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Abstract Let L(x) =ajx) +axxo + -+ ayx,, n > 2, be a linear form with integer
coefficients aj, ay, ..., a, which are not all zero. A basic problem is to determine
nonzero integer vectors x such that L (x) = 0, and the maximum norm || x| is relatively
small compared with the size of the coefficients aj, ay, . . ., a,. The main result of this
paper asserts that there exist linearly independent vectors X1, ..., X,—1 € Z" such that
Lix;)=0,i=1,...,n—1,and

llall

Xl 1% —1ll < —
n

where a = (aj, ap, ..., a,) and

2 [ (sint\"
On = _/ <—> dt.
T Jo t

This result also implies a new lower bound on the greatest element of a sum-
distinct set of positive integers (Erdos—Moser problem). The main tools are the
Minkowski theorem on successive minima and the Busemann theorem from convex
geometry.

1 Introduction

Leta= (ai,...,an), n > 2, be a nonzero integral vector. Consider the linear form
L(x) =ajx) +axxz+---+aux,. Siegel’s lemma with respect to the maximum norm
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I - || asks for an optimal constant ¢,, > 0 such that the equation
L(x)=
has an integral solution x = (x1, ..., x;) with
0 < [IxII"~" < callall. ey

The only known exact values of ¢, are c» =1, c3 = % and ¢4 = % (see [1] and
[15]). Note that for n = 3, 4 the equality in (1) is not attained. Schinzel [15] showed
that, for n > 3,

R"~! given by

n—3
xi|l<1, i=1,...,n—1, Zaixi—l—xn,z—i—xn,] <lI,
i=1

and «; range over all rational numbers in the interval (0, 1]. The values of ¢, for
n <4 indicate that, most likely, ¢, = A(H” ! S0 ! However, a proof of this conjec-
ture does not seem within reach at present. The best known upper bound

e~ @)

follows from the classical result of Bombieri and Vaaler [3, Theorem 1].
In this paper we estimate ¢, via values of the sinc integrals

The main result is as follows:

Theorem For any nonzero vector a € 7', n > 5, there exist linearly independent
vectors Xi, ...,X,_1 € Z" such that L(x;) =0,i=1,...,n— 1, and

llall
Ixell - %1l < —- 3
0,

n

From (3) we immediately get the bound

-1
<0, ", 4
and since
—1 mn
o, ?, as n—> oo (5)
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(see Sect. 2), the theorem asymptotically improves the estimate (2). It is also known
(see, e.g., [13]) that

n Z (=" (n —2r)+1
| _ | '
0<r<n/2,reZ r (n r)'

The sequences of numerators and denominators of ¢, /2 can be found in [16].

Remark 1

(i) Calculation shows that for all 5 < n < 1000 the bound (4) is slightly better
than (2).

(ii) For n <4 the constant o, L'in (3) can be replaced by c,. This follows from the
observation that any origin-symmetric convex body in R”, n < 3, has anomaly 1
(see [17]).

A. Schinzel (personal communication) observed that, with respect to maximum
norm, Siegel’s lemma can be applied to the following well-known problem from
additive number theory. A finite set {a1, ..., a,} of integers is called a sum-distinct
set if any two of its 2" subsums differ by at least 1. We shall assume, without loss
of generality, that 0 < a; <az < --- < ap. In 1955 Erdos and Moser [8, Problem 6]
asked for an estimate on the least possible a, of such a set. They proved that

o on
n’ 4ﬁ}

and Erdos conjectured that a,, > C¢2", Co > 0. In 1986 Elkies [7] showed that

a, >27" (211) 7
n

and this result is still cited by Guy [11, Problem C8] as the best known lower bound
for large n. Following [7], note that references [8] and [11] stated the problem equiv-
alently in terms of an “inverse function”. They asked one to maximize the size m
of a sum-distinct subset of {1,2, ..., x}, given x. Clearly, the bound a, > C;n™°2"
corresponds to

(6)

a, > max {

1
m < log, x + s log, log, x + log, ol o(1).
1

Corollary 1 For any sum-distinct set {ay, ...,a,} with 0 < a; < --- < ay, the in-
equality
ap > 0,2" ! )
holds.
Since
(2}~ 2 d 0,21 2 00
~ and o ~——1«  as n ,
n Jrn " V2mn/3
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Corollary 1 asymptotically improves the result of Elkies with factor \/3/2.

Remark 2

(i) Sum-distinct sets with a minimal largest element are known up to n = 9 (see
[5]). In the latter case the estimate (8) predicts ag > 116 and the optimal bound is
ag > 161. Calculation shows that for all 10 <n < 1000 the bound (8) is slightly
better than (7).

(ii) Professor Noam Elkies kindly informed the author about the existence of an un-
published result by him and Andrew Gleason which asymptotically improves (7)
with factor v/2.

2 Sections of the Cube and Sinc Integrals

Let C=[—1,1]" C R" and let s = (51, ..., ;) € R" be a unit vector. It is a well-
known fact (see, e.g., [2]) that

S;t

2 oo sins;t
voln_l(sl n C) _ ;/0 l_[ sin s; a. ©)
i=1

where s is the (n — 1)-dimensional subspace orthogonal to s. In particular, the vol-

ume of the section orthogonal to the vertex v= (1, ..., 1) of C is given by
2" [ (sin(t//n)\" »
ol,_i(vtnCc)== — ) dt=2" .
voli-1 (=N €) n/o(t/ﬁ Vo

Laplace and Pélya (see [12, 14] and, e.g., [6]) both gave proofs that

. vol,_1(vtNC) 6
11m—= —_—.

n—00 on—1 T
Thus, (5) is justified.
Lemmal Forn > 2,

0<opy1 <o <1.

Proof This result is implicit in [4]. Indeed, Theorem 1(ii) of [4] applied with ag =
a) = ---=a, = 1 gives the inequalities

O<opp1 <o, <L

The strict inequality 0,11 < o, follows from the observation that in this case the
inequality in (3) of [4] is strict with a,+1 =ap =y =1. O
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3 An Application of the Busemann Theorem

Let | - | denote the euclidean norm. Recall that we can associate with each star body L
the distance function fi(x) =inf{A > 0:x € AL}. The intersection body IL of a star
body L C R"*, n > 2, is defined as the o-symmetric star body whose distance function
fiL 1s given by

x|

) = vol,_1(xtNL)"

Intersection bodies played an important role in the solution to the famous Busemann—
Petty problem. The Busemann theorem (see, e.g., Chap. 8 of [9]) states that if L is
o-symmetric and convex, then IL is the convex set. This result allows us to prove the
following useful inequality. Let f = fjc denote the distance function of IC.

Lemma 2 For any nonzero x € R",

Il 021

X 1
s ) =fW=—F= (10)
with equality only if n =2 or X/||X|| is a vertex of the cube C.

We proceed by induction on n. When n = 2 the result is obvious. Suppose
now (10) is true for n — 1 > 2. Since, if some x; = 0, the problem reduced to that
in R”~!, we may assume inductively that x; > O for all i. Clearly, we may also as-
sume that w = x/||x|| is not a vertex of C, in particular, w # v.

Let Q =[0,1]" C R" and let L be the two-dimensional subspace spanned by
vectors v and x. Then P = L N Q is a parallelogram on the plane L. To see this,
observe that the cube Q is the intersection of two cones {y € R : y; >0} and {y €
R™ : y; < 1} with apexes at the points 0 and v, respectively.

Suppose that P has vertices o, u, v, v—u. Then the edges ou, ov —u of P belong
to coordinate hyperplanes and the edges uv, vv —u lie on the boundary of C. Without
loss of generality, we may assume that the point w lies on the edge uv. Let

vol,_1(vtNC) v . 1
2n71 |V| 2n71

vV=0,v= IC,
/
u =ox-1u.

Since the point u lies in one of the coordinate hyperplanes, by the induction hypoth-
esis

1
f(u/) = f(op—1w) < -1

Thus, u’ € (1/2"~1)IC. Consider the triangle with vertices o, u, v. Let W’ be the point
of intersection of segments ow and u'v’. Observing that by Lemma 10

o W] < [W| < |ou—1Wl,
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we get

1 w1
<—. (11)

—
On—1 [w'| On

By the Busemann theorem IC is convex. Therefore w' € (1/ 2"=1YIC and thus

, vol ,_1(wt N )
[w'| < ot

By (11) we obtain

flo)=rmm M M 1
— | = W)= < .
I vol,{(wE N C) = 27Tjw] = 6,20

Applying Lemma 2 to a unit vector s and using (9) we get the following inequality
for sinc integrals.

Corollary 2 For any unit vector s = (s1, ..., sy) € R",

o N . 00 . n
sims;t sint
i [T ar= [ (5 ar
0 Gy Sit 0 t

with equality only if n =2 or s/||s|| is a vertex of the cube C.

Remark 3 Note that IC is symmetric with respect to any coordinate hyperplane. This
observation and Busemann’s theorem immediately imply (10) with nonstrict inequal-
ity in all cases.

4 Proof of the Theorem

Clearly, we may assume that ||al| > 1 and, in particular, that the inequality in
Lemma 2 is strict for x = a. We also assume, without loss of generality, that
gcd(ay, ..., ay) = 1.

Let S=alNCand A =al NZ". Then S is a centrally symmetric convex set and
A is an (n — 1)-dimensional sublattice of Z" with determinant (covolume) det A =
|a]. Let &; = A; (S, A) be the ith successive minimum of S with respect to A, that is

A =inf{A > 0:dim(ASNA) > i}.
By the definition of S and A it is enough to show that

llall
Al dp—1 < .
On

The (n — 1)-dimensional subspace al C R” can be considered as a usual (n — 1)-
dimensional Euclidean space. The Minkowski Theorem on Successive Minima (see,
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e.g. Chap. 2 of [10]), applied to the o-symmetric convex set S C a' and the lattice
A C at, implies that

2"~ det A 27=1a
Mo Aot < = Al ol p),
vol,,_1(S) vol,_1(atNC)
and by Lemma 2 we get
a a
Mo <27 f@) =21 f (—) lall <27~ Fvyfaf = 121
llall On
This proves the theorem.
5 Proof of Corollary 1
For a sum-distinct set {ai, ..., a,} consider the vector a = (ajy, ..., a,). Observe that

any nonzero integral vector x with L(x) = 0 must have the maximum norm greater
than 1. Therefore (3) implies the inequality

llall
On

2n—l <
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