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Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing

genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging

to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation

of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates withminimal cross-contamination, as

is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient

separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina

integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the perfor-

mance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA.

Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were

suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome

and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucle-

otide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq,

although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest

that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene

expression patterns at the single-cell level.

[Supplemental material is available for this article.]

As cell-to-cell variability has come to be recognized as fundamental
to a variety of biological processes, there has been a demand for
high-throughput analysis technologies that would allow quantifi-
cation of a large number of parameters in a single cell. In particular,
recent improvements in sequencing technology have led to the
advancement of genome-wide quantitative analysis of single cells.
Although intercellular genetic heterogeneity in a population of
cells has been frequently ignored in genome analyses at the popu-
lation level, there is increasing evidence of unexpectedly high ge-
netic variability in cell populations within an organism (Shapiro
et al. 2013; Junker and van Oudenaarden 2014). Along with other
technological advances, single-cell genome sequencing has be-

come crucial for characterizing intercellular genetic heterogeneity
and thus cell-lineage relationships (Dey et al. 2015; Macaulay et al.
2015). Examples of intercellular genetic heterogeneity are found
in every tissue in the human body under normal physiological
conditions, including the immune system, as well as cells under
pathological conditions, such as cancer cells.

Although genomic differences are arguably the most funda-
mental source of cellular variability, stochastic gene expression
processes cause intercellular heterogeneity even within a geneti-
cally homogenous population. To uncover cell-to-cell variability
in gene expression, single-cell RNA-seq (scRNA-seq) utilizing mas-
sively parallel sequencing has emerged as the preferredmethod for
providing a full overview of the expression of all genes, overtaking
other assays analyzing only a handful of genes at a time. In fact, a
number of different scRNA-seq methods have been developed,
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including Smart-Seq (Ramsköld et al. 2012), STRT-seq (Islam et al.
2012), CEL-Seq (Hashimshony et al. 2012), MARS-Seq (Jaitin et al.
2014), and Quartz-Seq (Sasagawa et al. 2013). These technologies
measuring genome-wide mRNA expression at the single-cell
level are being utilized to uncover distinct cell types, states, and cir-
cuits within cell populations and tissues. After profiling genome-
wide mRNA expression of single cells in a plethora of cell popula-
tions, it is clear that “seemingly homogeneous” cells are in fact
heterogeneous.

Until recently, the effects of genomic variation on phenotyp-
ic expression profiles have been primarily studied at the popula-
tion level (Stranger et al. 2007; Shapiro et al. 2013; Junker and
van Oudenaarden 2014). Since the genomic and transcriptomic
profiles obtained from pooling thousands to millions of cells
represent averaged information of a large population, these con-
ventional methods are inadequate to reflect the typical variability
among individual single cells (Shapiro et al. 2013; Junker and van
Oudenaarden 2014). Consequently, given the complexity of gene
expression regulation and significant cell-to-cell heterogeneity,
unveiling the causal relationships between genomic variations
andmRNA transcription profiles turned out to be very challenging
(Altschuler andWu2010; Han et al. 2014). Thus, there is a growing
demand to integrate DNA and RNA analyses to study genotype–
phenotype associations within single cells, which allows a
more accurate assessment of the correlation between genotypes
and gene expression levels (Shapiro et al. 2013; Junker and van
Oudenaarden 2014).

Although substantial progress has been made in recent years
in single-cell analysis technologies,many challenges remain in the
simultaneous analysis of genome and transcriptome data from the
same cell (Han et al. 2014; Dey et al. 2015). The limited choices of
amplification methods, inherent losses of nucleic acids arising

from separation methods, and restrictive profiling for genome-
wide regions still need to be overcome (Dey et al. 2015; Macaulay
et al. 2015; Hou et al. 2016).

Here, we report a simple, yet efficientmethod for the simulta-
neous isolation of genomic DNA and total RNA (SIDR) from single
cells. The method physically isolates total RNA, regardless of poly-
adenylation, from the single-cell lysate that contains the nucleus
by using magnetic microbead capture.

Results

Development of the SIDR method for simultaneously isolating

genomic DNA and total RNA from single cells

First, we aimed to establish a lysis condition that would allow
efficient diffusion of RNA, but not of DNA, out from a lysed cell
(Fig. 1A). We examined hypotonic lysis methods, because osmotic
pressure can efficiently disrupt the plasma membrane to release
cytoplasmic components, whereas the integrity of the nuclear
membrane would bemaintained because of the presence of nucle-
ar pores. Indeed, we found that a hypotonic solution containing
0.2% Triton X-100, a mild nonionic detergent, efficiently lysed
the cell membrane to release cytoplasmic RNA, whereas genomic
DNA remained within the nucleus. The nuclear lamina visualized
with an anti-Lamin B2 antibody was well-preserved despite slight
swelling (Fig. 1B,C). Moreover, genomic DNA visualized by DAPI
stainingwas predominantly confinedwithin the nucleus (Fig. 1C).

To separate the supernatant containing total RNA from the
cell lysate, we attempted to coat the latter with antibody-conjugat-
ed magnetic microbeads (Fig. 1A). A critical problem was that the
detergent included in the hypotonic solution for efficient RNA re-
lease extracted the cell surface–associated proteins and cellular

Figure 1. Principles of the SIDR method. (A) Schematic of the SIDR method. (WGA) whole-genome amplification; (WTA) whole transcriptome amplifi-
cation. (B,C ) Immunostaining of the nucleus after cell lysis. Fluorescence images of MCF7 cells in isotonic (B) and hypotonic (C) conditions. The nuclear
lamina, plasma membrane, and nucleus were stained by the Alexa 488-labeled anti-Lamin B2 antibody (green), CellMask (red), and DAPI (blue), respec-
tively. (D) The effect of cell lysis on the recovery rate of cells. The recovery rate dramatically depended on whether anti-EPCAM antibody-conjugated
microbeads were bound to cells before or after cell lysis as indicated at the bottom of the graph. Approximately 100 MCF7 cells underwent bead binding
and/or cell lysis and weremagnetically recovered, except for control cells that were not bound tomicrobeads. The plot shows the number of cells recovered
(n = 3). (E) The effect of bead binding on the solubilization of the EPCAM protein. The levels of EPCAM, beta actin, and Lamin B2 proteins in cell lysates not
solubilized during cell lysis were measured by Western blot (n = 3).
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organelles (Borner et al. 1994; Koley and Bard 2010). In fact,
none of the antibodies we tested could successfully label the lysed
cells. Thus, we coated cells with antibody-conjugated magnetic
microbeads before cell lysis and then examined whether the
microbeads remained associated with the cells after cell lysis. The
association of microbeads with the cells after lysis was estimated
by measuring the capturing efficiency of cells. We initially tested
several antibodies, produced by different vendors, which targeted
nuclear membrane proteins or plasma membrane proteins,
because the association between beads and cells primarily depends
on the interaction between the antibody and its target antigen.
When an anti-EPCAM antibody was used, cells bound to micro-
beads prior to hypotonic cell lysis were efficiently recovered after
cell lysis (Fig. 1D).

To elucidate how the change in the procedure (i.e., bead bind-
ing after versus before cell lysis) resulted in such a dramatic differ-
ence in the recovery yield, we examined whether magnetic beads
bound to the plasma membrane could hinder the extraction
of the EPCAM protein from the membrane during cell lysis. We
quantified the amount of EPCAM protein present before and after
cell lysis and investigated how these quantities were modified by
prebinding of microbeads. Figure 1E shows that without prebind-
ing of microbeads, the surface EPCAM protein levels decreased
to 40.6% after cell lysis compared to the levels detected in the
isotonic condition. On the other hand, bead binding prior to
cell lysis attenuated the decrease in the amount of surface
EPCAM protein after cell lysis to ∼60%, suggesting that the inter-
action of EPCAM with the antibody-conjugated bead surface
prevented EPCAM protein from being solubilized. This allowed
us to separate the supernatant (total RNA fraction) from the
bead-bound cell lysate (genomic DNA fraction). In contrast to
the decline in EPCAM level after cell lysis, the level of the lamin
B2 protein measured by Western blotting was well-preserved un-
der the same condition, which was consistent with the results of
the lamin B2 immunostaining experiments.

Based on these results, we developed the SIDRmethod,which
consisted of four steps (Fig. 1A): (1) incubation of dissociated cells
with the antibody-conjugated magnetic microbeads; (2) sorting of
microbead-labeled single cells into a 48-well microplate; (3) hypo-
tonic lysis of bead-labeled single cells; and (4) separation of the
supernatant containing total RNA from the nucleus-containing
cell lysate using magnetic force. The ex-
perimental protocols for the method are
available in the Supplemental Methods.

Highly efficient recovery of DNA and

RNA by SIDR

Next, we examined the recovery yields of
genomic DNA and total RNA by the SIDR
method. For accurate measurements
based on real-time PCR,we used 10 disso-
ciated cells instead of single cells. We
then obtained preparations of fractionat-
ed genomic DNA and total RNA (FD and
FR, respectively) by the SIDR method.
Whole-cell lysates containing genomic
DNA and total RNA (WDandWR, respec-
tively) were used as control preparations
for the comparison of nucleic acid con-
centrations obtained by these methods.

For accuratemeasurement of small amounts of genomicDNA,
we took advantage of a repetitive sequence in the human genome.
Since the long interspersed nuclear element-1 (LINE-1) constitutes
∼17% of the human genome (up to 600,000 copies), we used real-
time PCR targeting the LINE-1 locus to quantify genomic DNA
(Phokaew et al. 2008). At first, MCF7 cell lines were tested to vali-
date the recovery rate of DNA and RNA by SIDR. As shown in
Figure 2A, the relative quantity of genomic DNA in FD (Cp≅ 23.6
± 0.280) was similar to that in WD (Cp≅ 23.7 ± 0.245). In
addition, the amount of genomic DNA in FR was minimal (Cp≅

31.2 ± 1.037), indicating that the leakage of genomic DNA into
the supernatant was negligible during cell lysis (Fig. 2A).

In parallel, the recovery of RNA from 10 MCF7 cells by the
SIDR method was also assessed. FR and FD obtained by SIDR
were reverse transcribed to synthesize cDNA. The amount of
RNA in FR and FDwasmeasured to estimate the RNA recovery yield
and the level of RNA contamination in the DNA fraction. We
performed RT-qPCR to analyze the relative RNA amount of three
different genes: GAPDH (glyceraldehyde 3-phosphate dehydroge-
nase), CDKN1A (cyclin-dependent kinase inhibitor 1), and
PSMC4 (proteasome 26S subunit, ATPase 4). The SIDR method
resulted in negligible contamination of the DNA fraction by
RNA, whereas fractions of recovered RNA molecules encoded by
the three genes were high: 84.1% for GAPDH, 81.7% for
CDKN1A, and 86.6% for PSMC4 (Fig. 2B). Although the recovery
yields of individual transcripts may vary depending on the target
genes, ∼80% of RNA molecules were recovered by the SIDR meth-
od. This high RNA recovery rate was also supported by measuring
highly abundant ribosomal RNA, which showed values of 79.8%
and 86.0% for 18S rRNA and 5S rRNA, respectively (Fig. 2B).

We also evaluated the recovery rates of DNA and RNA of the
SIDR method in different cell lines, such as HCC827 and SKBR3
(Supplemental Fig. S1), which showed results consistent with
those from MCF7. Furthermore, to investigate whether the SIDR
method was sufficiently robust to efficiently isolate DNA and
RNA from different tissue samples, we dissociated cells from breast
cancer and lung cancer tissues frompatients (n = 5) and applied the
SIDRmethod to the dissociated cancer cells. Based on the RT-qPCR
assays applied for MCF7 cells, the SIDR method recovered most
genomic DNA and ∼70%−80% of RNA, which was comparable
to the results from MCF7 cells (Supplemental Fig. S2).

Figure 2. Recovery rates of DNA (A) and RNA (B,C) by the SIDR method. (A) The efficiency of DNA re-
covery by the SIDR method was estimated by real-time PCR targeting the LINE-1 locus. (B) The efficiency
of cytoplasmic RNA recovery by the SIDR method was estimated by real-time PCR targeting GAPDH,
CDKN1A, PSMC4, 18S rRNA, and 5S rRNA. (C ) The additional three transcripts reported to be enriched
in the nucleus were assessed by real-time PCR targeting GATA6, APBB2, and SVIL. Nucleic acids were ex-
tracted from 10MCF7 cells. FD and FR refer to genomic DNA and total RNA, respectively, fractionated by
the SIDR method. The amount of DNA in FR and of RNA in FD indicates the amount of residual contam-
ination in the counterpart fractions due to incomplete separation. The amounts of nucleic acids in each
fractionwere normalized to those in the whole-cell lysates of 10MCF7 cells. Error bars represent the SEM.
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To examine whether nuclear-enriched mRNAs remained
trapped in the nucleus or cell lysate after the hypotonic lysis
process, we selected three transcripts reported to be enriched in
nucleus from a previous study: GATA binding protein 6
(GATA6), amyloid beta A4 precursor protein-binding family B
member 2 (APBB2), and Supervillin (SVIL) (Barthelson et al.
2007). The relative RNA amounts in FR and FD were analyzed by
RT-qPCR, and the SIDR method recovered ∼70% of these tran-
scripts in the three cell lines (Fig. 2C; Supplemental Fig. S1C,F)
and tissue samples (Supplemental Fig. S2C,F). These results indi-
cate that nuclear-enriched mRNAs were efficiently released into
FR during the SIDR process (Fig. 2C).

Taken together, our data demonstrated that the SIDRmethod
efficiently isolated both genomic DNA and total RNA without
significant cross-contamination.

Sample preparation and data generation for single-cell sequencing

by SIDR

To perform single-cell sequencing of DNA and RNA fractions
obtained by SIDR (i.e. scSIDR-seq), we used two breast cancer cell
lines (MCF7 and SKBR3) and a lung cancer cell line (HCC827). A
total of 43 pairs of FD and FR SIDR preparations from single cells
were used to construct sequencing libraries. In addition, 30 WDs
and 40 WRs of single cells were processed as control preparations.
Among the 43 single cells processed by the SIDRmethod, 38 (88.4%)
single cells passed quality-control criteria for library preparation
of both RNA and genomic DNA (Supplemental Table S1). We
performed low-coverage whole-genome sequencing (WGS; mean
coverage ranging from 0.13 to 0.79×) for 68 single cells (38 FDs
and 30 WDs) and RNA sequencing (RNA-seq) for 74 single cells
(38 FRs and 36 WRs). WGS data generated from FDs and WDs
passed sequencing quality control at rates of 81.6% and 90.0%, re-
spectively (Supplemental Table S1; Supplemental Fig. S3). Among
the 74 scRNA-seq samples, 37 FRs (97.4%) and 33 WRs (91.7%)
generated qualifying RNA-seq data (Supplemental Table S1).

Single-cell genome sequencing by SIDR-seq

We applied scSIDR-seq to sequence whole genomes of single cells
at a low depth of coverage (0.32 ± 0.02× [mean ± SEM]) and exam-
inedwhetherWGS data generated from FDswere of similar quality
in several respects to those from WDs (Fig. 3). After processing se-
quencing data, sequencing metrics such as the duplicate rate and
the fractions of properly aligned andpaired reads indicated compa-
rable data quality between FD and WD (Fig. 3A–D). Additionally,
FD data from scSIDR-seq showed similar coefficients of variation
across the data bins as those seen in bulk cells or WD (Fig. 3E).
We used Lorenz curves to evaluate coverage uniformity along
the genome, which shows the cumulative fraction of the total
reads that cover a given cumulative fraction of the genome.
When we compared the Lorenz curves for FD and WD, there was
no significant difference between the two groups, indicating a sim-
ilar level of coverage uniformity and sequencing biases (Fig. 3F).
We also plotted the power spectrum of read density variation to
show the spatial scale at which any variations might occur be-
tween the groups. The power spectrum analysis indicated a similar
level of coverage uniformity between FDs and WDs across the en-
tire range of the spatial scale (Fig. 3G).

We next profiled copy numbers across the genome in each
sample and averaged the copy-number values from single cells
for each group. Across the genome, the average copy-number val-
ues from the two groups were highly correlated with those from

bulk cells (Fig. 3H; Supplemental Fig. S4A). When we performed
unsupervised hierarchical cluster analysis based on the copy-num-
ber profiles, samples from the same cell lineswere clustered togeth-
er regardless of the sample type, indicating accurate detection of
copy-number variation by scSIDR-seq (Fig. 3I; Supplemental Fig.
S4B). This was further supported by our observation that, in a pair-
wise comparison with bulk samples, copy numbers of FD had sim-
ilar Pearson correlation coefficients to those ofWD (Supplemental
Fig. S4B). Furthermore, when we detected single-nucleotide varia-
tions (SNVs) in single-cell WGS data, the frequencies at which the
SNVs were also found in the corresponding bulk data were not sig-
nificantly different between FD and WD (Supplemental Fig. S5).
These results strongly suggest that FD isolated by SIDR is satisfac-
tory for single-cell DNA sequencing.

Single-cell transcriptome sequencing by SIDR-seq

Before comparing RNA-seq data between single-cell FRs and single-
cell WRs, we only retained samples in which the eight genes that
were least variably expressed at high levels fit the quality-control
criteria as described in the Supplemental Methods for further
downstream analyses (Supplemental Figs. S6–S9). To account
for technical noise in scRNA-seq as described in Brennecke et al.
(2013), equal amounts of External RNA Controls Consortium
(ERCC) spike-ins were added into 14 MCF7 single-cell samples
(six FRs and eight WRs). Of these samples, RNA-seq data from six
FRs and seven WRs satisfied quality-control criteria. The amounts
of ERCC spike-in detected in both FR and WR samples were
strongly correlated with the initial input molecules across all the
ERCC references (Fig. 4A). In transcriptome analysis of 70 single
cells (WR 33; FR 37), we detected 2400–11,000 genes per cell, with-
out a discernible difference in the detected gene numbers between
the FR group (5209 ± 2247) and the WR group (6172 ± 2178) (Fig.
4B; Supplemental Fig. S10). When ensemble data sets were con-
structed by pooling raw reads from all single-cell data for each
group and randomly subsampled to a given total read count, the
numbers of genes detected in the ensembles were also comparable
in the two groups (Supplemental Fig. S10). We also examined the
depth of coverage depending on the relative position of transcripts
because the sequencing bias toward the 3′ ends of transcripts is
known to increase among smaller initial RNA templates (Ramsköld
et al. 2012). Noticeably skewed coverage at the 3′ end of transcripts,
which was inversely proportional to the expression level, was
observed in both FRs and WRs at comparable levels (Fig. 4C).
Taken together with our RT-qPCR data, these results demonstrated
that the SIDR method efficiently recovered RNA with minimal loss.

To estimate the accuracy of single-cell expression profiling,
we examined gene expression patterns in scRNA-seq data and
compared themwith the bulk data. When we performed principal
component analysis (PCA) and unsupervised hierarchical cluster
analysis of gene expression profiles, both FR and WR samples
from the same cell lines clustered together (Fig. 4D; Supplemental
Fig. S11). Pearson correlation analysis of gene expression showed
that cell-to-bulk pairwise correlations were similar between the
FR and WR groups (Supplemental Fig. S11C). Additionally, we se-
lected three different well-characterized targets (CDKN2A, GATA3,

MAGEA3, and GAPDH) and generated genomic snapshots of these
genes (Fig. 4E). As expected from previous reports (Shapiro et al.
1995; Wascher et al. 2001; Charafe-Jauffret et al. 2006), we found
that FR and WR RNA-seq data shared cell line–specific expression
patterns highly concordant with the patterns of their matched
bulk cells. Consistently, explanatory power values (adjusted R2)
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of gene expression in bulk cells (Fig. 4F) show that averaged single-
cell data approximated the bulk cell values up to 89%, suggesting
that FR single-cell data are consistent with the bulk data compara-
bly toWR data. These results demonstrate that SIDR-seq is suitable
for single-cell transcriptome sequencing.

To survey whether a substantial proportion of the variability
in single-cell gene expression could be explained by phases of the
cell cycle, as previously reported (Buettner et al. 2015; McDavid
et al. 2016), we analyzed the transcriptional profiles of bulk
and WR MCF7 cells that had been staged for cell-cycle phases
(G1, S, or G2/M) by fluorescence-activated cell sorting (FACS)
of Vybrant DyeCycle Orange–stained cells (Supplemental Fig.
S12A–C). Analyzing cell cycle–staged single cells validated that
the cell cycle inferred by cell-cyclemarker gene expression patterns

of single cells accurately fit to the known stage information
(Supplemental Fig. S12C; Whitfield et al. 2002). Principal compo-
nent analysis (PCA) and unsupervised hierarchical cluster analysis
of single cells also showed that FR andWR samples from the same
cell lines clustered together regardless of their cell-cycle stages, and
that therewere no distinct subpopulations based on cell-cycle stag-
es (Fig. 4G,H; Supplemental Fig. S13). These data indicated that the
cell cycle did not cause substantial variability in single-cell gene
expression that we observed in this study.

Simultaneous detection of genomic and transcriptomic variation

We calculated the genome-wide correlation of chromosomal
expression levels with copy-number variations (CNVs) at the

Figure 3. Evaluation of single-cell WGA performance using SIDR-seq. (A–D) Summary of sequencing metrics. The number of samples is indicated in
parentheses. The plots display fractions of sequencing reads properly aligned to the human reference genome (A), duplicated (B), properly paired (C),
and with their paired reads mapped to different chromosomes (D). (E) Bin-to-bin variability in genomic DNA read counts. (F) Lorenz curves illustrating
the relationship between the cumulative fractions of the genome covered (x-axis) and those of mapped bases (y-axis). The diagonal black lines indicate
theoretical perfect uniformity. (G) Power spectrum of read distributions over different genomic length scales. (H) Correlations of copy numbers between
bulk cells and averaged single cells. Pearson’s correlation coefficients (r) with their statistical significances (P) are shown. (I) Unsupervised clustering heat-
map of genome-wide copy-number profiles in bulk and single cells from HCC827, MCF7, and SKBR3 cells. The dendrogram was generated based on the
Euclidean distance metric with Ward’s method (Ward 1963). (FD) DNA fractionated from single cells by SIDR; (WD) genomic DNA from the whole-cell
lysates of single cells.
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single-cell level. From38 sets of paired scSIDR-seq data, 31 genome
and 37 transcriptome data qualified and underwent a comparative
analysis. When we aligned sequencing reads to the reference
genome, the mean fractions of exonic, intronic, and intergenic
reads from FDs and FRs were not significantly different from WD
and WR data (Fig. 5A). After the alignment of sequencing reads,
mean read counts for each segment were used to estimate copy

numbers and expression levels of genes in single cells. This analy-
sis showed that the mean expression values of genes correlated
with copy-number events. Chromosome-level comparison of
DNA copy-number variations and the patterns of expression in
single cells showed that the average expression of gene segments
was strongly correlatedwith the copy-number changes of genomic
regions (Fig. 5B; Supplemental Fig. S14). Single-cell data from

Figure 4. Evaluation of single-cell RNA-seq performance using SIDR-seq. (A) Correlations of ERCC spike-in standards between RNA input abundance and
read density output for WR and FR. The box plot shows the distribution of the correlation coefficients for the detected synthetic RNAs. (B) Number of genes
detected in single-cell WRs and FRs. For HCC827, MCF7, and SKBR3 cell lines, bulk data are displayed on top of corresponding cell lines as a reference. The
number of samples is indicated in parentheses. (C) Sequence coverage along the normalized transcript length. For the analysis, transcripts were selected
based on their expression level. Transcripts were rank-ordered by expression level and classified into three categories in each sample: top 1000 transcripts
(left), middle 1000 transcripts (middle), and bottom 1000 transcripts (right). Coverage ratio was normalized to the maximal degree of coverage in each
sample. (D) Principal component analysis (PCA) of HCC827, MCF7, and SKBR3 single-cell transcriptomes. Genes used in PCA are identified in
Supplemental Figure S11A. RNA-seq data of both WRs and FRs single cells from each cell line clustered together. (E) Genomic snapshots of cDNA read
alignments in the GAPDH, CDKN2A, GATA3, and MAGEA3 genes. (F) Adjusted R2 of gene expression in various numbers of single cells relative to the
bulk cells was determined by multiple regression analysis with randomly selected cell numbers (with permutation ×1000). For the box plots in B and F,
the box indicates interquartile range (IQR) between the first and the third quartiles, and the error bar shows 10–90th percentiles. (G) PCA of single cells
subgrouped based on the cell-cycle stages. Gene sets used in PCAwere identified in Supplemental Figure S13A. The cell-cycle stage of each single cell was
determined by the expression of 874 cell-cycle marker genes (Whitfield et al. 2002), as shown in Supplemental Figure S12D. The overall fractions of cell-
cycle phases of WRs and FRs were displayed on the left side. (H) Unsupervised hierarchical clustering heatmap of chromosomal gene expression patterns.
The dendrogramwas generated based on the Euclidean distancemetric withWard’s method (Ward 1963). (FR) RNA fractionated by SIDR from single cells;
(WR) total RNA from whole-cell lysates of single cells.
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SIDR-seq showed significant positive correlations between geno-
mic copy numbers and mRNA expression levels obtained for bins
across the genome (HCC827, Pearson’s r = 0.63; MCF7, r = 0.60;
SKBR3, r = 0.60; each P < 2.2 × 10−16) (Fig. 5C). The chromosomal
expression data from scSIDR-seq correlate with bulk genomic
copy numbers as well as those of WR and FR over the entire ge-
nome (Fig. 5C). These positive correlations between chromosomal
expression and genomic copy number revealed by scSIDR-seqwere
consistent with previous studies that successfully inferred large-
scale copy-number alterations for each cell by averaging relative

expression levels over large genome regions. However, the parallel
DNA and RNA sequencing also revealed inconsistencies between
chromosome-wide genomic and transcriptomic variations. For
example, Chromosome 3 displayed a relatively pronounced dis-
crepancy between CNVs and expression profiles (Supplemental
Fig. S15A). Although gene expression showed a trend toward con-
cordance with copy-number changes in general, each single-cell
DNA sequencing result showed greater concordance with bulk or
other single-cell DNA results than with its own RNA sequencing
pair when unsupervised hierarchical clustering was performed

Figure 5. Integration of genome and transcriptome sequencing data generated by SIDR-seq. (A) Fractions of sequencing reads mapped to exonic,
intronic, and intergenic regions of the human reference genome. Mean fractions of mapped regions were calculated from WGS and RNA-seq. (B)
Chromosome-wide comparison between genomic copy numbers and gene expression in Chromosome 1. The upper three plots show log2 ratio of genomic
copy numbers (dots) and their CBS-derived segmented values (black lines) estimated from bulk and single cells for DNA sequencing. The lower three plots
show the chromosomal gene expression values from each single cell (thinner gray line) and their averages (colored line). Chromosomal gene expression
correlated with copy-number events inWRs and FRs. Comparison plots for other chromosomes (fromChr 2 to Chr 22) are available in Supplemental Figure
S15. (C) Correlation between DNA copy numbers and relative gene expression levels binned per 1 Mb genomic scale. Pearson’s correlation coefficients (r)
with their statistical significances (P) are shown. Genome sequencing from bulk, WDs, and FDs, and RNA sequencing data from bulk, WRs, and FRs were
used for the comparison. (FD) DNA fractionated from single cells by SIDR; (WD) genomic DNA from the whole-cell lysates of single cells; (FR) RNA frac-
tionated by SIDR from single cells; (WR) total RNA from whole-cell lysates of single cells.
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for CNVs (Supplemental Fig. S15B). Although single-cell RNA
sequencing might be able to reveal copy-number alterations,
our data showed that sequencing both the genome and the tran-
scriptome of a single cell by SIDR-seq accurately profiled DNA
copy-number variation and gene expression, distinguishing the
transcriptional consequences of copy-number variations.

Next, we identified and compared SNVs in RNA and geno-
mic DNA sequences. As previous studies leveraged the power of
scRNA-seq to identify SNVs and gene expression variation at
the single-cell level, we detected SNVs in single-cell FR and WR
samples. We found that, even after removal of potential false
positive SNVs via stringent criteria, only ∼35% exonic mutations
detected in single-cell FR andWR samples were verified by whole-
exome sequencing (WES) results generated from bulk DNA
samples (Supplemental Fig. S16A). In contrast, the WES results
verified ∼85% of SNVs detected in FD and WD, indicating that
SNVs detected by SIDR DNA sequencing were more likely to be
true variants than those supported by RNA-seq (Supplemental
Fig. S5). For the analysis, we performed WES of nine single-cell
FDs, eight single-cell WDs, and two bulk MCF7 cell samples
(Supplemental Methods), achieving mean coverage depth of
159.54 ± 12.63, 142.09 ± 17.65, and 111.58 ± 3.56×, respectively.
Our results showed that SIDR-seq more precisely captured genetic
alterations than did scRNA-seq alone, suggesting that integration
of genome and transcriptome sequencing data could provide
more reliable and mutually complementary information at the
single-cell level.

Application of SIDR-seq to explore the performance of single-cell

sequencing

Using single-cell WGS data sets from SKBR3 cells that were previ-
ously published (Wang et al. 2014; Dey et al. 2015), we were
able to compare WGS data generated by SIDR-seq with previous
data sets from the same cell line generated by different methods.
Dey et al. (2015) reported DR-Seq quantifying genomic DNA
and mRNA from the same cell without physically separating the
nucleic acids before amplification. Wang et al. (2014) used nuc-
seq, a single-cell DNA sequencing method developed for accurate
description of genetic mutations.

For a fair comparison of data sets, we first performed in silico
down-sampling (random selection of a subset of reads) to adjust
the data sets of each sample to comparable sizes. The total reads
of each sample were down-sampled to 24 million, the size of the
smallest data set. Single-cell SIDR-seq mostly displayed compara-
ble or slightly superior data quality to nuc-seq according to various
sequencing metrics (Fig. 6A–E; Supplemental Fig. S17). SIDR FDs
showed significantly higher rates of alignment (>90%) than other
single-cell data generated by DR-Seq or nuc-seq (Fig. 6B) and con-
sequently a larger fraction of properly paired reads than the others
(Fig. 6D). As expected at this low depth of coverage, all data sets ex-
cept DR-Seq showed an extremely low duplication rate (Fig. 6C).
We assumed that the high duplication rate of single-cell DR-Seq
was in part caused by sequencing reads derived from cDNA,
because DR-Seq did not physically separate gDNA and mRNA

Figure 6. Comparison of single-cell genome sequencingmethods: SIDR-seq, DR-Seq, and nuc-seq. The number of sequencing reads in each sample was
set to 24million in triplicate by randomly down-sampling from all available reads. (A–E) Summary of sequencingmetrics. (A) Genome sequencing depth of
coverage. The plots display fractions of sequencing reads properly aligned to the human reference genome (B), duplicated (C), properly paired (D), and
with their paired reads mapped to different chromosomes (E). (F ) Bin-to-bin variabilities in genomic DNA read counts. (G) Comparison of coverage uni-
formities measured by Lorenz curves. The fractions of area under the curve were calculated, averaged for each group, and plotted. (H) Comparison of cov-
erage uniformities measured by power spectral analysis. Power spectral densities of read distributions were obtained and averaged across frequencies >1/
500 kb. (I) Heatmap of genome-wide copy-number profiles in bulk and single cells from SKBR3 cells by binning of 1-Mb genomic scale. Copy-number
profiles from genome sequencing were compared to the CCLE data profiled using SNP array (at the top of the heatmap). (J) Correlation of copy numbers
between data sets from each method and CCLE data set. Pearson’s and Spearman’s correlation coefficients were plotted against the x-axis. (FD) DNA frac-
tionated from single cells by SIDR; (WD) genomic DNA from the whole-cell lysates of single cells.
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(Fig. 6C; Supplemental Fig. S17C; Dey et al. 2015; Macaulay et al.
2015). Thus, we estimated the fraction of reads mapped to exonic
regions and found that the exonic fraction in FD from DR-Seq
(10.63 ± 0.58%) was 5.42 times higher than in FD from SIDR-seq
(1.96 ± 0.02%) (Supplemental Fig. S18A). In single-cell DR-Seq data,
the duplication rate of reads mapped to coding regions was
25.75 ± 0.35%, remarkably higher than the average duplication
rate in the other sample types (0.66 ± 0.10%) (Supplemental Fig.
S18B). The physical separation of gDNA from total RNA imple-
mented in SIDR-seq seemed to prevent complications associated
with transcript contamination, which was also supported by the
coverage uniformity of scSIDR-seq data. WGS data by scSIDR-seq
displayed comparable levels of coverage uniformity to WD WGS
data from our study and nuc-seq when coverage uniformity was
evaluated by CV across bins, AUC of Lorenz curves, and power
spectrum of read density (Fig. 6F–H). These satisfactory indexes
of sequencing metrics are likely to be the basis for accurate copy-
number profiling by scSIDR-seq, as described subsequently.

We found similar trends in genome-wide copy-number
profiles between SIDR-seq and array-derived Cancer Cell Line
Encyclopedia (CCLE) data (Fig. 6I). When Pearson’s and
Spearman’s correlations of copy numbers were analyzed, the de-
gree of copy-number correlation between single-cell WGS data
and the CCLE data was the greatest in scSIDR-seq followed by
nuc-seq (Fig. 6J). Because of the minimization of technical losses
of gDNA during physical separation, scSIDR-seq performed com-
parably to bulk sample data in genome sequencing (Fig. 6I,J;
Supplemental Figs. S19, S20).

We also compared the overall quality of RNA-seq data profiled
by scSIDR-seq to that of single-cell DR-Seq from the same cell line,
SKBR3. When the total reads were down-sampled to 0.3 million
(triplicates for each sample), while SIDR FRs showed comparable
patterns to WRs or bulk cells in uniquely mapping rate and the
fraction of reads mapped to exonic regions, FRs in DR-Seq showed
considerably lower mappability and lower mapped fraction in ex-
onic regions than data from bulk cells (Supplemental Fig. S21A,B),
indicating the presence of reads derived from genomic DNA in
RNA-seq data because of the lack of physical separation of these
two types of nucleic acids. Although FRs in DR-Seq showed little
variability in gene expression for the eight housekeeping genes
across all SKBR3 samples (Supplemental Fig. S21D), their global
gene expression profiles showed lower correlation with bulk sam-
ples generated from SIDR-seq and from DR-Seq compared to SIDR
FRs (Supplemental Fig. S21E,F). In addition, compared with the
CCLE gene expression array data (SKBR3), scSIDR-seq data showed
higher correlations than FRs in DR-Seq (Supplemental Fig. S21G).

Taken together, SIDR-seq enables profiling of both the ge-
nome and transcriptome at the single-cell level at a quality compa-
rable or superior to existing methodologies.

Discussion

We developed an SIDR method, a novel approach that allows
simultaneous isolation of genomicDNA and total RNA from single
cells. Using robust magnetic separation in combination with an
optimized cell lysis condition that preserves genomic DNAwithin
the nucleus, the SIDRmethod enabled efficient and reliable recov-
ery of genomic DNA and RNA transcripts. We have demonstrated
the ability of SIDR to physically separate genomic DNA and total
RNA from the same single cell without a discernible loss of either
DNA or RNA or cross-contamination of nucleic acids.

Our data showed that under the lysis conditions used for
SIDR, the plasma membrane was efficiently ruptured with the re-
lease of cytoplasmic components, and the integrity of the nucleus
remained relatively well-preserved. Unlike the plasma membrane,
which is impermeable to charged molecules, the nuclear mem-
brane, with its plastic nuclear pore complexes, can maintain its
integrity under osmotic pressure (Ting-Beall et al. 1993; Vasu
and Forbes 2001; Grossman et al. 2012; Svec et al. 2013). Lamin
immunostaining showed a clear envelope structure of the nuclear
laminawith slight swelling. The nuclear envelope lamina network
is known to form a compressed network shell of interconnected
rods and thus shows elasticity (Dahl et al. 2004). The preserved in-
tegrity of the nucleus likely prevents genomic DNA from leaking
into the supernatant fraction, as supported by the observation of
minimal contamination of the RNA fraction with genomic DNA.
After cell lysis, magnetic beads on the disrupted plasmamembrane
were sufficient to recover cell lysate, including the nuclei, indicat-
ing that the cytoskeletal networksmightnot completelydisappear.
In fact, a significant level of actin was present after cell lysis in our
study. In a previous study, the presence of substantial amounts of
retained cytoplasmic beta actin indicated that the Triton X-100 in-
soluble actin cytoskeleton still connected the extracellular matrix
to the core nucleus after destruction of cells caused by hypotonic
lysis with the detergent (Tarone et al. 1984; Gualtieri et al. 2004).

Although the integrity of the nuclear lamina was maintained
(Fig. 1B,C), the lipid membrane of the nucleus was not likely to be
intact after the cell lysis step, whichwas supported by the relatively
effective recovery of nuclear-enriched mRNA in FR (Fig. 2C;
Supplemental Figs. S1, S2). Similar to the nuclear membrane, the
membranes of cytoplasmic organelles such as endoplasmic reticu-
lum and mitochondria would not be intact, although all these
organelles may be associated with the cytoskeletal networks and
trapped in cell lysate. To examine whether cytoplasmic DNAmol-
ecules were recovered by the SIDR method, we performed qPCR
assays for mitochondrially encoded NADH dehydrogenase 1
(MT-ND1) and mitochondrially encoded cytochrome b (MT-

CYB). Significant fractions of mitochondrial DNA were recovered
in FR by the SIDR procedure (Supplemental Fig. S22).

In the present study, isolation of single cells was verified by
microscopic observations in each well of the customized 48-well
microplate. Regardless of themethod used for single-cell isolation,
theremay be a fraction of compartments that are empty or contain
multiple cells. Interpretations based on the data obtained from
multiple cells may lead to spurious biological conclusions. The
48-well microplate was designed to reduce the time needed for mi-
croscopic scanning, because single cells isolated from primary
specimens should be immediately processed for subsequent sam-
ple preparation to minimize in vitro artifacts. After a microscopic
examination, single cells were lysed in the microplate. We mini-
mized transfer of samples to new tubes in order to reduce the
risk of sample loss. Supernatants (total RNA) were transferred to
prepared clean tubes, while bead-bound cell pellets (genomic
DNA) were captured by placing a magnet on the bottom of the
microplate. Alkaline lysis prior to whole-genome amplification
was performed in the microplate without transferring cell lysates
containing genomic DNA to new tubes.

The performance of themethod was evaluated with a specific
focus on parallel sequencing of the genome and transcriptome,
although analytic methods that could utilize DNA and RNA ob-
tained by SIDR are not limited to massively parallel sequencing.
The efficient isolation of genomic DNA and total RNA by SIDR
was critical for generation of high-quality single-cell sequencing
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data. In addition to various sequencing metrics, sequencing anal-
ysis of single-cell libraries prepared by the SIDR method revealed
genomic and transcriptomic cell-to-cell variation and preserved
distinctive signatures of cell lines (Figs. 4, 5). We have shown
that single-cell SIDR-seq makes it possible to explore correlations
between variation in the genome and the transcriptome at the
single-cell level (Fig. 5).

To codetect gene sequences and transcripts from the same
single cells, several studies have recently reported novel methods
such as microfluidics-facilitated approaches (Han et al. 2014),
gDNA-mRNA sequencing (DR-Seq) (Dey et al. 2015), genome
and transcriptome sequencing (G&T-seq) (Macaulay et al. 2015),
and single-cell triple omics sequencing (scTrio-seq) (Hou et al.
2016). Every technique has its advantages and limitations. For
instance, because DR-Seq does not physically separate DNA and
RNA before amplification, it may minimize losses of nucleic acids
and chances of contamination (Dey et al. 2015). However, because
this approach restricts transcript profiling to mRNA and requires
in silico masking of the exonic regions of the genomic DNA, it im-
poses inherent limitations on the choice of the WGA method,
detection of genetic variants in exonic regions, and expression
profiling of noncoding RNA (Wu et al. 2014; Dey et al. 2015).
Our results also indicated that various sequencing metrics for
DR-Seq WGS and RNA-seq data were inferior to those for SIDR
data because each data set contained a significant fraction of reads
derived from the other because of simultaneous amplification of
DNA and RNA without physical separation. In contrast, G&T-seq
(Macaulay et al. 2015) physically separates polyadenylated [poly
(A)] mRNA from genomic DNA by using oligo-dT primer conjugat-
ed beads (Raj and van Oudenaarden 2008; Hashimshony et al.
2012; Ramsköld et al. 2012; Wu et al. 2014). Consequently,
G&T-seq is not applicable for profiling of nonpolyadenylated
transcripts. Numerous functional transcripts, e.g., various noncod-
ing RNAs, including tRNA and rRNA, are known to lack poly(A)
tails. For example, among noncoding nonpolyadenylated RNAs,
long noncoding RNAs (lncRNAs) form the largest transcript class
in the human transcriptome (Yang et al. 2011; Ahadi et al.
2016). Dysregulated expression of lncRNAsmay be a clinicalmark-
er of many cancers (Ahadi et al. 2016). Approximately 90% of the
genome is estimated to be transcribed as noncoding RNA, but the
expression and functionality of such molecules remain unclear
(Hangauer et al. 2013; Kellis et al. 2014). Recently, analysis of non-
coding RNAs at the single-cell level became feasible, as easier-seq
was reported to reverse-transcribe total RNA in a polyadenylated-
tail-independent manner and then amplify and sequence the
RNA of single cells (Fu et al. 2016). In contrast to G&T-seq, which
is not applicable for profiling nonpolyadenylated transcripts, RNA
fractions isolated by the SIDR method are suitable input material
for such polyadenylated-tail-independent methods for examining
noncoding RNA expression at the single-cell level. Recently,
scTrio-seq was reported to separate DNA and total RNA by cell lysis
and subsequent centrifugation (Hou et al. 2016). However, some
RNA-containing supernatant was left in the DNA fraction during
the separation process to avoid disturbing the nuclear DNA precip-
itate, leading to a loss of RNA transcripts (Hou et al. 2016). By using
magnetic separation in the SIDR method, we retained most of the
RNA transcripts without disturbing the genomic DNA fraction.
The SIDR method improves integrated analysis of the genome
and transcriptome at the single-cell level by separating and recov-
ering genomic DNA/total RNA efficiently and robustly.

In addition to analyzing the single-cell WGS data and evalu-
ating the data quality, we also examined the effect of coverage

depth on copy-number profiling. For this purpose, we compared
copy numbers of single cells to those of bulk sample data on a
genome-wide scale, varying the total read counts in a range of
0.05–24 million by in silico down-sampling. Notably, the results
showed that therewere no critical distinctions or losses of informa-
tion with regard to CNV patterns or Pearson’s correlation coeffi-
cients in down-sampled data sets, even those with the smallest
total read count (Supplemental Fig. S20). These results showed
that low-depth sequencing of SIDR-prepared samples is sensitive
enough to capture copy-number information and uncover genetic
heterogeneity across single cells.

Althoughwe applied the SIDRmethod to analyze cancer cells,
there is no reason to limit its application within cancer research.
In addition, DNA isolated by the SIDR is suitable for profiling
not only genetic alterations but also epigenome characteristics.
As recent studies extensively characterizing genome, transcrip-
tome, or epigenome at the single-cell level identified new and
rare populations of cells in various organs/tissues (Smallwood
et al. 2014; Zeisel et al. 2015; Gawad et al. 2016; Muraro et al.
2016) at different developmental stages (Deng et al. 2014;
Scialdone et al. 2016) and pathological status (La Manno et al.
2016; Kee et al. 2017), the SIDRmethod is anticipated to integrate
developmental lineage trees and regulatory status of cells provid-
ing new insight into normal development as well as pathogenesis.

Although micromagnetic beads for the method in this study
were conjugated with an anti-EPCAM antibody for capturing
the cell lysate, other antibodies targeting an appropriate cell sur-
face protein may be used. Our preliminary data showed that an
anti-CD33 antibody could be adopted to the SIDR method and
recovered 97.3% ± 11.9 of DNA and 89.6%± 17.8 of RNA fractions
from HL-60 cell line samples (n = 3), based on LINE-1 and GAPDH

RT-qPCR, respectively. The data suggested the applicability of SIDR
for EPCAM-negative cells, but antibodies against other cell-type–
specific surface antigens remain to be characterized for broader ap-
plication of the method. In addition, cell lysis condition, such as
theconcentrationofTritonX-100,mightneedtobeoptimizedprior
to application of the SIDRmethod for particular cell types of inter-
est, although cell line samples and clinical tissue specimens tested
in this study were well lysed to recover RNA under the condition.

Currently, our method has some limitations in scalability,
sensitivity, accuracy of the analysis as well as dependency on anti-
body–antigen interaction. First, it requires manual manipulation
based on microwell dilution, which limits the number of single
cells that can be processed concurrently. Second, sample prepara-
tion and amplification were performed in microliter volumes in
this study. For RNA and DNA sequencing of single cells, a reduc-
tion of the reaction volumes from microliters to nanoliters has
been recommended to achieve more favorable reaction kinetics
and reduce amplification bias (Gole et al. 2013; Wu et al. 2014).
In this regard,microfluidic implementation of themethod is desir-
able for automation of the process and reduction of the reaction
volume, which might be feasible owing to the simplicity and
robustness of SIDR.

In this study, we developed and validated the SIDR method,
which allows simultaneous isolation of genomic DNA and total
RNA from single cells. By using SIDR, we showed that simultane-
ous isolation of both genomic DNA and total RNA was feasible
with a high recovery yield. Furthermore, scSIDR-seq integrated
data about genomic features and RNA expression profiles from
the same individual cells, enabling a comprehensive understand-
ing of cellular heterogeneity and complexity at the single-cell lev-
el. SIDR is a novel, highly efficient, and simple method of parallel
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isolation of genomic DNA and total RNA from single cells that
can become a promising platform for revealing and understanding
a wide range of unknown correlations between genomic/epige-
nomic alterations and gene expression patterns.

Methods

Patient recruitment and tumor samples

A total of five patients diagnosed with breast cancer or lung cancer
were recruited for this study. Tissue specimens were obtained from
surgical excisionwithout prior treatment. This studywas approved
by the Institutional Review Board (IRB) of Samsung Medical
Center, and all patients provided signed informed consent for col-
lection of specimens and detailed analyses of the derived genetic
materials (Institutional Review Board no. 2015-12-094 and no.
2010-04-039).

Reagents

All materials were used as received, unless otherwise noted.
Protein G-conjugated magnetic microbeads were purchased from
ThermoFisher Scientific, and buffer reagents were purchased
from Sigma. Human anti-EPCAM antibody was purchased from
Novus Biologicals (NB100-65094). Anti-lamin B2 and anti-beta ac-
tin antibodies were purchased from Abcam (ab8983 and ab8226,
respectively).

Cell culture and fluorescence image analysis

Three commercially available cell lines, MCF7, HCC827, and
SKBR3, were obtained from the American Type Culture Collection
(ATCC). When cells reached appropriate confluence, they were in-
cubated with membrane staining reagents for 10 min at 37°C.
Detailed methods are described in the Supplemental Methods.

Fabrication of 48-well microplates

Soft-lithography techniques were used to fabricate 48-well micro-
plates. Negative photo resin SU-8 (SU-8 2050; MicroChem) was
spin coated on a silicon wafer and a 4-mm-diameter circle array
with a 6-mm pitch was patterned by using photolithography to
make a master mold. A mixture of PDMS prepolymer (Sylgard
184; Dow Corning Corp.) and curing agents (10:1, v:v) was poured
into the master mold and degassed. It was placed on a hot plate
for 60 min at 75°C, and then the cured PDMS was removed from
the master mold. We punched each circular pattern to form a
well structure and bonded them to a clean glass slide after plasma
treatment (Cute-MPR; FEMTO Science). Fabricated devices were
sterilized with ethylene oxide gas and immediately sealed for
long-term storage.

Single-cell isolation and cell lysis for simultaneous isolation

of genomic DNA and total RNA

Detailed experimental procedures are described in the SIDR proto-
col section of Supplemental Methods. Briefly, dissociated cells
prestained by CellTracker (Molecular Probes) were bound to anti-
EPCAM antibody-conjugated magnetic beads and diluted to
achieve a concentration of one cell/1 µL of PBS. We dispensed 1
µL of cell suspension into each well of the 48-well microplate, ex-
amined single-cell isolation by a fluorescence microscopy, and
added 9 µL of lysis solution (0.2% Triton X-100 [Sigma-Aldrich]
and 0.5% of the RNase Inhibitor [Clontech] in water). After a 10-
min incubation at room temperature, supernatants containing
total RNA were retrieved, whereas cell lysates including genomic

DNA were captured by a magnet placed at the bottom of the 48-
well microplate.

Validation of simultaneous isolation of DNA and RNA by

real-time quantitative PCR

Genomic DNA and total RNA from 10 cells underwent physical
isolation by using hypotonic lysis followed by magnetic separa-
tion. For the quantification of isolated genomic DNA, the LINE-1
locus was amplified by real-time PCR using SYBR Green (Exiqon)
according to the manufacturer’s protocols. Fractionated total
RNA was used as a template for cDNA synthesis with a Single
Cell-to-CT Kit (Life Technologies). Detailed validation methods
are described in the Supplemental Methods.

Whole-genome and transcriptome amplification for single-cell

sequencing

After hypotonic lysis of each single cell, supernatants (total RNA)
and bead-bound cell pellets (genomic DNA) were physically sepa-
rated. Single-cell whole-genome amplification (Repli-g single
cell kit, Qiagen) was performed according to the manufacturer’s
protocols. Single-cell RNA samples were reverse transcribed and
preamplified using SMART-Seq2 according to the manufacturer’s
protocols (SMARTer Ultra Low Input RNA for Sequencing-v3;
Clontech). Detailed step-by-step procedures are described in the
Supplemental Methods.

Parallel sequencing of the whole genome, whole transcriptome,

and whole exome

Using 1-ng aliquots of each cDNA sample, a WTS library was pre-
pared using a Nextera XT DNA Sample Prep Kit (Illumina), accord-
ing to the manufacturer’s instructions. Then, the libraries were
sequenced on a HiSeq 2500 system using 100-bp paired-end
sequencing.

WGS libraries were constructed using a TruSeq Nano DNA
Library Prep Kit (Illumina) according to the protocol for sample
preparation for multiplexed paired-end sequencing. Low-coverage
genome sequencing was performed on an Illumina HiSeq 2500
system with 100-bp paired-end sequencing.

Sequencing libraries forWES were created using the SureSelect
XT Human All Exon V5 kit (Agilent Technologies) and subse-
quently analyzed by the HiSeq 2500 systems (Illumina) using the
100-bp paired-end mode of the TruSeq Rapid PE Cluster kit and
TruSeq Rapid SBS kit (Illumina).

Data analysis

All DNA sequencing data were aligned to build version hg19 of the
human genome using BWA-MEM (version 0.7.4) (Li 2013) with
default option parameters. Although the more recent human ge-
nome assembly GRCh38 has improved contiguity especially in
centromeric regions and expanded alternative haplotypes, we
do not expect realigning the reads to GRCh38 would have an ap-
preciable impact on our conclusion. Because we compared data
sets from genetically homogeneous cell line samples by applying
identical processing procedures, our performance evaluation on
genome-wide sequencing data should be consistent between the
two similar assemblies of high quality. Further data processing pro-
cedures are fully described in the Supplemental Methods. Data
sets generated in this manuscript can be found in Supplemental
Table S1; low-quality cells (defined in Supplemental Fig. S3 and
Supplemental Methods) were filtered out in downstream analysis.
To compare the quality and performance of SIDR-seqwith those of
other methods, we downloaded raw FASTQ files of SKBR3 WGS
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data fromDR-Seq (Dey et al. 2015) and nuc-seq (Wang et al. 2014)
and applied the identical processing steps.

Processing of RNA-seq data was carried out as described previ-
ously (Kim et al. 2015, 2016). Poor-quality cells (defined in
Supplemental Fig. S8 and Supplemental Methods) were removed
to assess the quality and performance between WR and FR out of
SIDR-seq, and SKBR3 RNA-seq data between SIDR-seq and DR-
Seq (Dey et al. 2015). Detailed methods for processing RNA-seq
data, as well as estimation of relative gene expression levels across
samples, are fully described in the Supplemental Methods.

Data access

The sequencingdata fromthis studyhave been submitted to the EBI
European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) un-
der accession numbers ERP022266 (RNA-seq), ERP022267 (WGS),
and ERP022268 (WES), respectively.
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