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SIEVE BOOTSTRAP FOR SMOOTHING
IN NONSTATIONARY TIME SERIES1

By Peter Bühlmann

ETH Zürich

We propose a sieve bootstrap procedure for time series with a deter-
ministic trend. The sieve for constructing the bootstrap is based on non-
parametric trend estimation and autoregressive approximation for some
noise process. The bootstrap scheme itself does i.i.d. resampling of esti-
mated innovations from fitted autoregressive models.

We show the validity and indicate second-order correctness of such sieve
bootstrap approximations for the limiting distribution of nonparametric
linear smoothers. The resampling can then be used to construct nonpara-
metric confidence intervals for the underlying trend. In particular, we show
asymptotic validity for constructing confidence bands which are simultane-
ous within a neighborhood of size of the order of the smoothing bandwidth.

Our resampling procedure yields satisfactory results in a simulation
study for finite sample sizes. We also apply it to the longest series of to-
tal ozone measurements from Arosa (Switzerland) and find a significant
decreasing trend.

1. Introduction. We are considering the problem of interval estimation
for a trend in a time series. More precisely, we consider the model

Yt = s�t� +Zt� t ∈ Z�(1.1)

where �s�t��t∈Z is a deterministic trend (or signal) and �Zt�t∈Z a stationary
noise process with mean zero. Various estimators, such as least squares in a
parametric trend model or nonparametric smoothers, are known for recover-
ing such trends. For constructing confidence intervals one usually relies on
asymptotic normal theory.

We focus here on nonparametric trend estimation, where s�t� = m�t/n�,
t = 1� 	 	 	 � n� with m� 	0�1
 → R a smooth function and n denoting the sample
size. In the independent setup, where the noise is white, bootstrap methods
have been proposed for interval estimation of m�·� [cf. Härdle and Bowman
(1988), Härdle and Marron (1991) and Hall (1992)]. There are several reasons
for this.

Reason 1. The bootstrap approximation, when used correctly for asymp-
totically pivotal quantities, is second order correct yielding better coverage
probability for finite sample size [cf. Hall (1992)]. More than that, we argue
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for a moment why and when the skewness of the simpler, but asymptotically
nonpivotal, quantity �nh�1/2�m̂�x�−E	m̂�x�
� plays a dominant role and hence
should be taken into account as well. Here, m̂�x� is a nonparametric smoother
and h a bandwidth. Formally we can write

F�u� = P
[�nh�1/2�m̂�x� − E	m̂�x�
� ≤ u

]
= ��

(
u

σas

)
+ ϕ�

(
u

σas

)
1
6

((
u

σas

)2

− 1
)
�nh�−1/2µ3�as + o

(�nh�−1/2)�
n→∞�

where σ2
as, µ3�as are the asymptotic variance and (unstandardized) skewness of

�nh�1/2m̂�x�. Let us ignore here the bias term �nh�1/2�E	m̂�x�
 −m�x�� which
comes into play for constructing confidence regions for m�x�. From the formula
above we see that an estimated normal approximation deals with an error

F�u� −��

(
u

σ̂as

)
= OP

(�σ̂2
as − σ2

as�
)+O

(�nh�−1/2)�
where σ̂2

as is an estimate of σ2
as. If the error in variance estimation σ̂2

as−σ2
as =

oP��nh�−1/2� is of smaller order than the O��nh�−1/2� skewness term (this is
typically achievable if the observations are independent or with a sufficiently
fast decay of dependence, e.g., sufficiently fast decay of mixing coefficients),
then, assuming µ3�as �= 0,

F�u� −��

(
u

σ̂as

)
= OP

(�nh�−1/2)�
and not OP��σ̂2

as−σ2
as��. In this sense, the estimated normal approximation is

not even first order correct, meaning not of the order OP��σ̂2
as−σ2

as��: the lead-
ing error term is the skewness which is not considered by the estimated normal
approximation. This is different from many classical problems, for example,
the mean for estimating the expected value of i.i.d. observations. In our setup,
it thus makes sense (even for the asymptotically nonpivotal quantity) to take
the leading skewness term into account as well. This is automatically the case
for the bootstrap approximation which is asymptotically correct for the vari-
ance σ2

as and the skewness term �nh�−1/2µ3�as, too. One should also note that,
in nonparametric smoothing, the problem of skewness becomes more severe,
when estimating a “rough” underlying trend. The heuristics goes as follows:
to calibrate bias against variance, a smaller smoothing bandwidth should be
used which in turn would make the skewness term of the order O��nh�−1/2�
bigger, by the small value of h.

Reason 2. The bootstrap has the potential to yield some kinds of simul-
taneous confidence bands [cf. Härdle and Marron (1991)].

Reason 3. The bootstrap is able to correct for bias [cf. Härdle and Marron
(1991)].
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The time series context is more complex and there is even more need for re-
sampling procedures. Already the normal approximation requires estimation
of the spectral density at zero fZ�0� of the error process in (1.1), because the
limiting variance of a trend smoother, properly standardized, is proportional to
fZ�0� = �1/�2π��

∑∞
k=−∞ Cov�Z0�Zk�. Generally, this cannot be estimated in

a
√
n-consistent way, implying that the variance estimate of a trend smoother

will not be
√
n-consistent. The skewness of a trend smoother is asymptoti-

cally proportional to the bispectral density of the noise process at zero, which
is a more complicated functional of the noise than just the skewness E	Z3

t 

of a one-dimensional marginal. Also, the issue about selection of smoothing
parameters becomes more delicate: Härdle and Bowman (1988) and also Eu-
bank and Speckman (1993) use data-driven bandwidths for trend smoothing,
but such automatic choices for smoothing parameters are more difficult and
less straightforward in the time series case. As another problem we mention
the construction of simultaneous confidence bands: one could try to adapt the
extreme value approximation, which was developed by Bickel and Rosenblatt
(1973) and refined and applied by Eubank and Speckman (1993) for indepen-
dent observations. A plausible justification for this approach in the time series
case can be deduced from Aldous’ (1989) Poisson clumping heuristics. How-
ever, the rate of convergence to the limiting extreme value approximation is
very slow. This is an unsatisfactory feature, also present in the independent
case, in particular if simultaneity is of interest over a subset of the full range.
Again, we would have to estimate the spectral density at zero fZ�0�.

For coping with the difficulties above we propose a resampling technique
for distribution estimation of trend smoothers. We construct a scheme which
is asymptotically valid for the rich subclass of linear stationary processes
Zt =

∑∞
j=0 ψjεt−j which can be inverted and represented as an autoregressive

process of order infinity [AR(∞)], that is,
∑∞

j=0 φjZt−j = εt, �εt�t∈Z being an
i.i.d. sequence with mean zero. We extend the sieve bootstrap for stationary
AR(∞) processes [cf. Kreiss (1988) and Bühlmann (1997)] to nonstationary
time series as in (1.1) with an AR(∞) noise process. The extension is based on
a preliminary trend estimation yielding a residual process on which we then
apply the stationary AR(∞) sieve bootstrap. The name originates from the idea
of sieve estimation, here as autoregressive approximation for AR(∞) processes.
Unlike Freedman’s (1984) pioneering work for bootstrapping stationary finite
order AR processes which has been further developed by Bose (1988), our ap-
proach has the advantage that no particular finite (semi)parametric model for
the noise process is assumed. It is shown in Bühlmann (1997) that, for many
linear processes, the stationary sieve bootstrap for AR(∞) models has gen-
erally a better performance than some nonparametric block-based bootstrap
technique as proposed by Künsch (1989).

We develop a theory which reflects the three advantageous reasons of the
bootstrap mentioned above. The resampling approximation reflects nonnormal
features like skewness, which is of special interest when estimating a “rough”
trend. Plug-in estimates for bias and variance are not necessary. We also fo-
cus on construction of simultaneous interval estimation and prove asymptotic
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correctness of our bootstrap scheme for constructing simultaneous confidence
bands within neighborhoods whose size is of the order of the bandwidth for
smoothing. To our knowledge, this result is also new for the case of indepen-
dent observations. The concept of neighborhood simultaneity is often more
appropriate than simultaneity everywhere. In many applications, the aim is
to construct simultaneous confidence regions over some particular range of
interest. For any specified set G from a large class of sets, the bootstrap ap-
proach allows a straightforward construction for asymptotically correct (not
conservative) confidence regions which are simultaneous over G. Finally, a
simulation study indicates that the procedure is less sensitive to the choice
of tuning parameters than approximations based on limiting normal distribu-
tions.

The article is organized as follows. In Section 2 we describe our general sieve
bootstrap scheme; in Section 3 we give asymptotic results for bootstrapping
nonparametric kernel smoothers; in Section 4 we focus on the construction of
confidence bands; in Section 5 we report results from a simulation study and
from an analysis of the longest series of total ozone measurements from Arosa,
Switzerland. The theoretical arguments and proofs are given in Section 6.

2. The model and the resampling procedure. Consider the model
(1.1), where �Zt�t∈Z is an AR(∞) process, that is,

∞∑
j=0

φjZt−j = εt� φ0 = 1� t ∈ Z�(2.1)

where �εt�t∈Z is an i.i.d. sequence with expectation E	εt
 = 0.
The object to recover is the deterministic trend, which is thought to be a

function s�·�� Z → R. Given observations Y1� 	 	 	 �Yn, there are various ap-
proaches.

2.1. A sieve bootstrap scheme. We develop here a general resampling
method which is based on an extension of the bootstrap for stationary au-
toregressive processes of order infinity [AR(∞)], [cf. Kreiss (1988), Bühlmann
(1997) and Bickel and Bühlmann (1995)]. Assume that we have observations
Y1� 	 	 	 �Yn, realizations of the model as given in (1.1) and (2.1).

Step 1. Compute an estimate s̃�t� for the unknown trend values s�t�, t =
1� 	 	 	 � n. Then form residuals

Ẑt� n = Yt − s̃�t�� t = 1� 	 	 	 � n	

Step 2. Assume p = p�n� → ∞, p�n� = o�n�, n → ∞. Fit an autore-
gressive model of order p = p�n� to the residuals Ẑt� n, t = 1� 	 	 	 � n; that is,
compute φ̂1� n� 	 	 	 φ̂p�n based on �Ẑt� n�nt=1 for the autoregressive coefficients
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φ1� 	 	 	 φp in (2.1). Then form another set of residuals

ε̂t� n =
p∑
j=0

φ̂j�nẐt−j�n� t = p+ 1� 	 	 	 � n� φ̂0� n = 1	

Denote by ε̃t� n = ε̂t� n − ε̄·� n, where ε̄·� n = �n− p�−1∑n
t=p+1 ε̂t� n.

Step 3. Denote by Fε̃�n�·� = �n−p�−1∑n
t=p+1 1	ε̃t� n≤·
 the empirical cumu-

lative distribution function of �ε̃t� n�nt=p+1. Now resample

ε∗t i.i.d. ∼ Fε̃�n� t ∈ Z �or in a subset of Z�	

Step 4. Generate the bootstrap error process �Z∗
t�t, defined by

p∑
j=0

φ̂j�nZ
∗
t−j = ε∗t � φ̂0� n = 1� t ∈ Z �or in a subset of Z�	

Then generate bootstrap observations by setting

Y∗
t = s̃�t� +Z∗

t � t = 1� 	 	 	 � n�

with �s̃�t��nt=1 the same estimates as in Step 1.
A guideline for the approximating order p = p�n� in Step 2 is given by

the Akaike information criterion (AIC) in an increasing range 	0�Cn
 with Cn

growing as n increases. In the case of no deterministic trend, such an order
selection has been studied by Shibata (1980): there, the increasing range is
of the above form with Cn = o�n1/2�, C−1

n = o�1�. As a practical guideline
for the increasing range we suggest Cn = 10 log10�n�, which is also the S-
PLUS default. The estimates φ̂1� n� 	 	 	 � φ̂p�n in Step 2 can be obtained by the
Yule–Walker method. They are defined by

 ̂Ẑ�̂p = −γ̂Ẑ�(2.2)

where  ̂Ẑ = 	R̂Ẑ�i−j�
pi� j=1, γ̂Ẑ = �R̂Ẑ�1�� 	 	 	 � R̂Ẑ�p��′, �̂p = �φ̂1�n� 	 	 	 � φ̂p�n�′,
R̂Ẑ�j� = n−1∑n−�j�

t=1 Ẑt� nẐt+�j�� n� �j� ≤ n − 1. For generating the bootstrap
error process �Z∗

t�t in Step 4, we start the recursion with some starting values
and wait until stationarity is reached. We implemented the algorithm with
starting values being equal to some resampled innovations ε∗t .

Estimating a trend s̃�·� in Step 1 and fitting an autoregressive model of
growing order p = p�n� in Step 2 is a sieve procedure for the true underlying
trend s�·� and AR(∞) process; that is why we call this resampling scheme
sieve bootstrap [cf. Bühlmann (1997)]. In contrast to the sieve bootstrap for
stationary time series, the sieve here involves also the estimation of the trend.

All the bootstrap quantities are denoted by an asterisk. This sieve boot-
strap allows us to resample observations Y∗

1� 	 	 	 �Y
∗
n for various purposes.

The bootstrapped trend estimates ŝ∗�·� are defined by the plug-in rule, that
is, if ŝ�t� = Tn�Y1� 	 	 	 �Yn� is a measurable function of the observations, then
the bootstrap estimate is defined by ŝ∗�t� = Tn�Y∗

1� 	 	 	 �Y
∗
n�. Note that the
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estimate ŝ�t� above is not necessarily the same as in Step 1 and Step 4 of our
sieve bootstrap. For nonparametric smoothers, we rather would take for s̃�t�
oversmoothed estimates (see Section 3). Whenever (1.1) and (2.1) hold, the
given bootstrap scheme has the potential to approximate the distribution of a
variety of estimators.

3. Bootstrapping kernel smoothers for interval trend estimation.
We focus here on a nonparametric technique, given by kernel smoothing. As-
sume that the trend function is

s�t� =m�t/n�� t = 1� 	 	 	 � n�(3.1)

for some function m� 	0�1
 → R, where n denotes the sample size. Consider
estimation of m�·� by kernel smoothing

m̂�x� = �nh�−1
n∑
t=1

K

(
x− t/n

h

)
Yt� x ∈ 	0�1
�(3.2)

where h = h�n� = o�1�, h�n�−1 = o�n� n → ∞, is a bandwidth parameter
and K�·� a kernel function. This is the so-called Nadaraya–Watson kernel
estimator [cf. Nadaraya (1964) and Watson (1964)]. Our results and procedures
also hold for other linear smoothers

m̂�x� =
n∑
t=1

wt�n�x�Yt� lim
n→∞

n∑
t=1

wt�n�x� = 1�

such as local linear regression smoothers [cf. Fan (1993)], Gasser–Müller type
kernel smoothing [Gasser and Müller (1979)] or linear wavelet smoothing [cf.
Brillinger (1996)]. Linear kernel smoothing with dependent errors has been
studied by, among others, Härdle and Tuan (1986), Hall and Hart (1990),
Altman (1990), Truong (1991), Hart (1991, 1994) and Herrmann, Gasser and
Kneip (1992).

We are going to discuss now the validity of the sieve bootstrap scheme for
kernel estimators ŝ�t� = m̂�t/n�, t ∈ N, with 1 ≤ t ≤ n. These estimates are
known to exhibit edge effects. They can cause problems in the sieve bootstrap
scheme, namely, in Steps 1 and 4 where a pilot estimate s̃�t� = m̃�t/n� has
to be computed. We will use for m̃�·� again a kernel smoother as in (3.2) but
only in a region 	δ�1 − δ
 for some small δ > 0. Thus, in Step 1 we will use
pilot estimates

s̃�t� = m̃�t/n�� t = 	δn
 + 1� 	 	 	 � 	�1− δ�n
� 0 < δ < 1/2�(3.3)

and apply the bootstrap scheme in the same way but now with the smaller
number of Z-residuals Ẑ	δn
+1� n� 	 	 	 � Ẑ	�1−δ�n
� n.

By choosing the bandwidth of a mean square error optimal order n−1/5, we
have to deal with a nonnegligible bias,

�nh�1/2(E	m̂�x�
 −m�x�)→ Bas�x�� n→∞��3	4�
with 0 ≤ Bas�x� = lim

n→∞�nh�
1/2h2m�2��x�

∫
R

x2K�x�dx/2 <∞
where m�j��x� = �dj/dxi�m�x� for j ∈ N.
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Under some regularity conditions, asymptotic normality holds,

�nh�1/2(m̂�x� −m�x�)→d � �Bas�x�� σ2
as�� n→∞�

(3.5)
with 0 < σ2

as = 2πfZ�0�
∫

R

K2�x�dx <∞�

where fZ�λ� = �2π�−1∑∞
k=−∞ Cov�Z0�Zk�e−iλk is the spectral density of the

noise process �Zt�t∈Z.
For a successful approximation of this limiting normal distribution, the

bootstrap should be able to estimate the asymptotic bias Bas�x� as well. This
can be achieved by using in Steps 1 and 4 of our sieve bootstrap scheme an
oversmoothed estimate s̃�t� = m̃�t/n�, t = 	δn
 + 1� 	 	 	 � 	�1 − δ�n
, with m̃�·�
of the same form as in (3.2), with the same kernel K�·�, but with a larger
bandwidth h̃ than h. Then it will be possible that

�nh�1/2(E∗	m̂∗�x�
 − m̃�x�)−Bas�x� = oP�1�	
The intuitive reason for this is that, for a second order kernel K,

E	m̂�x�
 −m�x� ∼ h2m�2��x�CK�

E
∗	m̂∗�x�
 − m̃�x� ∼ h2m̃�2��x�CK�

where CK =
∫

R
x2K�x�dx/2. The convergence m̃�2��x�−m�2��x� = oP�1� is only

possible for a bandwidth h̃ with h̃n1/5 →∞ [cf. Gasser and Müller (1984)].
For the noise process and its estimation we make the following assumptions.

(A1) Model (2.1) holds with E�εt�4 <∞.
(A2) The AR(∞) transfer function ��z� = ∑∞

j=0 φjz
j, z ∈ C, of model (2.1)

satisfies: ��z� is bounded away from zero for �z� ≤ 1 and
∑∞

j=0 j�φj� <∞.
(A3) In Step 2 of the sieve bootstrap scheme,

p�n� → ∞� p�n� = o
(
min

{�n/ log�n��1/4� �nh̃�1/4� h̃−1})� n→∞�

with h̃ as in assumption (K) below.
Moreover, φ̂1� n� 	 	 	 � φ̂p�n are defined by (2.2).

The conditions are met by a broad subclass of linear processes, including many
ARMA models. A quite standard assumption for ARMA processes is that the
defining finite AR- and MA-polynomials have their roots outside the unit cir-
cle �z� ≤ 1, z ∈ C [cf. Brockwell and Davis (1987), Chapter 3.1]. Since the
polynomials are of finite degrees, their roots are outside �z� ≤ 1 + κ, κ > 0�
and the corresponding AR(∞) representation of such ARMA processes has ex-
ponentially decaying coefficients �φj� ≤ const	 ρj for some 0 < ρ < 1. Note
that our conditions require only summability of j�φj�, which thus include also
processes with much stronger dependencies than finite parameter ARMA pro-
cesses as above.

Our conditions are nice in the sense that the nonstationary nature of the
process �Yt�t∈Z, due to the deterministic trend �s�t��t∈Z, does not add any
additional restrictions for the stationary noise process �Zt�t∈Z: the same,
rather mild, conditions are inherited from the stationary sieve bootstrap as in
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Bühlmann (1997). The only additional condition for our nonstationary sieve
bootstrap is in (A3) on the growth for the approximating order p = p�n� in
Step 2, the additional restriction is p�n� = o�min��nh̃�1/4� h̃−1��. This reflects
the fact that we deal here with a sieve approximation which also estimates
the trend: the order p�n� of the autoregressive sieve approximation for the
noise process should now be smaller.

For the trend function in (3.1) and its estimation in (3.2) we make the
following assumptions.

(K) The function m�·� is twice continuously differentiable in the open in-
terval �0�1� with sup0<x<1 �m�j��x�� <∞ for j = 0�1�2.

The estimator m̂�·� is as given in (3.2) with K�·� a probability density, sym-
metric, twice continuously differentiable, compactly supported and the order
of the bandwidth is h�n� ∼ const	 n−1/5.

The estimator m̃�·� is as given in (3.2) with the same kernel K�·� as for
m̂�x� but with bandwidth h̃�n� such that h̃n1/5 →∞.

Moreover, the sieve bootstrap scheme is modified as described in (3.3).

Theorem 3.1. Assume that (A1)–(A3) and (K) hold. Then, for 0 < x < 1,

�nh�1/2�m̂�x� −m�x�� →d �
(
Bas�x�� σ2

as

)
�

n→∞� with 0 ≤ Bas�x�� σ2
as <∞�

and

sup
u∈R

∣∣P∗[�nh�1/2�m̂∗�x� − m̃�x�� ≤ u
]− P

[�nh�1/2�m̂�x� −m�x�� ≤ u
]∣∣

= oP�1�� n→∞	

A proof is given in Section 6.

Remark 3.1. Theorem 3.1 can be extended to AR(∞) processes with
stationary, ergodic innovation processes �εt�t∈Z, satisfying E	εt��t−1
 ≡ 0,
E	ε2

t ��t−1
 ≡ σ2, E�εt�4 < ∞, where �t = σ��εs�� �s ≤ t�� denotes the σ-field
generated up to time t. This then establishes a result for nonlinear processes,
although the nonlinearity enters only in a rather weak form.

3.1. Behavior within h�n�-neighborhoods. For two distinct points x �= y,
the estimates m̂�x� and m̂�y� become asymptotically independent. However,
for finite sample size and �x − y� of order h = h�n�, there is non-negligible
correlation. We show that the sieve bootstrap approximation reflects this
neighborhood correlation correctly. This property is useful for constructing
simultaneous sieve bootstrap confidence intervals over a finite number of
h�n�-neighborhoods.

For 0 < x0 < 1, let

Zx0�n�x� = �nh�1/2
(
m̂�x0 + xh� −m�x0 + xh�)� −1 ≤ x ≤ 1�

Z∗
x0�n�x� = �nh�1/2

(
m̂∗�x0 + xh� − m̃�x0 + xh�)� −1 ≤ x ≤ 1	
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We assume here and in the sequel without loss of generality that m�x0 + xh�
is always defined, since h = h�n� = o�1�. Denote by � 	−1�1
 the space of
real-valued continuous functions on 	−1�1
 and by ⇒ weak convergence in
� 	−1�1
 with respect to the sup-norm.

Theorem 3.2. Assume the conditions of Theorem 3.1. Then, for any 0 <
x0 < 1,

�Zx0�n�x� −Bas�x0��x∈	−1�1
 ⇒ �W�x��x∈	−1�1
�

�Z∗
x0�n�x� −Bas�x0��x∈	−1�1
 ⇒ �W�x��x∈	−1�1
 in probability�

where �W�x��x∈	−1�1
 is a Gaussian process with E	W�x�
 = 0 and Cov�W�x��
W�y�� = 2πfZ�0�

∫
R
K�w�K�w+ y− x�dw.

Remark 3.2. The result in Theorem 3.2 is also new for the case with inde-
pendent observations and extends Theorem 2 in Härdle and Marron (1991).
The statement holds for processes in � �C�, where the index set C is a compact
subset of R, too.

A proof of Theorem 3.2 is given in Section 6. For constructing a simulta-
neous confidence band over the whole open interval �0�1� we need to know
the distribution of quantities like supx∈�0�1��nh�1/2�m̂�x� −m�x��. We do not
know whether the sieve bootstrap yields an asymptotically correct approxi-
mation for the distribution of this random variable; note that the limit is an
extreme value distribution (cf. Section 5.1.2), which makes the consistency of
the bootstrap a delicate problem. However, Theorem 3.2 still contributes to
understanding the uniform behavior of the sieve bootstrap. As described by
the corollary below, it implies the asymptotic validity of the bootstrap for si-
multaneous confidence intervals over a finite number of h�n�-neighborhoods,
compare also with the approach of Härdle and Marron (1991). In some prac-
tical applications, this is of great interest (see Section 4.2).

Corollary 3.3. Assume the conditions of Theorem 3.1. Let 0 < x1 < · · · <
xd < 1 and Ui = 	xi − h�xi + h
, i = 1� 	 	 	 � d <∞. Then, for u ∈ R,

P
∗
[

max
1≤i≤d

sup
x∈Ui

�nh�1/2�m̂∗�x� − m̃�x�� ≤ u

]

− P

[
max
1≤i≤d

sup
x∈Ui

�nh�1/2�m̂�x� −m�x�� ≤ u

]
= oP�1�� n→∞	

Proof. The statement is a straightforward extension of Theorem 3.2: one
can use a multivariate version of Theorem 3.1 and then proceed as in the proof
of Theorem 3.2. ✷

Remark 3.3. The statement of Corollary 3.3 is also true for neighborhoods
of the form Ui = 	xi − ah�xi + bh
, 0 ≤ a, b <∞.
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3.2. Skewness, bispectrum of noise and second order accuracy. Often, the
bootstrap becomes more powerful when resampling an asymptotically pivotal
quantity, such as a studentized statistic [cf. Hall (1992)]. The key to second
order accuracy is the correct skewness of the bootstrap distribution.

Theorem 3.4. Assume the conditions of Theorem 3.1. Let µ3�n�x� =
E	�nh�1/2�m̂�x� − E	m̂�x�
�3
 and µ∗3�n�x� = E

∗	�nh�1/2�m̂∗�x� − E
∗	m̂�x�
�3
.

Then, for 0 < x < 1,

lim
n→∞�nh�

1/2µ3�n�x� = µ3�as�

�nh�1/2µ∗3�n�x� − µ3�as = oP�1�� n→∞�

where µ3�as =
∑∞

s� t=−∞ E	Z0ZsZt

∫

R
K3�x�dx.

A proof is given in Section 6. The asymptotic skewness µ3�as is proportional
to
∑∞

s� t=−∞ E	Z0ZsZt
, �2π�2 times the bispectral density of the noise pro-
cess at zero. This immediately implies that all Gaussian noise processes yield
asymptotic skewness equal to zero [cf. Subba Rao and Gabr (1980)]. Also, we
see that the asymptotic skewness is a more complicated functional of the noise
than in the i.i.d. case: the bispectral density at zero is not only influenced by
the skewness E	Z3

t 
 of the one-dimensional marginal but also by the cumu-
lants cum3�Z0�Zs�Zt� = E	Z0ZsZt
 of order 3 with arbitrary lags s and t.

The leading error term in an estimated normal approximation for �nh�1/2
�m̂�x� − E	m�x�
� is typically given by the skewness (see also Section 1),

µ3�n�x� ∼ �nh�−1/2µ3�as	

Thus, small bandwidths h and large values of the bispectral density of
�Zt�t∈Z at zero yield a poor behavior of the normal approximation. A small
bandwidth is preferred with a “rough” underlying trend by accounting for
the bias �nh�1/2�E	m̂�x� − m�x�
�, which is asymptotically proportional to
�nh5�1/2m�2��x� [m�·� still twice continuously differentiable but with a large
value �m�2��x��]. A large bispectral density at zero occurs if the noise is
strongly non-Gaussian. In these “rough and non-Gaussian” situations, the
sieve bootstrap approximation is expected to bring a substantial improvement,
as indicated by Theorem 3.4.

We now add some formal heuristics indicating how Theorem 3.4 implies
second order accuracy of the bootstrap approximation. For 0 < x < 1, denote
by

Sn =
m̂�x� − E	m̂�x�


σn�x�
�

Un =
m̂�x� − E	m̂�x�


σ̂n�x�
�
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where

σ2
n�x� = Var�m̂�x���

σ̂2
n�x� = 2πf̂AR�p��0��nh�−2

n∑
t=1

K

(
x− t/n

h

)2

�

f̂AR�p��0� =
�n− p�−1 ∑n

t=p+1 ε̃
2
t� n

2π��̂n�e−iλ��2
�

�̂n�z� =
p∑
j=0

φ̂j�nz
j� �̂0� n = 1� z ∈ C�

�φ̂j�n�pj=1� ε̃t� n as defined in Step 2 of the sieve bootstrap scheme
(with the same p)	

(3.6)

Note that if
∑∞

k=−∞ �kRZ�k�� <∞, then

nhσ2
n�x� − 2πfZ�0��nh�−1

n∑
t=1

K

(
x− t/n

h

)2

= o�n−1�	

An Edgeworth expansion for Un can typically be related to an expansion
for Sn. By a Taylor expansion,

Un = Sn

(
1− σ̂2

n�x� − σ2
n�x�

2σ3
n�x�

)
+OP

((
σ̂2
n�x� − σ2

n�x�
)2

σ5
n�x�

)
	

If the autoregressive coefficients �φj�∞j=0 of the noise process �Zt�t∈Z decay
sufficiently fast, we expect �σ̂2

n�x�−σ2
n�x��/σ3

n�x� = oP�1� and the expectation,
variance and skewness of

Sn

(
1− σ̂2

n�x� − σ2
n�x�

2σ3
n�x�

)

should be reasonably close to 0, 1 and the skewness of Sn, respectively. This
would indicate

P	Un ≤ u
 = �� �u� − ϕ� �u� 1
6�u2 − 1��nh�−1/2µ̃3�n�x� + o

(�nh�−1/2)�(3.7)

where µ̃3�n�x� = �nh�−1µ3�n�x�/σ3
n�x�. Since the bootstrap process �Z∗

t�t∈Z is
an AR(p�n�) process whose probabilistic law is close to the law of �Zt�t∈Z, the
expansion in (3.7) is also expected to hold for the sieve bootstrap,

P
∗	U∗

n ≤ u
 =�� �u�−ϕ� �u� 1
6�u2 − 1��nh�−1/2µ̃∗3�n�x�+ oP

(�nh�−1/2)�(3.8)

where

U∗
n =

m̂∗�x� − E
∗	m̂∗�x�


σ̂∗n�x�
�

σ̂∗n�x�2 = 2πf̂∗AR�p��0��nh�−2
n∑
t=1

K

(
x− t/n

h

)2

�

f̂∗AR�p��0� =Hn�Z∗
	δn
+1� 	 	 	 �Z

∗
	�1−δ�n
��

where Hn�Ẑ	δn
+1�n� 	 	 	 � Ẑ	�1−δ�n
�n� = f̂AR�p��0� as in (3.6)�(3.9)
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µ̃∗3�n�x� = �nh�−1µ
∗
3�n�x�
σ∗n�x�3

�

σ∗n�x�2 = 2πfZ∗�0��nh�−2
n∑
t=1

K

(
x− t/n

h

)2

�

fZ∗�0� is the spectral density of �Z∗
t�t∈Z at zero	

By Theorem 3.1, nh�σ∗n�x�2 − σ2
n�x�� = oP�1� and thus

µ̃3�n�x� − µ̃∗3�n�x� = OP

(�nh�1/2�µ3�n�x� − µ∗3�n�x��
)
	(3.10)

A rigorous justification for (3.7) and (3.8) is postponed as a research problem
for the future. Accepting the validity of these expansions, it then follows from
(3.10) and Theorem 3.4.

Corollary 3.5. Under the assumptions of Theorem 3.1 and if (3.7) and
(3.8) are valid,

P
∗	U∗

n ≤ u
 − P	Un ≤ u
 = oP��nh�−1/2�� n→∞	

Corollary 3.5 improves upon the �nh�−1/2 rate in the estimated normal ap-
proximation.

In contrast to the automatic bootstrap bias correction of m̂∗�x� − m̃�x� for
the nonpivotal quantity m̂�x� − m�x�, the bootstrap approximation for the
studentized statistic Un will yield a (second order accurate) confidence interval
for E	m̂�x�
, rather than for m�x� itself. With a more subtle choice of the
bandwidth h, second order properties are expected to hold when applying an
explicit bias correction or undersmoothing. A better theoretical understanding
about the choice of such h can be borrowed from the independent case, studied
by Hall (1992). A more practical choice of an undersmoothing bandwidth h,
now not in mean square error optimal sense, has been less explored.

4. Constructing confidence regions.

4.1. Pointwise sieve bootstrap confidence regions. The sieve bootstrap can
be applied for constructing pointwise confidence bands in the same fashion as
in the independent setup.

Based on the nonpivotal quantity m̂�x�−m�x�, the ordinary sieve bootstrap
confidence interval is given by

I∗n�x�1− α� = 	m̂�x� − q̂1−α/2� m̂�x� − q̂α/2
� 0 < α < 1�(4.1)

where q̂α = inf�u�P∗	m̂∗�x� − m̃�x� ≤ u
 ≥ α�.
By Theorem 3.1, this construction is asymptotically valid.



60 P. BÜHLMANN

Based on the pivotal Studentized statistic �m̂�x� −m�x��/σ̂n�x�, the Stu-
dentized sieve bootstrap confidence interval is given by

I∗� stud
n �x�1− α� = [m̂�x� − q̂1−α/2σ̂n�x�� m̂�x� − q̂α/2σ̂n�x�

]
�

0 < α < 1�
(4.2)

where

q̂α = inf
{
u�P∗

[
m̂∗�x� − m̃�x�

σ̂∗n�x�
≤ u

]
≥ α

}
	

Note that this is slightly different than the situation in Section 3.2, where we
neglected the problems with bias and just considered the centered quantities
Un and U∗

n, respectively.

4.2. Simultaneous within neighborhoods sieve bootstrap confidence bands.
Due to Corollary 3.3, the sieve bootstrap can be applied for constructing simul-
taneous confidence bands within a finite number of neighborhoods U1� 	 	 	 �Ud

with diameters ch�n�, 0 < c < ∞. Simultaneity within a finite number of
neighborhoods can be of interest in many applications. As examples, we men-
tion ecological time series, such as river water flow and deforestation of the
Amazon basin [cf. Brillinger (1988)] or total ozone measurements from the
longest series at Arosa (Switzerland) [cf. Staehelin et al. (1997) and Staehlin,
Kegel and Harris (1997)]. In both cases, one aim is to construct confidence
bands which are simultaneous over early (left end, x close to zero) and late
times (right end, x close to 1). In particular, the question about increase within
the given time stretch can now be answered via simultaneous interval esti-
mates at the beginning and end.

The shape of a simultaneous band �In�x��x∈G over the set G = ⋃d
i=1 Ui is

not canonical, in an asymptotic sense we only require that limn→∞ P[m�x� �
In�x� for all x ∈ G] ≥ 1 − α� 0 ≤ α ≤ 1. One does not have to stick with
Kolmogorov–Smirnov type bands, which possess some mathematical elegance
but seem not to be the most natural in practice. We rather want to construct
simultaneous confidence bands with nonequal width. It seems evident that at
some points there is less variability (at least for finite sample sizes) than at
others.

For a practical implementation we present here a bisection search algo-
rithm. The algorithm, based on the nonpivotal quantity m̂�x� to construct
simultaneous confidence bands over the set G to the level 1 − α, proceeds as
follows:

1. Compute pointwise quantiles

q̂αP/2�x�� q̂1−αP/2�x�� x ∈ G�
where q̂αP = inf�u�P∗	m̂∗�x� − m̃�x� ≤ u
 ≥ αP� is a pointwise bootstrap
quantile.
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2. Vary the pointwise error αP until

P
∗	q̂αP/2�x� ≤ m̂∗�x� − m̃�x� ≤ q̂1−αP/2�x� ∀x ∈ G
 ≈ 1− α

(the ratio of bootstrap curves around m̃�x� within the band 	q̂αP/2�x��
q̂1−αP/2�x�
 for all x ∈ G is approximately 1− α). Denote this αP by αS.

3. Build

In�x� = m̂�x� − q̂1−αS/2�x�� m̂�x� − q̂αS/2�x�� x ∈ G	(4.3)

Then, by Corollary 3.3, �In�x��x∈G yields a consistent confidence band to
the level 1 − α, which is simultaneous for G being a finite union of local
neighborhoods.

By equivariance of the sample quantiles, it is faster to compute quantiles
of m̂∗�x�, rather than the centered version around m̃�x�, and correct at the
stage when constructing the confidence band In�x�.

5. Numerical study.

5.1. Simulations. We study the accuracy of the sieve bootstrap approx-
imation in terms of coverage probabilities and compare it with alternative
methods. We consider the following trend models:

�T1� m�x� = 2− 5x+ 5 exp
(−100�x− 0	5�2)� x ∈ 	0�1
�

�T2� m�x� = 2− 5x+ 5 exp
(−1000�x− 0	5�2)� x ∈ 	0�1
	

The trend model (T1) is the same as in Herrmann, Gasser and Kneip (1992);
the model (T2) is a “rougher” version of (T1), having 10 times higher second
derivative at the peak at x = 1

2 . To this trend we add ARMA�1�1� noise,

Zt = 0	8Zt−1 − 0	5εt−1 + εt� t ∈ Z�(5.1)

where

�N1�
√

1	8εt i.i.d. ∼ t6�

�N2� εt = �ηt − E	ηt
�/
√

1	2� ηt ∼ Exp�1�	
The innovations are scaled so that Var�Zt� ≈ 1. We point out that our noise
level (inverse of signal to noise ratio) is considerably higher than in most
other simulation studies. The noise process [(5.1), (N1)] has been studied in
connection with the bootstrap in Bühlmann (1997). The innovations in (N2)
are skewed, yielding a nonvanishing bispectral density at zero.

We generate data sets of sample size n, according to

Yt =m�t/n� +Zt� t = 1� 	 	 	 � n	

All our simulation results are based on 100 realizations of such processes. We
aim to achieve a coverage probability 1− α = 0	9.
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5.1.1. Pointwise coverage. We consider here the coverage at x = 1/2 (cor-
responding to t = n/2) at the peak. Note that model �T2�N2� then yields a
value for �nh�−1/2µ3�as, which is substantially different from zero, due the non-
Gaussian noise process and a small bandwidth for estimating the sharp peak
at x = 1/2, compare with Section 3.2. The pointwise sieve bootstrap confidence
bands are constructed as described in Section 4.1. The precise specifications
of the methods are as follows:

(*ord)

m̂ as in (3.2), bandwidth h, K�x� = �2π�−1/2 exp�−x2/2�,
m̃ as in (3.2), bandwidth h̃, K�x� = �2π�−1/2 exp�−x2/2�,
δ = 0	05 for the pilot estimates in (3.3)
p = p̂AIC within the range [0�10 log10�n�] (S-PLUS de-
fault value), based on the variables Ẑt� n (t = 	0	05n
 +
1� 	 	 	 � 	0	95n
),
confidence band as in (4.1), 500 bootstrap replicates;

(*stud)
m̂, m̃, δ, p as in (*ord),
σ̂2
n�x� as in (3.6), σ̂∗n�x�2 as in (3.9),

confidence interval as in (4.2), 500 bootstrap replicates.

We study method (*stud) only for the case �T2�N2�, where the skewness of
m̂�x� is substantial. We compare these methods with the normal approxima-
tion, whose validity is justified by Theorem 3.1. The normal approximation
confidence band for a fixed x is

m̂�x� ± σ̂n�x��−1
� �1− α/2��(5.2)

or with a bias correction

m̂�x� − h2m̂�2��x�
∫

R

x2K�x�dx/2± σ̂n�x��−1
� �1− α/2��(5.3)

where σ̂2
n�x� is given in (3.6) and m̂�2��x� is a kernel estimate for estimating

the second derivative m�2��x�. One proposal is

m̂�2��x� = n−1h̃−3
n∑
t=1

K2

(
x− t/n

h̃

)
Yt�(5.4)

with K2�x� = 105/32�−5x4 + 6x2 − 1�1	−1≤x≤1
 [see Gasser, Müller and Mam-
mitzsch (1985)].

The precise specifications of the methods are as follows:

(� )
m̂ as in (*ord),
σ̂2
n�x� as in (3.6), based on m̃, δ, p as in (*stud),

confidence band as in (5.2);

(� BC)
m̂, σ̂2

n�x� as in (� ),
m̂�2� as in (5.4), bandwidth h̃,
confidence band as in (5.3).
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Table 1

n = 128, (T1, N1) n = 128, (T2, N2) n = 512, (T1, N1) n = 512, (T2, N2)

hopt�1/2� 0.0258 0.0103 0.0196 0.0078

We vary the bandwidths h and h̃ according to the following rule. Given a
bandwidth h we consider the pilot bandwidths

h̃ = h and h̃ = Ch5/9� C = 1/2�1�2	(5.5)

The order n−1/9 for h̃ is expected to be mean square error optimal for estimat-
ing the bias E	m̂�x�
 −m�x� by the sieve bootstrap [cf. Härdle and Marron
(1991)]. We then consider

h = C0	044n−1/5� C ∈ �1/2�1�2�4�	(5.6)

This gives reasonable bandwidths for our sample sizes: h ∈ �0	0083�0	0167�
0	0333�0	0677� for n = 128 and h ∈ �0	0063�0	0126�0	0253�0	0505� for n =
512, respectively. As a guideline, the asymptotic mean square error optimal
local bandwidths hopt�1/2� for estimating m�1/2� are given in Table 1. Tables
2–5 show coverage percentages with estimated standard errors in parentheses
(in percentages), which were derived by simulating over 100 different model
realizations, that is, realizations of the noise processes in (5.1).

For (*ord) and (� BC) we know from the theory for bias correction that h̃
has to be larger than h. This is also seen in the simulation.

The sieve bootstrap methods (*ord) and (*stud) are overall less sensitive
to the choice of the smoothing parameters than the normal approximations

Table 2

Pointwise coverages, model (T1, N1), n = 128� bandwidths of the form h = C10	044n−1/5 as in
(5.6), h̃ = h or h̃ = C2h

5/9 as in (5.5)

Bandwidths *ord NNN NNN BC

C1 = 1, h̃ = h 21% (4.1) 41% (4.9) 34% (4.7)
C1 = 1, C2 = 0	5 76% (4.3) — 36% (4.8)
C1 = 1, C2 = 1 96% (2.0) — 44% (5.0)
C1 = 1� C2 = 2 100% (—) — 43% (5.0)
C1 = 2� h̃ = h 46% (5.0) 78% (4.1) 65% (4.8)
C1 = 2, C2 = 0	5 83% (3.8) — 80% (4.0)
C1 = 2, C2 = 1 96% (2.0) — 84% (3.7)
C1 = 2, C2 = 2 100% (—) — 80% (4.0)
C1 = 4, h̃ = h 30% (4.6) 48% (5.0) 84% (3.7)
C1 = 4, C2 = 0	5 43% (5.0) – 90% (3.0)
C1 = 4, C2 = 1 83% (3.8) – 72% (4.5)
C1 = 4, C2 = 2 95% (2.2) – 59% (4.9)
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Table 3

Pointwise coverages, model (T1, N1), n = 512� bandwidths of the form h = C10	044n−1/5 as in
(5.6), h̃ = h or h̃ = C2h

5/9 as in (5.5)

Bandwidths *ord NNN NNN BC

C1 = 1, h̃ = h 36% (4.8) 62% (4.9) 35% (4.8)
C1 = 1, C2 = 0	5 83% (3.8) — 59% (4.9)
C1 = 1, C2 = 1 98% (1.4) — 61% (4.9)
C1 = 1, C2 = 2 100% (—) — 62% (4.8)
C1 = 2, h̃ = h 64% (4.8) 88% (3.2) 64% (4.8)
C1 = 2, C2 = 0	5 86% (3.5) — 90% (3.0)
C1 = 2, C2 = 1 97% (1.7) — 89% (3.1)
C1 = 2, C2 = 2 100% (—) — 88% (3.2)
C1 = 4, h̃ = h 44% (5.0) 52% (5.0) 79% (4.1)
C1 = 4, C2 = 0	5 63% (4.8) — 87% (3.4)
C1 = 4, C2 = 1 96% (2.0) — 70% (4.6)
C1 = 4, C2 = 2 100% (—) — 58% (4.9)

(� ) and (� BC). This is a very valuable and important feature. The sieve
bootstrap outperforms the normal approximation for the case �T2�N2� with
“rough” trend and strongly non-Gaussian noise. The theoretical advantage
of (*stud) over (*ord) [for bandwidths reasonable for method (*ord)] is only
slightly visible for the smaller sample size n = 128. A reasonable choice for
the interplay between h and h̃ in (*ord) is here h̃ = Ch5/9, C ∈ 	1/2�1
.
We observe for (*ord) and (*stud) that the confidence intervals become more
conservative as h̃ increases with h fixed. Overall, the sieve bootstrap yields
quite satisfactory results.

Table 4

Pointwise coverages, model (T2, N2), n = 128; bandwidths of the form h = C10	044n−1/5 as in
(5.6), h̃ = h or h̃ = C2h

5/9 as in (5.5)

Bandwidths *ord *stud NNN NNN BC

C1 = 0	5, h̃ = h 27% (4.6) — 17% (3.8) 17% (3.8)
C1 = 0	5, C2 = 0	5 74% (4.4) 77% (4.2) — 21% (4.1)
C1 = 0	5, C2 = 1 90% (3.0) 93% (2.6) — 17% (3.8)
C1 = 0	5, C2 = 2 97% (1.7) 99% (1.0) — 17% (3.8)
C1 = 1, h̃ = h 27% (4.6) — 27% (4.6) 34% (4.7)
C1 = 1, C2 = 0	5 48% (5.0) 54% (5.0) — 33% (4.7)
C1 = 1, C2 = 1 67% (4.7) 74% (4.4) — 32% (4.7)
C1 = 1, C2 = 2 76% (4.3) 91% (2.9) — 27% (4.6)
C1 = 2, h̃ = h 3% (1.7) — 6% (2.4) 67% (4.7)
C1 = 2, C2 = 0	5 2% (1.4) — — 23% (4.2)
C1 = 2, C2 = 1 5% (2.2) — — 11% (3.1)
C1 = 2, C2 = 2 16% (3.7) — — 7% (2.6)
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Table 5

Pointwise coverages, model (T2, N2), n = 512; bandwidths of the form h = C10	044n−1/5 as in
(5.6), h̃ = h or h̃ = C2h

5/9 as in (5.5)

Bandwidths *ord *stud NNN NNN BC

C1 = 0	5, h̃ = h 31% (4.6) — 31% (4.6) 13% (3.4)
C1 = 0	5, C2 = 0	5 86% (3.5) 85% (3.6) — 30% (4.6)
C1 = 0	5, C2 = 1 98% (1.4) 100% (—) — 27% (4.4)
C1 = 0	5, C2 = 2 100% (—) 100% (—) — 30% (4.6)
C1 = 1, h̃ = h 35% (4.8) — 47% (5.0) 47% (5.0)
C1 = 1, C2 = 0	5 67% (4.7) 68% (4.7) — 64% (4.8)
C1 = 1, C2 = 1 92% (2.7) 94% (2.4) — 55% (5.0)
C1 = 1, C2 = 2 98% (1.4) 100% (—) — 47% (5.0)
C1 = 2, h̃ = h 2% (1.4) — 6% (2.4) 79% (4.1)
C1 = 2, C2 = 0	5 5% (2.2) — — 37% (4.8)
C1 = 2, C2 = 1 15% (3.6) — — 10% (3.0)
C1 = 2, C2 = 2 27% (4.6) — — 8% (2.7)

The methods (� ) and (� BC) are very poor for the “rough” trend and
strongly non-Gaussian noise �T2�N2�. For case (T1,N1), the method (� ) is
only reasonable with the midsize bandwidth h, the bias-corrected version (�
BC) can yield useful results for the two larger bandwidths h, but yields a poor
result for the small bandwidth h. As said above, the choice of bandwidth in
the normal approximation is more subtle.

The estimation of the spectral density fZ�0� in methods (� ), (� BC) and
(*stud) could actually be based on residuals, which are obtained by pilot-

estimation of the trend with a third bandwidth ˜̃h. However, this would make
the procedures more complicated.

We compared also the lengths of confidence intervals and give in Table 6
the empirical results for some interval estimators with reasonable coverage
accuracy, based on 100 simulations. Given h̃ = C2h

5/9 with C2 fixed, small
bandwidths h yield short intervals. For the sieve bootstrap, the length of the
confidence interval is growing as h̃ increases with h fixed. In case �T1�N1�
the best intervals with method (*ord) and (� BC) are similar.

5.1.2. Simultaneous coverage. We consider now simultaneous coverage.
We only consider the “smooth” Gaussian model �T1�N1� to have a reason-
able competitor based on normal limit approximations. The sets of points, for
which the confidence band is simultaneous, are

G = G�h� =
4⋃
i=1

Uxi
�h��

Uxi
�h� = {xi − h+ j/100� j = 0� 	 	 	 � 	200h
}� xi = i/5

and

Gsub = Ux1
�h� ∪Ux4

�h�	



66 P. BÜHLMANN

Table 6

Lengths of pointwise confidence intervals and their coverages [for (� BC) with maximal coverage
among different h̃]; bandwidths of the form h = C10	044n−1/5 as in (5.6) and h̃ = C2h

5/9 as in (5.5)

Bandwidths Method Ave[length] S.E.(length) Coverage

(T1, N1, n = 128)
C1 = 1, C2 = 1 *ord 2.85 0.42 96%
C1 = 2, C2 = 0	5 *ord 1.73 0.31 83%
C1 = 2, C2 = 1 *ord 3.39 0.48 96%
C1 = 4, C2 = 1 *ord 3.76 0.54 83%
C1 = 4, C2 = 2 *ord 4.96 0.58 95%
C1 = 2 � BC 1.73 0.30 84%
C1 = 4 � BC 2.75 0.61 90%

(T1, N1, n = 512)
C1 = 1, C2 = 0	5 *ord 1.33 0.16 83%
C1 = 2, C2 = 0	5 *ord 1.37 0.19 86%
C1 = 2, C2 = 1 *ord 2.90 0.35 97%
C1 = 4, C2 = 1 *ord 3.39 0.39 96%
C1 = 2 � BC 1.55 0.26 90%
C1 = 4 � BC 1.89 0.26 87%

(T2, N2, n = 128)
C1 = 0	5, C2 = 1 *ord 2.94 0.36 90%
C1 = 0	5, C2 = 1 *stud 3.21 0.44 93%

(T2, N2, n = 512)
C1 = 0	5, C2 = 0	5 *ord 1.83 0.20 86%
C1 = 0	5, C2 = 0	5 *stud 1.91 0.21 85%
C1 = 0	5, C2 = 1 *ord 2.67 0.27 98%
C1 = 0	5, C2 = 1 *stud 2.93 0.31 100%
C1 = 1, C2 = 1 *ord 2.67 0.29 92%
C1 = 1, C2 = 1 *stud 2.92 0.35 94%

The sets G and Gsub mimic four and two (in our cases disjoint) intervals of
approximate lengths 2h. Note that G and Gsub change with h, the bandwidth
of the estimator m̂.

The simultaneous sieve bootstrap band is constructed as described in Sec-
tion 4.2. The precise specification is

(*simult) m̂, m̃, δ� p as in (*ord),
confidence band as in (4.3), 500 bootstrap replicates.

For comparison we use an extreme value approximation, modified for the time
series case, for the distribution of

sup
0<x<1

�nh�1/2(m̂�x� −m�x�)	
To our knowledge, there exists no rigorous proof for the limiting distribution of
the random variable above in the time series case. In the independent setup,
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Table 7

Simultaneous coverages over G and Gsub� respectively: model (T1, N1), n = 128; bandwidths of
the form h = C10	044n−1/5 as in (5.6) and h̃ = C2h

5/9 as in (5.5)

Bandwidths *simult (G) EEE BC. (G) *simult (Gsub) EEE BC. (Gsub)

C1 = 1, C2 = 0	5 53% (5.0) 33% (4.7) 54% (5.0) 51% (5.0)
C1 = 1, C2 = 1 98% (1.4) 36% (4.8) 98% (1.4) 53% (5.0)
C1 = 2, C2 = 0	5 75% (4.3) 98% (1.4) 77% (4.2) 99% (0.1)
C1 = 2, C2 = 1 100% (—) 99% (0.1) 100% (—) 100% (—)
C1 = 4, C2 = 0	5 81% (3.9) 100% (—) 96% (2.0) 100% (—)
C1 = 4, C2 = 1 99% (0.1) 98% (1.4) 100% (—) 100% (—)

the distribution has been given in Eubank and Speckman (1993). In general,
the Poisson clumping heuristics [Aldous (1989)] can be used to obtain formally
the following simultaneous confidence band:

In�x� = m̂�x� − h2m̂�2��x�
∫

R

x2K�x�dx
2

± σ̂n�x�v1−α/2�

v1−α/2 = �−2 log�h��1/2 + �−2 log�h��−1/2
(
C− log

(
− log

(
1− α

2

)))
�

C = log

({− ∫
R
K�2��x�K�x�dx/ ∫

R
K2�x�dx}1/2

2π

)
�

(5.7)

where σ̂n�x� and m̂�2��x� are the same as in (3.6) and (5.4).
This band should be simultaneous over the whole open interval �0�1�. The

precise specification of this method is

(� BC) m̂, σ̂2
n�x�, m̂�2� as in (� BC), confidence band as in (5.7).

We consider the combinations of bandwidths which yielded reasonably accu-
rate results in Section 5.1.1. The aimed simultaneous coverage level is again

Table 8

Simultaneous coverages over G and Gsub� respectively: model (T1, N1), n = 512; bandwidths of
the form h = C10	044n−1/5 as in (5.6) and h̃ = C2h

5/9 as in (5.5)

Bandwidths *simult (G) EEE BC. (G) *simult (Gsub) EEE BC. (Gsub)

C1 = 1, C2 = 0	5 64% (4.8) 58% (4.9) 71% (4.5) 76% (4.3)
C1 = 1, C2 = 1 100% (—) 63% (4.8) 100% (—) 82% (3.8)
C1 = 2, C2 = 0	5 93% (2.6) 100% (—) 93% (2.6) 100% (—)
C1 = 2, C2 = 1 100% (—) 100% (—) 100% (—) 100% (—)
C1 = 4, C2 = 0	5 97% (1.7) 100% (—) 100% (—) 100% (—)
C1 = 4, C2 = 1 100% (—) 100% (—) 100% (—) 100% (—)
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Table 9

Lengths of simultaneous bands, method (� BC): model (T1, N1), n = 128� bandwidth of the form
h = C10	044n−1/5 as in (5.6); h̃ is irrelevant on length

Bandwidth Ave[length] S.E.(length) 2.5% and 97.5% sample quantiles of length

C1 = 1 1.85 0.56 0.86, 3.02
C1 = 2 3.98 0.69 2.84, 5.39
C1 = 4 6.10 1.36 4.08, 9.45

1 − α = 0	9. Tables 7 and 8 show coverage percentages with estimated stan-
dard errors in parentheses (in percentages), which were derived by simulating
over 100 different realizations of the noise process in (5.1).

We also show in Tables 9 and 10 the lengths of confidence bands with
method (� BC) with empirical moments and quantiles, based on the 100
simulations. Figures 1 and 2 show the 2.5% and 97.5% sample quantiles of
length(x) of the simultaneous sieve bootstrap confidence interval at all x in
the set G = G�h� and Gsub = Gsub�h�, respectively.

For simultaneous confidence intervals, the sieve bootstrap method (*simult)
yields a reasonable overall performance in terms of coverage accuracy. It com-
pares very favorably to the results in Härdle and Marron (1991) for the in-
dependent case. The improvement by having a larger sample size is visible
in coverage accuracy as well as in size of the confidence band. Although we
are looking only at the better range of smoothing parameters for the ana-
lytical (nonbootstrap) pointwise approximations in Section 5.1.1, the method
(*simult) is again less sensitive to the selection of bandwidth parameters than
method (� BC).

For every given bandwidth h, the smaller pilot-bandwidth h̃ yields con-
sistently shorter bands. They are sometimes too progressive, as some of the
(� BC)-bands, too. By informally calibrating coverage probability against size
of confidence bands, method (*simult) is in most cases favorable to method
(� BC). The only case where method (*simult) did not yield a “winner” is case
[G, n = 128, C1 = 2, C2 = 0	5] (h = C10	044n−1/5, h̃ = C2h

5/9). As expected,
the advantage of method (*simult) in this comparison is more clearly visible
for Gsub.

Table 10

Lengths of simultaneous bands, method (� BC): model (T1, N1), n = 512; bandwidth of the form
h = C10	044n−1/5 as in (5.6); h̃ is irrelevant on length

Bandwidth Ave[length] S.E.(length) 2.5% and 97.5% sample quantiles of length

C1 = 1 1.78 0.45 0.96, 2.67
C1 = 2 3.64 0.62 2.34, 4.72
C1 = 4 4.22 0.62 3.19, 5.44
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Fig. 1. Length�x� of G-simultaneous confidence bands at all x ∈ G� method (*simult): the vertical
bars indicate the range of the 2.5% and 97.5% sample quantiles of length(x), the dots represent
the average length Ave[length(x)]. The bandwidths, from top left to bottom right for each sample
size n� are �C1 = 1�C2 = 0	5�� �C1 = 1�C2 = 1�� �C1 = 2�C2 = 0	5�� �C1 = 2�C2 = 1��
�C1 = 4�C2 = 0	5�� �C1 = 4�C2 = 1�.
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Fig. 1. (Continued).

The method (� BC) based on extreme value approximation is very sensi-
tive to the choice of bandwidths. The confidence band is either too progressive
or too conservative. The latter is expected but the former is quite surprising
and unpleasant, because the method is designed to be simultaneous over the
whole interval �0�1�. The reduction for length of the confidence band by in-
creasing sample size is slow, reflecting the behavior of the limiting extreme
value approximation.

The advantage of the sieve bootstrap is even more convincing for the con-
struction of neighborhood simultaneous confidence intervals. For the case with
a “rough” trend and a noise process with large bispectral density at zero,
the sieve bootstrap is expected to be far better than the extreme value ap-
proximation; compare with the result in Section 5.1.1. Similar results as in
Eubank and Speckman (1993) for the independent case could not be closely
replicated. This may be due to the more complex time series structure and to
the much stronger presence of noise: we choose Var�Zt� ≈ 1, whereas Eubank
and Speckman (1993) use equivalents of Var�Zt� ≤ 0	12 (scaled by a factor 3 to
approximately adjust to the magnitude of our curve). Also, it should be noted
that Eubank and Speckman (1993) consider only the case of a “smooth” un-
derlying trend and Gaussian noise, which leads to zero asymptotic skewness
for the smoother.

5.2. Ozone measurements from Arosa. We apply here our sieve bootstrap
method to the world’s longest series of monthly total ozone measurements
from Arosa, Switzerland (1932–1996): due to some missing values we do not
use the first stretch of the years 1926–1931. The measurements are currently
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Fig. 2. Length(x) of Gsub-simultaneous confidence bands at all x ∈ Gsub� method (*simult). The
vertical bars indicate the range of the 2	5% and 97	5% sample quantiles of length(x), the dots
represent the average length Ave[length(x)]. The bandwidths, from top left to bottom right for each
sample size n, are �C1 = 1�C2 = 0	5�� �C1 = 1�C2 = 1�� �C1 = 2�C2 = 0	5�� �C1 = 2�C2 = 1��
�C1 = 4�C2 = 0	5�� �C1 = 4�C2 = 1�.
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Fig. 2. (Continued).

performed by the Swiss Meteorological Institute. The homogenized data set is
available from http://www.umnw.ethz.ch/LAPETH/doc/totozon.html.

Recently, a trend analysis has been given by Staehelin, Kegel and Harris
(1997): based on a linear trend model, including other exogenous variables
and an AR(2) noise process, a significantly decreasing trend has been found.
It is now of interest, whether our nonparametric trend model in (3.1) ex-
hibits a decreasing trend, even without using any other exogenous explana-
tory variables. The raw monthly measurements �Ot�t exhibit big seasonal
effects, which can be explained very well. Assuming fixed monthly effects βi,
i = 1� 	 	 	 �12, with

∑12
i=1 βi = 0, we remove them by preliminary smoothing

of the monthly data with a running mean, Yt =
∑6

i=−6 ciOt−i with ci = 1/12,
i = −5� 	 	 	 �5� and ci = 1/24, i = −6�6. Figure 3 displays the filtered data
�Yt�nt=1 with n = 773 on the Dobson scale, and its kernel smoother as in
(3.2) with K�x� = �2π�−1/2 exp�−x2/2� and bandwidth h = 2 × 0	044n−1/5 =
0	024, which is among the best in the simulations for simultaneous con-
fidence bands [see also (5.6)]. The x-scale in Figure 3 is according to the
trend model in (3.1): 12 months correspond to an amount of 0	016 on the
x-scale.

We apply the sieve bootstrap as described in Section 2.1. For Step 1 we
use as a pilot bandwidth the one which worked best in the simulations for
simultaneous confidence bands, that is, h̃ = h5/9/2 = 0	062 [see also (3.3), in
which we use δ = 0	05]. In Step 2, the AIC optimal autoregressive order is
p = 15, the coefficients are �φ̂1� n� 	 	 	 � φ̂15� n� = �1	49, −0	59, 0	18, −0	11, 0	02,
−0	05, 0	04, −0	01, 0.00, 0.09, −0	18, −0	14 ,0.25, 0.08, −0	11�. The decay
is not very fast; our assumption about an AR(∞) noise process seems more
realistic than any low order AR model.
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Fig. 3. The 95% simultaneous confidence regions for trend, based on the sieve bootstrap: (top)
simultaneous over G1� (bottom) simultaneous over G2. In both pictures (preliminary filtered) total
ozone measurements are given by the solid line, the kernel smoother is given by the dotted line and
the area of simultaneous confidence bands is indicated by dots at every x in G1 and G2� respectively.
At bottom is a dashed line showing the lowest value of the G2-simultaneous confidence region at
early times.

We construct two types of simultaneous confidence regions, as described in
Section 5.1.2, both on the level 1 − α = 0	95. One is over a set G1 = �0	05 +
j/40�j = 0� 	 	 	 �36�, a set of equally spaced points over almost the whole range
of 	0�1
; and another over a set G2 = U0	05 ∪ U0	95, Ux = �x − 2h + j/100;
j = 0� 	 	 	 � 	400h
 = 9�, which is an interesting set for comparing the beginning
with the end of the series. Figure 3 displays both confidence regions.

The simultaneous region over G1 in the top part of Figure 3 gives a
reasonable idea about statistical variation over the whole range of time.
From the simultaneous region over G2 in the bottom part of Figure 3 we
get that the confidence regions at x ∈ U0	05 = �0	003�0	013� 	 	 	 �0	093� and
x ∈ �0	95 − 2h + j/100� j = 1� 	 	 	 �9� = �0	913�0	923� 	 	 	 �0	993� do not
intersect. These ranges of x correspond approximately to the early months
�April 1932� 	 	 	 �March 1938� and to the late months �November 1990� 	 	 	 �
January 1996�, respectively. (Note that the simultaneous confidence region
over the new set G3 = U0	05 ∪ �0	913�0	923� 	 	 	 �0	993� is a subset of the
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G2-simultaneous region at the corresponding x’s, implying that there is no
overlap at all the early and all the late times of G3.) Our analysis supports the
conclusion that there is a significant decreasing trend from the early times
April 1932–March 1938 to the recent times November 1990–January 1996.
Such a conclusion is consistent with the recent analysis in Staehelin, Kegel
and Harris (1997). The novelty here is the significance within the framework
of a nonparametric trend model with a nonparametric noise process in the
form of an infinite-dimensional AR(∞) model.

6. Proofs. We first consider the effect of nonstationarity, that is, the effect
of estimating the trend values s�t�, t = 1� 	 	 	 � n, in steps 1 and 4 of the sieve
bootstrap scheme. We do not treat the case with fewer than n estimates as
given in (3.3) separately, the modifications are obvious. We denote by RZ�j� =
Cov�Z0�Zj� and, for �j� ≤ n − 1, R̂Z�j� = n−1∑n−�j�

t=1 ZtZt+�j�, R̂Ẑ�j� as in
(2.2).

Lemma 6.1. Assume that (A1) and (A2) hold and n−1∑n
t=1�s̃�t� − s�t��2 =

OP�b�n�� for some sequence b�n� = o�1�, n → ∞. If p�n� = o��n/ log�n��1/2�,
then

max
0≤j≤p

�R̂Ẑ�j� −RZ�j�� = OP

(�log�n�/n�1/2)+OP

( ∞∑
j=p+1

�φj�
)
+OP

(
b�n�1/2)	

Proof. We write, for �j� ≤ n− 1,

R̂Ẑ�j� = R̂Z�j� + n−1
n−�j�∑
t=1

(
Ẑt� n −Zt

)
Zt+�j� + n−1

n−�j�∑
t=1

(
Ẑt+�j�� n −Zt+�j�

)
Zt

+ n−1
n−�j�∑
t=1

�Ẑt� n −Zt��Ẑt+�j�� n −Zt+�j��	

Therefore, we get by the Cauchy–Schwarz inequality in a straightforward way,

max
0≤j≤n−1

∣∣R̂Ẑ�j� − R̂Z�j�
∣∣ = OP

(
b�n�1/2)	

Now we complete the proof by using the known bound

max
0≤j≤p

∣∣R̂Z�j� −RZ�j�
∣∣ = O

(�log�n�/n�1/2)+O

( ∞∑
j=p+1

�φj�
)

almost surely

[cf. Hannan and Kavalieris (1986), Theorem 2.1]. ✷

Denote by φj the autoregressive coefficients as given in (2.1), by φ̂j�n the
coefficients as defined in (2.2) and by φj�n the corresponding theoretical quan-
tities with RZ instead of R̂Ẑ, that is,  Z�p = −γZ, �p = �φ1� n� 	 	 	 � φp�n�′.
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Lemma 6.2. Assume that (A1) and (A2) hold, n−1∑n
t=1�s̃�t� − s�t��2 =

OP�b�n�� for some sequence b�n� = o�1�, n → ∞, and p�n� = o�min��n ×
�log�n��−1�1/2� b�n�−1/2��	 Then

max
1≤j≤p

�φ̂j�n −φj�n� = OP��log�n�/n�1/2� +OP

( ∞∑
j=p+1

�φj�
)
+OP

(
b�n�1/2)�

and the same bound holds for max1≤j≤p �φ̂j�n −φj�.

Proof. Denote by �̂p = �φ̂1� n� 	 	 	 � φ̂p�n�′, �p = �φ1� n� 	 	 	 � φp�n�′. Accord-
ing to An, Chen and Hannan [(1982), formula (25)],

�̂p −�p = − −1
Z

[�γ̂Ẑ − γZ� + � ̂Ẑ −  Z���̂p −�p� + � ̂Ẑ −  Z��p

]
	

By denoting

#z#∞ =




max
1≤j≤d

�zj�� for z a d× 1 vector�

max
1≤j≤d1

d2∑
i=1

�zji�� for z a d1 × d2 matrix�

we arrive at

#� ̂Ẑ −  Z���̂p −�p�#∞ ≤ p max
0≤j≤p

�R̂Ẑ�j� −RZ�j�� #�̂p −�p#∞�

#� ̂Ẑ −  Z��p�#∞ ≤ max
0≤j≤p

�R̂Ẑ�j� −RZ�j��
p∑
j=1

�φj�n�	

Therefore

#�̂p−�p#∞ ≤ # −1
Z #∞ max

0≤j≤p
�R̂Ẑ�j�−RZ�j��

(
1+p#�̂p−�p#∞+

p∑
j=1

�φj�n�
)
�

and hence

#�̂p −�p#∞
(

1− # −1
Z #∞p max

0≤j≤p
�R̂Ẑ�j� −RZ�j��

)

≤ # −1
Z #∞ max

0≤j≤p
�R̂Ẑ�j� −RZ�j��

(
1+

p∑
j=1

�φj�n�
)
	

By the assumption and Lemma 6.1, pmax0≤j≤p �R̂Ẑ�j� − RZ�j�� = oP�1�;
by An, Chen and Hannan [(1982), page 929, l–4], # −1

Z #∞ < ∞; by Baxter’s
inequality,

∑p
j=1 �φj�n� ≤

∑p
j=1 �φj�+ const	

∑∞
j=p+1 �φj� = O�1�. This, together

with the bound for #�̂p−�p#∞�1−# −1
Z #∞pmax0≤j≤p �R̂Ẑ�j�−RZ�j��� above

and Lemma 6.1, completes the proof. ✷
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It is very helpful to represent

Zt =
∞∑
j=0

ψjεt−j� ψ0 = 1�(6.1)

Z∗
t =

∞∑
j=0

ψ̂j�nε
∗
t−j� ψ̂0� n = 1�(6.2)

where ?�z� = ∑∞
j=0 ψjz

j = 1/��z�, ��·� as in (A2), ?̂n�z� =
∑∞

j=0 ψ̂j�nz
j =

1/�̂n�z�, �̂n�z� =
∑p

j=0 φ̂j�nz
j. This representation is possible by assum-

ing (A2).

Lemma 6.3. Assume that (A1) and (A2) hold, n−1∑n
t=1�s̃�t� − s�t��2 =

OP�b�n�� for some sequence b�n� = o�1�, n → ∞, and p�n� = o�min��n ·
�log�n��−1�1/4� b�n�−1/4��. Then the following holds:

(i) there exists a random variable n1 such that

sup
n≥n1

∞∑
j=0

j�ψ̂j�n� <∞ in probability�

(ii) sup
j∈N

�ψ̂j�n − ψj� = OP

(�log�n�/n�1/2)+OP�p−1� +OP

(
b�n�1/2)	

Proof. Both statements follow by using Lemma 6.2 and then proceeding
as in the proofs of Theorems 3.1 and 3.2 in Bühlmann (1995). ✷

Lemma 6.4. Assume that (A1) and (A2) hold, n−1∑n
t=1�s̃�t� − s�t��2 =

OP�b�n�� for some sequence b�n� = o�1�, n → ∞, and p�n� = o�min��n ·
�log�n��−1�1/2� b�n�−1/2��. Then

E
∗�ε∗t �2w = E�εt�2w + oP�1�� w = 1�2	

Proof. We write

ε̂t� n = εt +Qt�n +Rt�n +Ut�n +Vt�n�

where Qt�n =
∑p

j=0�φ̂j�n − φj�n�Zt−j, Rt�n =
∑p

j=0�φj�n − φj�Zt−j, Ut�n =∑p
j=0 φ̂j�n�s�t − j� − s̃�t − j��, Vt�n = −∑∞

j=p+1 φjZt−j. Now the proof is
straightforward as in Bühlmann [(1997), Lemma 5.3]. The only additional
quantities to control are Ut�n and Vt�n: by the Cauchy–Schwarz inequality
and Lemma 6.2,

�n− p�−1
n∑

t=p+1

�Ut�n�2w ≤
[
p2�#�p#∞ + #�̂p −�p#∞�2OP�b�n��

]w = oP�1��

�n− p�−1
n∑

t=p+1

�Vt�n�2w = OP

(( ∞∑
j=p+1

�φj�
)2w)

= oP�1�	

With these bounds we complete the proof. ✷
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Proof of Theorem 3.1. Let �n = �	δn
+1� 	 	 	 � 	�1−δ�n
� and n′ = ��n�.
In Hall and Hart (1990) it is shown that, for 0 < δ < 1/2,

n′−1 ∑
t∈�n

�s̃�t� − s�t��2 = n′−1 ∑
t∈�n

(
m̃�t/n� −m�t/n�)2

= OP

(
max�h̃4� n−1h̃−1�)	

This explains that for p�n� = o�min��n/ log�n��1/4, �nh̃�1/4, h̃−1�� Lemmas
6.2–6.4 are valid. It is also known [cf. Hall and Hart (1990)] that

Bas�x� = lim
n→∞�nh�

1/2h2m�2��x�
∫

R

x2K�x�dx/2� 0 < x < 1	(6.3)

Moreover,

σ2
as = lim

n→∞�nh�
1/2 Var�m̂�x�� =

∞∑
k=−∞

RZ�k�
∫

R

K2�x�dx�

where RZ�k� = Cov�Z0�Zk�.
Now we write

�nh�1/2(m̂�x� − E	m̂�x�
) = �nh�1/2 n∑
t=1

wt�n�x�Zt with
n∑
t=1

wt�n�x� ∼ 1�

�nh�1/2(m̂∗�x� − E
∗	m̂∗�x�
) = �nh�1/2 n∑

t=1

wt�n�x�Z∗
t

with the same weights wt�n�x�	
These expressions are similar to an arithmetic mean for stationary variables.
The limiting normal distribution for the above quantities can be proved in
the same way; we just outline the case for the bootstrap. We are reasoning
as in the proof of Theorem 3.1 in Bühlmann (1997). The idea is to replace
Z∗

t by Z∗
t�M = ∑M

j=0 ψ̂j�nε
∗
t−j; compare with (6.2). Using the M-dependence

of �Z∗
t�M�t∈Z we prove convergence in P∗-distribution for

∑n
t=1 wt�n�x�Z∗

t�M

via blocking and the Lindeberg central limit theorem (a possible choice for the
block sizes is a�n� = n1/2h, b�n� = n1/2h2	4). Then we prove that the truncation
error

∑n
t=1 wt�n�x��Z∗

t −Z∗
t�M� is asymptotically negligible. For these steps we

use Lemmas 6.3 and 6.4. Summarizing, with the same arguments as in the
proof of Theorem 3.1 in Bühlmann (1997), we get

�nh�1/2(m̂∗�x� − E
∗	m̂∗�x�
)→d∗ � �0� σ2

as� in probability	

What remains to show is

�nh�1/2(E∗	m̂∗�x�
 − m̃�x�)−Bas�x� = oP�1��
but this follows from the more general result in (6.9). ✷
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Proof of Theorem 3.2. It suffices to show finite-dimensional convergence
to the same normal distribution and stochastic equicontinuity. Consider the
centered versions

Wx0�n�x� = Zx0�n�x� − E	Zx0�n�x�
�
W∗

x0�n�x� = Z∗
x0�n�x� − E

∗	Z∗
x0�n�x�
	

We will now show that the centered versions are asymptotically equivalent to
bias corrected versions of Zx0�n�·� and Z∗

x0�n�·�, respectively. We first show

sup
x∈	−1�1


�Zx0�n�x� −Wx0�n�x� −Bas�x0�� = o�1�	(6.4)

To do so, the following, well-known integral approximation bound will be used.
If g�·� is a continuous and Riemann-integrable function, then∣∣∣∣n−1

n∑
t=1

g

(
t

n

)
−
∫ 1

0
g�z�dz

∣∣∣∣ ≤ ωg�n−1��

ωg�r� = sup�x−y�≤r �g�x� − g�y��	
(6.5)

Thus, by using (6.5),

sup
x∈	−1�1


∣∣∣∣Zx0�n�x� −Wx0�n�x� −Bas�x0�

−
(
�nh�1/2

(∫
R

K�w�m�x0 + xh−wh�dw

−m�x0 + xh�
)
−Bas�x0�

)∣∣∣∣
≤ �nh�1/2 supx∈	−1�1
 ωx�h�n−1��

(6.6)

where

ωx�h�r� = sup
�z1−z2�≤r

h−1

∣∣∣∣K
(
x0 + xh− z1

h

)
m�z1� −K

(
x0 + xh− z2

h

)
m�z2�

∣∣∣∣	
Since K�·� and m�·� are Lipschitz, we get

sup
x∈	−1�1


ωx�h�n−1� ≤ const	 n−1h−2	

This, together with (6.6), implies

sup
x∈	−1�1


∣∣∣∣Zx0�n�x� −Wx0�n�x� −Bas�x0�

−
(
�nh�1/2

(∫
R

K�w�m�x0+xh−wh�dw−m�x0+xh�
)
−Bas�x0�

)∣∣∣∣
≤ const.�nh3�−1/2 = o�1�	

(6.7)



NONSTATIONARY SIEVE BOOTSTRAP 79

Also, by the Lipschitz property of m�2��·� and using the boundedness of the
support of K�·�,

sup
x∈	−1�1


∣∣∣∣�nh�1/2
(∫

R

K�w�m�x0+xh−wh�dw−m�x0+xh�
)
−Bas�x0�

∣∣∣∣
= o�1�	

(6.8)

By (6.7) and (6.8) we have shown (6.4).
Next we will show the analog of (6.4) for the bootstrap

sup
x∈	−1�1


�Z∗
x0�n�x� −W∗

x0�n�x� −Bas�x0�� = oP�1�	(6.9)

Write

Z∗
x0�n�x� −W∗

x0�n�x� −Bas�x0�
= �nh�1/2�R1�x� −R2�x�� + �nh�1/2

(
D1�x� −D2�x�

)−Bas�x0��
(6.10)

where R1�x� = E
∗	m̂∗�x0 + xh�
 − E	E∗	m̂∗�x0 + xh�

, R2�x� = m̃�x0 + xh� −

E	m̃�x0 + xh�
, D1�x� = E	E∗	m̂∗�x0 + xh�

, D2�x� = E	m̃�x0 + xh�
.
By using (6.5) and similarly as in (6.6) and (6.7),

D1�x� −D2�x� =
∫

R

K�u�
∫

R

K�v�	m�x0 + xh− uh− vh̃�

−m�x0 + xh− vh̃�
dvdu+O�n−1h−2�

= h2m�2��x0�
∫

R

u2K�u�du/2+O�h2�h+ h̃�� +O�n−1h−2��

where the O-terms are uniform in x [use the Lipschitz property of K�·�, m�·�
and m�2��·�]. Thus, by the definition of Bas�x0�,

sup
x∈	−1�1


∣∣�nh�1/2�D1�x� −D2�x�� −Bas�x0�
∣∣ = o�1�	(6.11)

Let us now consider the stochastic part R1�x�−R2�x�. For the fluctuations of
R1�·�, we have, by the definition of m̃�·�,
E�R1�x� −R1�y��2

≤n−4h−2h̃−2
n∑

t1�t2�s=1

n−1∑
k=−n+1

∣∣∣∣
[
K

(
x0+xh− t1/n

h

)
−K

(
x0+yh− t1/n

h

)]

×
[
K

(
x0+xh− t2/n

h

)
−K

(
x0+yh− t2/n

h

)]

×K
(
t1/n− s/n

h̃

)
K

(
t2/n−�s− k�/n

h̃

)∣∣∣∣�RZ�k��	

Since the support of K�·� is bounded, say K�·� ⊆ 	a� b
, the indices t1,
t2 range over a sub-set Ix0� x� y� n� h

whose cardinality can be bounded by
supx�y∈	−1�1
 Ix0� x� y� n� h

≤ �b−a�nh. Likewise, s ranges over a subset Ix0� x� y� n� h̃
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whose cardinality is uniformly bounded by �b − a�nh̃. Therefore, by the Lip-
schitz property of K�·�,

sup
x�y∈	−1�1


nhE�R1�x� −R2�x��2
�x− y�2 = O

(
h

h̃

)
�

and hence

sup
x�y∈	−1�1


nh̃E�R1�x� −R2�x��2 ≤ const.�x− y�2	(6.12)

A similar estimate applies for

E�R2�x� −R2�y��2

≤ n−2h̃−2
n∑
t=1

n−1∑
k=−n+1

∣∣∣∣
[
K

(
x0 + xh− t/n

h̃

)
−K

(
x0 + yh− t/n

h̃

)]

×
[
K

(
x0 + xh− �t− k�/n

h̃

)

−K

(
x0 + yh− �t− k�/n

h̃

)]∣∣∣∣�RZ�k��	

Again, the index t ranges over a set whose cardinality can be uniformly (in
x�y) bounded by const.nh̃. Hence, by the Lipschitz property of K�·�,

sup
x�y∈	−1�1


nh̃E�R2�x� −R2�y��2 ≤ const	�x− y�2	(6.13)

By (6.12) and (6.13), we have, for R�x� = R1�x� −R2�x�,
sup

x�y∈	−1�1

nh̃E�R�x� −R�y��2 ≤ const	�x− y�2	(6.14)

By (6.14) we can control the fluctuation of R�·� and get stochastic equiconti-
nuity by Theorem 12.3 in Billingsley (1968),

lim
γ↘0

lim sup
n→∞

P

[
sup

�x−y�≤γ
�nh̃�1/2�R�x� −R�y�� > κ

]
= 0� κ > 0	(6.15)

Moreover, it follows with some of the arguments for deriving (6.14): for κ > 0,
there exists M =M�κ� and n0 = n0�κ� such that

sup
x∈	−1�1


P
[�nh̃�1/2�R�x�� >M

] ≤ κ for all n ≥ n0	(6.16)

Thus, a well-known discretization argument together with (6.15), (6.16) and
the fact h = o�h̃� yields

sup
x∈	−1�1


�nh�1/2�R�x�� = oP�1�	(6.17)

Therefore, by (6.10), (6.11) and (6.17) we have shown (6.9).
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Therefore, by (6.4) and (6.9) we can work with the centered processes
�Wx0�n�x��x∈	−1�1
 and �W∗

x0�n�x��x∈	−1�1
. For the covariances of the process
we get as in the proof of Theorem 3.1, by using the Lipschitz property of K�·�,

lim
n→∞Cov�Wx0�n�x��Wx0�n�y�� = fZ�0�2π

∫
R

K�w�K�w+ y− x�dw�

Cov�W∗
x0�n�x��W∗

x0�n�y�� = fZ�0�2π
∫

R

K�w�K�w+ y− x�dw

+ oP�1�	

(6.18)

Finite-dimensional convergence of �Wx0�n�x1�� 	 	 	 �Wx0�n�xm��′ and �W∗
x0�n�x1��

	 	 	 �W∗
x0�n�xm��′, x1� 	 	 	 � xm ∈ 	−1�1
, m ∈ N, to the same normal limiting

distribution follows as in Theorem 3.1, by applying the Cramér–Wold device
and using (6.18).

It remains to show stochastic equicontinuity. For κ > 0, η > 0, there exists
γ > 0 and n0 ∈ N, such that

P

[
sup

�x−y�≤γ
�Wx0�n�x�−Wx0�n�y��>κ

]
< η for all n≥n0�

P

[
P
∗
[

sup
�x−y�≤γ

�W∗
x0�n�x�−W∗

x0�n�y��>κ
]
<η

]
> 1−η for all n≥n0	

(6.19)

By using the Lipschitz property of K�·�, and similarly as in the derivation for
(6.13) we get

E�Wx0�n�x� −Wx0�n�y��2 ≤ const	�x− y�2�
E
∗�W∗

x0�n�x� −W∗
x0�n�y��2 ≤ OP�1��x− y�2	

(For the bootstrap, we use Lemmas 6.3 and 6.4: the OP�1� term is uniformly
over x�y.)

By applying Theorem 12.3 in Billingsley (1968), stochastic equicontinuity
as stated in (6.19) follows. ✷

Proof of Theorem 3.4. Before proving this theorem we show the follow-
ing.

Lemma 6.5. Assume that (A1) and (A2) hold, n−1∑n
t=1�s̃�t� − s�t��2 =

OP�b�n�� for some sequence b�n� = o�1�, n → ∞, and p�n� = o�min��n ×
�log�n��−1�1/4� b�n�−1/4��. Then the following hold:

(i)
∑∞

k1� k2=−∞ �k1k2E	Z0Zk1
Zk2


� <∞;
(ii) there exists a random variable n1 such that

sup
n≥n1

∞∑
k1� k2=−∞

�k1k2E
∗	Z∗

0Z
∗
k1
Z∗

k2

� <∞ in probability�

(iii)
∑n−1

k1� k2=−n+1 E
∗	Z∗

0Z
∗
k1
Z∗

k2

−∑n−1

k1� k2=−n+1 E	Z0Zk1
Zk2


 = oP�1�, n→∞.
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Proof. Represent Zt =
∑∞

j=0 ψjεt−j, Z∗
t =

∑∞
j=0 ψ̂j�nε

∗
t−j [see (6.1) and

(6.2)]. In the same spirit as for proving Lemma 6.4 one can show

E
∗	�ε∗t �3
 = E	ε3

t 
 + oP�1�	
Then the conclusions follow straightforwardly by using Lemma 6.3.

Since the kernel K�·� is Lipschitz continuous,

max
1≤t≤n

∣∣∣∣K
(
x− �t+ k�/n

h

)
−K

(
x− t/n

h

)∣∣∣∣ ≤ const	k�nh�−1	

Using this estimate and Lemma 6.5, we immediately obtain the conclusions
from Theorem 3.4. ✷
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