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Abstract. The most famous lattice problem is the Shortest Vector Problem (SVP), which has many
applications in cryptology. The best approximation algorithms known for SVP in high dimension
rely on a subroutine for exact SVP in low dimension. In this paper, we assess the practicality of the
best (theoretical) algorithm known for exact SVP in low dimension: the sieve algorithm proposed
by Ajtai, Kumar and Sivakumar (AKS) in 2001. AKS is a randomized algorithm of time and space
complexity 2O(n), which is theoretically much lower than the super-exponential complexity of all
alternative SVP algorithms. Surprisingly, no implementation and no practical analysis of AKS has
ever been reported. It was in fact widely believed that AKS was impractical: for instance, Schnorr
claimed in 2003 that the constant hidden in the 2O(n) complexity was at least 30. In this paper,
we show that AKS can actually be made practical: we present a heuristic variant of AKS whose
running time is (4/3+ε)n polynomial-time operations, and whose space requirement is (4/3+ε)n/2

polynomially many bits. Our implementation can experimentally find shortest lattice vectors up to
dimension 50, but is slower than classical alternative SVP algorithms in these dimensions.
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1 Introduction

Lattices are discrete subgroups of Rm. A lattice L can be represented by a basis, that
is, a set of n ≤ m linearly independent vectors b1, . . . ,bn in Rm such that L is equal
to the set L(b1, . . . ,bn) = {

∑n
i=1 xibi, xi ∈ Z} of all integer linear combinations of

the bi’s. The integer n is called the dimension of the lattice L, and helps to measure
the hardness of lattice problems. Every lattice has a shortest vector, that is, a non-
zero vector whose Euclidean norm is minimal among all other non-zero lattice vectors.
The shortest vector problem (SVP) asks for such a vector: it is the most famous lattice
problem, and is one of the very few potentially hard problems currently in use in public-
key cryptography (see [26, 24] for surveys on lattice-based cryptosystems, and [15,
27] for recent developments). SVP is also well-known for its applications in public-
key cryptanalysis (see [26]): knapsack cryptosystems, RSA in special settings, DSA
signatures in special settings, etc.
SVP algorithms can be classified in two categories: exact algorithms [21, 20, 4]

(which provably output a shortest vector), and approximation algorithms [23, 31, 12,
13] (which output a non-zero lattice vector whose norm is provably not much bigger
than that of a shortest vector). In high dimension (higher than 100), only approxima-
tion algorithms are practical, but both categories are in fact complementary: all exact
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algorithms known first apply an approximation algorithm (such as LLL [23]) as a pre-
processing, while all approximation algorithms known make intensive use of an exact
algorithm in low dimension. More precisely, the celebrated LLL approximation algo-
rithm [23] relies essentially on finding shortest vectors in dimension two, while the best
approximation algorithm known (as well as its predecessors by Schnorr [31] and Gama
et al. [12]), that of Gama and Nguyen [13], call (polynomially many times) an exact
algorithm in dimension k, where the blocksize k is chosen in such a way that the cost
of the overall algorithm remains polynomial. The heuristic BKZ algorithm [33] (im-
plemented in NTL [34] and often used by cryptanalysts, see [14] for an experimental
assessment) also crucially relies on an exact SVP algorithm in small dimension (typ-
ically chosen around 20): note however that recent experiments [14] suggest that the
running-time bottleneck for BKZ on high-dimensional lattices is caused by the large
number of calls, rather than the cost of the exact algorithm, which is why the BKZ
blocksize is usually much smaller than the highest possible dimension for exact SVP.
Thus, the best practical and/or theoretical SVP approximation algorithms all require an
efficient exact SVP algorithm in low dimension.
It is therefore very important to know what is the best exact SVP algorithm in low

dimension (say, less than 60), and to determine what is the highest dimension for which
one solve exact SVP in the worst case. Because SVP is known to be NP-hard under
randomized reductions [3], exact algorithms are not expected to be polynomial time.
Surprisingly, there are so far essentially only two different algorithms for exact SVP:
• The deterministic enumeration algorithm discovered by Kannan [21] and Pohst [28]
and its many variants [21, 20, 11, 33], which are essentially all surveyed in [1].
This algorithm enumerates a super-exponential number of potential shortest vec-
tors, given a reduced basis. If the basis is only LLL-reduced, the running time
is 2O(n2) polynomial-time operations, but Kannan [21] showed that one can per-
form suitable preprocessing in such a way that the overall running time (including
preprocessing) is 2O(n logn) polynomial-time operations (see [18, 20] for a better
constant than [21], and see [19] for a worst-case lattice basis). The algorithm used
in practice is the Schnorr-Euchner variant [33] of the enumeration strategy, where
the basis is either LLL-reduced or BKZ-reduced: here, the running time is therefore
2O(n2) polynomial-time operations.

• The randomized sieve algorithm [4] proposed in 2001 by Ajtai, Kumar and Sivaku-
mar (AKS), whose running time is 2O(n) polynomial-time operations. One draw-
back of AKS is that it has space complexity 2O(n), whereas enumeration algorithms
only require polynomial space. Even though this is a big drawback, one might still
hope that this could be preferable to the 2O(n2) time complexity of currently used
practical SVP enumeration algorithms.

Although the exponential complexity of AKS seems a priori much better than the
super-exponential complexity of enumeration algorithms, no implementation and no
practical analysis of AKS have ever been reported. This can perhaps be explained as
follows:
• AKS is a fairly technical algorithm, which is very different from all other lattice
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algorithms. Ajtai, Kumar and Sivakumar use many parameters in their descrip-
tion [4], and their analysis does not explain what could be the optimal choice for
these parameters. In particular, no explicit value of the O() constant in the 2O(n)

complexity of AKS is given in the original paper [4].
• It was widely believed that AKS was impractical, because AKS uses exponential
space and the complexity constants were thought to be large. Schnorr claimed
in [32] that the O() constant was at least 30, but Regev’s alternative analysis [29]
showed that it was at most 16.

OUR RESULTS. We show that sieve algorithms for the shortest vector problem are in
fact practical, by developing an efficient heuristic variant of AKS which experimentally
finds shortest vectors in dimension ≤ 50. Our variant runs in (4/3+ ε)n polynomial-
time operations and uses (4/3+ ε)n/2 polynomially many bits, where the 4/3 constant
is derived from a sphere covering problem. Interestingly, the 4/3 constant is intuitively
tight on the average, and seems to be supported by our experiments. To understand the
principles of sieve algorithms, we first present a concrete analysis of the original AKS
algorithm [4]. By choosing the AKS parameters carefully, we obtain a probabilistic
algorithm which outputs a shortest vector with probability exponentially close to 1
within 25.9n polynomial-time operations. Though this shows that the original AKS
algorithm is much more efficient than previously thought, this does not guarantee the
practicality of the algorithm. Still, this concrete analysis is useful for the following
reasons:
• The analysis is a worst-case analysis: the 25.9n running time does not reflect the
true potential of sieve algorithms. For instance, the analysis also shows that the
same algorithm approximates the shortest vector to within a constant factor 5 using
only 23n polynomial-time operations. More generally, the analysis suggests that
the real-life constants may be much smaller than the constants of the worst-case
analysis. Note that many lattice algorithms typically perform better in practice than
what their worst-case analysis suggests: see for instance [25] for the case of the
LLL algorithm and [14] for the BKZ algorithm, where the experimental constants
differ from the worst-case theoretical constants.

• The analysis explains what are the essential ingredients of sieve algorithms, which
is crucial to develop faster variants.

However, our heuristic sieve algorithm turns out to be slower (up to dimension 50)
than the 2O(n2) Schnorr-Euchner enumeration algorithm (with LLL preprocessing). In
practice, the running time is very close to the 2O(n logn) Kannan-Helfrich enumeration
algorithm [21, 20]. This shows that O() constants and the exact cost of polynomial-
time operations matter a lot in assessing the actual performance of lattice algorithms.
We hope our results make it clear why sieve algorithms have an exponential running
time, what is the expected value of the exponentiation constant in practice, and why
they do not beat super-exponential enumeration techniques in practice.

ROAD MAP. The paper is organized as follows. In Section 2, we provide necessary
background on lattices. In Section 3, we recall the AKS algorithm [4], and provide
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a concrete analysis of its complexity. In Section 4, we present and analyze a faster
heuristic variant of AKS, and provide experimental results.

2 Background

Let ‖.‖ and 〈., .〉 be the Euclidean norm and inner product of Rn. Vectors will be
written in bold. We denote the n-dimensional ball of center v ∈ Rn and radius R by
Bn(v, R) = {x ∈ Rn, ‖x − v‖ ≤ R}, and we let Bn(R) = Bn(O, R). For a matrix
M whose name is a capital letter, we will usually denote its coefficients by mi,j . For
any finite set S, let |S| denote its number of elements. For any X ⊂ Rn, we denote by
vol (X) the volume of X . We refer to the survey [26] for a bibliography on lattices.
LATTICES. In this paper, by the term lattice, we mean a discrete subgroup of some
Rm. The simplest lattice is Zn, and for any linearly independent vectors b1, . . . ,bn, the
set L(b1, . . . ,bn) = {

∑n
i=1 mibi mi ∈ Z} is a lattice. It turns out that in any lattice

L, not just Zn, there must exist linearly independent vectors b1, . . . ,bn ∈ L such that
L = L(b1, . . . ,bn). Any such n-tuple of vectors b1, . . . ,bn is called a basis of L: a
lattice can be represented by a basis, that is, a row matrix. The dimension of a lattice L
is the dimension n of the linear span of L. The lattice is full-rank if n is the dimension
of the space. The first minimum λ1(L) is the norm of a shortest non-zero vector of L.
ORTHOGONALIZATION. Given a basis B = [b1, ...,bn], there exists a unique lower-
triangular n×nmatrix µwith unit diagonal and an orthogonal familyB∗ = [b∗

1 , . . . ,b
∗
n]

such that B = µB∗. They can be computed using Gram-Schmidt orthogonalization,
and will be called the GSO of B.
SIZE-REDUCTION. A basis [b1, . . . ,bn] is size-reduced with factor η ≥ 1/2 if its
GSO family satisfies |µi,j | ≤ η for all 1 ≤ j < i. An individual vector bi is size-
reduced if |µi,j | ≤ η for all 1 ≤ j < i. Size reduction usually refers to η = 1/2, and
is typically achieved by successively size-reducing individual vectors. Size reduction
was introduced by Hermite.
LLL-REDUCTION. A basis [b1, . . . ,bn] of a lattice L is LLL-reduced [23] with factor
δ for 1/4 < δ ≤ 1 if its GSO satisfies |µi,j | ≤ 1/2 for all i > j, as well as the (n− 1)
Lovász conditions (δ−µ2i+1,i) ‖b∗

i ‖
2 ≤

∥∥b∗
i+1

∥∥2. The first vector of such bases has the
following properties: ‖b1‖ ≤ α(n−1)/4vol (L)1/n and ‖b1‖ ≤ α(n−1)/2λ1(L), where
α = 1/(δ − 1/4). If no δ is given, it will mean the original choice δ = 3/4 of [23],
in which case α = 2. It is well-known that LLL-reduced bases can be computed in
polynomial time if 1/4 < δ < 1.
HKZ REDUCTION. A basis [b1, . . . ,bn] of a lattice L is Hermite-Korkine-Zolotarev
(HKZ) reduced if it is size-reduced and if b∗

i is a shortest vector of the projected lattice
πi(L) for all 1 ≤ i ≤ n, where πi is the orthogonal projection on the subspace orthogo-
nal to Span(b1, . . . ,bi−1). In particular, the first basis vector is a shortest vector of the
lattice.
BABAI’S ROUNDING. Given a basis [b1, . . . ,bn] of a full-rank lattice L, and any
target vector t ∈ Qn, linear algebra gives in polynomial time a lattice vector v ∈ L,
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such that v− t =
∑n

i=1 xibi where |xi| ≤ 1/2, and therefore ‖v− t‖ ≤
∑n

i=1 ‖bi‖/2.
This is Babai’s rounding algorithm [6], which approximates the closest vector problem
within an exponential factor, if the input basis is LLL-reduced.

RANDOM LATTICES. There is a beautiful (albeit mathematically involved) theory of
random lattices, which was initiated by Siegel to provide an alternative proof of the
Minkowski-Hlawka theorem (see [17]). Recently, efficient methods [16, 2] have been
developed to generate provably random lattices. Random lattices are very interesting
for experiments, because they do not seem to have any exceptional property which
could a priori be exploited by algorithms. We therefore used random lattices in our
experiments, as was done in [25, 14] using [16].

3 Revisiting the AKS sieve algorithm

In this section we recall and analyze in detail the sieve algorithm by Ajtai, Kumar and
Sivakumar [4] for the shortest vector problem. The goal is to understand AKS and to
see how small the complexity constants of AKS can be, since no practical analysis of
AKS has been reported. All the main ideas of this section have previously appeared
either in the original paper [4] or in Regev’s analysis [29], but the analysis will be
useful to understand our heuristic variant of AKS, described in Section 4. We will
prove the following concrete version of the AKS algorithm:

Theorem 3.1. There is a randomized algorithm which, given as input any polynomially-
sized basis of an integer lattice L ⊆ Zn, outputs a shortest vector of L with probability
exponentially close to 1, using at most 25.90n polynomial-time operations on numbers
of polynomial size, and with space requirement at most 22.95n polynomial-size regis-
ters. Furthermore, the same algorithm can be used to output a non-zero lattice vec-
tor of norm less than 5λ1(L) with probability exponentially close to 1, in less than
23n polynomial-time operations on numbers of polynomial size, using at most 21.5n
polynomial-size registers.

The analysis of [4] does not give any concrete value of the involved constants, while
the analysis [29] uses fixed values of constants (for ease of exposition) which are not
claimed to be optimal: more precisely, [29] shows a less efficient version of Theo-
rem 3.1 where 5.9 is replaced by 16, because the most expensive step of [29] is a
quadratic-time stage on roughly 28n points. We hope the presentation clarifies the
main ideas of sieve algorithms, and provides intuition on how the various constants are
related to each other. Like [4, 29], we will use real numbers for ease of exposition, but
in practice all numbers will actually be represented using polynomial precision.

3.1 Overview

Let L ⊆ Zn be a full-rank integer lattice. Let S ⊆ Rn be a subset containing λ1(L).
Enumeration algorithms [21, 20] enumerate all vectors in L∩S for a choice of S well-
suited to enumeration, and output the shortest one, which must be of norm λ1(L). With
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the best choice of S in [21, 20], we have |L∩S| = 2O(n logn), which leads to 2O(n logn)

polynomial operations.
The main idea of sieve algorithms is to perform some kind of randomized enumer-

ation of a smaller set. Namely, the algorithm will sample N = 2!(n) vectors in L ∩ S
for an S such that |L ∩ S| = 2O(n). In particular, S = Bn(R) where R = O(λ1(L)) is
a good candidate, as the following elementary lemma shows:

Lemma 3.2. Let L be a lattice in Rn, and R > 0. Then |L ∩ Bn(R)| ≤ 2cRn where
cR = log2

(
1+ 2R

λ1(L)

)
.

Proof. Let r = (1 − ε)λ1(L)/2 for some 0 < ε < 1. By definition of λ1(L), the balls
Bn(v, r)where v ∈ L∩Bn(R) do not overlap and are all included inBn(R+λ1(L)/2).
It follows that |L∩Bn(R)| cannot exceed vol (Bn(R+λ1(L)/2))/vol (Bn(r)) = ((R+
λ1(L)/2)/r)n. The bound follows by letting ε decrease to 0.

If the sampling is such that each point of L ∩ S has a probability of being output
of order |L ∩ S|−1, and if N , |L ∩ S|, one of the samples would be a shortest
lattice vector with probability close to 1. Unfortunately, it is not known whether such a
sampling procedure exists. Instead, we will prove that it is possible to sample vectors
such that there exists w ∈ L ∩ S such that w and w + s, where s is a shortest lattice
vector, both have a non-zero probability of being output. Thus, by computing the
shortest difference between N sampled vectors in L ∩ S where N , |L ∩ S|, we will
obtain a shortest lattice vector with probability close to 1.
Yet, sampling vectors in L ∩ Bn(R) for some R = O(λ1(L)) looks very difficult.

AKS first applies LLL reduction to sample 2O(n) vectors in L ∩ Bn(R0) for some
R0 = 2O(n)λ1(L). This is not difficult, and can for instance be done by combining
Babai’s rounding (see Section 2) with the following folklore result:

Lemma 3.3. There exists a constant cr > 0 such that the following holds. Let (b1, . . . ,bn)
be an LLL-reduced basis of a lattice L. If s is a shortest vector of L, then there exists
an index i ∈ {1, . . . , n} such that s belongs to the lattice spanned by b1, . . . ,bi, and
for all j ≤ i: ‖bj‖ ≤ cn

r λ1(L).

Proof. It is a basic property of LLL reduction that, if [b1, . . . ,bn] is LLL-reduced, then
[πi(bi), . . . ,πi(bn)] is also an LLL-reduced basis of the projected lattice πi(L). Since
π(bi) = b∗

i is the corresponding vector of the Gram-Schmidt orthogonalisation of the
basis [b1, . . . ,bn], we have that, for all 1 ≤ i ≤ n : ‖b∗

i ‖ ≤ 2(n−i)/2λ1(πi(L)).
Let 1 ≤ i ≤ n−1 be such that s does not belong to the lattice spanned by b1, . . . ,bi.

Then the projection πi+1(s) is not zero, which implies that

‖b"
i+1‖ ≤ 2(n−i−1)/2‖πi+1(s)‖ ≤ 2n/2‖s‖ = 2n/2λ1(L)

Since s does not belong to the lattice spanned by b1, . . . ,bj for all j ≤ i either, we
have that, for all j ≤ i + 1:

‖b"
j‖ ≤ 2n/2λ1(L)
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Therefore, since the basis is LLL-reduced,

‖bj‖2 ≤ ‖b"
j‖2 +

1
4

∑

k<j

‖b"
k‖2 ≤ j22n/2λ1(L)2 ≤ c2nr λ1(L)2,

for a certain constant cr. Thus, for all j ≤ i + 1:

‖bj‖ ≤ cn
r λ1(L)

To conclude the proof of the lemma, take i to be the smallest index such that s belongs
to the lattice spanned by b1, . . . ,bi.

By sampling random vectors of sizeO(1) in Rn and rounding them to lattice vectors
using Babai’s algorithm, we can assume that we have a set S of many samples in
L ∩ Bn(R0). The main and most expensive part of the algorithm is to derive samples
in L∩Bn(O(λ1(L))) from S. This will be achieved by a very simple process: sieving,
which will make the vectors of S shorter and shorter, by at least some geometric factor
γ such that 0 < γ < 1. Under suitable conditions, the sieve takes as input 2O(n) vectors
in L ∩ Bn(R) and outputs almost as many vectors in L ∩ Bn(γR): each output vector
will be a subtraction of two well-chosen input vectors. More precisely, the sieve will
select a (not too big) subset C of the input set S, and the output set will be obtained
by subtracting each vector of S \ C with a well-chosen vector in C. Vectors in C
are then discarded. Intuitively, the problem of finding the right subset C is closely
related to a sphere covering problem, and this connection will be further discussed in
Section 4. By iterating the sieve linearly many times, AKS finally obtains vectors in
L ∩Bn(O(λ1(L))).
What we have just sketched is an idealized AKS algorithm, but the actual algorithm

is more complicated, due to bottlenecks in the analysis caused by distributions over
L ∩ Bn(R). More precisely, instead of sieving vectors in L ∩ Bn(R), we will sieve
vectors in Bn(R), while keeping lattice approximations of such vectors. We will store
pairs (v,y) ∈ L×Bn(R) such that v ∈ L is an approximation of y, namely ‖y−v‖ ≤ ξ
where ξ is fixed, and therefore ‖v‖ ≤ R + ξ. The v-part is important to remember the
operations on lattice vectors, but the decisions made by the sieve will only be based on
the y-part. We will start with couples (v,y) such that ‖y‖ ≤ R = R0 = 2O(n)λ1(L)
and the perturbation y − v is uniformly distributed in Bn(ξ) (this property will be
essential to the complexity analysis). Given many such pairs (v,y), the new sieve
will output pairs (v′,y′) ∈ L × Bn(γR + ξ) such that ‖y′ − v′‖ ≤ ξ and therefore
‖v′‖ ≤ γR + 2ξ. Thus, by iterating the sieve a linear number of times, we will obtain
lattice vectors in Bn(O(ξ/(1− γ))). In order to sample vectors in L ∩Bn(O(λ1(L))),
the perturbation must not be too big, namely ξ = O(λ1(L)).
Algorithm 1 gives the overall structure of the AKS algorithm, which takes as input a

lattice L and a triplet (γ, ξ, c0): γ is the shrinking factor of the sieve, ξ is the size of the
perturbations and N = 2c0n is the number of points which are initially sampled. Theo-
rem 3.1 will be proved with a suitable choice of (γ, ξ, c0). Let us give a few comments
on the structure of Algorithm 1. In Step 5, which is the end of the initialization, the set
S consists ofN pairs (v,y) ∈ L×Bn(R) such that ‖y−v‖ ≤ ξ and R = nmaxi ‖bi‖.
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Algorithm 1 The AKS algorithm for the Shortest Vector Problem
Input: An LLL-reduced basis B = [b1, . . . ,bn] of a lattice L satisfying Lemma 3.3,

and parameters 0 < γ < 1, ξ > 0 such that ξ = O(λ1(L)) and c0 > 0.
Output: A shortest vector of L under suitable conditions on (γ, ξ, c0).
1: S ← ∅
2: for j = 1 to N = 2c0n do
3: S ← S ∪ sampling(B, ξ) using Algorithm 2.
4: end for
5: R← nmaxi ‖bi‖+ ξ

6: for j = 1 to k = 0logγ

(
0.01ξ

R(1−γ)

)
1 do

7: S ← sieve(S, γ, R, ξ) using Algorithm 3.
8: R← γR + ξ
9: end for
10: Compute v0 ∈ L such that ‖v0‖ = min{‖v − v′‖ where (v,y) ∈ S, (v′,y′) ∈

S,v 2= v′}
11: return v0.

At each iteration of the sieve loop (steps 6 to 9), the set S will still consist of pairs
(v,y) ∈ L×Bn(R) such that ‖y− v‖ ≤ ξ, but both |S| and R will decrease. We now
describe the two subroutines used by Algorithm 1: sampling and sieving.

3.2 Initial sampling

Algorithm 2 generates a pair (v,y) ∈ L×Rn such that ‖y‖ ≤ nmaxi ‖bi‖ and y−v is
uniformly distributed in Bn(ξ). The sampling algorithm follows [29], rather than [4]:

Algorithm 2 Initial sampling
Input: A basis B = [b1, . . . ,bn] of a lattice L, and a real ξ > 0.
Output: A pair (v,y) ∈ L×Rn such that ‖y‖ ≤ nmaxi ‖bi‖ and y− v is uniformly

distributed in Bn(ξ).
1: x←random Bn(ξ)
2: v← ApproxCVP(−x, B) where ApproxCVP is Babai’s rounding algorithm [6].
3: y← v + x
4: return (v,y)

we first generate the perturbation x = y−v, then deduce a close lattice vector v using
Babai’s rounding algorithm [6], rather than first select a lattice vector and then add a
suitable perturbation. The requirement ‖y‖ ≤ nmaxi ‖bi‖ is guaranteed by Babai’s
rounding algorithm.
Algorithm 2 has two important properties which will be used in the analysis. The

first property is that the approximate CVP algorithm used in Step 2 is additive with re-
spect to the lattice: for any x ∈ Rn and any lattice vector z ∈ L, we have ApproxCVP(x+
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z, B) = z+ApproxCVP(x, B). This means that if x is replaced at the end of Step 1 by
x + z where z ∈ L, then v in Step 2 is replaced by v − z, and y remains the same.
The second property is the uniform distribution given by Step 1. If ξ > λ1(L)/2, for

any shortest lattice vector s, the intersection Bn(ξ) ∩Bn(s, ξ) is significant:

Lemma 3.4. Let s be a shortest vector of an n-dimensional lattice L and ξ > λ1(L)/2.
If we select x uniformly at random in Bn(ξ), then x + s ∈ Bn(ξ) with probability at
least 2−cUn where:

cU =
1
2 log

(
ξ2

ξ2 − λ21/4

)

Proof. Assume that λ1/2 < ξ < λ1, and let X = Bn(O, ξ) ∩ Bn(−s, ξ). Then all
x ∈ X are such that both x and x + s are in Bn(O, ξ). To estimate the volume of X ,
note that for any ε < ξ − λ1/2 it contains the cylinder of height h = 2(ξ − ε) − λ1
and basis the (n− 1)-dimensional ball of radius r =

√
ξ2 − (ξ − ε)2. The ratio of the

volume of this cylinder to the volume of Bn(ξ) is asymptotically of order (r/ξ)n. The
optimal bound is obtained by letting ε→ ξ−λ1/2, which yields the desired expression
for cU .

If x + s ∈ Bn(ξ), then the additivity property shows that if x had been replaced by
x + s in Step 1, the y-part of Algorithm 2’s output would not have changed.

3.3 Sieving

The heart of the AKS algorithm is the sieve described in Algorithm 3, which is the L2-
sieve of [29], rather than the L∞-sieve of [4]. Given as input a set S = {(vi,yi), i ∈

Algorithm 3 The sieve with perturbations
Input: A set S = {(vi,yi), i ∈ I} ⊆ L × Bn(R) and a triplet (γ, R, ξ) such that

∀i ∈ I, ‖yi − vi‖ ≤ ξ.
Output: A set S′ = {(v′

i,y′
i), i ∈ I ′} ⊆ L×Bn(γR+ξ) such that ∀i ∈ I′, ‖y′

i−v′
i‖ ≤

ξ.
1: C ← ∅
2: for i ∈ I do
3: if ∃c ∈ C ‖yi − yc‖ ≤ γR then
4: S′ ← S′ ∪ {(vi − vc,yi − vc)}
5: else
6: C ← C ∪ {i}
7: end if
8: end for
9: return S′

I} ⊆ L × Bn(R) such that ∀i ∈ I, ‖yi − vi‖ ≤ ξ, the sieve outputs a new set
S′ = {(v′

i,y′
i), i ∈ I ′} ⊆ L×Bn(γR + ξ) such that for all i ∈ I ′, ‖y′

i −v′
i‖ ≤ ξ. This

is achieved by selecting a special subset C of couples from S, which we call centers,
and taking the difference of every vector in S\C with its closest point in C. Clearly,



10 Phong Q. Nguyen and Thomas Vidick

Algorithm 3 uses at most |C|× |S| polynomial-time operations, and has the following
properties:
• The sieve preserves the perturbations: for any output pair (v′

i,y′
i) ∈ S′, there exists

an input pair (vi,yi) ∈ S such that v′
i − y′

i = vi − yi.
• The elements in C are chosen based only on the y-part of the pairs (vi,yi) ∈ S\C.
In other words, the sieve bases its decisions solely on the y- part, but it does update
the v-part.

The most important property of the sieve is that the number |C| of centers is ex-
ponentially bounded, where the bound only depends on the shrinking factor γ: the
following lemma shows that there exists a constant cS depending only on γ such that,
if |S|, 2cSn, then the output set S′ will be almost as big as the input set S.

Lemma 3.5. Let γ0 = 1
2

(√
5− 1

)
≈ 0.618 and 1

2 < γ < 1. If γ ≥ γ0, let cS =

log2
(
2
γ

)
, otherwise, cS = 1

2 log2
(
2+ 2

2γ−1

)
. Then the number of centers used during

Algorithm 3 always satisfies: |C| ≤ 2cSn.

Proof. We assume without loss of generality that the set S contains the zero vector,
and that this vector is the first to be added to C. All vectors y of norm less than γR are
therefore directly associated to this vector, and we only add to C indices corresponding
to vectors y such that ‖y‖ > γR. Moreover, a point is added to C only if it is at distance
at least γR from all points already in C. In Lemma 4.2 of Section 4 we show that the
ball of center y ∈ Cn(γ, R) = {x ∈ Rn, γR ≤ ‖x‖ ≤ R} and radius γR contains the
angular sector Sn(y,φ) of all points of Cn(γ, R) making an angle less than φ with y,
where cosφ = 1 − γ2/2 if γ > γ0 and cosφ = 1/(2γ) otherwise. The angle formed
between the new point and any old points is therefore greater than φ, so the angular
sectors Sn(yi,φ/2), for i ∈ C, are disjoint. The sum of their volumes over all vectors
in C must then be less than the volume of the corona. Lemma 4.2 then provides the
required bound.

3.4 Complexity Analysis

We now complete the analysis of the AKS algorithm (Algorithm 1). First of all, we
note that by Lemma 3.3, one can compute polynomially many λ ∈ Q such that one of
the λ’s satisfies λ1(L) ≤ λ ≤ 1.01λ1(L). Such an estimate on λ1(L) will be sufficient
to select the parameters of the algorithm.
At step 9 of the algorithm, we are left with a set S which by Lemma 3.5 contains

a large number of vectors in L, provided that the initial number of sampled vectors
was big enough. Moreover, the total number k of iterations of the sieving procedure
was chosen so that all these vectors have small norm O(λ1(L)), but they could still
all be the zero vector. The difficult part in the analysis is to show that we can extract
a shortest vector from this set. This is done in the following lemma, which uses the
properties of the sampling and sieving procedures that were put forward in Sections
3.2 and 3.3 respectively.
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Lemma 3.6. Let L be an n-dimensional lattice, (γ, ξ, c0) a choice of parameters for Al-
gorithm 1, k the number of iterations of the sieve loop, as defined in step 6 of Algorithm
1, and R∞ = (1+ 1.01/(1− γ))ξ = O(λ1(L)). Let cR∞ , cU and cS be the constants
defined respectively in Lemmas 3.2, 3.4 and 3.5. Finally, ifN∞ = 2(c0−cU )n/2−k2cSn,
then
• If N∞ ≥ 8, Algorithm 1 outputs with probability at least 1/2 a non-zero vector of

L with norm less than R∞.
• If N∞ ≥ 2cR∞n+3, Algorithm 1 outputs with probability at least 1/2 a shortest
vector of L.

Proof. We follow Regev’s approach [29], by introducing a conceptual modification of
the sampling part of the algorithm. Let s be a (fixed) shortest vector of the lattice, and
X = {x ∈ Bn(ξ), x + s ∈ Bn(ξ)}. By Lemma 3.4, vol (X)/vol (Bn(ξ)) ≥ 2−cUn.
Let τ : Bn(ξ)→ Bn(ξ) be such that τ(x) = x+ s if x ∈ X , τ(x) = x− s if x ∈ X + s
(note that X and (X + s) have no overlap if ξ ≤ ‖s‖ = λ1(L), which will be the case)
and τ is the identity elsewhere. τ is such that for all x ∈ X , ApproxCVP(τ(x), B) =
ApproxCVP(x, B) ± s.
We modify Algorithm 1 by applying τ with probability 1/2 on every perturbation x

just after it is chosen by the sampling procedure in step 1 of Algorithm 2. Note that,
since applying τ preserves the uniform distribution on Bn(ξ), and every other step of
the algorithm is deterministic, the output distribution on vectors of L of the modified
algorithm must be exactly the same as that of the original algorithm. Since the sieve
only bases its decisions on the y part of all output couples (v,y), we can imagine for
all output points that we only apply τ at the last step in the algorithm (step 10) (for a
point that is used as a center τ must be applied when it is used, because v is used in
determining the new value of the points that are associated to this center).
Of the N = 2c0n couples (v,y) that were sampled, we only consider those that

are such that y − v ∈ X . By Lemma 3.4, with probability exponentially close to 1,
there are at least 2(c0−cU )n/2 such vectors. Lemma 3.5 then tells us that, at step 10
in the algorithm, at least N∞ couples in S are such that y − v ∈ X (recall that the
perturbations x are left unchanged by the sieve’s operations). We call these couples
good. Now consider the situation just before applying τ .
If N∞ ≥ 8, then there are at least 8 good vectors. There are two cases. Either at

least 1/2 of these are zero. Then, after applying τ , with probability at least 1/2, one of
the at least 4 good zero vectors is sent to s, and another is left unchanged (remember
we applied τ with probability 1/2), so that, when taking differences at the last step of
Algorithm 1, we recover s. Or, at least 1/2 of all good vectors are non- zero. Then,
after applying τ , at least one of them will remain unchanged with probability greater
then 1/2, and at the final step, we recover a vector of norm less than R∞. So, in all
cases, with probability greater than 1/2, the modified algorithm outputs a vector of
norm less than R∞.
Now assume thatN∞ ≥ 2cR∞n+3. Since, by Lemma 3.2, |L∩Bn(R∞)| ≤ 2cR∞n, at

leastN∞2−cR∞n of the output points must correspond to the same vector v. The same
argument than that of the first case above then guarantees that the modified algorithm
outputs a shortest vector of L with probability at least 1/2.
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To conclude the argument, recall that both the original and the modified algorithms
produce the same output distributions on vectors of L, so the properties proved above
for the modified algorithm carry on to the original algorithm.

From Lemma 3.6, we conclude that Algorithm 1 outputs a shortest vector of its
input lattice L with probability exponentially close to 1 provided that the following
constraints on the parameters (γ, ξ, c0) are met:

• c0 − cU > cS : the number of good points sampled must be big enough so that only
a small fraction is used as centers in steps 2-8 of Algorithm 3.

• c0 − cU > cR∞ : the number of good points output in step 10 must be big enough to
ensure that at that step the set S contains at least two couples (v,y1) and (v+s,y2),
so that a shortest vector s is recovered when taking the differences.

Furthermore, the second constraint can be dropped if we are only interested in ob-
taining a non-zero vector of norm less than R∞. Using the values of the constants
given in Lemmas 3.2, 3.4 and 3.5 and optimizing over γ and ξ, we find that, in the
case where we want a shortest vector, the best choice of parameters is γ = 0.518 and
ξ = 0.7λ1(L), which yields a value c0 < 2.95. Since the running time of Algorithm 1
is dominated by the sieve procedure, whose complexity is of poly(n) · 2(c0+cS)n opera-
tions, and the final step computing differences, of complexity poly(n)22c0n, the overall
complexity of the algorithm is of 25.9n polynomial-time operations. In the case where
we only want a short vector, taking γ = 0.765 and ξ = 0.95λ1(L) we get c0 < 1.5 and
R∞ < 5λ1(L), so that with probability exponentially close to 1 we find a non- zero
vector of norm less than 5λ1(L) in less than 23n polynomial-time operations. This
proves Theorem 3.1.

4 A fast heuristic sieve algorithm

The complexity analysis made in the previous section makes it clear that the AKS
algorithm could in fact behave much better than what is proved in Theorem 3.1. For
instance, the proofs of Lemmas 3.2 and 3.5 are both based on packing arguments,
which are unlikely to be tight. This means that the constants cR and cS could probably
be chosen smaller in practice: if so, we could sample initially much less points, thereby
decreasing the running time of the sieve, which is O(N2) polynomial-time operations
where N is the number of sampled points. Furthermore, it is rather pessimistic to
require more vectors than lattice points inside a given ball to ensure that there is a
collision: by the birthday paradox, the cR constant could be replaced by cR/2 if the
vectors were uniformly distributed in the ball. Finally, while the perturbations y are
necessary for the proof of correctness to go through, their practical interest is unclear.
These observations suggest that we might be able to achieve a much better running time
by stripping off all constraints on the original AKS algorithm which seem unnecessary
in practice.
In this section, we present a heuristic variant of the AKS algorithm whose running

time (resp. space complexity) will be essentially (4/3)n polynomial-time operations
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(resp.
√
4/3n polynomially- sized registers): we will explain the origin of the 4/3

constant. Furthermore, we argue that under a natural heuristic assumption on the dis-
tribution of lattice vectors used by the algorithm, the result will be a very short – if
not shortest – lattice vector. Our heuristic assumption is supported by experiments in
low dimension. Our experiments show that sieve algorithms are practical up to dimen-
sion at least 50. Unfortunately, we will see in Section 4.3 that our experiments also
show that sieve algorithms are slower than the usual super-exponential enumeration
techniques for such dimensions, and we will explain that phenomenon.

4.1 Description of the heuristic algorithm

The AKS algorithm of Section 3 generates N pairs at random, which are sieved many
times. The total running time is ofN2 polynomial-time operations, and we showed that
for some N = 2O(n) and an appropriate choice of the parameters γ and ξ the algorithm
output a shortest lattice vector with overwhelming probability. Since the heart of the
AKS algorithm is its sieve, which reduces the norm of its input vectors, it is natural to
consider the heuristic variant described in Algorithm 4. This heuristic algorithm takes

Algorithm 4 Finding short lattice vectors based on sieving
Input: An LLL-reduced basis B = [b1, . . . ,bn] of a lattice L, a sieve factor γ such

that 2/3 < γ < 1, and a number N .
Output: A short non-zero vector of L.
1: S ← ∅
2: for j = 1 to N do
3: S ← S ∪ sampling(B) using algorithm K described in Section 4.2.1.
4: end for
5: Remove all zero vectors from S.
6: S0 ← S
7: repeat
8: S0 ← S
9: S ← latticesieve(S, γ) using Algorithm 5.
10: Remove all zero vectors from S.
11: until S = ∅
12: Compute v0 ∈ S0 such that ‖v0‖ = min{‖v‖,v ∈ S0}
13: return v0

as input two parameters: N and γ. In steps 1–5, it samples N non-zero lattice vectors
of reasonable length, say ≤ R0. Then steps 7–11 apply a lattice sieve (Algorithm 5)
which reduces the maximal norm of the vectors in S by a geometric factor γ. The
lattice sieve is a simpler version of the sieve with perturbations (Algorithm 3). At the
end of the algorithm, we obtain a non-zero lattice vector, but it is unclear how short
that lattice vector is. This depends on the number of iterations of the lattice sieve:
the main loop of Algorithm 4 repeats until the set S of all lattice vectors currrently
under consideration is empty. The size of S can decrease in two ways: first through
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Algorithm 5 The lattice sieve
Input: A subset S ⊆ Bn(R) of vectors in a lattice L and a sieve factor 2/3 < γ < 1.
Output: A subset S′ ⊆ Bn(γR) ∩ L.
1: R← maxv∈S ‖v‖
2: C ← ∅, S′ ← ∅
3: for v ∈ S do
4: if ‖v‖ ≤ γR then
5: S′ ← S′ ∪ {v}
6: else
7: if ∃c ∈ C ‖v− c‖ ≤ γR then
8: S′ ← S′ ∪ {v − c}
9: else
10: C ← C ∪ {v}
11: end if
12: end if
13: end for
14: return S′

Algorithm 5, which removes the vectors in C from S, second by elimination of zero
vectors in step 10 of Algorithm 4. To estimate the quality of the output vector we
therefore need to evaluate the size of each of these two reductions.
For this, since Algorithm 5 only sieves the vectors which have norm between γR

and R, we make the following natural assumption:

Heuristic: We assume that at any stage in Algorithm 4, the vectors in S ∩ Cn(γ, R)
are uniformly distributed in Cn(γ, R) = {x ∈ Rn, γR ≤ ‖x‖ ≤ R}.

This assumption immediately shows that the loss of points in S through collisions to
0 in step 5 of Alg. 4 will remain negligible until the radiusR is such that |Bn(R)∩L| ≥
|S|2, meaning that it only happens when we already have a good approximation of λ1:
see Section 4.3.1 for further discussion of this and experimental results.
The critical point in assessing the complexity of Algorithm 5 is therefore to estimate

the number of points in C, which we call centers, under the hypothesis above. This is
done in the following lemma.

Lemma 4.1. Let n be a non-negative integer and 2/3 < γ < 1. Let cH = 1/(γ
√
1− γ2/4)

and NC = cn
H03

√
2π(n + 1)3/21. Let N be an integer, and S a subset of Cn(γ, R) of

cardinality N whose points are picked independently at random with uniform distribu-
tion.
1. If NC < N < 2n, then for any subset C ⊆ S of size at least NC whose points are
picked independently at random with uniform distribution, with overwhelming proba-
bility, for all v ∈ S, there exists a c ∈ C such that ‖v − c‖ ≤ γ.
2. If N < 4

√
π/2n

√
4/3n

, the expected number of points in S that are at distance at
least γ from all the other points in S is at least (1− 1/n)N .
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Before proceeding to the proof of Lemma 4.1, les us show how it allows us to esti-
mate the complexity of the heuristic sieve algorithm. The lemma shows that, at steps
7-11 in Algorithm 1, we expect the size of S to decrease by rougly cn

H, provided that
the vectors in S are well-distributed in Cn(γ, R). As long as this distribution property
holds, the norms of the vectors in S are reduced by a factor γ at each iteration. Since the
initial norm of the vectors is 2O(n)λ1, if the number of sampled vectors is poly(n) · cn

H,
then after a linear number of iterations we expect to be left with a large number of very
small vectors. Since the running time of the sieve is quadratic, the total running time
of the algorithm is expected to be of order (4/3+ ε)n, because at the limit γ → 1 we
have cH =

√
4/3. Note that Lemma 4.1 also shows that this estimate is tight. Indeed,

if the number of points sampled is less than !(n−1/2
√
4/3n

), we expect each iteration
of the sieve to use at least a fraction 1 − 1/n of the available points as centers: this
means that the set of lattice vectors will become depleted after a sub-linear number of
iterations, which will be insufficient to give a constant approximation to the shortest
vector.
In Section 4.3, we will present experiments which support those estimates up to

dimension 48.
The

√
4/3 constant should be interpreted in the following way. Let an observer

be situated at the origin in n-dimensional space. The sky is modeled as the sphere of
radius 1 centered at the origin. A giant star, modeled by a ball of radius 1, is centered
at some point in the sky. Then the fraction of the sky that is occupied by the star is
sinn π/3 =

√
3/4n, and about

√
4/3n stars are therefore required to cover the whole

sky.

The rest of this section is devoted to the proof of Lemma 4.1. Since it is clearly
independent of the scaling factorR, to simplify notations we restrict ourselves toR = 1
and let Cn(γ) = Cn(γ, 1) = {x ∈ Rn, γ ≤ ‖x‖ ≤ 1}. Our problem is the following:
let S be a set ofN uniformly distributed points in Cn(γ). What is the expected fraction
of Cn(γ) covered by

⋃
x∈S Bn(x, γ)? This is related to problems of sphere coverings

of convex sets, which have been well studied in the literature (for an overview see [8,
Chap. 2]). However, our problem is a bit different from the usual thinnest covering
problem: what is the minimal number of n-dimensional balls of radius γ required
to cover the n-dimensional unit ball? In fact, very little is known about this thinnest
covering when the dimension is large, and the only bounds known come from the study
of random lattices (see for example [30]).
Since the expected size of C clearly decreases as γ goes to 1, we will take γ rather

close to 1, so that Cn(γ) is geometrically close to a sphere; using this intuition we
can rigorously prove a lower bound on the expected fraction of Cn(γ) covered by N
uniformly distributed balls of radius γ.
Let !n(γ) be the minimum fraction of Cn(γ) that is covered by a ball of radius

γ centered in a point of Cn(γ). Lemma 4.2 below estimates !n(γ) by following the
approach taken in [7], approximating Bn(x, γ) ∩ Cn(γ) by the spherical cap of angle
ϕ: Sn(x,ϕ) = {y ∈ Cn(γ), |〈y,x〉| ≤ ‖x‖‖y‖ cosϕ}. This lemma is then used to
give a proof of Lemma 4.1.
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Lemma 4.2. If 1/2 < γ < 1,

1
3
√
2π(n + 1)

1
cosϕ sin

n ϕ < !n(γ) <

√
2
πn

√
3
4

n

where ϕ = cos−1
(
1
2γ

)
if γ ≤ γ0 = 1

2

(√
5− 1

)
and ϕ = cos−1

(
1− γ2

2

)
if γ ≥ γ0.

Proof. Let x ∈ Cn(γ), and α = ‖x‖, so γ ≤ α ≤ 1. Then Sn(x,ϕα) ⊂ Bn(x, γ) ∩
Cn(γ) ⊂ Sn(x, 2π/3), where the angle ϕα is such that cosϕα = α

2γ if γ ≤ γ0 and
cosϕα = 1+α2−γ2

2α if γ > γ0. To see this, consider the triangle of vertices O, x, and
y such that y is at distance γ from x and β ∈ [γ, 1] from O. ϕα is the minimal angle
in O over all such triangles for β ∈ [γ, 1], whereas the maximum of this same angle is
easily seen to be less then 2π/3. The minimal angle is obtained for α = 1, and by the
estimates of [7], Corollary 3.2, we have that

1
3
√
2π(n + 1)

1
cosϕα

sinn ϕα <
vol (S(x,ϕα))
vol (Cn(γ))

<
1√
2πn

1
cosϕα

sinn ϕα

which concludes the proof of the lemma.

Proof of Lemma 4.1
If cH is as described, then by Lemma 4.2 we have !n(γ) > 1

3
√
2π(n+1)

c−n
H . The

expected fraction of Cn(γ) that is not covered by NC balls of radius γ centered at
randomly chosen points of Cn(γ) is (1−!n(γ))NC . We have

NC log(1−!(γ)) ≤ −NC!(γ)

≤ −(n + 1)3
√
2π(n + 1) 1

3
√
2π(n + 1)

≤ − logN

The expected fraction of the corona covered by NC points chosen at random is then at
least 1−2−N , so the expected number of uncovered points is smaller than 1. Since this
number is an integer, it must be 0 with probability at least 1/2.
For the second part of the lemma, let S be a set of N points picked uniformly at

random in the corona, and, for i ∈ S,Xi the random variable that is 1 if there is no point
in S (other than i) that is at distance less than γ of i, and 0 otherwise. If α =

√
2

πn

√
3
4

n

,
then by Lemma 4.2 we have Prob[Xi = 1] ≥ (1−α)N−1. X =

∑
i∈S Xi is the number

of isolated points in S, by linearity of expectation E[X ] ≥ N(1−α)N−1 ≥ (1−1/n)N
as long as αN < n/4.

4.2 Optimizations

We discuss practical aspects for the sampling and sieve steps.
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4.2.1 Sampling.

Using Algorithm 2 with a reasonable choice of ξ = O(λ1(L)), we can obtain many
lattice vectors of norm 2O(n)λ1(L). However, the distribution of the lattice vectors
that are output is not clear, whereas our heuristic assumption assumes that they are
uniformly distributed in the corona Cn(γ). Intuitively it is clear that the sampled points
should not be biased towards any single direction. Moreover, the number of sieve
executions is linear in n, where the linear coefficient is directly related to the O()
constant in 2O(n)λ1(L), so it is important to have a reasonable constant. Algorithm 2
used Babai’s rounding algorithm [6], but Babai’s nearest plane algorithm [6] would
yield a better constant. To minimize theoretical issues with the heuristic assumption,
we used Klein’s randomized variant of the nearest plane algorithm [22], because it has
good theoretical guarantees and is very efficient in practice. Klein’s algorithm samples
lattice vectors according to a distribution that is statistically close to a gaussian with
arbitrary (although not too small) variance. The gaussian ensures that no direction in
space is privileged, and we can choose the variance to be sufficiently small so that with
high probability the sampled vectors are reasonably small. More precisely, a detailed
analysis of Klein’s algorithm appeared in [15], where it was used to construct various
cryptographic tools with trapdoors. Gentry et al. [15] proved the following Theorem:

Theorem 4.3. [22, 15] Let B = [b1, . . . ,bn] be any basis of a lattice L, and s ≥
maxi ‖bi‖·w(

√
logn). There exists a randomized polynomial-time algorithmK whose

output distribution is within negligible statistical distance of the restriction to L of a
gaussian centered at 0 and with variance

√
2πs, ie with density proportional to p(v) =

exp(−π ‖v‖2 /s2).

4.2.2 Alternative sieves.

The lattice sieve (Algorithm 5) reduces the maximal norm of its input set of vectors S
by selecting a subset C of S of centers which will ultimately be discarded, so that |C|
vectors are lost at each iteration of the sieve. Algorithm 5 naively solves the following
problem: given a vector v ∈ Cn(γ) and a set C ⊂ Cn(γ), find a vector c ∈ C such that
‖v − c‖ ≤ γ if such a vector exists. This is a nearest-neighbour problem, which has
been well studied in the literature. It is known that in practice, when the dimension is
high, unless one accepts to be faced with huge space requirements it is impossible to do
much better than the trivial O(n|C|) algorithm which computes each of the |C| norms
{‖v − c‖, c ∈ C}. To get better results, researchers have recently been considering
the following approximate nearest- neighbour problem: Let c > 1 and R > 0. If there
exists c ∈ C such that ‖v − c‖ ≤ R, return any point c′ such that ‖v− c′‖ ≤ cR.
Currently the best algorithms for solving these problems in practice are the hashing-

based algorithms of [9] and [5], which complexities of O(n|C|1/c) and O(n|C|1/c2)
respectively. In our case, a parameter set would be R = γ 8 0.97 and c ∈ (1, 1/0.97).
In theory, any fixed c only influences the number of iterations that we will have to
make, but not the number of centers used at each iteration, so we could take c 8
1/0.97 = 1.031. Unfortunately, such an improvement is too small to outweigh the
increase in the size of the constants implied by the O(·) for dimensions of practical
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interest. We implemented the first algorithm of [9], and found that it performed only
marginally better than the naive algorithm for dimensions higher than 50. The main
advantage of the naive version is that it only uses very simple operations: additions
and multiplications of integers.

4.3 Experimental results

Since our analysis of Algorithm 4 is based on heuristic assumptions, it is very important
to perform experiments to see if they are justified or not. The crucial point in assessing
the complexity of the algorithm is to estimate the number of vectors that are lost at
each iteration of the sieve, either as centers or through a collision.

Experiments were performed on a 3.2Ghz-P4 computer with 1Gb of RAM. The
heuristic AKS algorithm was implemented in C, using Victor Shoup’s NTL library
[34]. To give an idea of how practical AKS is, let us first give figures for the Leech
lattice, which is the densest 24-dimensional lattice, and which has 196,560 minimal
vectors. We started with an LLL-reduced basis with bad reduction factor δ = 0.5,
which had basis vectors roughly twice as long as shortest vectors. After sampling
8, 000 vectors (at best 1.9 times longer than the first mininum), 50 iterations of the
sieve with factor γ = 0.97 produced a shortest lattice vector. The total running time
was half a second, and the maximal number of centers used per sieve iteration was
about 400.

To give a broader picture, we performed twenty experiments on random lattices for
each dimension n such that 30 ≤ n ≤ 48:
• Pick a random lattice using the simple method described in [16] (see [25] for de-
tails), and compute an LLL-reduced basis.

• Repeatedly run Algorithm 4 with γ = 0.97 with an increasing number of points N ,
until the output vector v0 is a shortest vector of the lattice (this is checked using
the Schnorr-Euchner enumeration procedure). Once Algorithm 4 is successful, we
store:

1. The evolution of the number of points sieved during consecutive iterations. See
Figures 1 and 2.
2. The maximal number of centers which were used at any iteration of the sieve.
See Figure 3 for the average value of this maximal number.
3. The total running time of the algorithm. See Figure 4 for average values, where
it is compared with the running time of other SVP algorithms.

4.3.1 Evolution of the number of sieved points

The heuristic version of the AKS sieve algorithm keeps iterating until its current set S
of lattice vectors becomes empty; it then returns the last non-zero lattice vector that it
has manipulated. At each iteration, the maximal norm of a vector in S is multiplied
by a constant factor γ < 1, at the cost of a reduction in the size of S. As we saw in
Section 4.1, the crucial point in assessing the quality of this algorithm is therefore to
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have good estimates on the evolution of the size of S. The size can decrease in two
ways: first, a vector may be lost when it is used as a center, and second, a vector is
discarded if it is reduced to zero by the sieve; this only happens when there were two
identical vectors in S, and one was used as a center for the other.
The crucial assumption that we made in order to bound the number of vectors lost

in this fashion was that the vectors of S were uniformly distributed. We saw in Sec-
tion 4.2.1 that there existed efficient sampling procedures which provided minimal
guarantees on the distribution of the initially sampled points. However, it is not clear
whether each iteration of the sieve preserves this uniformity, or if it introduces a small
bias that could accumulate over a large number of iterations.
In this section, we give experimental results which support our theoretical estimates.

Number of centers used at each sieve iteration.
Lemma 4.1 upper bounded the number of centers which were expected to be used

by the sieve by NC = cn
H · 03

√
2π(n + 1)3/21 where ln cH ≈ 0.165 if γ = 0.97. Figure

3 gives the natural logarithm of the maximal number of centers used in any iteration
of the sieve. A numerical interpolation of the graph with a curve of equation f(x) =
ax + b ln(x) + c yields the following values: a = 0.163(±0.017), b = 0.102(±0.65),
c = −1.73(±1.72). Note that, for our range of n, b lnn is not negligible at all compared
to an. Since 0.163 is very close to 0.165, the experimental value of a is rather close
to the theoretical prediction. But the exponent of n in the estimate of NC is better
than expected: it is e1.02 ≈ 1.1 rather than 1.5. This is perhaps due to the fact that the
covering of Bn(R) used by the lattice sieve is more efficient than the random covering
used by Lemma 4.1, since a point is added only if it is outside the union of the balls
Bn(c, R) for all c ∈ C.

Number of collisions.
If we start the sieve with a large number of vectors in S, then there is bound to be

a non-negligible number of collisions after a number of iterations: since a definite
number of vectors are used as centers at each iteration, as R → λ1 the size of S
decreases in an arithmetic fashion, but should be no more than 1 (or, say, 2n) when
R = λ1.
If we assume, as previously, that at every step of the sieving procedure, the set of

vectors currently being sieved is uniformly distributed among the lattice vectors in
the corona, then it is possible to give a precise estimate of the expected number of
collisions:

Lemma 4.4. Assume p vectors are randomly chosen with replacement from a set of
cardinality N . Then the expected number of different vectors picked is N − N(1 −
1/N)p, so the expected number of vectors lost through collisions is p − N + N(1 −
1/N)p.

This number is negligible for p 9
√

N . Since we expect the number of lattice
vectors inside the ball of radius R/λ1 to be of order Rn, the effect of collisions will
only become noticeable when R/λ1 is less than |S|2/n. As we saw in Section 4, it is
sufficient to take an initial S of size |S| ≈

√
4/3n, which gives R/λ1 ≈ 4/3. So we
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expect collisions to play a role only when we already have a very good approximation
to λ1 - and even then, collisions mean that we have a good proportion of all lattice
vectors, meaning we will probably be able to recover the shortest one.
To confront these estimates with experimental results, we picked a random lattice of

dimension 35, sampled a large number of lattice vectors and then sieved them. We first
plotted the total number of vectors that are manipulated by the sieve at each iteration,
as a function of the quality of these vectors as measured by their maximum norm
R divided by λ1 (Figure 1). The first portion of the curve decresases regularly as
a constant number of points are used as centers at each iteration. When the size of
the manipulated vectors becomes approximately 1.5λ1, we see a sharp decline in the
number of vectors, which is due to a large number of collisions, as can be verified on
Figure 2.
In Figure 2 we plot the number of centers used at each iteration and the number

of collisions that are observed. We also plotted the expected number of collisions in
case these points were uniformly distributed, by computing the exact number of lattice
points inside a given ball, using a simple enumeration algorithm, and, given the num-
ber of vectors in S, computing the expected number of collisions using Lemma 4.4.
We see that the two curves match rather well: as far as collisions are concerned, it
seems that the set of vectors manipulated by the sieve behaves as if it were sampled
uniformly from all the vectors in Bn(R). We also see on this figure that the number of
centers used in any iteration is remarkably steady, collapsing only when the radius be-
comes very close to λ1. These observations suggest that the distribution of the vectors
that are manipulated by the sieve remains very well-behaved throughout its numerous
iterations.

4.3.2 Comparison with other SVP algorithms.

In this section we compare the performance of the heuristic AKS Algorithm with the
other two main enumeration algorithms, which we first describe briefly. The basic idea
for these algorithms is to find a bounded set such that a shortest vector is guaranteed
to be in this set, and then enumerate all vectors in the set. There is a tradeoff between
the time needed for enumeration, governed by the size of the set, and the preprocessing
time, used to reduce the size of the set that is to be enumerated.
Let L be a lattice with basis (b1, . . . ,bn). Let b∗

i be the Gram-Schmidt vectors, and
µi,j = 〈bi,b

∗
j 〉

‖b∗
j‖2

the Gram- Shmidt coefficients.

ENUMERATION TECHNIQUES. If x = x1b1 + . . . + xnbn is any lattice vector, then

‖x‖2 =
n∑

j=1



xj +
n∑

i=j+1
µi,jxi



 ‖b∗
j‖2

If x is further a shortest vector, then ‖x‖ ≤ λ1 ≤ ‖b1‖, which implies that xn ≤
‖b1‖/‖b∗

n‖, and we can take xn ≥ 0. It is then possible to recursively find intervals
containing the other coordinates xn−1, . . . , x1, and it is easy to see that the search space
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Figure 1. Cardinality of S, the set of vectors that are being sieved.
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can be circumscribed to a set of cardinality no more than

‖b1‖
‖b∗

n‖

n−1∏

j=2

(⌊2‖b1‖
‖b∗

j‖

⌋
+ 1

)
.

If the basis is LLL-reduced with optimal reduction factor, then the number of polynomial-
time operations performed by the enumeration procedure is less than

√
4/3n2/2+O(n).

Here, the
√
4/3 constant is Hermite’s constant in dimension two and corresponds to

the worst-case of LLL reduction: extensive experiments [25] suggest that in practice,√
4/3 can be replaced by ≈ 1.04, so that the asymptotic complexity is expected to be

1.02n2+O(n) polynomial-time operations. In other words, we have a super-exponential
complexity with a constant extremely close to 1.
We have just described the principle of enumeration techniques. However, it must

be stressed that there are several ways to enumerate all the candidates x, and this has
a great impact on the running time in practice. The Schnorr-Euchner enumeration [33]
is the most efficient way known of enumerating all the candidates: it is implemented
by all main lattice software. It is based on the following two ideas (see the survey [1]
for more details):
• each time a shorter vector is found, its norm, rather than ‖b1‖, is used to bound the
coordinates xi.

• each time we find an interval containing the coordinate xi for i < n, we search
through this interval starting from the middle, rather than from the boundaries.

KANNAN-HELFRICH ENUMERATION [21, 20]. The idea behind Kannan’s algorithm
is to spend much more time finding a good basis so as to decrease the cost of enu-
meration. Let π2 be the orthogonal projection in the direction of b1. We first find
an HKZ-reduced basis of the lattice π2(L), which is lifted to a weakly-reduced ba-
sis [b1,b2, . . . ,bn] of L such that [π2(b2), . . . ,π2(bn)] is an HKZ-reduced basis of
π2(L) and ‖b∗

1‖ ≤ 2‖b∗
2‖. This is achieved through recursive calls to the algorithm.

One finally finds the shortest vector by basic enumeration, like in the Schnorr-Euchner
algorithm [33]. It can be shown that the overall asymptotic cost of the algorithm is
dominated by the last enumeration: since b∗

2 is a shortest vector of π2(L), we have that
‖b∗

2‖n−1 ≤ O(
√

n− 1)‖b∗
2‖ · · · ‖b∗

n‖, which implies that the cost of the enumeration
is at most nn/2+o(n) polynomial-time operations. Hanrot and Stehlé [18] recently pre-
sented an improved analysis, which shows that the cost of the enumeration is at most
nn/(2e)+o(n) polynomial-time operations; and they later showed in [19] that this upper
bound is also a lower bound for certain bases of certain lattices.

The experimental running times of all three algorithms are compared in Figure 4.
To emphasize the importance of the quality of the input basis, we used the Schnorr-
Euchner enumeration technique [33] in two different cases:
• The input basis is LLL-reduced. Figure 4 shows that the logarithm of the running
time is convex and grows like O(n2).
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• The input basis is BKZ-20 reduced: the running time is still 2O(n2) but with an even
smaller O() constant. This is because experimentally, the only major difference
between a BKZ-20 basis and an LLL basis is the slope of the log ||b∗

i ‖.

Since 2O(n) 9 2O(n logn) 9 2O(n2), the asymptotic analysis suggests that the AKS
algorithm should be faster than Kannan’s algorithm, which itself should be faster than
the basic Schnorr-Euchner enumeration algorithm. However, our experiments show
that this is not the case in the dimension range 20-50: Figure 4 shows that in this range
the heuristic AKS has running time comparable to the Kannan-Helfrich algorithm, but
both are significantly slower than Schnorr-Euchner enumeration with LLL preprocess-
ing, and the gap with BKZ-20 is of course bigger.
This can be explained as follows:

• It is in fact no surprise that the basic Schnorr-Euchner enumeration is the fastest. In-
deed, its complexity is 2O(n2) polynomial-time operations, but here, 2O(n2) should in
practice be replaced by 1.02n2+O(n) for reasons explained above, and the polynomial-
time unit is extremely small in practice, because it consists only of a few floating-
point arithmetic operations.

• On the other hand, the complexity of the Kannan-Helfrich algorithm is 2O(n logn)

polynomial-time operations, where the 2O(n logn) may not be as small as 1.02n2+O(n)

for small n, and where the polynomial-time unit is not as small, due to large pre-
processing. Indeed, in order to make the basis quasi-HKZ-reduced, the algorithm
must perform a great number of projections and lifting of basis vectors: hence, the
polynomial-time unit is much larger than a few floating- point arithmetic operations
like in the basic Schnorr-Euchner enumeration.

• Finally, the heuristic AKS only involves very basic floating- point operations, but
the (4/3+ ε)n complexity actually hides polynomial factors. First of all, the esti-
mate NC given by Lemma 4.1 is roughly n3/2(

√
4/3+ ε)n, which already implies

a polynomial factor n3 in the running time (since the cost of the sieve is quadratic).
Besides, we have to run the sieve a linear number of times, which hides another
polynomial factor. And polynomial factors may not be negligible at all compared
to exponential factors in low dimensions: n3/2 ≤ (

√
4/3+ ε)n for n ≤ 38.

These results show that, from a practical point of view, the exponential factors are
surprisingly less important than the polynomial factors, because the dimensions of in-
terest are rather small.

Let us finally comment briefly on space requirements: both the Schnorr-Euchner and
the Kannan-Helfrich enumeration techniques have essentially no memory requirement
except that of storing O(1) n-dimensional lattice vectors. In contrast, the fast sieve
algorithm requires about O(poly ·

√
4/3n

) space and, like for the running time, it is the
polynomial factors which dominate. In practice, memory usage becomes significant
when n is around 50: in our experiments, the 48-dimensional examples used about 700
megabytes of RAM, where vectors were stored using the C++ long type.
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5 Conclusion

We have shown that sieve algorithms for the shortest vector problem are in fact practi-
cal. We have also provided an analysis which is supported by experiments: our heuris-
tic sieve algorithm behaves essentially as predicted, which is rather unusual among
lattice algorithms. More precisely, at each application of the sieve, we know approxi-
mately how many centers will be used and how much shorter the vectors will become.
Our results show that while sieve algorithms can be made practical, they are unlikely to
beat enumeration algorithms for dimensions of practical interest. Furthermore, beyond
dimension 50, the space requirement of sieve algorithms becomes problematic.
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