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Abstract Let L(x) = a1x1 + a2x2 + · · · + anxn, n ≥ 2, be a linear form with integer
coefficients a1, a2, . . . , an which are not all zero. A basic problem is to determine
nonzero integer vectors x such that L(x) = 0, and the maximum norm ‖x‖ is relatively
small compared with the size of the coefficients a1, a2, . . . , an. The main result of this
paper asserts that there exist linearly independent vectors x1, . . . ,xn−1 ∈ Z

n such that
L(xi ) = 0, i = 1, . . . , n − 1, and

‖x1‖ · · · ‖xn−1‖ <
‖a‖
σn

,

where a = (a1, a2, . . . , an) and

σn = 2

π

∫ ∞

0

(
sin t

t

)n

dt.

This result also implies a new lower bound on the greatest element of a sum-
distinct set of positive integers (Erdös–Moser problem). The main tools are the
Minkowski theorem on successive minima and the Busemann theorem from convex
geometry.

1 Introduction

Let a = (a1, . . . , an), n ≥ 2, be a nonzero integral vector. Consider the linear form
L(x) = a1x1 +a2x2 +· · ·+anxn. Siegel’s lemma with respect to the maximum norm
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‖ · ‖ asks for an optimal constant cn > 0 such that the equation

L(x) = 0

has an integral solution x = (x1, . . . , xn) with

0 < ‖x‖n−1 ≤ cn‖a‖. (1)

The only known exact values of cn are c2 = 1, c3 = 4
3 and c4 = 27

19 (see [1] and
[15]). Note that for n = 3,4 the equality in (1) is not attained. Schinzel [15] showed
that, for n ≥ 3,

cn = sup�
(
Hn−1

α1,...,αn−3

)−1 ≥ 1,

where �(·) denotes the critical determinant, Hn−1
α1,...,αn−3

is a generalized hexagon in

R
n−1 given by

|xi | ≤ 1, i = 1, . . . , n − 1,

∣∣∣∣∣
n−3∑
i=1

αixi + xn−2 + xn−1

∣∣∣∣∣ ≤ 1,

and αi range over all rational numbers in the interval (0, 1 ]. The values of cn for
n ≤ 4 indicate that, most likely, cn = �(Hn−1

1,...,1)
−1. However, a proof of this conjec-

ture does not seem within reach at present. The best known upper bound

cn ≤ √
n (2)

follows from the classical result of Bombieri and Vaaler [3, Theorem 1].
In this paper we estimate cn via values of the sinc integrals

σn = 2

π

∫ ∞

0

(
sin t

t

)n

dt.

The main result is as follows:

Theorem For any nonzero vector a ∈ Z
n, n ≥ 5, there exist linearly independent

vectors x1, . . . ,xn−1 ∈ Z
n such that L(xi ) = 0, i = 1, . . . , n − 1, and

‖x1‖ · · · ‖xn−1‖ <
‖a‖
σn

. (3)

From (3) we immediately get the bound

cn ≤ σ−1
n , (4)

and since

σ−1
n ∼

√
πn

6
, as n → ∞ (5)
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(see Sect. 2), the theorem asymptotically improves the estimate (2). It is also known
(see, e.g., [13]) that

σn = n

2n−1

∑
0≤r<n/2, r∈Z

(−1)r (n − 2r)n−1

r! (n − r)! .

The sequences of numerators and denominators of σn/2 can be found in [16].

Remark 1

(i) Calculation shows that for all 5 ≤ n ≤ 1000 the bound (4) is slightly better
than (2).

(ii) For n ≤ 4 the constant σ−1
n in (3) can be replaced by cn. This follows from the

observation that any origin-symmetric convex body in R
n, n ≤ 3, has anomaly 1

(see [17]).

A. Schinzel (personal communication) observed that, with respect to maximum
norm, Siegel’s lemma can be applied to the following well-known problem from
additive number theory. A finite set {a1, . . . , an} of integers is called a sum-distinct
set if any two of its 2n subsums differ by at least 1. We shall assume, without loss
of generality, that 0 < a1 < a2 < · · · < an. In 1955 Erdös and Moser [8, Problem 6]
asked for an estimate on the least possible an of such a set. They proved that

an > max

{
2n

n
,

2n

4
√

n

}
(6)

and Erdös conjectured that an > C02n, C0 > 0. In 1986 Elkies [7] showed that

an > 2−n

(
2n

n

)
(7)

and this result is still cited by Guy [11, Problem C8] as the best known lower bound
for large n. Following [7], note that references [8] and [11] stated the problem equiv-
alently in terms of an “inverse function”. They asked one to maximize the size m

of a sum-distinct subset of {1,2, . . . , x}, given x. Clearly, the bound an > C1n
−s2n

corresponds to

m < log2 x + s log2 log2 x + log2
1

C1
− o(1).

Corollary 1 For any sum-distinct set {a1, . . . , an} with 0 < a1 < · · · < an, the in-
equality

an > σn2n−1 (8)

holds.

Since

2−n

(
2n

n

)
∼ 2n

√
πn

and σn2n−1 ∼ 2n

√
2πn/3

, as n → ∞,
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Corollary 1 asymptotically improves the result of Elkies with factor
√

3/2.

Remark 2

(i) Sum-distinct sets with a minimal largest element are known up to n = 9 (see
[5]). In the latter case the estimate (8) predicts a9 ≥ 116 and the optimal bound is
a9 ≥ 161. Calculation shows that for all 10 ≤ n ≤ 1000 the bound (8) is slightly
better than (7).

(ii) Professor Noam Elkies kindly informed the author about the existence of an un-
published result by him and Andrew Gleason which asymptotically improves (7)
with factor

√
2.

2 Sections of the Cube and Sinc Integrals

Let C = [−1,1]n ⊂ R
n and let s = (s1, . . . , sn) ∈ R

n be a unit vector. It is a well-
known fact (see, e.g., [2]) that

vol n−1
(
s⊥ ∩ C

) = 2n

π

∫ ∞

0

n∏
i=1

sin si t

si t
dt, (9)

where s⊥ is the (n − 1)-dimensional subspace orthogonal to s. In particular, the vol-
ume of the section orthogonal to the vertex v = (1, . . . ,1) of C is given by

vol n−1
(
v⊥ ∩ C

) = 2n

π

∫ ∞

0

(
sin(t/

√
n)

t/
√

n

)n

dt = 2n−1√nσn.

Laplace and Pólya (see [12, 14] and, e.g., [6]) both gave proofs that

lim
n→∞

vol n−1(v⊥ ∩ C)

2n−1
=

√
6

π
.

Thus, (5) is justified.

Lemma 1 For n ≥ 2,

0 < σn+1 < σn ≤ 1.

Proof This result is implicit in [4]. Indeed, Theorem 1(ii) of [4] applied with a0 =
a1 = · · · = an = 1 gives the inequalities

0 < σn+1 ≤ σn ≤ 1.

The strict inequality σn+1 < σn follows from the observation that in this case the
inequality in (3) of [4] is strict with an+1 = a0 = y = 1. �
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3 An Application of the Busemann Theorem

Let | · | denote the euclidean norm. Recall that we can associate with each star body L

the distance function fL(x) = inf{λ > 0 : x ∈ λL}. The intersection body IL of a star
body L ⊂ R

n, n ≥ 2, is defined as the o-symmetric star body whose distance function
fIL is given by

fIL(x) = |x|
vol n−1(x⊥ ∩ L)

.

Intersection bodies played an important role in the solution to the famous Busemann–
Petty problem. The Busemann theorem (see, e.g., Chap. 8 of [9]) states that if L is
o-symmetric and convex, then IL is the convex set. This result allows us to prove the
following useful inequality. Let f = fIC denote the distance function of IC.

Lemma 2 For any nonzero x ∈ R
n,

f

(
x

‖x‖
)

≤ f (v) = 1

σn2n−1
, (10)

with equality only if n = 2 or x/‖x‖ is a vertex of the cube C.

We proceed by induction on n. When n = 2 the result is obvious. Suppose
now (10) is true for n − 1 ≥ 2. Since, if some xi = 0, the problem reduced to that
in R

n−1, we may assume inductively that xi > 0 for all i. Clearly, we may also as-
sume that w = x/‖x‖ is not a vertex of C, in particular, w = v.

Let Q = [0,1]n ⊂ R
n and let L be the two-dimensional subspace spanned by

vectors v and x. Then P = L ∩ Q is a parallelogram on the plane L. To see this,
observe that the cube Q is the intersection of two cones {y ∈ R

n : yi ≥ 0} and {y ∈
R

n : yi ≤ 1} with apexes at the points o and v, respectively.
Suppose that P has vertices o, u, v, v − u. Then the edges ou, ov − u of P belong

to coordinate hyperplanes and the edges uv, vv−u lie on the boundary of C. Without
loss of generality, we may assume that the point w lies on the edge uv. Let

v′ = σnv = vol n−1(v⊥ ∩ C)

2n−1

v
|v| ∈ 1

2n−1
IC,

u′ = σn−1u.

Since the point u lies in one of the coordinate hyperplanes, by the induction hypoth-
esis

f (u′) = f (σn−1u) ≤ 1

2n−1
.

Thus, u′ ∈ (1/2n−1)IC. Consider the triangle with vertices o, u, v. Let w′ be the point
of intersection of segments ow and u′v′. Observing that by Lemma 10

|σnw| < |w′| < |σn−1w|,
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we get

1

σn−1
<

|w|
|w′| <

1

σn

. (11)

By the Busemann theorem IC is convex. Therefore w′ ∈ (1/2n−1)IC and thus

|w′| ≤ vol n−1(w⊥ ∩ C)

2n−1
.

By (11) we obtain

f

(
x

‖x‖
)

= f (w) = |w|
vol n−1(w⊥ ∩ C)

≤ |w|
2n−1|w′| <

1

σn2n−1
.

Applying Lemma 2 to a unit vector s and using (9) we get the following inequality
for sinc integrals.

Corollary 2 For any unit vector s = (s1, . . . , sn) ∈ R
n,

‖s‖
∫ ∞

0

n∏
i=1

sin si t

si t
dt ≥

∫ ∞

0

(
sin t

t

)n

dt,

with equality only if n = 2 or s/‖s‖ is a vertex of the cube C.

Remark 3 Note that IC is symmetric with respect to any coordinate hyperplane. This
observation and Busemann’s theorem immediately imply (10) with nonstrict inequal-
ity in all cases.

4 Proof of the Theorem

Clearly, we may assume that ‖a‖ > 1 and, in particular, that the inequality in
Lemma 2 is strict for x = a. We also assume, without loss of generality, that
gcd(a1, . . . , an) = 1.

Let S = a⊥ ∩C and � = a⊥ ∩Z
n. Then S is a centrally symmetric convex set and

� is an (n − 1)-dimensional sublattice of Z
n with determinant (covolume) det� =

|a|. Let λi = λi(S,�) be the ith successive minimum of S with respect to �, that is

λi = inf
{
λ > 0 : dim(λS ∩ �) ≥ i

}
.

By the definition of S and � it is enough to show that

λ1 · · ·λn−1 <
‖a‖
σn

.

The (n − 1)-dimensional subspace a⊥ ⊂ R
n can be considered as a usual (n − 1)-

dimensional Euclidean space. The Minkowski Theorem on Successive Minima (see,
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e.g. Chap. 2 of [10]), applied to the o-symmetric convex set S ⊂ a⊥ and the lattice
� ⊂ a⊥, implies that

λ1 · · ·λn−1 ≤ 2n−1 det�

vol n−1(S)
= 2n−1|a|

vol n−1(a⊥ ∩ C)
= 2n−1f (a),

and by Lemma 2 we get

λ1 · · ·λn−1 ≤ 2n−1f (a) = 2n−1f

(
a

‖a‖
)

‖a‖ < 2n−1f (v)‖a‖ = ‖a‖
σn

.

This proves the theorem.

5 Proof of Corollary 1

For a sum-distinct set {a1, . . . , an} consider the vector a = (a1, . . . , an). Observe that
any nonzero integral vector x with L(x) = 0 must have the maximum norm greater
than 1. Therefore (3) implies the inequality

2n−1 <
‖a‖
σn

.
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