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Abstract

Background: Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic

relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual

descriptions of biological entities, their interactions and results of related experiments. To extract them in an

explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation

was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The

current challenge is the development of information extraction procedures that can directly infer more complex

relational structures, such as gene regulatory networks.

Results: We develop a computational approach for extraction of gene regulatory networks from textual data. Our

method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation

extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium

Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant

relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each

of which is able to extract different relationship types. Following the shared task, we conducted additional analysis

using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from

0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all

relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed

by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of

extraction. Analysis of distances between different mention types in the text shows that our choice of transforming

data into skip-mention sequences is appropriate for detecting relations between distant mentions.

Conclusions: Linear-chain conditional random fields, along with appropriate data transformations, can be

efficiently used to extract relations. The sieve-based architecture simplifies the system as new sieves can be easily

added or removed and each sieve can utilize the results of previous ones. Furthermore, sieves with conditional

random fields can be trained on arbitrary text data and hence are applicable to broad range of relation extraction

tasks and data domains.

Background
We are witnessing an unprecedented increase in the

number of biomedical abstracts, experimental results

and phenotype and gene descriptions being deposited to

publicly available databases, such as NCBI’s PubMed.

Collectively, this content represents potential new dis-

coveries that could be inferred with appropriately

designed natural language processing approaches. Identi-

fication of topics that appear in biomedical research lit-

erature was among first computational approaches to

predict associations between diseases and genes and has

become indispensable to both researchers in the biome-

dical field and curators [1-4]. Information from publica-

tion repositories is often mined together with other data
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sources. Databases that store relations from integrative

mining are for example the OMIM database on human

genes and genetic phenotypes [5], the GeneRIF function

annotation database [6], the Gene Ontology [7] and clin-

ical drug information from the DailyMed database [8].

Biomedical mining of literature is a compelling way to

identify possible candidate genes through integration of

existing data.

A dedicated set of computational techniques is required

to infer structured relations from plain textual information

stored in large literature databases [9]. Relation extraction

tools [10] can identify semantic relations between entities

found in text. Early relationship extraction systems relied

mostly on manually defined rules to extract a limited

number of relationship types [11]. Later, machine learn-

ing-based methods were introduced to address the extrac-

tion task by inferring prediction models from sets of

labeled relationship types [12-14]. When no labeled data

were available, unsupervised systems were developed

to extract relationship descriptors based on the language

syntax [10]. Current state-of-the-art systems combine

both machine learning and rule-based approaches to

extract relevant information from narrative summaries

and represent it in a structured form [15,16].

This paper aims at the extraction of gene regulatory

networks of Bacillus subtilis. The reconstruction and

elucidation of gene regulation networks is an important

task that can change our understanding of the processes

and molecular interactions within the cell [17-19]. We

have developed a novel sieve-based computational meth-

odology that builds upon conditional random fields [20]

and specialized rules to extract gene relations from

unstructured text. Extracted relations are assembled into

a multi-relational gene network that is informative of

the type of regulation between pairs of genes and the

directionality of their action. The proposed approach

can consider biological literature on gene interactions

from multiple data sources. The main novelty of our

work here is the construction of a sequential analysis

pipeline for extracting gene relations of various types

from literature data (Figure 1). We demonstrate the

effectiveness and applicability of our recently proposed

coreference resolution system [21]. Our system uses lin-

ear-chain conditional random fields in an innovative

way and can detect distant coreferent mentions in text

using a novel transformation of data into skip-mention

sequences.

We evaluate the proposed methodology by measuring

the quality of extracted gene interactions that form the

well studied regulatory network of sporulation in bac-

teria B. subtilis. Sporulation is an adaptive response of

bacteria to scarce nutritional resources and involves dif-

ferential development of two cells [22,23]. Many regula-

tory genes that control sporulation or direct structural

and morphological changes that accompany this phe-

nomenon have been characterized in the last decade

[24,25]. The topology of bacterial sporulation network is

stable and suffers no controversy; thus, it is appropriate

to serve as a reference network against which the perfor-

mance of relation extraction algorithms can be com-

pared. Our evaluation demonstrates that the proposed

approach substantially surpasses the accuracy of current

state-of-the-art methods that were submitted to the Gene

Regulation Network (GRN) BioNLP-ST 2013 Challenge

(http://2013.bionlp-st.org/tasks/gene-regulation-net-

work). The source code of our approach is freely available

[26]. In this paper we represent a network extraction

algorithm, which is an improvement on our winning sub-

mission to BioNLP 2013 [27]. With these improvements

Figure 1 Architecture of the proposed sieve-based relation

extraction system. The system consists of nine sieves. The first two

prepare data for processing, then six sieves try to recognize events

and relations, and the last sieve cleans the extracted relations. Every

input document is processed sequentially by each of the sieves and

at the end a list of extracted relations is returned as a result.
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we have been able to further reduce the prediction error

from 0.73 to 0.68, measured as the slot error rate (SER).

This paper substantially extends our previous work [27].

Below, we discuss motivation for using skip-mention

sequences by analyzing distributions of distances between

various parts of text (i.e., mentions) that are used by spe-

cialized sieves. We further explain feature functions and

rules as they are key components of the system. We ana-

lyze the number of relations extracted by each sieve. The

approach described here adds a new conditional random

fields (CRFs) sieve to detect direct relations between

B. subtilis genes that are “hidden” as target mentions

within events. To better address text from biomedicine,

we use the BioLemmatizer [28] instead of a general lem-

matizer. We incorporate an additional knowledge

resource - B. subtilis protein-protein interaction network

from the STRING database [29], which is used within the

new feature function BSubtilisPPI.

We use the term sieve to represent a separate relation-

ship processing component. As we may extract new rela-

tionships or delete them in each of the sieve, the term

might not be well selected but we left the terminology to

comply with the previously published conference paper

[27] and the coreference resolution system [30] that

inspired the architecture of our proposed system.

Related work

Research in the field of relationship extraction focuses on

extraction of binary relationships between two argu-

ments. New systems are typically tested using social rela-

tionships in the Automatic Content Extraction (ACE)

evaluation datasets [31,32], where the goal is to select

pairs of arguments and assign them a relationship type.

Machine learning approaches that have been used for

relationship extraction include sequence classifiers, such

as hidden Markov models [33], conditional random fields

[20], maximum-entropy Markov models [34] and binary

classifiers. The latter usually employs support vector

machines (SVM) [35].

The ACE 2004 dataset [36] consists of two-level hier-

archical relationship types. A relationship could have

another relationship as an argument and a second level

relationship can have only non-relationship-like argu-

ments. Two-level relationship hierarchies could have a

maximum tree height of two. Wang et al. [32] proposed

a system that uses a one-against-one SVM classifier to

classify relationships in the ACE 2004 dataset by employ-

ing WordNet [37]-based semantic features. The GRN

BioNLP 2013 Shared Task aimed to detect three-level

hierarchical relationships. These relationships are inter-

actions that connect events or other types of interactions

as arguments. In comparison to the pairwise technique

[32], we extract relationships using linear-based sequence

models and manually defined rules.

A relation could be written using forms in unstructured

text. Machine learning techniques try to learn diverse

relations by adapting models against large datasets and

by exploiting informative text features. The features are

instantiated by a predefined set of feature functions,

which are applied on a specific dataset. A technique to

overcome a low number of instances of diverse relation-

ship forms was proposed by [38]. They proposed lexical-

syntactic feature functions based on patterns that are

able to identify dependency heads. The proposed solution

was evaluated against two relationship types and two lan-

guages, where they achieved promising results. In this

work we define manually assigned rules to overcome the

heterogeneity of the relationship representation.

Text used for training a relationship extraction model

is most often tagged using the IOB (inside-outside-begin-

ning) notation [39]. In the IOB, the first occurrence of

the relationship word is labeled as B-REL, second and

later consecutive tokens, which also represent relation-

ships are labeled as I-REL, and all other tokens are

O. Part of the text that most closely identifies a known

relationship between the two arguments is referred to as

a relationship descriptor. Li et al. [40] used a linear-chain

CRF model to label such descriptors. They first changed

the subject and object arguments of the accompanying

relationships into a specific value (e.g., ARG-1, ARG-2).

This transformation enabled them to correctly identify

direction of a relationship. Moreover, they also merged

all the tokens from a relationship descriptor into a single

token, which enabled them to use long distance features

using a linear model representation. We employ an ana-

logous model representation, but transform a sequence

of tokens in an innovative way that enables us to extract

the target relationship type between the arguments and

not just a relationship descriptor. Banko and Etzioni [41]

also employed linear-based classifiers for the open rela-

tionship extraction problem, that is, the identification of

a general relationship descriptor without regard to any

target relationship type. First, they analyzed specific rela-

tionship types in the text taking into account lexical and

syntactic features and then they learned a CRF model

against with synonym identification [42]. Their approach

is useful in scenarios where only a very limited number

of relationships are known. Traditional relationship

extraction methods can perform better if our goal is a

high value of recall. For this reason we focus on super-

vised relationship extraction model.

Relationship extraction methods in biomedicine have

been evaluated at several shared task challenges. The

LLL - Learning Language in Logic challenge on gene

interaction extraction [43] is related to the BioNLP 2013

Gene Regulatory Networks Shared Task, which includes

a subset of the LLL data with some additional annota-

tions. For the LLL task, Giuliano et al. [44] used a SVM
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classifier and proposed a specialized local and global

SVM kernel that uses neighboring words as contextual

information. The local kernel was based solely on men-

tion features, such as words, lemmas or part-of-speech

(POS) tags. In contrast, the global kernel used tokens on

the left side of, between and on the right side of pairs of

mentions that represent candidate arguments. To iden-

tify relationships, Giuliano et al. processed documents

that contained at least two candidate attributes and gen-

erated

(
n

k

)
example instances, where n was the number

of all mentions in a document and k was the number

of mentions that constituted a relationship (i.e., two).

Giuliano et al. used their model to predict either a non-

existing relationship, a subject-object relationship or an

object-subject relationship. On a related note, we pro-

pose the usage of contextual features and syntactic fea-

tures that depend on neighboring words. However, we

predict unoriented extracted relationships and then

determine their directionality, i.e., the subject and object

arguments, through manually defined rules.

Survey of BioNLP shared tasks

The BioNLP Shared Task challenges follow an estab-

lished research-wide trend in biomedical data mining

towards the specific information extraction tasks. Chal-

lenge events have been organized thus far in 2009 [45],

2011 [46] and 2013 [47-49], each co-located with the

BioNLP workshop at the Association for Computational

Linguistics (ACL) Conference. The first event triggered

active research in the biomedical community on various

information extraction tasks. Second shared task focused

on generalizing text types and domains, and on support-

ing different event types. The most recent shared task

took a step further and addressed the information extrac-

tion problems in semantic web, pathways, cancer-related

molecular mechanisms, gene regulation networks and

ontology populations.

The BioNLP 2011 Entity Relations challenge focused on

the entity relationship extraction. The best performing sys-

tem, called TEES [35], used a pipeline with SVMs for the

detection of entity nodes and relation prediction that was

followed by post-processing routines. It predicted relation-

ships between every two candidate mentions within a sen-

tence. The evalution showed that the term identification

step could strongly impact on the performance of the rela-

tionship extraction module. In our case, proteins and

mentions of entities, these are mentions that represent

genes, were identified prior to the beginning of the chal-

lenge, and thus, our work here focused on the extraction

of events, relations and event modification mentions.

In this work we describe the method that we devel-

oped while participating in the BioNLP 2013 Gene Reg-

ulation Network Shared Task [47]. We report on several

refinements of our approach that were introduced after

the shared task ended and that allowed us to further

improve its predictive performance. The goal of the

GRN task was to extract gene interactions from research

abstracts and to assemble a gene network, which was

informative of gene regulation. Training data contained

manually labeled texts obtained from research articles

that contained entity mentions, events and interactions

between genes. Entities were text sequences that identi-

fied entities, such as genes, proteins or regulons. Events

and relationships were defined by their type, two con-

nected arguments (i.e., entities) and the direction

between the arguments. Given a test dataset, our goal

was to predict relations describing various types of gene

interactions. Predicted network of extracted gene inter-

actions was matched with the reference gene regulatory

network and scored using a Slot Error Rate (SER) [50].

The SER measures the proportion of incorrect predic-

tions relative to the number of reference relations.

Methods
In this section we present our proposed sieve-based sys-

tem for relation extraction. We start by describing the

linear-chain conditional random field (CRF) model and

proceed by extending it with a novel data representation

that relies on skip-mentions. We provide support for

transforming data into skip-mention sequences by study-

ing various mention distributions that are used by CRF-

based sieves. We then overview feature functions used by

our model and explain the sieve-based system architec-

ture, which is an end-to-end procedure that consists of

data preprocessing, linear-chain CRF execution, rule-

based relationship identification and data cleaning.

Conditional random fields with skip-mentions

CRF [20] is a discriminative model, which estimates dis-

tribution of the objective sequence y conditioned on the

input sequence x, that is, p(y|x). Following is an exam-

ple of the input sequence from the GRN BioNLP 2013

training dataset, where the potential attributes (i.e.,

mentions) are shown in bold:

“spo0H RNA and sigma H levels during growth are

not identical to each other or to the pattern of

expression of spoVG, a gene transcribed by E

sigma H.”

The corresponding objective sequence for this example

is y - [O, O, EVENT, O, EVENT, O, TranscriptionBy],

which also corresponds to tokens in x - [spo0H, sigma H,

levels, expression, spoVG, transcribed, E sigma H]. Thus,

both sequences are of the same length.

We retrieve additional information for input sequence

x and generate sequences xLEMMA, xPARSE, xPOS that
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contain lemmas, parse trees, tokens and part-of-speech

tags for each corresponding token in x. The CRF con-

siders feature functions fj, where j denotes j-th feature

function, j = 1, 2, . . . , m (Figure 2). Feature functions

employ text sequences to model target sequence y. The

design of appropriate feature functions is the most

important step in training CRF models. They contribute

substantially to the improved performance of the sys-

tem. We implement feature functions as templates and

generate the final feature set by evaluating feature func-

tions on a training dataset. The feature functions used

by our model are described in the following section.

Training of a CRF model involves estimating the most

probable objective sequence ŷ ˆ given the input x. In

particular, we estimate

ŷ = argmax p(y—x, w),
y

where w is a vector of model parameters, weights, that

have to be learned. Here, the conditional distribution p

(y|x, w) is written as

p(y—x, w) =
exp

(∑m
j=1 wj

∑m
i=1 fj(y, x, i)

)

C(x, w)
,

where n represents the length of input sequence x, m

the number of feature functions and C(x, w) is a nor-

malization constant over all possible objective sequences

y. Here, fj (y, x, i) denotes a j-th feature that is fired for

i-th place in the input sequence. In our computations

we avoid the need of computing normalization constant

C. Instead of using the exact probabilities we rather rely

on ranking of the sequences relative to their probabil-

ities and return a sequence that is ranked first. use fea-

tures that are fired at least five times on the training

data (a parameter to our system).

The structure of a linear-chain model depends on the

references to the target sequence labels that are used by

the input feature functions. Figure 3 shows the graphical

representation of the linear-chain CRF model. From the

figure we can observe that the i-th factor can depend

only on the current yi label and the previous label yi−1
in a sequence. The training of linear CRFs is fast and

efficient. This is in contrast to more complex CRF mod-

els, whose model inference is in general intractable and

requires approximate probabilistic methods.

Model definition

We formulate the task of relationship extraction as iden-

tification of relationships between two arguments. Lin-

ear-chain CRF model with standard data representation

lacks the modeling of dependencies between mentions

on longer distances (i.e., arguments that have at least

one other token in-between). By analyzing the example

from the previous section, “gene transcribed by E

sigma H“, we conclude that untransformed data repre-

sentation can only identify relationships between two

consecutive tokens. Thus, we cannot extract all possible

relationships using a linear model. Rather than extract-

ing relationship descriptors (i.e., parts of text that iden-

tify a relationship), we would like to extract categorized

relationships between pairs of mentions. To overcome

the limitation of linear models, we introduce new

sequences that contain only mentions. We refer to these

sequences as mention sequences. Mentions are a type of

arguments that can form a relationship. In Figure 4 we

present a conversion of the text excerpt into a mention

sequence. Transformed sequence x consists of consecu-

tive entity mentions. Notice that entity mentions are

included in the training dataset.

We label target sequence y with the name of a rela-

tionship (e.g., Interaction.Transcription, EVENT) or with

the none symbol (i.e., O) when no relationship is pre-

sent. Each relationship label represents a relationship

between the current and the previous mention.

From the mention sequence generated in Figure 4, we

cannot identify relationships between mentions that are

not consecutive. This limitation becomes exacerbated

Figure 2 A feature function example. The feature function

indicates whether the current label is Gene, the previous is Other

and the previous word is “transcribes“, which returns 1 or otherwise

it returns 0.

Figure 3 The linear-chain conditional random fields model

representation. The model is represented with an input sequence

x (e.g., words) and target sequence y (i.e., relationship names)

containing n tokens.
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when mentions that are arguments of a certain relation-

ship appear on longer distances. For example, mentions

spoVG and E sigma H should be related via the Interac-

tion.Transcription relationship. However, this relation-

ship cannot be extracted from representation that

considers only consecutive mention pairs. Furthermore,

a linear model can only detect relationships between

directly consecutive mentions. To overcome this pro-

blem, we introduce a novel sequence representation

called skip-mention sequences. The number of skip-

mentions defines the number of mentions from the ori-

ginal text that exist between two consecutive mentions

in a given skip-mention sequence. Thus, the original

mention sequence (Figure 4) is a zero skip-mention

sequence, because there are zero other mentions

between any two consecutive mentions. This is opposed

to a one skip-mention sequence, which considers rela-

tionships that are one mention apart. For example, to

prepare the input data for extracting relationships

between every second mention, we create two one skip-

mention sequences for each input document. In the

example in Figure 5 we extract relationship Interaction.

Transcription based on one skip-mention sequence.

In a general setting we consider skip-mention

sequences for mentions at distance s. For a given skip-

mention number, s, we create s + 1 mention sequences

of length
[n

s

]
. After the sequences are created, one inde-

pendent linear-chain CRF model is trained for each

value skip-mention number. As the generated sequences

are independent, we can infer prediction models in par-

allel. From the models we read the extracted relation-

ships between the mentions and form an undirected

graph, where each connected component represents a

relationship. Figure 6 shows a high level representation

of data flow and relation extraction used in our

approach. The time complexity of the proposed method

is mainly determined by the time needed for training

linear CRF models, since other routines can be run in

linear time. Due to the parallel execution of the for loop

(0, 1, 2, . . . , s), we need to find the longest lasting

execution. Let us suppose that CRF training and infer-

ence has time complexity of O(ELQ) [51], where E is the

number of edges in the graph, L is the number of labels,

and Q is the size of the maximal clique. In our type of

CRF model, we use one label for each relationship type.

The number of edges E depends on the sequence input

to the algorithm. Let further assume there are n men-

tions in a document, which results in a zero skip-men-

tion sequence with 2n − 1 = O(n) edges. Moreover,

every other generated s skip-mention sequence contains

s

(⌈
2n

s

⌉
− 1

)
= 2n − s = O(n) edges. We conclude that

by employing parallelization, CRF models would use O

(nL2) = O(n) of time (number of labels L is small and

fixed). In addition to other linear time procedures, it is

also important to consider the time for initialization of

feature functions, which takes on the order of O(nm),

where m is the number of input feature functions.

Figure 7 shows the distribution of distances between the

relationship mention arguments (i.e., agents and targets)

from the BioNLP 2013 Gene Regulatory Network train-

ing dataset. The labeled arguments represent entity

mentions or events, depending on the sieve setting.

Event is a type of relation that contains only mentions

as their attributes. Events are extracted using the event

extraction sieve. The distribution of distances between

mentions is shown in the part A of Figure 7. In the

sieve (iv) we identify relationships that have only men-

tions as their attributes (B). In the training data there

are 153 relations that have another relation or an event

as their attribute. Of these, there are 11 such relations

that have another relation as their attribute. Seven con-

tain a regular relation as an attribute, while four repre-

sent negated relations, which are not scored. Relations

that contain events as attributes are extracted by the

event relations processing sieve (v) and the distribution

of distances between the attributes is shown in part C of

the figure. To use the same approach as for the other

sieves, we transform events into mentions (see the sieve

Figure 4 Zero skip-mention sequence . The initial mention

sequence that contains all the mentions (i.e., zero skip-mention)

from the document “spo0H RNA and sigma H levels during growth

are not identical to each other or to the pattern of expression of

spoVG, a gene transcribed by E sigma H.”1 A sentence from the

GRN BioNLP 2013 training dataset, article PMID-1898930-S9.

Figure 5 One skip-mention sequence. One out of two possible

one skip-mention sequences, generated from the initial zero skip-

mention sequence [spOH, sigma H, levels, expression, spoVG,

transcribed, E sigma H]. The other one consists of tokens sigma H,

expression and transcribed.
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(v) for details). Since hierarchies of events or relations

are not considered in model evaluation, we include the

gene relations processing sieve (vi). Sieve (vi) extracts

relations only between mentions, that are identified as

B. subtilis genes. The distribution of distances between

such mentions is presented in part D in the figure. We

notice a drop of number of relationships on distance

one for parts A, B and C. This is due to the fact of all

the mentions we take into account when forming men-

tion sequences. Differently, in part D, we take only gene

mentions into account which also results in not having

a drop at distance one.

Figure 6 Data flow in CRF-based relation extraction sieves. First, the initial skip-mention sequence is transformed into the selected skip-

mention sequences. Then, for each of the skip-mention sequence type, a different CRF model is trained and then used to label the appropriate

skip-mention sequences. After labeling, the relations are instantiated from the tagged sequences and returned as a result.

Figure 7 Distributions of distances between relation attributes on BioNLP GRN train dataset. (A) Mention distance distribution for events.

(B) Mention distance distribution for relations. (C) Mention and event distance distributions for relations. Events are transformed into mentions.

(D) A distribution of distances for relations in which subject and object mentions refer only to B. subtilis genes.
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From all of the distance distributions we observe that

relationships are mostly connected by the attributes on

distance of two entity mentions. These distributions

demonstrate the need to transform our data into skip-

mention sequences. Without the transformation the

linear-chain CRF model would, at best, uncover rela-

tions with attributes at zero distance (i.e., directly conse-

cutive mentions).

For our final results we train the linear CRF models

against skip-mention sequences from zero to ten skip-

mentions. We decide to use this range after observing

the distance distributions between attributes of the rela-

tions. By using up to ten skip-mentions we can retrieve

most of relations and do not overfit the model. The

findings in our previous work [21] show that after

reaching the tail of distance distributions the results do

not further improve.

The feature functions that we consider are thoroughly

explained in Table 1 and Table 2. The tables contain

short descriptions of the functions and parameters that

are used for their instantiation. Additionally, the feature

function generators generate a number of different func-

tions from the training data and for them we also

include the label types from which they are generated.

Data processing components

We introduce a pipeline-like data processing system that

combines multiple data processing sieves (see Figure 1).

Each is a separate data processing component. The whole

system consists of nine sieves. The first two deal with

data preprocessing and data preparation for efficient

relationship extraction. The main ones then consist of

linear CRF-based and rule-based relationship detection.

The last one cleans the data before returning it as a

result. The whole implementation of this proposed pipe-

line is available in a public source code repository [26].

CRFSuite [52] is used for fast CRF training and inference.

The proposed system can be easily adapted to another

domain or other relation extraction task. In order to use

it for other purposes, we would need to adapt the prepro-

cessing part to enable the import of the new data. Also,

the rule-based processing sieve would need to be dis-

carded or populated with specific rules according to a

new problem. All other sieves that extract relations could

be the same because they use trained models and those

would be specific to a domain and task. We also

employed the use of skip-mention sequences to the task

of coreference resolution and achieved comparable

results to existing approaches [21]. The pipeline starts by

transforming the input text into the internal data repre-

sentation, which could be used for further processing and

enriches the data with additional labels, such as part-of-

speech tags, parse trees and lemmas. After that we detect

also action mentions, which are attributes within events.

Next, we employ linear CRF models for event detection.

We represent events as a special relationship type. Then

the main relationships processing sieves detect relation-

ships. We propose several processing sieves for each of

the relationship type based on the argument types or

hierarchy support. After each relationship extraction step

we also use rules to set the agent and target attributes in

the right direction. The last relationship processing sieve

Table 1. Feature functions description

Name Description Options

Target label
distribution

Distribution of target labels. –

Starts upper Does a mention start with an upper case leter. current, previous mention

Starts upper
twice

Do two consequent mentions start with an upper case letter. current, previous mention

Hearst co-
occurence [58]

Does the text between the two mentions follow some predefined rules, e.g., mi such as mj. –

Mention token
distance

Distance between the two mentions in number of mentions. –

Parse tree
mention depth

Depth of the mention within the parse tree. –

Parse tree parent
value

Parse tree value of the mention on length l l ∈ {1, 2, 3}

Parse tree path Path values between the two mentions in a parse tree, e.g., DT/NP/NNS/.../NP/NP/VBG. up to three tokens from
every mention

BSubtilis If the two mentions are known as B. subtilis, what is the probability of protein-protein interaction
using STRING data [29], i.e., very low, low, medium, high, very high.

–

IsBSubtilis Is the current mention known as B. subtilis gene. –

IsBsubtilisPair Which of the two consequent mentions is known as B. subtilis genes, i.e., left, right, both or none. –

The feature functions are used by all CRF-based sieves for all selected skip-mention CRF models. All extracted features are modeled both as unigram and bigram

features. Unigram features are used for current label factor and bigram features are used for transition factor between two labels.
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performs rule-based relationship extraction and therefore

detects relationships of higher precision and boosts recall

levels. In the last step the extracted data is cleaned and

exported.

The sieves of our system are run in the same order as

shown in Figure 1. We provide detailed description of

the processing sieves in the following sections, where we

refer to the relationship attributes as subjects and

objects, as shown in Figure 8. Notice that sieves can

depend on each other if they use data extracted by

sieves executed earlier in the system pipeline (i.e., sieve

(iii) and (v)). The initial set of the mentions is produced

by the mention extraction sieve. This set is then used

throughout the system and represent relation attributes

used by extracted relations.

Preprocessing sieve

Preprocessing phase includes data importation, detection

of sentences and tokenization of input text. Additionally,

we tag the data with new labels, which are lemmas [28],

parse trees [53] and part-of-speech tags.

Mention extraction sieve

The entity mention can belong to any of the following

types: Protein, GeneFamily, ProteinFamily, ProteinCom-

plex, PolymeraseComplex, Gene, Operon, mRNA, Site,

Regulon and Promoter. Entity mentions are provided with

the corpus, however, action mentions (e.g., expresses,

transcribes) are not included in the corpus. We automati-

cally detect action mentions. They are needed to repre-

sent relationship arguments within events during the

event extraction. To identify action mentions we gather

action mention lemmas from the training dataset and

select new candidate mentions from the test dataset by

exact matching of the lemmas.

Event extraction sieve (iii)

An event can be defined as a change in the state of biolo-

gical entities, such as genes or complexes (e.g., “the pattern

of expression of spoVG“). We encode events as a special

relationship with a type name “EVENT“. In the dataset,

the event subject types can be of Protein, GeneFamily,

PolymeraseComplex, Gene, Operon, mRNA, Site, Regulon

and Promoter types, while the objects are always of the

action mention type (e.g., “expression“), which are discov-

ered in the mention extraction sieve. After the event type

relationships are identified, we employ manual rules that

change the order of arguments - they set an action

Table 2. Feature function generators description

Name Description Options Observable data

Prefix value Value of the prefix for the mention on offset distance from the current
mention.

string length: {2,
3}; offset: [−5, 5]

text

Suffix value Value of the suffix for the mention on offset distance from the current
mention.

string length: {2,
3}; offset: [−5, 5]

text

Consequent value A combination of values of the two consequent mentions on offset distance
from the current mention, e.g., PDT/NNS.

offset: [−4,4] text, part-of-speech, lemma,
entity type, coreference

Current value A value of the mention on offset distance from the current mention, e.g., NNS. offset: [−4,4] text, part-of-speech, lemma,
entity type, coreference

Context value Matching of specified length of character-based ngram values within the
selected range of words from the current and previous mentions using Jaccard
coefficient. According to the match result, feature function values are
discretized into eight levels. Different feature functions are generated for the
context left/right of both mentions, between the two, outside the two and
union of all.

range: 5, ngram:
3

text

Previous / next
value
combination

A combination of token values from the selected distance to the current and
the previous mentions.

distance: {−2, 2} text, part-of-speech, lemma

Left / right /
between value

Token values on the left/right or in between the two mentions on the
selected distance.

distance: [1,5] text, part-of-speech, lemma

Split to values Split the current mention into tokens by the selected delimiter and output first
N tokens.

N: 2, delimiter: ‘ text, lemma

According to the implementation, different options and observable values, the generators generate specific feature functions using a single scan over training

data. The feature functions are used by all CRF-based sieves for all selected skip-mention CRF models. All extracted features are modeled both as unigram and

bigram features (except prefix and suffix, which are of unigram type only). Unigram features are used for current label factor and bigram features are used for

transition factor between two labels.

Figure 8 General relation representation. Each relation (e.g., gerE

inhibits cotD) is defined with a name (e.g., Interaction.Regulation)

and subject (e.g., gerE) and object (e.g., cotD) attributes.

Žitnik et al. BMC Bioinformatics 2015, 16(Suppl 16):S1
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mention as the object and a gene as the subject attribute

for all extracted events.

Relation processing sieves (iv, v, vi, vii)

Due to the existence of different relationships (i.e., dif-

ferent subject and object types), we extract relationships

in four phases (iv, v, vi, vii). This also enables us to

extract hierarchical relationships (i.e., relationships that

contain another relationship as its subject or object) in

order to achieve higher precision. All the sieves in this

step use the novel linear CRF-based relationship extrac-

tion method. Each processing sieve uses specific rela-

tionship properties and is executed in the following

order (the shown examples are sample extractions from

the above demonstrative document):

(iv) First, we extract relationships with only men-

tions as arguments (e.g., transcribed ® Transcrip-

tionBy ® E sigma H). Mentions can be either of the

real or action type. By real mentions we refer to the

entities that represent genes, proteins and aggre-

gates, while action mentions could represent only

arguments within events (e.g., transcription).

(v) In this step, we extract relationships that consist

of at least one event in their arguments (e.g., expres-

sion spoVG ® Interaction.Transcription ® E sigma

H). Before the extraction we map events into men-

tions, which enables us to use the same approach as

in previous step. These mentions consist of two

tokens (i.e., event arguments). We treat the newly

created event mentions the same as others and also

include them in the list of other mentions. Their

order within the list is determined by the lowest

mention token from the event. We train the models

using the same techniques as in every other CRF-

based processing sieve. The new action mentions are

treated as other mentions and from them we extract

features using the same set of feature functions.

Lastly, the final relationships are instantiated follow-

ing the same procedure as in the previous step.

(vi) The goal of the shared task is to extract Interac-

tion relations between B. subtilis genes. Thus, we

select only mentions that represent B. subtilis genes

and train the algorithm to predict the appropriate

Interaction relations (e.g., spoVG ® Interaction.

Transcription ® E sigma H if there was no tran-

scription event). For the mention selection step we

exploit a public database of the B. Subtilis genes

from the NCBI available at http://www.ncbi.nlm.nih.

gov/nuccore/AL009126.

(vii) We propose this new processing sieve in addi-

tion to the previous sieves, which we previously

introduced in the BioNLP challenge submission [27].

The goal of the challenge is to extract interactions

between genes. When there exists a relationship

between a gene G1 and and event E, the final result

in a GRN networks looks exactly the same if our

system extracts a relationship between a gene G1

and a gene G2, where G2 is the object attribute of

the event E. By taking into account the latter, we

train the models to extract relationships only

between B. subtilis genes (e.g., spoVG ® Interaction.

Transcription ® E sigma H, where spoVG is the

subject attribute within an event).

The challenge datasets include seven hierarchical rela-

tionship instances, which have another relationship as

one of its arguments. Due to the small number of

instances and newly introduced relationship extraction

sieve between genes (vi, vii), we did not extract this type

of relationship hierarchies.

Additionally, there exist four negated relation

instances. The BioNLP task considers only positive rela-

tions and there is no performance gain if negated rela-

tions are extracted. Thus, we focus on extracting positive

relations. Depending on the dataset and performance

evaluation measure, we can add a separate sieve that can

extract negated relations by applying manually defined

rules that search for negation words such as nor, neither,

whereas and not.

Rule-based processing sieve

The last phase of relationship extraction involves applica-

tion of the rules to achieve higher precision. The rules

operate directly on the input text with recognized men-

tions and use different data representation than extrac-

tors based on CRFs. We implemented the following four

approaches:

Mention triplets: This method searches for the conse-

quent triplets of mentions, where the middle mention is

an action mention. As input to the rule we set the match-

ing regular expression that searches for text that action

mention must starts with, and a target relation. For

example, from text “The rocG gene of Bacillus subtilis,

encoding a catabolic glutamate dehydrogenase, is tran-

scribed by SigL . . . “, we extract a relation rocG ® Inter-

action.Transcription ® SigL. The mention triplet in this

example is rocG, transcribed and SigL, where the middle

mention is an action mention matching the regular

expression.

Consecutive mentions: The method processes every

two consequent B. subtilis entity mentions and checks

whether the text in-between the mentions matches a spe-

cified regular expression used for extracting a target rela-

tion. By default, it forms relations that are extracted from

active sentences, otherwise it supposes the passive type

and changes the order of attribute types within the

matched relation. For example, from text “GerE binds to

a site on one of these promoters, cotX, that. . . “, we

extract relation GerE® Interaction.Requirement ® cotX.

Žitnik et al. BMC Bioinformatics 2015, 16(Suppl 16):S1
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Notice that mentions GerE and cotX represent the B. sub-

tilis entities and text between the entities matches a regu-

lar expression “.*binds to.*”.

List of consecutive mentions: This method extends

the technique designed for consecutive mentions by

allowing potentially many entity mentions on both sides

of matched regular expression. The list of mentions

must be separated by one of the delimiters “,”, “, and” or

“and”. For example, this rule extracts two relationships

from the sentence “the cotG promoter is induced under

the control of the sigma K and the DNA-binding pro-

tein GerE.”

Sentences of consecutive mentions: This method is

similar to the rule for consecutive mentions. It first

removes subsentences that exist between two mentions

and then it extracts relationships. Subsentences are

defined as parts of text between two commas. For exam-

ple, the method extracts a relationship GerR ® Interac-

tion.Requirement ® SpoIIID from the sentence “The

sigma(E) factor turns on 262 genes, including those for

GerR, and SpoIIID.”.

The Interaction relationships are extracted using key-

words and regular expressions that depend on the type

of interaction. Biomedical literature uses many different

language forms to express the same type of a genetic

relationship. For example, some researchers prefer to

repress to to inactivate or to inhibit. We use synonyms

of this kind to extract additional relationships that are

not identified by linear CRF models. The parameters

used for rule-based extraction are shown in Table 3.

Data cleaning sieve

The data cleaning sieve removes loops of relationships

and eliminates redundancies. We call relationship a loop

if and only if both relationship arguments refer to the

same entity (i.e., mentions are coreferent). For example,

the sentence “... sp0H RNA and sigma H ...” refers to

the mentions sp0H and sigma H. Since both mentions

refer to the same entity (i.e., sigH), they cannot form a

relationship. Removal of the loops improves perfor-

mance of the system as it contributes to the reduction

of undesired insertions in the final prediction. Another

step in data cleaning phase is removal of redundant

relationships. Disregarding redundant relationships has

no affect on predictive performance of our system but it

improves the readability of the output.

Experimental setup
BioNLP GRN 2013 challenge dataset

The GRN dataset consists of sentences from PubMed

abstracts, which are mostly related to the topic of sporula-

tion in B. subtilis and from which an appropriate gene reg-

ulation network can be reconstructed. It contains

annotated text-bound entities that we call mentions. These

mentions include biochemical events and relationships that

were result of already conducted research work on cellular

mechanisms at the molecular level. The goal of BioNLP

Shared Task was to identify interactions, which represent

relations between biological entities, events or relations

and are essential for construction of GRN. The interaction

relations form a hierarchy of mechanism and effect relation

types. We were required to predict the following fine-

grained interaction relation classes: regulation, inhibition,

activation, requirement, binding and transcription.

In Table 4 we report on the features of the train,

development and test datasets that were used in our

study. The test dataset does not include labeled data

and thus we cannot perform the evaluation of each

sieve against it. In the other two datasets the sentences

are manually labeled with relationships, events and

entity mentions.

Evaluation criterion

The official evaluation criterion of the BioNLP challenge

considers edge resemblance between the predicted and

the reference gene regulatory network describing

Table 3. Rule-based processing sieve input parameters

Regular expression

Mention triplets
Transcription

transcrib

Consecutive mentions

Transcription .*directs transcription.*

Inhibition .*inactivate.*

Inhibition .*inhibits.*

Inhibition .*repressor to.*

Inhibition 1
.*is negatively regulated

by.*

Activation1 .*is governed by.*

Activation1 .*essential.*activat.*

Activation .*to.*activat.*

Activation .*turns on.*

Requirement1 .*requires.*

Requirement .*required.*

Binding .*binds.*to.*

Binding -binding.*

List of consecutive mentions

Transcription .*under.*control.*of.*

Activation1 .*is governed by.*

Inhibition .*represses.*

Inhibition .*to repress.*

Sentences of consecutive
mentions

Activation .*turns on.*

Inhibition .*repressed.*

Each of the four different rule-based extraction methods takes a target

relation name and a regular expression as input. Some of them also require to

specify whether the extraction should be made from active or passive

sentences.
1 The method is called with passive parameter set to true.
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sporulation in B. subtilis. The performance of a rela-

tion extraction system is evaluated using the SER mea-

sure [50]

SER = (S + I + D) /N,

which is the ratio between the sum of relationship

substitutions (S), insertions (I) and deletions (D), divided

by the number of edges in the reference network (N). In

short, systems that output as many wrong predictions as

correct predictions achieve a SER value of 1. Notice that

a system, which reports zero extracted relations, pro-

duces as many deletions as there are relations in a data-

set (i.e., N = D). When a system extracts a true relation,

the number of deletions decreases by one. If it detects a

false relation then either the number of substitutions or

the number of insertions increases by one. More accu-

rate systems have a lower SER. A perfect system would

correctly identify all relations and would achieve a SER

of 0. Our goal is to maximize the number of matched

relations and minimize the number of substitutions,

deletions and insertions.

Results and discussion
We represent the GRN relationship extraction challenge

as a two-level task. First, we need to identify relation-

ships among given labeled mentions and secondly, we

need to correctly identify the argument types of

extracted relationships (i.e., the direction of a relation-

ship). For the challenge evaluation procedure, only

results that match by relationship type and also by both

argument types are counted as correct.

Our approach consists of multiple submodules, i.e.,

sieves, whereas each is developed for extracting a speci-

fic relationship type (e.g., are both arguments mentions,

are arguments an event and a mention, or are both of

them gene mentions). For the CRF-based relation

extraction sieves we use skip-mention distances from

zero to ten. Thus, we first show the overall results and

then discuss the contributions of each sieve and subsets

of feature functions.

Predictive performance

We evaluated the proposed solution against the GRN

BioNLP 2013 Shared Task dataset using leave one out

cross validation on the development data, where we

achieved a SER score of 0.74, with no substitutions, 36

deletions, 14 insertions and 31 matches. According to

the results reported on the development dataset at the

BioNLP workshop [27], this is improvement for one

point in SER due to the additional sieve and new feature

functions.

The challenge test dataset consists of 290 mentions

from 67 sentences. We trained the models jointly on the

development and train datasets to detect relationships

against the test data. The challenge submission results

of other participants in the shared task are listed in

Table 5. According to the official SER measure, our sys-

tem (U. of Ljubljana) was ranked first. The other partici-

pants or participating systems were K. U. Leuven [54],

TEES-2.1 [55], IRISA-TexMex [56] and

EVEX [57]. All the participants were trying to achieve

a low number of substitutions, deletions and insertions,

while trying to increase the number of matched rela-

tionships. We obtained the lowest number of substitu-

tions and good results in the other three counters,

which resulted in the best SER score. In general also

other participants generated a high number of deletions,

which is a clear result that the relationships are encoded

in many and ambiguous forms in the text. The IRISA-

TexMex achieved the lowest number of deletions and

the maximum number of matches but received a low

final result due to a high number of insertions and

substitutions.

Since the submission of our entry to the BioNLP chal-

lenge, we have introduced some new feature functions

and implemented an additional sieve. The new sieve

(vii) extracts relations between B. subtilis genes from

hierarchically encoded relations in the training dataset.

Table 4. BioNLP 2013 GRN Shared Task development,

training and test dataset properties

Dataset dev train test

Documents 48 86 67

Tokens 1321 2380 1874

Real mentions 205 422 290

Action mentions 55 102 86

Events 72 157 –

Relations 105 254 –

Interaction relations 71 159 –

The numbers of the Interaction relations that our system reads from the

datasets is different than the real ones due to the import technique into our

internal data representation. The dev dataset contains 67 and training dataset

contains 131 reference Interaction relations. The test data contains 88 such

relation instances (The number was retrieved from the output of the official

BioNLP GRN Shared Task test evaluation service).

Table 5. BioNLP 2013 GRN Shared Task results on the

test dataset

Participant S D I M SER

U. of Ljubljana 8 50 6 30 0.73

K. U. Leuven 15 53 5 20 0.83

TEES-2.1 9 59 8 20 0.86

IRISA-TexMex 27 25 28 36 0.91

EVEX 10 67 4 11 0.92

The table shows the number of substitutions (S), deletions (D), insertions (I),

matches (M) and slot error rate (SER) metric. Best results per metric are

highlighted in bold. Reported are results announced after the BioNLP 2013

GRN challenge was closed.
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We report the improved results in Table 6. They all

include new feature functions and are grouped by the

inclusion of the new event-based gene processing (vii)

sieve and data cleaning sieves. The result without both

of them already outperforms our submitted result by

one point, with a SER score of 0.72. The new feature

functions extract more relations with increased preci-

sion. It is interesting that the inclusion of the sieve (vii)

deteriorates the final result by about 4 SER points. How-

ever, the inclusion uncovers more matches, but it inserts

a substantial number of non-correct relations, which

results in a higher error rate. Thus, the best SER score

of 0.68 was achieved without the sieve (vii) and with

data cleaning. Compared to our winning result at the

BioNLP Shared Task, this may further improve the sys-

tem by 5 SER points.

In Figure 9 we show the gene regulation network,

which is the visual representation of the results of our

system against the test dataset. Compared to our shared

task submission [27], the improved system identifies two

additional relations (i.e., spoIVFB ® Inhibition ®

spoIVFA, sigE ® Transcription ® gerR) and deletes one

(i.e., sigB ® Transcription ® yvyD). If the deleted rela-

tion is correct, we could merge the results and achieve a

SER of 0.67 with 4 substitutions, 50 deletions, 5 inser-

tions and 34 matches, given 88 relations in the test set.

To the best of our knowledge, this result represents the

most accurate prediction on BioNLP GRN dataset so

far. We were able to retrieve 39% of interactions from

the data, which suggests that automatic extraction of

gene regulatory networks is still a challenging task with

open opportunity for future research.

Analysis of extractions per sieve

Table 7 shows the number of extracted relations by each

sieve. The same relation can be extracted by multiple

sieves. Thus, we apply data cleaning as the last sieve to

remove loop and duplicate relations.

The event extraction sieve uncovers events, which we

represent as relations. Events are not part of perfor-

mance evaluation and thus their extraction does not

directly affect the SER score. Extracted events are given

as input to the event processing sieve, which extracts

relations having an event as a relation attribute. The

first two relation processing sieves (Figure 1) already

achieve promising performance on the development

dataset, while on the test set they extract seven correct

and seven incorrect relations, that is, the SER score

remains 1. The next two sieves extract more correct

relations on the test set and achieve very good results

on the development dataset. The event-based gene pro-

cessing sieve shows substantial improvements on the

development dataset, while there is a minor result

change on the test set. The lowest SER score is achieved

when not using this sieve for the test set (but the CRF

models are trained on both training and development

data). In this setting there are no further improvements

when using rules on the development data. Notice that

the rule-based sieve contributed importantly on the

development data before we introduced the event-based

gene processing sieve into the system. We observed that

many relations previously extracted by rules are now

detected by the event-based gene processing sieve. Con-

trary to development data, rules uncover substantially

more relations on the test dataset than event-based

sieves.

Assessment of subsets of feature functions

The selection of the most informative feature functions is

one of the key tasks in machine learning for improving the

quality of results. In Table 8 we show the results on the

development data when using different subsets of feature

functions. Feature functions were grouped into subsets,

ranging from more general (A-C) to more specific (D-H).

As expected, the results improve when more feature func-

tions are used. If only basic features (A) are applied, the

system detects one wrong relation, which results in a SER

higher than 1. Still, when using B. subtilis-related feature

functions (C), the results show no improvement (Table 8).

We notice a reduction of 0.12 in error rate when prefix

and suffix feature functions (D) were added. Thus, we sus-

pect that the improvement results from combining these

functions with other feature functions (D) or it is due to D

being generator feature functions that generate larger

number of features than the previous (A-C) ones. Also,

the next generator of mention values and mention pairs

(E) substantially improves the result. This is expected,

especially if the same type of relations exist in the develop-

ment dataset and in the training dataset. We confirmed

that D and E perform poorly if used separately, achieving a

SER of 0.98 and 0.87, respectively. If D and E are used

together, the system achieves a SER of 0.81. Thus, the

inclusion of diverse feature functions is important. It may

seem that the feature function subset H does not contri-

bute to the results. This does not hold and can be seen if

subset G is excluded. The latter configuration gives a SER

of 0.74.

Table 6. Results on test data

Setting S D I M SER

wo. (vii) & wo. cleaning 4 51 8 33 0.72

wo. (vii) & cleaning 4 51 5 33 0.68

(vii) & wo. cleaning 5 47 15 36 0.76

(vii) & cleaning 5 47 12 36 0.73

The table shows results on the test set using new feature functions and the

additional sieve (vii) with or without data cleaning. The abbreviations

represent the number of substitutions (S), deletions (D), insertions (I) and

matches (M). Best results per metric are highlighted in bold.
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Conclusions
We presented a sieve-based system for relationship

extraction from textual data. The system uses linear-

chain conditional random fields (CRFs) and manually

defined extraction rules. To enable extraction of rela-

tionships between distant mentions we introduced skip-

mention linear CRF, which extends the applicability of a

linear CRF model. We form skip-mentions by construct-

ing many sequences of mentions, which differ in the

number of mentions we skip.

With a SER score of 0.73 our approach scored best

among the GRN BioNLP-ST 2013 submissions, outper-

forming the second-best system by a large margin. We

described here a number of improvements of our

approach and demonstrated their utility that may be

used to further improve the result (to 0.67 SER score).

The CRF-based sieves in our approach are independent

processing components and can be trained against an

arbitrary data domain for which labeled data exists. We

anticipate the utility of our approach in related data

domains and for tasks with corpora.
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Figure 9 Predicted gene regulation network on test data. The predicted gene regulation network, generated from extracted relations on the

test dataset by our improved sieve-based system. For our winning extractions at the BioNLP 2013 GRN Shared Task see the workshop paper [27].

Table 7. Relations extracted by each sieve on

development and test datasets

Dev Test

Sieve # SER # SER

Event extraction 29 1.00 32 1.00

Mention processing 44 0.87 12 1.00

Event processing 11 0.84 2 1.00

Gene processing 14 0.84 5 0.97

Event-based gene processing1 26 0.73 15 0.96

Rule-based processing 12 0.75 53 0.76

Data cleaning 22/20 0.75 14/5 0.73

Data cleaning results represent the number of loop relations and the number

of redundant relations (separated by forward slash). Slot error rate (SER)

results are cumulative.
1 Due to additional analysis we saw that the event-based gene processing

sieve does not improve the final results, therefore we do not employ this

sieve on the test data for the final result.

Table 8. Relations extracted by different subsets of

feature functions on a development dataset

Subset of feature functions S D Dev I M SER

A 0 67 1 0 1.01

A - B 1 64 2 2 1.00

A - C 1 64 2 2 1.00

A - D 0 52 7 15 0.88

A - E 0 41 12 26 0.79

A - F 1 38 12 28 0.76

A - G 0 37 12 30 0.73

A - H 0 37 12 30 0.73

The table shows the number of substitutions (S), deletions (D), insertions (I),

matches (M) and slot error rate (SER) metric. The results are measured on the

development dataset using CRF-based sieves only. Best results per metric are

highlighted in bold. The feature function subsets are selected as follows: (A)

target label distribution, starts upper, starts upper twice, Hearst co-occurence,

mention token distance, (B) parse tree mention depth, parse tree parent

value, parse tree path, (C) BSubtilis, IsBSubtilis, IsBSubtilisPair, (D) prefix value,

suffix value, (E) consequent value, current value, (F) context value, (G)

previous/next value combination, left/right/between value and (H) split to

values. For their detailed descriptions see Table 1 and Table 2.
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