage amplitude with vehicle presence, and Vnv the voltage amplitude without that

presence. Thus, we have:

∆V = Vv − Vnv =
1

k1Lv(t) + k2
− 1

k1Lnv + k2
=

k1 (Lnv − Lv(t))

(k1Lv(t) + k2) (k1Lnv + k2)
,

∆V

Vv
=

k1 (Lnv − Lv(t))

k1Lnv + k2
=

k1 (Lnv − Lv(t)) /Lnv

k1 + (k2/Lnv)
=

k1

k1 + (k2/Lnv)
S. (23)
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Since Lnv is constant, then the sensitivity S is:

S =
∆L

Lnv

∼= k
∆V

Vv
, (24)

i.e., the changes in the inductance of the inductive loop due to the presence of a vehicle modulate

the amplitude of the fixed frequency carrier. In other words, the output voltage signal is

Amplitude Modulated (AM) by the vehicle signature. Therefore, the demodulation of the AM waveform

gives that vehicle signature and also, by means of an Analogue-to-Digital Conversion (ADC), the signature

data. The bandwidth of the vehicle signature is mainly a function of the vehicle speed, the loop

geometry, and the vehicle undercarriage features.

Let n be the bit number for ADC, and therefore N = 2n the state counter. Let also Nt be the count

threshold, and then the threshold sensitivity is expressed as:

St
∼= k

Nt

N
. (25)

The problem of crosstalk for the amplitude ILDs with four or more loops [23] is solved by an

RLC circuit per loop with the carrier frequencies of each loop spaced enough to include the signature

bandwidth, and using a synchronous demodulator tuned to each carrier frequency.

3. Impact of Noise on Digital Detectors

In this section, we present a model to study the impact of noise on both resonant and amplitude

detectors, which have been introduced in Section 2.

3.1. Impact of Noise on Resonant Detectors

Figure 3 shows the block scheme of a resonant detector. Let L(t) be the equivalent inductance on

the ends of the parallel resonant circuit constituted by this inductance and the equivalent capacity C.

The oscillation frequency is given by Equation (15).

Resonant 

oscillator 
L(t) 

n(t) 

Counter 

�T(t)

x(t) xn(t) 

Figure 3. Block scheme of a resonant detector.

We will consider interferences caused by Additive White Gaussian Noise (AWGN), denoted as n(t),

induced in the loop by ambient noise, like power lines, emissions from mobile phones, and so on.

Therefore, at the comparator input we have:

xn(t) = x(t) + n(t), (26)

where xn(t) is the signal plus noise. This signal must be converted, previously to be carried out to the

counter input, to a digital pulse train. This conversion is performed by the comparator with hysteresis,

which acts as a wave shaper. Then, the counter receives and counts the m counting cycles and measures

the time interval ∆T, which provides the vehicle inductive signature.
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3.2. Impact of Noise on Amplitude Detectors

Figure 4 shows the block scheme of an amplitude detector in presence of noise. Let v(t) be the

signal at the output of the RLC circuit. Again, if we consider interferences produced by AWGN,

denoted as n(t), the signal at the output of the RLC circuit is given by vn(t) as follows:

vn(t) = v(t) + n(t). (27)

The root mean square (rms) value of this signal provides the inductive signature of amplitude ∆A(t).

L(t) 

n(t) 

�v(t)
v(t) vn(t) 

R 

C 

Vg

Synchronous 
demodulator 

 RMS 

�A(t)

Lowpass 

filter 
�

Figure 4. Block scheme of an amplitude detector.

Synchronous Demodulator (SD)

The signal modulated by the inductive signature s(t) can be written as:

x(t) = (A + s(t)) cos (wt) , (28)

and multiplying x(t) by the carrier, cos(wt), we have:

y(t) = (A + s(t)) cos2 (wt) =
1

2
(A + s(t)) +

1

2
(A + s(t)) cos (2wt) . (29)

With a low-pass filter, we can eliminate the component of frequency 2w, so that, also removing

the Direct Current (DC) component, the inductive signature ∆v(t) = s(t)/2 is obtained (see Figure 4).

4. Proposed Design of an Inductive Detector

In this section, we present our implementation of the inductive signatures detector, referred

to as SiVIDS. We will describe both hardware and software elements and the procedures for both

measurement and registration of signatures. Our implementation has eight channels, allowing the

registration of signatures of up to four lanes with dual loops in each lane or of up to eight lanes with

simple loops in each lane. This covers most of the existing types of roads and makes the system easy

to build thanks to the availability of a large number of standard integrated circuits with eight channels,

like multiplexers, decoders, buffers, etc.

4.1. Colpitts Oscillator

The oscillation circuit employed in the proposed implementation is the well-known Colpitts

oscillator, since it is the simplest resonant LC oscillator. Figure 5 shows the schematic of a Colpitts

oscillator based on a pnp transistor in common base configuration connected to a tank circuit formed

by the inductance L1 of the inductive loop and the capacitors C1 and C2 that form the capacitive divider

of the feedback loop [25,26].
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The oscillation frequency is determined by the parallel resonant circuit formed by the inductance

L1, and the equivalent capacitor C obtained from the serial connection of C1 and C2, i.e.,

f0 =
1

2π

√
L1C

, with C =
C1C2

C1 + C2
. (30)

Vo

R1

V1=+5V

R2R3 C2

L1

C1
Q1

Figure 5. Circuit for the Colpitts oscillator.

4.2. Pulse Counter

Figure 6 shows a block diagram of the comparison and capture process necessary to measure

the oscillation period automatically. The pulses from the oscillation loop that has been selected as

input are carried to a counter input, so that when a fixed number of pulses m is reached, the measured

value N is captured from a timer working at the frequency fr of the reference clock signal.

Pulses from 

oscillators

Timer in capture

mode

Match

control

Comparator

Pulse counter

Measured value

Number of counting

pulses

Interrupt

Reference

clock

Figure 6. Measurement method by using comparison and capture.

Since the basic measurement process is performed by hardware using interruptions, the delay

time of interruption attention (known as latency) is not critical.

Figure 7 shows the practical implementation of the multiplex system with eight coils. It consists

of eight Colpitts oscillators connected to eight inductive loops and an analogue multiplexer, which

selects, at each instant, the oscillation signal of one of the loops using a decoder circuit. The use of

eight oscillators instead of a single one allows us to avoid the introduction of an analogue multiplexer

into the oscillation loop, which would be an additional error source.

The output signal of the multiplexer is carried to a shaping circuit, which converts the sinusoidal

signal at its input into a digital pulse. That digital pulse is the input at the counter in the micro

controller, which manages the entire system.
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Due to the large amount of data captured by the system, a Compact Flash (CF) memory is employed

for the recording of the signatures that will be subsequently analysed by a computer using signal

processing algorithms. This off-line processing will allow us to perform vehicle classification and

measurement of parameters such as speed or length, and even vehicle re-identification for monitoring

and control applications of vehicular traffic.

For the implementation of our system, we have chosen the AT89C51RE2 micro controller

(Atmel, San Jose, CA, USA) since, firstly, it incorporates the comparison and capture unit needed

in our application; and secondly, it can be easily interconnected to a CF memory bus. Figure 8

shows the interconnections for the AT89C51RE2 micro controller in our system. The output of the

multiplexer is connected to the EC1 input, the CEX0 comparison output is carried to the T2EX input

for capturing/interrupting, and the T2 timer is in capture mode.

Loop 1

Loop 2

Loop 3

Loop 4

Loop 5

Loop 6

Loop 7

Loop 8

8 Channels 

analog 

multiplexer

+

Shaper

Micro

controller

Timer

fr= 4MHz

SL2

SL1

SL3

SL4

SL5

SL6

SL7

SL8

1-of-8 

Decoder

SL1

SL2

SL3

SL4

SL5

SL6

SL7

SL8 A B C

A B C

CF
memory

Oscillator 1

Oscillator 2

Oscillator 3

Oscillator 4

Oscillator 5

Oscillator 6

Oscillator 7

Oscillator 8

Counter

Figure 7. Multiplex system with eight inductive loops.

Interrupt T2

Match 

control

ECI

CEX0

T2EX

AT89C51RE2

Oscillator

loop pulses

Figure 8. Interconnections for AT89C51RE2.
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Figure 9 shows a picture of the implemented hardware prototype. The left side of the board

includes the eight oscillation circuits with multiplexing and a 16-pin connector for the connection

of the eight inductive coils. The right side contains the micro controller and a Real-Time Clock (RTC)

circuit with a lithium battery providing the date and time. The CF memory card used for the storage of

the captured signatures can be seen at the bottom. One of the main advantages of the proposed system

is that it can be implemented at a very low cost, thanks to its simplicity.

Figure 9. Photo of the hardware prototype.

4.3. Measurement

As can be seen in Equation (12), the period of the oscillation signal in each loop is calculated as

the number of cycles N of the reference clock signal in m cycles of the oscillation signal of that loop.

The measurement of N is made by means of T2 interruptions generated by overflow (TF2) and by

hardware automatic capture (T2EX). An initial number of oscillation cycles mi corresponding to the

stability time of the oscillator start are discarded.

Figure 10 shows a flowchart describing the process of the T2 interruptions’ attention.

The measurement of each loop starts with the interruption by T2 overflow due to the delay time

between loops required for the oscillation of the previous loop to completely disappear (the branch

with number 1 in the figure). At that point, a new measurement loop is selected, the mi value is

initialized to the number of initial start cycles, the maximum time for the measurement is established,

and the corresponding oscillator is started.

Next, the branch marked with 2 in the figure is executed, so that the time Ni at initial start cycles

is measured and the number m of counting cycles to be measured is loaded.

Finally, the measurement process finishes with the interruption by T2 capture when m is reached,

which corresponds to branch 3 in Figure 10. In this moment, the time interval between loops is loaded,

and the oscillation loop stops and saves the measured time N obtained after subtracting the value Ni

of step 2.

Branch 4 only occurs in the unlikely event that the loop has problems with the start of the

oscillation. In such a case, the inter-loop waiting time is loaded and N is set to zero, which indicates

that the loop is not oscillating.
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Start of T2 

interruption attention 

T2 Overflow? 
YesNo 

Last Counting? Last Counting? 
No Yes YesNo 

Stop oscillation 

of measured loop 

Save measured 

time 

Increase number of

measured loop

Load maximum 

measurement time

Run oscillator of 

measured loop

End of T2

interruption attention 

1432

T2 Overflow T2 Capture 

Load waiting time 

for ready loop

Load waiting time 

for ready loop

Load comparison

value 

Save measured 

time 

Load comparison 

value 

Save start 

counting time

Figure 10. Flowchart of attention at T2 interruption.

4.4. Registration

The oscillation period of the coils is continuously measured to determine the reference value of

each coil at rest, i.e., without the presence of a vehicle. With the goal of adapting to the variations

in the environmental conditions suffered by the coils, an adaptive algorithm, similar to the one

described in [20], is employed. This algorithm tries to correct the reference value according to such

external factors.

When the measured period of a coil is less than its reference value, which means that a vehicle is

over the coil, the corresponding entry is made in the internal memory, storing the inductive signature

of the vehicle.

Figure 11. A photo of the measurement location, with GPS coordinates: 43.235941 (Lat.);

−8.464462 (Long.).



Sensors 2016, 16, 1309 13 of 20

In order to test the hardware prototype we captured vehicle inductive signatures in Río Anllóns

station in the AC-523 road (Ledoño-Meirama, Spain), kilometre 7. A picture of this location is shown in

Figure 11. The detector equipment was located inside the cabinet of the Río Anllóns station, also shown

in the photo. Since the road is two lanes wide (one for each direction), we have connected four inductive

loop sensors, two on each side of the road. These sensors are squares with a side length of 2 m and a

distance between their centres of 5 m (Figure 12).

Lane 1

Loop3

Loop2Loop1

Loop4

Detector

Lane 2

Figure 12. Interconnections from the inductive loop to the detector.

5. Experimental Section

The inductive loop sensors work at a sampling period of T = 10 ms, or, equivalently, a sampling

frequency of 100 Hz. In any case, the sampling frequency could be easily increased by increasing the

frequency of the reference clock, if required by other measurement conditions. Moreover, waiting times

between coils are needed to guarantee that the oscillation vanishes in a coil before starting in the

next one.

Figure 13 illustrates the measured oscillation in a coil operating at a frequency of 56.2 kHz,

using mi = 10 initial cycles (in red) and m = 35 measurement cycles (in green). The aforementioned

waiting times at the beginning and at the end of the oscillations can also be observed (in blue) in

the figure.
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Figure 13. Capturing of a measurement of the coil oscillation.

With the described sensors, two inductive signatures are obtained from each passing vehicle.

These inductive signatures will be very similar, although there can be small differences due to the fact
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that they are taken in different loops and time instants, and, in general, also for different positions and

accelerations of the vehicle. In order to display those signatures, we have developed a software tool

using the development environment for a visual programming language Labview [27,28]. This tool

allows us to download the file containing the signatures from the CF card. In addition to the ILDs,

we placed a video camera for the recording of the passing vehicles, so we could associate each vehicle

to its corresponding inductive signature.

It is important to note that we have acquired the real inductive signatures ∆T(t) using our SiVIDS

prototype, and then from Equation (17), the equivalent inductance L(t) of each signature has been

obtained. For the evaluation of the impact of the noise on resonant and amplitude detectors, AWGN

noise will be added to the signals x(t) of Equation (16) and v(t) of Equation (18), respectively.

In our implementation, the Colpitts oscillator explained in Section 4.1 has C1 = C2 = 100 nF

and therefore C = 50 nF. Thus, an inductance of L1 = 100 µH results in an oscillation frequency of

71.18 kHz. The circuit has been designed for oscillation frequencies within the range [25 kHz, 100 kHz]

i.e., for coils with inductances between 50 µH and 800 µH. Therefore, it is not necessary to adjust the

frequency of the LC oscillators (known as tuning).

6. Results and Discussion

In this section, we will show some results obtained from the inductive signatures captured using

the prototype presented in this paper.

 

 

 

 

 

 

 

Figure 14. From left to right, the upper figures show the photo of a car and the respective signatures

obtained with the Loops 3 and 4. The figures in the middle of the picture show a truck and its

corresponding signatures captured also using the Loops 3 and 4. The lower figures display the photo

of a bus and two signatures obtained with the first and the second loop, respectively.
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Figure 14 shows the photos of three different vehicles and their corresponding inductive signatures

obtained in the dual loops, as an example of the more than one thousand inductive signatures captured

with our system. As it can be seen in the figure, there is a great similarity between the pair of signatures

of any of the vehicles, in contrast with the significant difference in the signatures obtained for different

types of vehicles. Thus, each type of vehicle (car, truck, bus...) can be classified under a unique

inductive signature, which will depend on the parameters that define each of them, such as size,

distribution of the metal mass, engine and axle location, spacing between the undercarriages and the

road, etc.

6.1. Effect of Noise on Vehicle Inductive Signatures

Figure 15 shows the real vehicle inductive signature obtained with noise—for a Signal-to-Noise

Ratio (SNR) of 15 dB—and with no presence of noise in the system. As we can see in the figure, even

for 15 dB of SNR, the shape of the noisy inductive signature is quite similar to that obtained with no

noise at the detector input, which verifies that our resonant detector is robust against environmental

noise. Figures 16 and 17 show the impact of noise on the amplitude detectors for the same SNR.
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Figure 15. Inductive signature of the resonant detector with and without noise.
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Figure 16. Inductive signature of the root mean square (rms) amplitude detector with and without noise.
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Figure 17. Inductive signature of the detector with synchronous demodulator with and without noise.

Finally, we compare the performances of both resonant and amplitude detectors, in terms of SNR at

the detector output. For this purpose, we calculate the output SNR as follows: firstly, we determine the

level of signature signal without noise, i.e., ∑ ∆x f ; then, the level of noise is obtained as ∑ |∆x − ∆x f |,
where ∆x is the signature signal plus noise; Finally, the output SNR is calculated as:

output SNR = 20log
∑ ∆x f

∑ |∆x − ∆x f |
. (31)

The average output SNR is obtained by considering 556 real inductive signatures captured in the

AC-523 road with the resonant detector, so that then the equivalent inductance L(t) of each signature

is obtained. Figure 18 shows the average output SNR as a function of the input SNR for resonant and

amplitude detectors. This figure shows a good behaviour against noise of the resonant detector for

input SNR greater than 12 dB, even better than that obtained for the amplitude detector. However, for

SNRs lower than 12 dB, the resonant detector is very sensitive to noise and, therefore, not useful for

the purposes described in this work.
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Figure 18. Average output Signal-to-Noise Ratio (SNR) for resonant and amplitude detectors.
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6.2. Effect of Noise on Speed Estimation and Vehicle Classification

In this subsection, we will evaluate the effect of the noise on two different applications usually

required for ITS: speed estimation and vehicle classification.

According to Figure 19, the following time instants using double loop are determined:

• t1: input time instant of the normalized vehicle signature 1;
• t2: output time instant of the normalized vehicle signature 1;
• t3: input time instant of the normalized vehicle signature 2;
• t4: output time instant of the normalized vehicle signature 2.

 

d 

w 

t 
t1 t2 t3 t4 

Loop 1 Loop 2 

Signature 1 Signature 2 

1 

Figure 19. Scheme for time measurements.

The standard method for speed estimation uses the following expression, according to the

aforementioned notation [29,30],

ŝ =
1

2

(

d

t3 − t1
+

d

t4 − t2

)

, (32)

where d is the distance between loop centres. From this expression, the vehicle length can be directly

obtained using the following estimator:

L̂ = ŝ × (t2 − t1) + (t4 − t3)

2
− w, (33)

with square loops of side length w. For vehicle classification, the vehicles passing on the road will be

classified using a threshold-based criterion as indicated in Table 1.

Table 1. Vehicle classifiation using a length-based criterion, i.e., based on the L̂ estimator of Equation (33).

Vehicle Classification Small Medium Large

Type of vehicles Car Large car, van Truck, bus, trailer
Number of vehicles (manually pre-classified with a video camera) 680 61 168

Decision rule L̂ ≤ ǫ1 ǫ1 < L̂ ≤ ǫ2 L̂ > ǫ2

Notice that ǫ1 and ǫ2 are the thresholds empirically obtained from a training stage. For this

training, only the Loops 1 and 2 are used. The value corresponding to the threshold ǫ1 was obtained
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by maximizing the success rate in vehicle classification when only small and medium vehicles are

considered, while the threshold value ǫ2 is the result of a similar maximization when only medium and

large vehicles are computed. The optimum values for those thresholds are ǫ1 = 5.6 m and ǫ2 = 6.5 m.

Applying these methods, Figure 20 shows the influence of AWGN on vehicle classification

with the length-based criterion and on vehicle speed estimation. The error percentage for vehicle

classification is calculated as follows:

errorc(%) = 100 × cAWGN

c0
, (34)

where cAWGN is the total number of misclassified vehicles under the presence of AWGN, calculated with

respect to the classification without noise, and c0 is the total number of vehicles. On the other hand,

the percentage of error for speed estimation is calculated as follows:

errors(%) = 100 × |sAWGN − s0|
s0

, (35)

where sAWGN and s0 are, respectively, the estimated vehicle speeds with and without the presence of

AWGN. All the results have been averaged for the dataset collected from the AC-523 road.

This figure allows us to conclude that in both applications the effect of noise is almost negligible

for SNR above 12 dB.
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Figure 20. Influence of Additive White Gaussian Noise (AWGN) on vehicle classification and speed

estimation errors.

7. Conclusions

Experimental results have shown that ILD sensitivity is extremely repeatable for fixed sizes and

geometries of both the loop and the vehicle, and for a fixed distance between them. Therefore, we have

shown that the sensitivity can be approximated by variations of period and amplitude of voltage of

the oscillation signal. Moreover, resonant ILDs show an adequate compromise between reliability and

cost, which determines that such detectors have been selected for our practical implementation.

In this paper, we have presented a simple module for the capture of inductive vehicle signatures

based on TDM. The implemented system performs a sequential scanning using analogue multiplexing

of up to eight oscillators and detects the presence of a vehicle by means of a shift in the period of the

signals from the selected oscillator. It subsequently captures the inductive signature of the detected

vehicle by measuring the time it needs to count a fixed number of pulses.
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In the experimental results obtained from measurements in a real scenario using dual loops,

we observed a good similarity between the pair of signatures obtained from the same vehicle and

a significant difference between the signatures corresponding to different vehicles, which validates

the good performance of our implementation and enables its use in applications such as vehicle

classification, speed and length measurement using only one loop, and re-identification of vehicles for

supervision and control tasks in vehicular traffic.

Moreover, the performance of the resonant detector proposed in this work is validated in the

presence of AWGN determining an input SNR higher than 12 dB.
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