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Sierra nevada sweep: 
metagenomic measurements 
of bioaerosols vertically distributed 
across the troposphere
crystal Jaing1*, James thissen1, Michael Morrison1, Michael B. Dillon1, 

Samantha M. Waters2,7, Garrett t. Graham3, nicholas A. Be1, patrick nicoll4, Sonali Verma5, 

tristan caro6 & David J. Smith7

To explore how airborne microbial patterns change with height above the Earth’s surface, we flew 
NASA’s C-20A aircraft on two consecutive days in June 2018 along identical flight paths over the 
US Sierra Nevada mountain range at four different altitudes ranging from 10,000 ft to 40,000 ft. 
Bioaerosols were analyzed by metagenomic DnA sequencing and traditional culturing methods 

to characterize the composition and diversity of atmospheric samples compared to experimental 

controls. The relative abundance of taxa changed significantly at each altitude sampled, and 
the diversity profile shifted across the two sampling days, revealing a regional atmospheric 
microbiome that is dynamically changing. the most proportionally abundant microbial genera were 

Mycobacterium and Achromobacter at 10,000 ft; Stenotrophomonas and Achromobacter at 20,000 
ft; Delftia and Pseudoperonospora at 30,000 ft; and Alcaligenes and Penicillium at 40,000 ft. Culture-
based detections also identified viable Bacillus zhangzhouensis, Bacillus pumilus, and Bacillus spp. in 

the upper troposphere. to estimate bioaerosol dispersal, we developed a human exposure likelihood 

model (7-day forecast) using general aerosol characteristics and measured meteorological conditions. 
By coupling metagenomics to a predictive atmospheric model, we aim to set the stage for field 
campaigns that monitor global bioaerosol emissions and impacts.

Aerosols (mostly desert dust, black carbon and ocean spray) regularly disperse across the Paci�c Ocean with 
springtime atmospheric winds – in fact, models suggest that as much as 64 Teragrams of Asian aerosols can 
be transported to North America  annually1. Past studies have reported microorganisms co-transported with 
globally-dispersed aerosols, and that both DNA signatures and viable cells can be detected in air  masses2–4. For 
example, thousands of taxonomic signatures were measured in springtime Asian dust plumes delivering free 
tropospheric bioaerosols to an alpine research station in central  Oregon3. In a separate �ight project surveying 
airborne microorganisms in the western region of the United States, several taxa were found to be enriched in 
the upper atmosphere, including bacterial families Lachnospiraceae, Ruminococcaceae and Erysipelotrichaceae2. 
Despite harsh conditions in the atmosphere, viable bacterial isolates were recovered from the same  study2, 
including Bacillus sp., Micrococcus sp., Arthrobacter sp. and Staphylococcus sp.

Previous aerobiology campaigns using aircra� were �own at single altitudes in order to re�ne collection meth-
ods and demonstrate some of the �rst measurements of an atmospheric  microbiome2,5–7. To date, there are only a 
few studies that have examined microbiological changes across a vertical gradient in Earth’s  troposphere8–10. More 
studies using advanced genomic techniques such as shotgun metagenomic sequencing will be essential to for-
mulating predictive models of bioaerosols and how the atmospheric microbiome is in�uenced by meteorological 

open

1Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA. 2Universities 
Space Research Association, Maryland, USA. 3Georgetown University Medical Center, Washington, DC, 
USA. 4University of Victoria, Victoria, BC, Canada. 5Blue Marble Space Institute of Science, Space Bioscences 
Division, NASA Ames Research Center, Moffett Field, CA, USA. 6Department of Geological Sciences, University 
of Colorado, Boulder, CO, USA. 7NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, 
USA. *email: jaing2@llnl.gov

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-69188-4&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12399  | https://doi.org/10.1038/s41598-020-69188-4

www.nature.com/scientificreports/

 conditions11,12. High-altitude aircra� can be used to travel at variable altitudes in the atmosphere, allowing us to 
investigate how bioaerosols patterns change with height above the surface. Herein, we report microbial composi-
tion in a “staircase pattern” �own at 10,000 �, 20,000 �, 30,000 � and 40,000 � using an Aircra� Bioaerosol Col-
lector (ABC) device onboard NASA’s C-20A  aircra�2. Air samples were collected on two consecutive �ight days 
(June 20–21, 2018) in the vicinity of Palmdale, CA, USA, across the Sierra Nevada mountain range. Following 
each �ight, captured bioaerosols were analyzed with traditional culture-based methods as well as metagenomic 
DNA sequencing. A meteorological and atmospheric dispersion computer model was then applied to the micro-
biological dataset to provide predictions of bioaerosol measurement signals and potential population exposures 
in downwind regions.

Methods
Sampling flights. Two research �ights (Fig. 1) were �own over the Sierra Nevada mountains (Supplemen-
tary Fig. S1) across California using NASA’s C-20A Gulfstream III aircra� available through the Airborne Sci-
ence Program at Armstrong Flight Research Center (AFRC). �e �rst �ight was 2.9 h total �own on June 20, 
2018; the second �ight was 3.5 h total on June 21, 2018. During each daytime �ight, the aircra� ascended to 
40,000 � and remained at this altitude for 30–40 min sampling air at an estimated rate of 8.5 L·min−1. �en, in 
a “staircase” pattern, the aircra� descended in 10,000 � increments from 30,000 �, to 20,000 �, to 10,000 �, for 
30–40 min of air sampling at each altitude step. Supplementary Table S1 summarizes sampling times and other 
pertinent �ight information. Aircra� telemetry data was visualized using Google Earth Pro so�ware with images 
from Landsat and Copernicus to generate terrain (Supplementary Fig. S1).

Sample collection procedures were carried out using the ABC hardware system as previously  described2. 
Before the aircra� reached each sampling altitude, gamma-irradiated (i.e., DNA-treated) gelatinous �lter mem-
branes were loaded into a cascade impactor (Supplementary Fig. S2). Two di�erent cascade impactor stages were 
used to size separate the bioaerosols (Product TE-10–860; Tisch Environmental, Cleves, OH). Each sampler 
stage had 400 small, round, drilled ori�ces (1.18 mm on �rst stage; 0.25 mm on second stage). As described by 
Smith et al.2, the �rst stage should capture aerosols larger than 8 μm (if traveling into the inlet) while the second 
stage would capture smaller aerosols between 1 and 8 μm (nominal). �e �rst stage holds Filter A and second 
stage holds Filter B. An upstream valve was used to regulate atmospheric air �owing into the system. With the 
air �ow o�, fresh �lters were aseptically swapped into the sampling system before the next altitude was sampled. 
A total of 16 �lter samples were collected at the four di�erent altitudes on two consecutive �ight days with two 
�lters staged at each altitude.

Figure 1.  Sampling over the US Sierra Nevada mountain range. (a) Aircra� Bioaerosol Collector (ABC) 
onboard NASA’s C-20A aircra�. Air sampling line, �ow valve, cascade impactor, and air �ow meter shown on 
workbench; (b) June 20, 2018, view from C-20A window at lowest altitude sampled (10,000 �) above the US 
Sierra Nevada mountain range with an aerosol haze visible on the horizon; (c) Flight pattern on June 20, 2018 
based on GPS data, sampling for 30–40 min at 10,000 � steps up to 40,000 �; (d) Flight pattern on June 21, 2018 
based on GPS data, sampling for 30–40 min starting at 40,000 � and stepping down in 10,000 � steps. Panels C 
and D were generated using Mathworks Matlab so�ware, versions R2018 to R2019 (https ://www.mathw orks.
com/produ cts/matla b.html), from the recorded �ight path.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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experimental controls. To produce a baseline for assessing known system contaminants, we followed 
a previously described  method2where pre-�ight and post-�ight ground controls were collected on the C-20A 
window plate, air probe inlet, and an exterior portion of the aircra� upstream of the sampling probe using a 
pre-wetted, DNA-free sterile applicator (Puritan cat #25-3306UTTFDNA). Swabs were stored in 5 mL of sterile 
deionized water within a 15 ml Falcon tube and kept at 4 °C until laboratory processing. To characterize con-
taminants inside the aircra�, a blank gelatinous �lter was placed in a petri dish resting on the work bench and 
exposed to ambient aircra� cabin air during every �lter exchange. �ese samples were reported as cabin controls. 
�e surface of the bench holding the cascade sampler was also swabbed with a pre-wetted, DNA-free sterile 
applicator as an additional cabin control.

Post-flight sample processing. For each sample, one �lter half was archived in a −80 °C freezer (TSU-
600A, �ermo Scienti�c, Asheville, NC) and the other half was put in 40 ml of warm (37 °C) molecular grade 
water which easily dissolved the gelatinous �lter membrane. �e sample was then concentrated using the Inno-
vaPrep CP Select concentrating pipette (InnovaPrep, Drexel, MO). �e concentrator passed the entire sample 
volume (40 ml) through a 0.1 µm �at polyethersulfone membrane (part number CC08001), followed elution 
bu�er (EB, phosphate bu�ering solution with 0.75% Tween-20 [PBST]) into a �nal output volume of 1 mL. 
Filters A and B were processed separately. Similarly, swabs contained in 15 mL tubes (wetted with 5 ml of sterile 
water) from ground and cabin control samples were concentrated in 1 mL of EB. For each concentrated volume, 
200 µL was used for DNA extraction and subsequent metagenomic sequencing; 100 µL was used for culture-
based recovery assays; and 700 µL was archived at −80 °C in the freezer in 20% glycerol stocks (�nal volume). 
We have included three process controls. �e �rst one is the whole blank gelatinous membrane �lter that has gone 
through the entire InnovaPrep processing and DNA extraction; the other two are two replicates of the DNA 
extraction with no template controls. A total of 13 ground, cabin and process control samples were collected 
during the aircra� �ight operations. Supplementary Table S2 summarizes all experimental samples.

DnA extraction. A total volume of 200 µl was utilized for DNA extraction from the 1 mL InnovaPrep con-
centrated sample. Each sample was extracted using the Qiagen AllPrep PowerViral DNA/RNA Kit (part num-
ber 28000, Hilden, Germany). Standard manufacturer’s protocols with bead beating were followed to extract 
DNA from each sample. Samples were eluted in 60 µL of elution bu�er and quantitated using the �ermoFisher 
Qubit Fluorometer (Waltham, MA). �e average concentration of �ight samples and controls was approximately 
14.9 pg/µL.

Metagenomic sequencing. �e Illumina NextSeq500 was used for shotgun metagenomic sequencing 
with the Illumina NextSeq Series High Output Kit v2 (San Diego, CA), using 150 base pair, paired-end  reads13. 
DNA libraries were prepared for sequencing using the Illumina Nextera Flex DNA Library Preparation Kit (part 
number 20018705). For each sample, approximately 400 pg was input into the kit and standard manufacturer 
protocols were followed. Quality, concentration, and fragment sizes of the completed libraries were assessed on 
the Agilent Tapestation 4200 (Santa Clara, CA). Libraries were normalized and pooled to 100–200 pM accord-
ing to the Agilent Tapestation determined concentrations. �e pooled library sample was quantitated using the 
�ermoFisher Qubit �uorimeter and denaturing steps were performed according to the manufacturer’s standard 
recommendations (Illumina). A concentration of 1% of Illumina’s standard positive control (PhiX) was added to 
the pooled libraries and 1.3 pM �nal library concentration was input into the Illumina NextSeq 500 instrument.

Taxonomy identification. Metagenomic sequences were analyzed using the Livermore Metagenomics 
Analysis Toolkit (LMAT), a metagenomic analysis pipeline that searches for taxonomic identi�ers associated 
with k-mers in reference genome  databases14,15. �e database contains distinct species-level alignments for 4,863 
bacteria; 4,189 viruses; 2,038 eukaryotes; and 279 archaea.

ecological distance. Similarity between samples was visualized using non-metric multidimensional scal-
ing (NMDS) and the t-Distributed Stochastic Neighbor Embedding (tSNE) methods. NMDS analysis was 
performed by Jaccard distance of detection, comparing microbial presence (above 1 LMAT read) and absence 
di�erences at the genus level between samples. tSNE of quanti�cation matrices was used to reduce high-dimen-
sional data into a low-dimensional space for  visualization16. �rough both data processing techniques, samples 
with high similarity will cluster together whereas less similar samples will be spaced further apart. Prior to tSNE 
analyses, the relative abundance of each taxon in a sample was transformed into Euclidian space using the center 
log-ratio (clr) method in the ALDEx2 (v.1.16.0) R  package17.

Alpha diversity and differential abundance. Alpha diversity refers to the diversity within an ecosys-
tem. It is usually expressed by the number of species (i.e., species richness) in that ecosystem. Alpha (α) diversity 
was estimated for each sample and compared within altitudes across �ight days. We quanti�ed α-diversity using 
the Chao1  estimator18 and the observed number of e�ective taxa (qNe�) weighted by each taxonomic propor-
tion of DNA per  sample19. Weights were chosen such that qNe� corresponded to the following transformations 
of commonly used diversity indices: observed richness (the number of taxa seen; 0Ne�), exponentiated Shannon 
index (both taxa richness and evenness; 1Ne�), and the reciprocal Simpson index (dominance and evenness of 
taxa; 2Ne�).

A di�erential abundance analysis was performed for taxa at each altitude step using the ALDEx2 (v.1.16.0) 
R  package17. Individual abundances for an identi�ed taxon were transformed using the centered log-ratio (clr) 
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 method17,20. Transformed counts were then analyzed for di�erential abundances across altitudes steps using 
the aldex.glm() function. Finally, P values for taxa were corrected for multiple tests using the Benjamini and 
Hochberg  method21.

Culture-based recovery and identification. A�er sample concentration, 100 µL aliquots were spread 
onto Reasoner’s 2A agar (R2A) plates and Trypticase soy agar (TSA) plates, wrapped in Para�lm (American 
National Can, Chicago, IL) and incubated in the dark at 25 °C for up to four weeks while monitoring signs of 
growth. Individual colonies were sub-cultured on R2A until isolated, and then cryopreserved with 10% sterile 
glycerol (Amresco, Solon, OH) and nutrient broth (Difco, Sparks, MD) at -80 °C. Bacterial colonies DNA extrac-
tion and 16S rRNA Sanger sequencing was done by GENEWIZ (South Plan�eld, NJ). Forward and reverse 16S 
rRNA sequences were merged and searched against the NCBI non-redundant database using  BLASTn22.

Atmospheric modeling. HYSPLIT back-trajectories23were obtained using reanalysis data on the READY 
website, https ://www.ready .noaa.gov. Heights at the di�erent sampling altitudes were used as input for starting 
points in the model.

Atmospheric microbes are co-transported in aerosols that have a wide range of  sizes24,25. We forecasted 
aerosol (forward) dispersal from the sampled locations using several modeling process assumptions. Since the 
typical lifetime of relatively small particles in the upper troposphere (e.g., 10 days for 9 μm  particles26) is com-
parable to the analysis timescale of one week, our analysis does not require a detailed particle size distribution. 
First, the bioaerosols were assumed to be 1-μm aerodynamic diameter particles released at a constant rate along 
the sampling �ight path. Our choice of a spatially and temporally uniform particle concentration matches the 
sampling resolution within the �ight path. Second, the downwind time-integrated concentration of the released 
material was predicted using the Department of Energy, Lawrence Livermore National Laboratory, National 
Atmospheric Release Advisory Center (DOE LLNL NARAC) modeling system. Atmospheric Data Assimilation 
and Parameterization Techniques (ADAPT) / Lagrangian Operational Dispersion Integrator (LODI) models. 
�e ADAPT model was initialized with 0.25 deg resolution Global Forecast Model  �elds27,28. Our modeling 
resolved North American near-surface in�uences up to seven days a�er �ights with a 30.8 km horizontal reso-
lution. Default ADAPT upper-tropospheric dispersion parameters were used: 0.01  m2·s−1 and 0.25  m2·s−2 for 
the vertical eddy di�usivity  (Kz) and horizontal velocity variance (σu

2 = σv
2), respectively, and, while reasonable 

for many situations, may underestimate the overall vertical atmospheric mixing during the seven day period. 
Non-precipitation atmospheric removal processes were accounted for by including both (a) gravitational settling 
and (b) an additional 0.003 m·s−1 deposition velocity. We chose the latter value to re�ect deposition to regions 
with signi�cant  vegetation29. In order to simplify the modeling e�ort, other known e�ects on aerosol lifetimes 
in the atmosphere, including highly convective conditions and additional emissions from the Earth’s surface 
were not considered. Finally, to make our forecasts more relevant to downwind human population centers, we 
estimated the “average” outdoor individual and population-level exposures. �e individual exposure probability 
was calculated by multiplying (a) predicted near-surface outdoor aerosol concentrations by (b) an average adult 
breathing rate (respiratory second volume) of 2 × 10–4  m3·s−130. �e population-level exposure estimate was 
calculated by multiplying the individual exposure estimate by the population as reported in the LandScan 2015 
High Resolution Global Population  Database31.

Results
Metagenomics. Approximately 10  M reads were obtained for each �ight sample. A�er LMAT analysis, 
which combines forward and reverse reads into a single unit, an average of 5 M reads per sample were uniquely 
assigned to a taxonomic identi�er at the given score  threshold14,15. On average, 940,000 reads per sample corre-
sponded to microbial sequences, out of which 613,000 reads were assigned at the genus level. �e detailed num-
ber of reads for each �ight and control sample is listed in Supplementary Table S2. Two statistical methods were 
used to visualize sample clustering: NMDS and tSNE. Neither of the two data visualization approaches showed 
clear clustering of �ight samples by altitude (Fig. 2). Colored circles represent �ight samples from each altitude. 
Four samples from each altitude were included: �lters A and B from Day 1 and �lters A and B from Day 2. �ree 
cabin air control, three process control and six ground control samples were included in both data visualization 
methods to help determine if atmospheric samples were signi�cantly di�erent from the controls. Jaccard dis-
tance (Fig. 2a) showed a tighter grouping of the �ight samples based on altitude, but overlap patterns suggested a 
high amount of similarity between sampling at di�erent heights. Most of the control samples clustered together 
by NMDS visualization (Fig. 2a); tSNE also showed majority of controls separated from �ight samples (Fig. 2b).

Alpha diversity. Figure 3 is a genus level comparison of richness and evenness between samples (ground 
and �ight); Supplementary Fig. S3 shows the alpha diversity at the species level. Six ground controls (pre-�ight 
and post-�ight swabs), along with four data points from each altitude (Filters A (alpha) and B (beta); both �ight 
days) were included in the diversity comparison. No signi�cant di�erences between samples were observed 
using a Kruskall-Wallis one-way ANOVA of species richness, nor Shannon and Simpson indices. Further pair-
wise comparisons of ground, 10,000 � and 30,000 � groups using the Mann–Whitney and Student’s t-tests found 
no signi�cant di�erence between the groups either. �e Simpson index comparison at the genus level resulted 
in the smallest p value of 0.078.

Relative abundance. Proportionally abundant microbial taxa from each �ight day are depicted for Filter 
A (Fig. 4) and Filter B (Supplementary Fig. S4). �e 12 most abundant genera in Filter A (from either day) were 
Achromobacter, Alcaligenes, Del�ia, Lachnoanaerobaculum, Mycobacterium, Penicillium, Prevotella, Pseudoper-

https://www.ready.noaa.gov
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onospora, Stenotrophomonas, Streptococcus, Tetrahymena, and Veillonella.. Detected as proportionally abundant 
in both days were Achromobacter, Stenotrophomonas, Streptococcus, and Del�ia. On June 20, 2018, Lachnoan-
aerobaculum, Alcaligenes, Mycobacterium, Tetrahymena, and Veillonella appeared, whereas Penicillium, Prevo-
tella, Pseudoperonospora, and Porphyromonas were only abundant on June 21, 2018. In addition to microbial 
taxa, Pinus koraiensis and Pinus radiata were also detected as proportionally abundant at 10,000 � but only on 
the second �ight day (June 21, 2018). Species level abundance of Filter A is depicted in Supplementary Fig. S5, 
Achromobacter xylosoxidans, Alcaligenes faecalis, Bradyrhizobium sp. DFCI-1, Del�ia acidovorans, Del�ia sp. 
Cs1-4, Lachnoanaerobaculum saburreum, Mycobacterium abscessus, Paenibacillus fonticola, Penicillium auranti-
ogriseum, Pseudoperonospora cubensis, Stenotrophomonas maltophilia, and Veillonella dispar were detected. �e 
top 12 most abundant genera in Filter B included Achromobacter, Bradyrhizobium, Byssochlamys, Chryseobacte-
rium, Del�ia, Enterobacter, Gardnerella, Meiothermus, Penicillium, Prevotella, Stenotrophomonas, Streptococcus 
(Supplementary Fig. S3).

In the experimental controls (Supplementary Fig. S6), the most abundant detected species or plasmids were 
Achromobacter xylosoxidans, Acidovorox sp. JS42 plasmid pAOVO01, Alicycliphilus denitri�cans, Aspergillus 
oryzae, Aureobasidium pullulans, Bradyrhizobium sp. DFCI-1, Capnocytophaga sp. oral taxon 326, Eimeria mitis, 
Eimeria praecox, Haemophilus parain�uenzae, Neosartorya �scheri, and Prevotella sp. ICM33. Achromobacter 
xylosoxidans and Bradyrhizobium sp. DFCI-1 were detected in both �ight samples and control samples, suggest-
ing the possibility of contamination associated with those reads.

Table 1 shows the taxonomic distinctions between samples, summarizing the �ve most abundant genera from 
each altitude and controls (depicting only Filter A samples for clarity). At 10,000 �, the distribution of the top �ve 
genera was even (with abundances ranging from 30 to 9% on June 20, 2018; and 53% to 4% on June 21, 2018). At 

Figure 2.  Visualization of sample clustering using multiple distance and similarity metrics. (a) Non-metric 
multidimensional scaling (NMDS) using the Jaccard distance depicting sample similarity with taxonomic 
presence-absence pro�les; (b) Sample clustering using t-Distributed Stochastic Neighbor Embedding (tSNE) 
analysis of taxa abundance. �e �gure was generated in R (v.3.6.0) 53 using package ggplot2 (v.3.2.1)54.
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40,000 �, the top �ve taxa were dominated by a single genus (e.g., Alcaligenes 97% on June 20, 2018; Penicillium 
82% on June 21, 2018). �e altitude where the taxonomic composition was most similar between the two days 
sampled was 30,000 � where both Del�ia and Streptococcus were proportionally abundant.

Viable microorganisms. Isolated bacterial colonies were identi�ed by searching 16S Sanger sequences 
against the NCBI non-redundant database using  BLASTn22. Table 2 summarizes the isolates. Bacillus was the 
most prevalent genus identi�ed, measured in 25% of �ight samples and all control samples. Streptococcus and 
Streptomyces were also identi�ed from a 40,000 � sample. Other bacteria found in controls were: Lysinibacillus 
sinduriensis, Methylorubrum zatmanii, Lysinibacillus sphaericus, Lysinibacillus acetophenoni, Pseudomonas syrin-
gae, Microvirga sp., Methylorubrum populi, and Cellulomonas cellasea.

Atmosphere dispersal. Generally, the air sampled on each �ight day shared a similar transport history 
o� the coast of N. America. Supplementary Fig. S7 provides kinematic back trajectory modeling with Hybrid 
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT). We note that none of the trajectories above 10,000 
� approached the Earth’s surface over the time period modeled. �ere were also clear di�erences in trajectories 
between samples at the same altitude separated by approximately 24 h.

Figure 3.  Alpha (α)-diversity for �ight and ground samples at genus level resolution. α-diversity quanti�ed 
as 1Ne� with samples shown as circles. �e area of each circle is proportional to the number of genus-resolved 
fragments in a sample. Violin plots show density of α-diversity, box plots show the �rst, second and third 
quartiles, and 1.5 times the interquartile range of each time point’s α-diversity sample distribution. Dark red 
diamonds represent the means. �e �gure was generated in R (v.3.6.0)53 using package ggplot2 (v.3.2.1)54.
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Separate, forward-modeling of air masses showed that a portion of �ight-sampled bioaerosols, if undisturbed, 
could have exposed outdoor downwind populations over the next week (Fig. 5). In this �gure, the grey contours 
indicate the fraction of sampled material that would have been inhaled by an average outdoor person (individual 
exposure) had the material not been sampled (termed potential exposures). Darker colors indicate a larger 
potential exposure. Figure 5a shows the sum of the potential exposures from all four samples (10,000 �, 20,000 
�, 30,000 � and 40,000 �). Note that the exposure may not occur uniformly over the week period, but rather the 
exposure regions can change as the air mass travels downwind and is diluted, see Fig. 5b,c. �e predicted potential 
impact areas were highly dependent on altitude. For instance, most of the impacts in the �rst week were associ-
ated with air sampled at 10,000 � while air sampled at 20,000 � was associated with a small potential exposure 
region in NV (USA). No potential exposures were associated with the highest altitude samples (30,000 and 40,000 
�) during the �rst week. Overall, only a small fraction (3 × 10−8) of sampled particles would be expected to reach 
population centers across North America and be inhaled during the �rst week. �e actual amount of material 
inhaled would be smaller than predicted here since (a) most people are indoors and (b) indoor individuals have 
lower exposure, relative to outdoor individuals, to outdoor-origin airborne  particulates32,33.

Discussion
With an aerobiology study �own into the upper troposphere, we detected changing microbial abundance with 
height above the Earth’s surface – our dataset was reliant upon a shotgun metagenomics approach analyzing sam-
ples acquired between 10,000 to 40,000 �, on two consecutive summer days over the US Sierra Nevada mountain 
ranges. Controls were also sequenced as a baseline reference. �is strategy was essential because contaminants 
can confuse signals from low biomass environments. We observed signi�cant di�erences in microbial taxa from 
�ight samples compared to control samples. �e most abundant taxa identi�ed in the �ight samples were: Achro-
mobacter, Alcaligenes, Del�ia, Lachnoanaerobaculum, Mycobacterium, Penicillium, Prevotella, Pseudoperonospora, 

Figure 4.  Relative abundance of genera across altitudes on both sampling days. Samples from Filter A 
separated by day and collection altitude to examine shi�s in relative abundance of genera. Achromobacter, 
Stenotrophomonas, Streptococcus, and Del�ia were among the top 12 most abundant taxa in both days. Bacterial 
genera that were not among the top 12 represented by light gray colored bars. In additional to bacterial and 
fungal taxa shown, Pinus koraiensis and Pinus radiata were also detected at 10,000 � on the second �ight day 
(June 21, 2018) but were not plotted for clarity. �e �gure was generated in R (v.3.6.0)53 using package ggplot2 
(v.3.2.1)54.
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Stenotrophomonas, Streptococcus, Tetrahymena, and Veillonella. Alcaligenes is a genus of gram-negative, aerobic 
bacteria found mostly in the intestinal tracts of vertebrates, decaying materials, dairy products, water, and soil. It 
can cause opportunistic infections, including nosocomial sepsis. Alcaligenes faecalis is usually found in soil and 
water environments, and its abundance in atmospheric samples hints at a possible relationship with agriculture 
(e.g., wastewater, compost,  feedlots34) considering the physical proximity of air sampled to the CA Central Valley 

Table 1.  Top �ve most abundant genera at each altitude compared to pre-�ight ground controls.

Altitude (�)

June 20, 2018 June 21, 2018

Genus Relative abundance (%) Genus Relative abundance (%)

0 Eimeria 93.29 Prevotella 26.46

0 Del�ia 1.81 Alicycliphilus 22.63

0 Penicillium 0.99 Achromobacter 19.53

0 Solirubrobacter 0.88 Streptococcus 19.20

0 Escherichia 0.77 Acidovorax 10.11

10,000 Mycobacterium 30.37 Achromobacter 53.37

10,000 Tetrahymena 26.16 Prevotella 22.52

10,000 Veillonella 17.60 Escherichia 6.46

10,000 Bradyrhizobium 12.22 Streptococcus 5.51

10,000 Orpinomyces 8.98 Porphyromonas 4.14

20,000 Stenotrophomonas 73.11 Achromobacter 55.71

20,000 Lachnoanaerobaculum 24.22 Prevotella 21.63

20,000 Achromobacter 2.39 Del�ia 8.40

20,000 Chryseobacterium 0.22 Aspergillus 5.80

20,000 Astrammina 0.01 Helicobacter 5.74

30,000 Del�ia 82.72 Pseudoperonospora 76.50

30,000 Paenibacillus 10.87 Streptococcus 14.24

30,000 Streptococcus 4.88 Pseudomonas 6.31

30,000 Chryseobacterium 0.30 Del�ia 2.25

30,000 Prevotella 0.30 Stenotrophomonas 0.34

40,000 Alcaligenes 97.92 Penicillium 82.48

40,000 Pseudomonas 1.93 Achromobacter 17.43

40,000 Meiothermus 0.12 Sclerotinia 0.06

40,000 Bradyrhizobium 0.02 Escherichia 0.01

40,000 Corynebacterium 0.004 Bacteroides 0.004

Table 2.  Viable microorganisms recovered from �ight and control samples. *�e number in brackets indicates 
number of isolates matching the genus and/or species. # Designates query lengths < 1,000 nt. $ Query sequence 
had < 95% identity to database match. + Isolates from June 20, 2018 sampling only. ^ Isolates from June 21, 2018 
sampling only. & Control sample taken in lab July 2018.

Category Environment Genera identi�ed

Flight samples

10,000 � Filter A NA

10,000 � Filter B NA

20,000 � Filter A Bacillus zhangzhouensis5*,+, Bacillus pumilus1 +

20,000 � Filter B NA

30,000 � Filter A Bacillus zhangzhouensis2, Bacillus spp.2 ^

30,000 � Filter B NA

40,000 � Filter A NA

40,000 � Filter B Streptococcus sp.1 ^, Streptomyces spp.2 ^

Ground control
Pre-�ight plane swab

Bacillus subtilis4 +, Bacillus pumilus3 +, Bacillus megaterium3 +, Bacillus zhangzhouensis1 +, Bacillus safensis1 +, Bacillus spp.8, Bacillus 
licheniformis3 +, Bacillus halotolerans1 +, Lysinibacillus sinduriesis1 +, Methylorubrum zatmanii2 ^, Lysinibacillus sp1. +

Post-�ight plane swab Bacillus spp. 2 +, Bacillus zhangzhouensis6

Cabin control

Bench  swab+ Bacillus subtilis3, Bacillus safensis1, Bacillus maritimus1, Lysinibacillus sphaericus1, Lysinibacillus acetophenoni1

Witness R2A plate
Pseudomonas syringae1+, Microvirga#,$ 1 +, Methylorubrum populi$ 1 +, Cellulomonas cellasea 1 +, Streptococcus sp 1 ^, Agromyces# sp 1^, 
Planomicrobium glaciei$ 1+, Staphylococcus epidermidis 2+, Bacillus licheniformis2 ^, Citrococcus sp. 1 ^, Bacillus paralicheniformis1^

Process  control& PBS elution �uid control Bacillus zhangzhouensis 1, Bacillus sp. 1
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with ~ 28,000  km2 of irrigated farmlands. Up to 55% of dust deposition at alpine sites in the Sierra Nevada comes 
from the Central  Valley35; thus, the air sampled in this study would be expected to contain agriculturally-pro-
duced bioaerosols. �e proportional abundance of Stenotrophomonas maltophilia identify it as another candidate 
to examine for possible emanation from the Central Valley, considering the species is regularly found in plant 
rhizospheres, animals, croplands, and water  sources36. Other noteworthy bacterial standouts in our atmospheric 
samples—part of the normal �ora of the mouth and gastrointestinal tract in humans—were Del�ia acidovorans37, 
Lachnoanaerobaculum saburreum38, Prevotella, Veillonella and Streptococcus. Wastewater treatment facilities 
could be a contributing source of these  bioaerosols39. Mycobacterium was among the most abundant genera at 
10,000 � on the �rst sampling day; aerosolized nontuberculous mycobacteria can cause pulmonary  disease40, 
but we did not produce viability information with DNA-based detections. Achromobacter xylosoxidans may be 
the most clinically relevant species detected in our study (endogenous microbiota of the ear and gastrointestinal 
 tract41); however, considering it was also measured in control samples, this detection may re�ect contamina-
tion. Two fungal species detected among the most abundant taxa (Pseudoperonospora and Penicillium) are of 
particular note. Pseudoperonospora cubensis is a fungal pathogen with a wide geographical distribution that 
can infect produce including cantaloupe, cucumber, pumpkin, squash and  watermelon42. Similarly, Penicillium 
aurantiogriseum found in our dataset, can cause spoilage of various food  products43.

Most previous high altitude aerobiology studies have lacked rigorous control measurements, making it dif-
�cult to determine whether taxa reported came from the atmosphere (native biomass) or the sampling systems 
(false positives). Accordingly, in this study we followed the protocol  described44 where a comprehensive set of 
controls were reported to provide a transparent picture of baseline contamination associated with the study. 
�e approach, summarized in brief, included descriptions of: (1) sterilization methods; (2) ground transporta-
tion controls; (3) hardware controls; (4) laboratory/assay controls; and (5) any contamination results measured. 
With the improved sensitivity of most molecular methods, including the DNA-based detection assays reported 
herein, some level of baseline contamination will always be expected for environmental and laboratory controls. 

Figure 5.  Aerosol dispersal predictions. (a) 7-day model forecast (June 20, 2018 to June 27, 2018) with grey 
contours showing fraction of sampled material that could have been inhaled by an average outdoor individual 
(individual exposure potential); (b) �e blue contours show the population density (people per sq km) in 
the modeling domain; (c) �e blue-grey contours show the population level exposure potential derived by 
combining individual exposure potential (shown in a) with population estimates (shown in b). �is image 
shows geographic distribution of potentially inhaled material (inhaled fraction of sample material per sq km). 
Panels were generated using Mathworks Matlab so�ware, versions R2018 to R2019 (https ://www.mathw orks.
com/produ cts/matla b.html), from the modelling described in the text. Underlying map data was provided by 
Google and INEGI and accessed through the Google Maps Platform API.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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Consequently, our study relied upon data analysis techniques that showed the “signal-to-noise”, including ordina-
tion plots comparing how environmental (atmospheric) samples clustered signi�cantly apart from the sampling 
system or laboratory control samples (Supplementary Table S2 and Fig. S6). Of course, the analysis approach 
also identi�ed common taxa across environmental and control groups; for example, Achromobacter xylosoxidans 
and Bradyrhizobium sp. DFCI-1 where the two species were detected in both �ight samples and control samples. 
In this case, the overlap indicates likely contamination so Achromobacter xylosoxidans and Bradyrhizobium sp. 
DFCI-1 were probably not sampled from the atmosphere.

Viable bacteria measured in our study (e.g., Bacillus zhangzhouensis, Bacillus pumilus) included some 
endospore formers resistant to extremes and frequently reported in other high altitude  surveys2,3. Using high 
altitude balloons for collecting bioaerosols up to 125,000 � (38 km), Actinobacteria, Firmicutes, and Proteobac-
teria isolates were  recovered45. Ground-based simulations using the stratospheric isolates estimated that some 
bacteria could survive long-range transport in the atmosphere up to 140 days if shaded from direct  sunlight45. 
It is therefore plausible that many other viable (but non-cultured) microorganisms can be identi�ed in this 
metagenomics dataset.

�e long-range dispersal of viable bioaerosols may be critical to understanding agricultural and public health 
implications because the troposphere and lower stratosphere can enable microbial dispersal over geographic 
 barriers3. Most knowledge in this emerging area of aerobiology comes from regional studies. Soybean rust, for 
instance, has been correlated with incoming dust  storms46. Valley Fever outbreaks in the Southwest of US is 
thought to be caused by dust storms carrying a fungal pathogen, Coccidioides immitis47. Desert storms in sub-
Saharan Africa have also been linked to outbreaks of a deadly bacterium, Neisseria meningitides, a�ecting 26 
countries and more than 300 million people. �is same region, also called “the Meningitis belt”47, is also prone 
to epidemics such as malaria. Interestingly, we measured a strong DNA signature of Tetrahymena (�rst �ight 
day at 10,000 �), a ciliated protozoan typically found in aquatic ecosystems. No previous aerobiology survey has 
detected airborne protozoa at such heights above the Earth’s boundary layer. Another unexpected DNA signal 
was Pinus (second �ight day at 10,000 �), suggesting the sampled air mass had recently passed over forested 
terrain in the US Sierra Nevada mountains – taken together with the back trajectory model at 10,000 �, the 
result might demonstrate how orographic upli� connects regional surface emissions with the upper atmosphere.

Across two consecutive sampling days, the atmospheric microbiome was dynamically changing at each alti-
tude. Lachnoanaerobaculum, Alcaligenes, Mycobacterium, Tetrahymena, and Veillonella were abundant on the �rst 
day, while Penicillium, Prevotella, Pseudoperonospora, and Porphyromononas were only enriched on the second 
day. Such temporal variability is common in other aerobiology reports and is further supported by the di�erent 
back-trajectories of the two days (Supplementary Fig. S7). A recent study examined how local topography and 
wind conditions can in�uence regional bioaerosol dynamics. Bacillus and Sphingomonas (for bacteria) and Pseu-
dotaeniolina globaosa and Cladophialophora proteae (for fungi) were the most abundant taxa detected, but the 
authors observed relative abundance varying at disparate sampling  locations12. Similarly, another study showed 
that diurnal cycles in the boundary layer resulted in fungal and bacterial aerosols shi�ing with temperature, 
humidity, and  CO2  conditions48. Both dry and wet deposition signi�cantly in�uence bioaerosol patterns and it 
is worth emphasizing our �ights occurred in non-cloudy, precipitation-free  areas49. With a multiyear campaign 
lasting seven years at an alpine �eld site in Spain, dynamic, seasonal shi�s in 16S rRNA measurements (yield-
ing mostly Alphaproteobacteria and Betaproteobacteria) were  found4. One bacterial genus showing up in high 
relative abundance in both our study and that of the study in  Spain4 was Stenotrophomonas. Actinobacteria, 
Firmicutes, Bacteroidetes, and Proteobacteria are other common phyla between our results and other vertically-
sampled air masses over desert regions in  Asia50.

Most previous vertical aerobiology studies relied upon 16S rRNA amplicon methods, which targets and 
PCR-ampli�es short regions of the 16S gene, for characterizing bacteria  sampled4,12,45,50,51, whereas our shotgun 
metagenomics approach has the capacity to detect a broader taxonomic range with higher resolution, to the 
species or strain/plasmid level. Metagenomic sequencing provides relative quantitation based on the number of 
reads for each taxon identi�ed; but it does not provide absolute DNA concentrations. Producing more accurate 
human, animal, and plant impact forecasting models will bene�t from quantitative information about abundance 
(e.g., DNA concentration or cell counts) and, to a lesser extent, the size distribution of bioaerosols. For now, we 
rely upon other datasets for quantitative information that we were unable to acquire in this study. Depending on 
the altitude sampled, in previous reports of airborne bacteria, the bacteria concentration ranged from  103 to  107 
cells·m−3 over 3,300 to 26,000 � (1–8 km)51. Separately, it was found that total airborne bacterial concentrations 
at 9,800 � (3 km) were similar to values at 95,000 � (29 km), approximately 5 × 105 cells·m−345. Another study 
examined the size distribution of bioaerosols associated with near-surface pollution, and similar research will be 
needed to more robustly characterize microorganisms reaching the upper  atmosphere52. One challenge with using 
the ABC system onboard the C-20A is that the geometry of the aerosol inlet likely prevents most large aerosols 
(> 4 µm) from reaching the  collector2. �erefore, more e�cient, size-inclusive sampling methods will need to be 
developed in future years, in addition to including instruments that can be useful for characterizing atmospheric 
species in real-time as well as provide useful information for use in fate, transport, and exposure  modeling8.

An uptick of international aerobiology studies is �nally allowing global atmospheric microbiome patterns to 
be examined. However, the surge of recent literature also underscores the importance of developing consistent 
sampling and analysis  methodologies11. One of the primary goals of our work was to demonstrate that vertical 
bioaerosol measurements could be made across the troposphere using the most sensitive molecular methods 
available. Our metagenomics dataset and modeling analysis provides a more inclusive framework for planning 
�eld campaigns that will someday make concurrent measurements at emission sources and downwind locations. 
In the Central Valley, for instance, bioaerosols picked up by easterly winds, heading towards the US Sierra Nevada 
mountain range, might be sampled near the source (adjacent to agricultural �elds), in the air (using aircra�), and 
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on the ground (at alpine �eld observatories). Such multipronged e�orts may result in re�ned forecast models for 
winds carrying potentially disruptive pathogens.

Accession codes. �e raw FASTQ �les are available in the NASA GeneLab repository under the accession 
number GLDS-256.

Received: 6 January 2020; Accepted: 8 July 2020
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