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We study a bootstrap method which is based on the method of sieves. A linear process is
approximated by a sequence of autoregressive processes of order p � p(n), where p(n) !1,
p(n) � o(n) as the sample size n !1. For given data, we then estimate such an AR( p(n)) model
and generate a bootstrap sample by resampling from the residuals. This sieve bootstrap enjoys a nice
nonparametric property, being model-free within a class of linear processes.

We show its consistency for a class of nonlinear estimators and compare the procedure with the
blockwise bootstrap, which has been proposed by Künsch in 1989. In particular, the sieve bootstrap
variance of the mean is shown to have a better rate of convergence if the dependence between
separated values of the underlying process decreases sufficiently fast with growing separation.

Finally, a simulation study helps to illustrate the advantages and disadvantages of the sieve
compared to the blockwise bootstrap.
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1. Introduction

The bootstrap proposed by Efron (1979) has become a powerful nonparametric method for
estimating the distribution of a statistical quantity. However, by ignoring the order of the
observations, it usually fails for dependent observations.

In the context of stationary time series two different bootstrap methods have been
proposed. One is a model-based approach, which resamples from approximately i.i.d.
residuals; cf. Freedman (1984); Efron and Tibshirani (1986); Bose (1988); and Franke and
Kreiss (1992). Tsay (1992) uses this approach for diagnostics in the time-series context.
Obviously, these procedures are sensitive to model misspecification and the attractive
nonparametric features of Efron’s bootstrap is lost. A nonparametric, purely model-free
bootstrap scheme for stationary observations has been given by Künsch (1989); see also Liu
and Singh (1992). Künsch’s idea is to resample overlapping blocks of consecutive
observations where the blocklength involved grows slowly with the sample size. By
construction we call this procedure blockwise bootstrap (it is sometimes also called moving
blocks bootstrap). Since the pioneering paper by Künsch (1989), the blockwise bootstrap
and modifications thereof have been studied by Politis and Romano (1992; 1993), Shao and
Yu (1993), Naik-Nimbalkar and Rajarshi (1994), Bühlmann and Künsch (1994; 1995) and
Bühlmann (1993; 1994; 1995a). Generally, this blockwise bootstrap works satisfactorily and
enjoys the property of being robust against misspecified models. However, the resampled
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series exhibits artefacts which are caused by joining randomly selected blocks. The
dependence between different blocks is neglected in the resampled series and the bootstrap
sample is not (conditionally) stationary. Politis and Romano (1994) have given a
modification of the blockwise bootstrap which yields a (conditionally) stationary bootstrap
sample. However, their method depends on a tuning parameter which seems difficult to
control.

Our approach here takes up the older idea of fitting parametric models first and then
resampling from the residuals. But instead of considering a fixed finite-dimensional model
we approximate an infinite-dimensional, nonparametric model by a sequence of finite-
dimensional parametric models. This strategy is known as the method of sieves (cf.
Grenander 1991; Geman and Hwang 1982) and explains the name given to our procedure.
Implicitly, this approach is quite often used when choosing a model adaptively by a
criterion such as the Akaike information criterion (AIC), rather than considering a pre-fixed
model. To fix ideas, we approximate the true underlying stationary processes by an
autoregressive model of order p, where p � p(n) is a function of the sample size n with
p(n) !1, p(n) � o(n) (n !1). Our definition of the bootstrap for a fixed model is the
same as already given by Freedman (1984). However, we take here the point of view of
approximating sieves. As with the blockwise bootstrap, this resampling procedure is again
nonparametric and, moreover, its bootstrap sample is (conditionally) stationary and does not
exhibit additional artefacts of the dependence structure as above.

Kreiss (1988; 1992) also discusses the bootstrap for AR(1) models. But his approach
only covers linear processes

Xt �

X1

j�0

ψ jε tÿ j, ψ0 � 1, t 2 Z, (1:1)

where fψ jg
1

j�0 decays exponentially and fε tg t2Z is an i.i.d. sequence with E[ε t] � 0. This is
not satisfactory, because it covers only linear processes with a very weak dependence, usually
having exponentially decaying mixing coefficients. This does not allow the approximating
autoregressive models to be interpreted as a sieve for a broader subclass of stationary
processes. Kreiss (1988; 1992) shows, under the above conditions, consistency of the
bootstrap for sample autocovariances and the linear part of a class of estimates for the
unknown autoregressive parameters of the approximating autoregressive model. Our results in
Section 3 are more general.

A related approach in the frequency domain of stationary time series has been given by
Janas (1992). There one basically resamples from studentized periodogram values, yielding
a consistent procedure for smooth functions of the periodogram. This approach can be
interpreted as approximating the modulus jΦ(eÿiλ)j(0 < λ < π), where Φ(z) �

P
1

j�0 φ j zj,
φ0 � 1 (z 2 C) is the AR(1) transfer function corresponding to the AR(1) process
P

1

j�0 φ j X tÿ j � ε t, t 2 Z. Under some regularity conditions this model is equivalent to the
linear model in (1.1). Our sieve bootstrap captures more in that we approximate the whole
transfer function Φ(z) (jzj < 1) instead of only its modulus as above.

We justify the sieve bootstrap by showing its consistency for statistics based on linear
processes as in (1.1), where fψ jg

1

j�0 are allowed to decay at a certain polynomial speed. In
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practice we argue here, that by fitting an autoregressive model first, using, for example, the
AIC, and importantly, by taking the point of view of sieve approximation, this (model-
based) bootstrap can still be regarded as a nonparametric method. Our results contribute in
this direction.

In Section 2 we give the exact definition of the sieve bootstrap. In Section 3 we present
the consistency of the sieve bootstrap for the arithmetic mean and a class of nonlinear
statistics. In particular, we include a comparison with the blockwise bootstrap which
indicates that the sieve bootstrap works better for very weak dependent processes, that is,
for processes with fast decaying coefficients fψ jg

1

j�0 in (1.1). In Section 4 we present the
results of a simulation study, comparing the performance of the blockwise and sieve
bootstrap. To explore some limits of the sieve bootstrap we consider also nonlinear models
which cannot be represented as in (1.1) with fε tg t2Z i.i.d. Surprisingly, the sieve bootstrap
also works well for a non-Gaussian autoregressive threshold model which is beyond the
linear theory. In Section 5 we include the proofs and some probabilistic properties of the
sieve bootstrap.

2. Definition of the sieve bootstrap

Let fX tg t2Z be a real-valued, stationary process with expectation E[X t] � µX . If fXtg t2Z is
purely stochastic, we know by Wold’s theorem (cf. Anderson 1971) that fX t ÿ µXg t2Z can be
written as a one-sided infinite-order moving-average process

X t ÿ µX �
X1

j�0

ψ jε tÿ j, ψ0 � 1, t 2 Z, (2:1)

where fε tg t2Z is a sequence of uncorrelated variables with E[ε t] � 0 and
P

1

j�0 ψ2
j ,1. We

require invertibility of the process in (2.1) which narrows the class of stationary processes a
little bit. Under these additional assumptions of invertibility (cf. Anderson 1971, Theorem
7.6.9) we can represent fXtg t2Z as a one-sided infinite-order autoregressive process

X1

j�0

φ j(X tÿ j ÿ µX ) � ε t, φ0 � 1, t 2 Z, (2:2)

with
P

1

j�0 φ2
j ,1.

The representation (2.2) motivates an autoregressive approximation as a sieve for the
stochastic process fX tg t2Z. By (2.1) we could also use a moving-average approximation,
but we rely on autoregressive approximation which, as a linear method, is much more
popular, faster and better known as a successful technique in different situations (cf. Berk
1974; An et al. 1982; Hannan 1987).

We now give the definition of our sieve bootstrap. Denote by X 1, . . . , Xn a sample from
the process fXtg t2Z. In a first step we fit an autoregressive process, with increasing order
p(n) as the sample size n increases. Let p � p(n) !1 with p(n) � o(n) (n !1). We
then estimate the coefficients ^φ1,n, . . . , ^φ p,n corresponding to model (2.2), usually (but not
necessarily) by the Yule–Walker estimates (cf. Brockwell and Davis 1987, Chapter 8.1).
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Note that for this purpose we first have to subtract the sample mean �X . This procedure
yields residuals

ε̂ t,n �
Xp(n)

j�0

^φ j,n(X tÿ j ÿ �X ), ^φ0,n � 1 (t � p� 1, . . . , n):

In a second step we construct the resampling based on this autoregressive approximation. We
centre the residuals

~ε t,n � ε̂ t,n ÿ (nÿ p)ÿ1
Xn

t� p�1

ε̂ t,n (t � p� 1, . . . , n)

and denote the empirical c.d.f. of f~ε t,ng
n
t� p�1 by

^Fε,n(:) � (nÿ p)ÿ1
Xn

t� p�1

1[~ε t, n<:]:

Then we can resample, for any t 2 Z, ε�t i.i.d. � ^Fε,n, and define fX�t g t2Z by the recursion

Xp(n)

j�0

^φ jn(X�tÿ j ÿ
�X ) � ε�t ^φ0,n � 1: (2:3)

In practice, we construct a sieve bootstrap sample X�1 , . . . , X�n in the following way: choose
starting values, for example, equal to �X , generate an AR( p(n)) process according to (2.3)
until ‘stationarity’ is reached and then throw the first generated values away. Such an
approach is implemented for example in the S-Plus function arima.sim. This bootstrap
construction induces a conditional probability P�, given the sample X 1, . . . , X n. As usual,
we denote quantities with respect to P� with an asterisk �.

Consider now any statistics Tn � Tn(X 1, . . . , X n), where Tn is a measurable function of
n observations. We define the bootstrapped statistics T�n by the plug-in principle:

T�n � Tn(X�1 , . . . , X�n ):

This bootstrap construction exhibits some features which are different from Künsch’s
(1989) blockwise bootstrap. It again yields a (conditionally) stationary bootstrap sample and
does not exhibit artefacts in the dependence structure as in the blockwise bootstrap, where
the dependence between different blocks is neglected. The sieve bootstrap sample is not a
subset of the original sample.

Moreover, the sieve bootstrap is often more simple to apply. There is no need to
‘prevectorize’ the original observations. Let us explain the vectorizing of observations for
the blockwise bootstrap. Suppose the statistic of interest Tn can be written as a functional T
at an m-dimensional empirical c.d.f. F(m)

n ,

Tn � T(F(m)
n ) (m > 1):

Denote by Yt � (Xt, . . . , X t�mÿ1)T (t � 1, . . . , nÿ m� 1) the m-dimensional vectorized
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observations. Then F(m)
n is the empirical c.d.f. of fYtg

nÿm�1
t�1 . The blockwise bootstrap is now

applied to the Yt s, thus being a ‘block of blocks’ bootstrap scheme. For different dimensions
m one has to use different vectorized observations. As an example, for blockwise
bootstrapping the autocorrelation function r(k) in some range 0 < k < M we either have
to use m � k � 1 for every individual k, which results in M � 1 different bootstrap samples,
or use m � M � 1 for all k, which seems quite crude when k is small. Our sieve bootstrap
has the advantage of avoiding the construction of vectorized observations and enjoys the
properties of a plug-in rule.

Also, our sieve bootstrap is simpler for unequally spaced data or series with many
missing values. Imagine that we have an underlying stationary process fYtg t2Z from which
we have observed X t � Yz( t) t, t � 1, . . . , n where z1, . . . , zn are binary non-random
variables in f0, 1g. A missing value at time point t is then given by zt � 0, by setting Y0 as
‘NA’ (not available). The variables z1, . . . , zn are known. With the sieve bootstrap we can
easily mimic this situation by constructing the sample X�1 , . . . , X�n � Y�z(1)1, . . . , Y�z(n)n,
where Y�0 is set to be ‘NA’ and Y�1 , . . . , Y�n is the sieve bootstrap sample based on an
AR( p), which is estimated by the observed time series with missing values X 1, . . . , X n. In
the case of the blockwise bootstrap, an additional complication arises. One has to use
blocks either with non-equal numbers of observations or with non-constant blocklengths.

3. Main results

3.1. ASSUMPTIONS

We now consider more carefully the models (2.1) and (2.2) and give the precise assumptions
about the stationary process fX tg t2Z from which a sample X 1, . . . , Xn is drawn. We prefer
the formulation in the MA(1) representation (2.1) rather than in the AR(1) representation
(2.2). Write

Φ(z) �
X1

j�0

φ j z
j, φ0 � 1, z 2 C,

Ψ(z) �
X1

j�0

ψ j z
j, ψ0 � 1, z 2 C:

Then the models (2.1) and (2.2) can be written as

Φ(B)(X ÿ µX ) � ε, X ÿ µX � Ψ(B)ε,

where B denotes the back-shift operator (Bx) t � xtÿ1, x 2 RZ. At least formally we can see
that Ψ(z) � 1=Φ(z). Denote by F t � σ(fεs; s < tg), the σ-field generated by fεsg

t
s�ÿ1. Our

main assumptions for the model are the following.

Assumption A1. X t ÿ µX �
P

1

j�0 ψ jε tÿ j, ψ0 � 1 (t 2 Z) with fε tg t2Z stationary, ergodic
and E[ε tjF tÿ1] � 0, E[ε2

t jF tÿ1] � σ 2 ,1, Ejε tj
s ,1 for some s > 4.
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Assumption A2. Ψ(z) is bounded away from zero for jzj < 1,
P

1

j�0 jr
jψ jj,1 for some

r 2 N.

Since our sieve bootstrap scheme draws independently from the residuals, it is usually unable
to catch the probability structure of a statistic based on a model satisfying assumption A1
with non-independent variables fε tg t2Z. The arithmetic mean as a linear statistic is an
exception in this respect. We therefore sometimes strengthen assumption A1 to

Assumption A19. X t ÿ µX �
P

1

j�0 ψ jε tÿ j, ψ0 � 1 (t 2 Z) with fε tg t2Z i.i.d. and E[ε t] � 0,
Ejε tj

s ,1 for some s > 4.

Assumption A1 is basically the same as in An et al. (1982). Assumption A2 includes models
with polynomial decay of the coefficients fψ jg

1

j�0 or equivalently fφ jg
1

j�0. ARMA( p, q)
models ( p ,1, q ,1) satisfy assumption A2 with an exponential decay of fψ jg

1

j�0. Note
that assumption A2 implies that Φ(z) is bounded away from zero for jzj < 1 and
P

1

j�0 jrjφ jj,1. In particular, assumption A19 is more restrictive than the conditions in
Künsch (1989) for the blockwise bootstrap, which is shown to be generally valid for strong-
mixing sequences (cf. Künsch 1989).

We now specify our autoregressive approximation and make the following widely used
assumption:

Assumption B. p � p(n) !1, p(n) � o(n) (n !1) and ^φ p � (^φ1,n, . . . , ^φ p,n)T satisfy
the empirical Yule–Walker equations

^Γp^φ p � ÿγ̂ p,

where ^Γp � [^R(iÿ j)] p
i, j�1, γ̂ p � (^R(1), . . . , ^R( p))T, ^R( j) � nÿ1

Pnÿj jj
t�1 (Xt ÿ �X )(X t�j jj ÿ

�X ).

Below we write R( j) for cov (X 0, Xj).

3.2. BOOTSTRAPPING THE MEAN

Our first result, proved in Section 5.3, shows consistency in the simple case of the arithmetic
mean. As mentioned in Section 3.1, the sieve bootstrap in this case will be shown to be
consistent even for processes as in assumption A1 with non-independent innovations.

Theorem 3.1. Let assumptions A1 with s � 4, A2 with r � 1 and B with p(n) �
o((n=log (n))1=4) hold. Then:

(i) var� (nÿ1=2
Pn

t�1 X�t )ÿ var (nÿ1=2
Pn

t�1 X t) � oP(1) (n !1).
(ii) If, in addition, nÿ1=2

Pn
t�1(X t ÿ µX )!d N (0,

P
1

k�ÿ1 R(k)), then
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sup
x2R

�
�
�
�
P� nÿ1=2

Xn

t�1

(X�t ÿ �X ) < x

" #

ÿ P nÿ1=2
Xn

t�1

(X t ÿ µX ) < x

" #�
�
�
�
� oP(1) (n !1):

Remark. Assumption A1 only guarantees consistency of second moments; the additional
assumption in (ii) is needed for consistency of the distribution function.

We now present a comparison of the sieve bootstrap with the blockwise bootstrap in the
case of the mean �X n. It is shown in Künsch (1989, Theorem 3.1) that

nvar� ( �X�n ) �
Xl

k�ÿl

(1ÿ jkj=l )^R(k), (3:1)

where l � l (n) !1, l (n) � o(n) (n !1) is the blocklength. More generally it is shown
in Bühlmann and Künsch (1994) that a generalization of the blockwise bootstrap, the so-
called correlated weights bootstrap, satisfies

nvar� ( �X�n ) �
Xl

k�ÿl

w(jkj=l )^R(k), (3:2)

where w(·) is a window that is twice differentiable at zero, with w9(0) � 0, w 0(0) 6� 0.
Formulae (3.1) and (3.2) tell us that the blockwise or correlated weights bootstrap variance
nvar� ( �X�n ) is asymptotically equivalent to a lag-window spectral estimate at zero (multiplied
by 2π) with the triangular or a smoother window, respectively. Parzen (1957) has given
asymptotic expressions for the mean square error of lag-window spectral estimators (see also
Priestley 1981). Thus under suitable conditions we obtain, for the blockwise bootstrap

E[nvar� ( �X�n )]ÿ nvar ( �X n) � ÿl ÿ1
X1

k�ÿ1

jkjR(k),

(3:3)

var [nvar� ( �X�n )] � l nÿ14
X1

k�ÿ1

R(k)

 !2�

3;

and for the correlated weights bootstrap

E[nvar� ( �X�n )]ÿ nvar ( �X n) � ÿl ÿ2w0(0)
X1

k�ÿ1

k2 R(k)=2,

(3:4)

var [nvar� ( �X�n )] � l nÿ12
�
1

1

w2(x) dx
X1

k�ÿ1

R(k)

 !2

:

By choosing l (n) � const:n1=3 in (3.3) or l (n) � const:n2=5 in (3.4), we obtain the best
order for the error of the bootstrap variance, namely

nvar� ( �X�n )ÿ nvar ( �X n) � OP(nÿ1=3) for the blockwise bootstrap, (3:5)

nvar� ( �X�n )ÿ nvar ( �X n) � OP(nÿ2=5) for the correlated weights bootstrap: (3:6)
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In principle, one could obtain better rates for the correlated weights bootstrap under more
restrictive conditions on the dependence structure, that is, the smoothness of the spectral
density at zero, and by taking a smoother window w(·). However, we have to deal here with
an unsolved ‘oracle’ problem: since we do not know a priori the smoothness of the spectral
density we cannot choose the optimal weights for the correlated weights bootstrap. On the
other hand, we can show the following result, proved in Section 5.3, for the sieve bootstrap.

Theorem 3.2

(i) Let assumptions A1 with s � 4, A2 with r > 1 and B with p(n) �
o((n=log (n))1=(2r�2)) hold. Moreover, assume that

P

t1, t2, t3 jcum4 (X 0, X t1 , X t2 , X t3 )j
,1. Then

nvar� ( �X�n )ÿ nvar ( �X n) � OP(( p=n)1=2)� OP( pÿr):

(ii) Let assumptions A1 with s � 4, A2 with r � 1 and B with p(n) �
o((n=log (n))1=4) hold. Denote by

^f AR(λ) �

(nÿ p)ÿ1
Xn

t� p�1

~ε2
t,n

2π
�
�
�
�

Xp

j�0

^φ j,n eÿi jλ
�
�
�
�

2 (ÿπ < λ < π)

the autoregressive spectral estimator. Then

nvar� ( �X�n )ÿ 2π^f AR(0) � O(nÿ1) almost surely.

The sieve bootstrap yields a better variance estimate than the blockwise or correlated
weights bootstrap if the coefficients fψ jg

1

j�0 decay sufficiently fast, that is to say, for some
weak form of weak dependence. As an example, we consider an ARMA( p, q) model
( p ,1, q ,1), where the coefficients fψ jg

1

j�0 decay exponentially. Then for any
0 ,k, 1=2 we can choose r . 1=(2k)ÿ 1 and p(n) � const:n1=(2r�2) log (n)ÿ1=(2r�2)ÿ1,
which yields for the sieve bootstrap

nvar� ( �X�n )ÿ nvar ( �X n) � OP(nÿ1=2�k);

compare this with the results for the other bootstrap schemes in (3.5) and (3.6). We mention
here that the ‘oracle’ problem can now be solved (at least in some non-optimal sense). For
further discussion, see Section 3.4.

By Theorem 3.2(ii), the sieve bootstrap variance nvar� ( �X�n ) is asymptotically equivalent
to the autoregressive spectral estimate at zero, multipled by 2π. Under additional conditions
the autoregressive spectral estimate has the same asymptotic distribution as the lag-window
estimate with a rectangular window (cf. Berk 1974). Our comparison is now completed by
interpreting the different bootstrap variances as lag-window estimates at zero with different
windows, namely rectangular (sieve bootstrap), triangular (blockwise bootstrap), smooth at
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zero with some non-vanishing derivative of order h, h > 2 (correlated weights bootstrap).
This comparison should only be considered as an additional interpretation since the sieve
bootstrap should be seen as a sieve rather than a kernel (window) method.

3.3. BOOTSTRAP FOR A CLASS OF NONLINEAR ESTIMATORS

We focus now on estimators that are functions of linear statistics, i.e.,

Tn � f f(nÿ m� 1)ÿ1
Xnÿm�1

t�1

g(X t, . . . , X t�mÿ1)g, (3:7)

where g � (g1, . . . , gq)T and f : Rq
! R~q, (q, ~q > 1). Let θ � E[g(X t, . . . , X t�mÿ1)]. This

model class is also considered in Künsch (1989, Example 2.2). It includes versions of the
sample autocovariances, autocorrelations, partial autocorrelations and Yule–Walker estima-
tors in autoregressive processes. We usually require that f and g satisfy some smoothness
properties and make the following assumption:

Assumption C. f � ( f 1, . . . , f
~q)T has continuous partial derivatives y 7! (@ f u=@xi)jx�y

(u � 1, . . . , ~q; i � 1, . . . , m) for y in a neighbourhood U(θ) of θ, and the differentials at
θ, y 7! Dfu(θ; y) �

Pm
i�1(@ f u=@xi)jx�θyi (u � 1, . . . , ~q) do not vanish. The function g has

continuous partial derivatives of order h (h > 1), y 7! (@ h gu=@xi1 . . . @xih )jx�y, which satisfy
the Lipschitz condition: for every y, z,
�
�
�
�

@
h gu(x)

@xi1 . . . @xi h

jx�y ÿ
@

h gu(x)
@xi1 . . . @xi h

jx�z

�
�
�
�

< Cuiyÿ zi u � 1, . . . , q; 1 < ii, . . . ih < m,

where i·i denotes the Euclidean norm, and x, y, z 2 Rm.

Theorem 3.3. Let assumptions C, A19 with s � 2(h� 2), A2 with r � 1 and B with
p(n) � o((n=log (n))1=4) hold. Then, writing θ� � E�[g(X�t , . . . , X�t�mÿ1)], we have

sup
x2R~q

jP�[n1=2(T�n ÿ f (θ�)) < x]ÿ P[n1=2(Tn ÿ f (θ)) < x]j � oP(1) (n !1):

The proof is given in Section 5.3.
One possible extension of the model class as given in (3.7) would be

Tn � T(Pn), (3:8)

where Pn is an empirical distribution of the data and T is a smooth functional. To analyse the
validity of the sieve bootstrap for estimators as in (3.8) we need results about the sieve
bootstrapped empirical process. This route has been mapped out in the i.i.d. set-up by Bickel
and Freedman (1981) and for the blockwise bootstrap by Naik-Nimbalkar and Rajarshi
(1994) and Bühlmann (1993; 1994; 1995a). At present no results in this direction exist for the
sieve bootstrap. However, for the linear part (nÿ m� 1)ÿ1

Pnÿm�1
t�1 IF(X t, . . . , X t�mÿ1; P)
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of an estimator in (3.8), Theorem 3.3 usually yields consistency; here IF(x, P) denotes the
influence function of the functional T at the m-dimensional distribution P of (X t, . . . ,
X t�mÿ1) (cf. Hampel et al. 1986).

3.4. CHOICE OF THE ORDER p

Our main results in Section 3.2 and 3.3 require some regularity conditions for the order
p � p(n) of the approximating autoregressive process which cover quite general situations.
This order acts as some kind of smoothing parameter. We briefly address now the question of
a ‘good’ or even some kind of optimal choice of p. Our Theorem 3.2 and its discussion
indicate that the choice of p determines the accuracy of the procedure. We suggest two
concepts which can be combined for choosing the parameter p.

If the process fXtg t2Z is an AR(1) as in (2.2), the AIC criterion leads to an
asymptotically efficient choice p̂AIC for the optimal order popt(n) of some projected AR(1);
cf. Shibata (1980). The related BIC criterion has an optimality property when the order of
the true underlying autoregressive process is finite. We prefer AIC, by taking the view that
the true model is complex and not of finite dimension. As an example of the behaviour of
the AIC, suppose that the autoregressive coefficients in (2.2) decay as

φ j � const: jÿv as j !1 (v . 1):

Then
P

1

j�0 jrjφ jj,1 for r � [vÿ 1ÿ k] (k. 0), where [x] denotes the integer part of
x 2 R, and equivalently

P
1

j�0 jrjψ jj,1. On the other hand, Shibata (1980) has shown that
p̂AIC � const:n1=(2v). Therefore p̂AIC � o((n=log (n))1=(2r�2)) (r � [vÿ 1ÿ k]), which is the
assumption of Theorem 3.2(i). This then explains that p̂AIC is at least a ‘good’ order for
nvar� ( �X�n ) in Theorem 3.2(i): it is such that the error nvar� ( �X�n )ÿ nvar ( �X n) gets
(automatically) smaller with faster decay of the coefficients fψ jg

1

j�0 in assumption A1. In
other words, the sieve bootstrap solves the ‘oracle’ problem. Shibata (1981) shows also the
optimality of the AIC for the global relative squared error of the autoregressive spectral
estimator

� π
ÿπf(^f AR(λ)ÿ f (λ))= f (λ)g2 dλ. But by Theorem 3.2(ii) we know that the

corresponding AR spectral estimator should be considered locally at zero. At present we
have no optimality result for the AIC for nvar� ( �X�n ).

The other concept relies on the idea of prewhitening, as a graphical device. For some
candidates p, we fit the autoregressive model, obtain the residuals and compute some
spectral density estimate based on the residuals. We would choose p such that this
estimated spectrum is close to a constant. This method can detect autocorrelation but is not
able to distinguish between uncorrelated and independent innovations (compare assumptions
A1 and A19).

These two concepts seem to be nicer than the adaptive choice of a blocklength in the
blockwise bootstrap (cf. Bühlmann and Künsch 1994). There, the optimal blocklength
depends not only on the dependence structure of the observation process but also on the
structure of the estimator to be bootstrapped.
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4. Simulations

We study and compare the performance of the sieve and blockwise bootstrap. We consider
the following models.

(M1) AR(48), X t �
P48

j�1 φ j X tÿ j � ε t, φ j � (ÿ1) j�17:5=( j� 1)3 ( j � 1, . . . , 48), where
ε t i.i.d. � N (0, 1).

(M2) ARMA(1, 1), Xt � 0:8X tÿ1 ÿ 0:5ε tÿ1 � ε t, where ε t i.i.d. � 0:95N (0, 1) �
0:05N (0, 100). Models with these ARMA parameters have been considered in Glasbey
(1982).

(M3) ARMA(1, 1), X t � ÿ0:8X tÿ1 ÿ 0:5ε tÿ1 � ε t, where ε t i.i.d. � 0:95N (0, 1) �
0:05N (0, 100).

(M4) SETAR(2; 1, 1), Xt � (1:5ÿ 0:9X tÿ1 � εt)1[X tÿ1<0] � (ÿ0:4ÿ 0:6X tÿ1 � ε t)1[X tÿ1.0],
where ε t i.i.d. � N (0, 4). This self-exciting threshold autoregressive (SETAR) model is
considered in Moeanaddin and Tong (1990).

Models (M1)–(M3) satisfy our assumption A19 for any s 2 N. This is not true for model
(M4), which represents a nonlinear process with non-Gaussian marginal distribution (cf.
Moeanaddin and Tong 1990). In models (M1) and (M2) the autocorrelation function is
positive (in (M1), there are at lag 31 and some bigger lags slightly negative autocorrelations
of order 10ÿ4), whereas in (M3) and (M4) the autocorrelation function is ‘damped periodic’,
that is, alternately changing signs and decreasing.

Since the sieve bootstrap relies on a linear approximation we do not want to give
advantage to the sieve bootstrap, and always consider here the sample median as the
estimator to be bootstrapped.

For the sieve bootstrap we choose the order p(n) of the approximating autoregressive
process by minimizing the AIC in a range 0 < p < 10 log10 (n) (this is the default value in
S-PLUS); cf. Shibata (1980). In Table 4.1 we give the summary statistics for the data-driven
choices of p̂AIC based on 100 simulations. For the blockwise bootstrap we estimate the
blocklength adaptively as in Bühlmann and Künsch (1994), where we make the additional
truncation of very large blocklengths at size n=2 (this was used in (M3) and (M4)).

Our results are based on 100 simulations; the number of bootstrap replicates is always
300. We only report the bootstrap estimates for the variance; the estimates for higher
cumulants are not very accurate (cf. Bühlmann and Künsch 1994). Let Tn � med fX 1, . . . ,
X ng, σ 2

n � nvar (Tn), (σ 2
n)� � nvar� (T�n ), RMSE � MSE((σ 2

n)�)=σ 4
n (relative mean square

error). We computed the mean, standard deviation and RMSE as sample moments over the
100 simulations; an estimated standard error of the RMSE is given in parentheses. The true
variance σ 2

n is based on 1000 simulations. The sample sizes are n � 64 and n � 512.
The results, given in Tables 4.2 and 4.3, can be classified as follows. For processes with

positive autocorrelation function, both procedures exhibit roughly the same performance.
There might be a small advantage for the sieve bootstrap. In a pairwise comparison of
RMSE over the 100 simulations for models (M1) and (M2), the only significant difference
at the 5% level was in the case of (M1), n � 512, in favour of the sieve bootstrap.

If the autocorrelation function of the model is ‘damped periodic’, the sieve bootstrap
outperforms the blockwise bootstrap. This can be explained by the equivalence of the
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bootstrap variance to the corresponding spectral estimators at zero. It is known from
spectral estimation that lag-window estimation is harder for ‘damped periodic’ autocorrela-
tion functions, whereas the autoregressive estimate is usually more reliable. In (M3) with
n � 64 both procedures perform badly. This is mainly due to the influential innovation

Table 4.1. Autoregressive order estimation by AIC

E[ p̂AIC] SD( p̂AIC) min ( p̂AIC) max ( p̂AIC)

n � 64
(M1) 1.8 1.0 1 5
(M2) 1.8 1.4 0 9
(M3) 2.8 1.7 1 14
(M39) 2.8 1.1 1 8
(M4) 1.6 1.2 1 6
(M49) 1.6 1.2 1 6

n � 512
(M1) 3.6 2.1 2 13
(M2) 4.7 3.7 2 21
(M3) 5.2 2.6 3 21
(M39) 4.9 2.7 3 20
(M4) 2.6 2.7 1 17
(M49) 5.0 3.1 1 19

Table 4.2. Sieve bootstrap variance estimation

σ 2
n E[(σ 2

n)�] SD((σ 2
n)�) RMSE

n � 64
(M1) 16.4 13.1 8.6 0.31 (0.061)
(M2) 14.1 8.1 8.2 0.52 (0.063)
(M3) 3.1 5.0 5.2 3.09 (0.891)
(M39) 2.4 2.3 0.7 0.09 (0.013)
(M4) 8.9 7.8 2.0 0.07 (0.008)
(M49) 7.5 3.6 0.8 0.30 (0.011)

n � 512
(M1) 16.7 16.1 4.3 0.07 (0.009)
(M2) 14.2 12.5 6.5 0.22 (0.046)
(M3) 2.6 2.9 0.7 0.08 (0.020)
(M39) 2.2 2.2 0.3 0.02 (0.002)
(M4) 9.8 8.0 1.1 0.05 (0.004)
(M49) 12.5 3.6 0.5 0.51 (0.006)
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outliers in the series: one such outlier is followed by approximately 10 contaminated values
until the series stabilizes. Therefore we also considered the model

(M39) ARMA(1, 1), Xt � ÿ0:8X tÿ1 ÿ 0:5ε tÿ1 � ε t, where ε t i.i.d. � t6.

Now the sieve bootstrap performs very well (see Table 4.2). The fact that the blockwise
bootstrap does not gain performance with the larger sample size (see Table 4.3) is due to
one ‘extraordinary’ occurrence out of the 100 simulations. Without this occurrence the
RMSE for the blockwise bootstrap with n � 512 decreases to 0.56.

The surprise is the extremely high performance of the sieve bootstrap in (M4), though
this model is beyond the theory of linear processes as in assumption A19. The approx-
imating series does not even asymptotically capture model (M4). However, it seems that the
AR approximation is in some sense close enough; the marginal distribution of X t is not too
far away from Gaussianity (cf. Moeanaddin and Tong 1990). The blockwise bootstrap,
which does not seem to be restricted to linear processes as in (2.1), yields a poor result.

To see where the sieve bootstrap breaks down, we also considered a similar threshold
model as (M4) but now with smaller innovations ε t:

(M49) SETAR(2; 1, 1), Xt � (1:5ÿ 0:9X tÿ1� εt)1[X tÿ1<0] � (ÿ0:4ÿ 0:6X tÿ1 � εt)1[X tÿ1 .0],
where ε t i.i.d. � N (0, 1) (see Moeanaddin and Tong 1990).

The marginal distribution of X t in (M49) is now strongly bimodal and much further away
from Gaussianity than in (M4). Since the blockwise bootstrap behaves wildly, we use the
median and the median absolute deviation (MAD) as estimators based on the 100 simulations
for the expectation and standard deviation of the bootstrap variance. The sieve bootstrap has a
bias which does not decrease with increasing sample size. This shows that the model (M49)

Table 4.3. Blockwise bootstrap variance estimation

σ 2
n E[(σ 2

n)�] SD((σ 2
n)�) RMSE

n � 64
(M1) 16.4 9.9 6.8 0.33 (0.025)
(M2) 14.1 8.3 9.3 0.61 (0.072)
(M3) 3.1 7.1 11.7 15.52 (6.872)
(M39) 2.4 2.9 2.3 0.95 (0.198)
(M4) 8.9 11.4 15.8 3.26 (1.600)
(M49) 7.5 3.5 3.9 0.55 (0.049)

n � 512
(M1) 16.7 14.2 5.1 0.12 (0.015)
(M2) 14.2 11.0 4.3 0.14 (0.013)
(M3) 2.6 3.5 2.4 0.93 (0.265)
(M39) 2.2 2.9 2.1 0.98 (0.430)
(M4) 9.8 9.9 5.8 0.35 (0.058)
(M49) 12.5 10.0 8.5 0.50 (0.040)
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cannot be represented as a linear process. As expected, the standard deviation decreases with
larger sample size (compare with Table 4.2). For the blockwise bootstrap, the bias is getting
smaller with larger sample size (see Table 4.3). This reflects the theory that the blockwise
bootstrap is asymptotically working for general mixing processes which can be strongly
nonlinear. However, the blockwise bootstrap is, in this situation, no better than the sieve
bootstrap. We wondered if we could use a fixed blocklength and improve the blockwise
procedure: by trying the blocklengths l � 4, 8, 16, 32, 64 for the sample size n � 512, we
could not find any significantly better result.

We draw the final conclusion that in the framework of linear processes, the sieve
bootstrap is generally superior to the blockwise bootstrap.

5. Structural properties of the sieve bootstrap and proofs

5.1. AUTOREGRESSIVE APPROXIMATION

We first cite here two results which serve as important tools in our analysis. Using the
estimation procedure as in assumption B, we set ^Φn(z) �

P p(n)
j�0

^φ j,nzj, ^φ0,n � 1
(z 2 C, jzj < 1). It is known that ^Φn(z) is invertible for jzj < 1, i.e., 1= ^Φn(z) �
^Ψn(z) �

P
1

j�0
^φ j,nzj (jzj < 1); cf. Brockwell and Davis (1987, p. 233). Hence, using the

definition (2.3) of the sieve bootstrap we write

X�t ÿ �X �

X1

j�0

^ψ j,nε�tÿ j, t 2 Z:

The next result can be seen as a generalization of Wiener’s theorem (cf. Wiener 1933;
Zygmund 1959) for the estimation case.

Lemma 5.1. Let assumptions A1 with s � 4, A2 with r 2 N and B with p(n) �
o((n=log (n))1=(2r�2)) hold. Then there exists a random variable n1 such that

sup
n>n1

X1

j�0

jr
j^ψ j,nj,1 almost surely.

Proof. This is essentially Theorem 3.1 in Bühlmann (1995c), which covers slightly more
general situations. u

Lemma 5.2. Let assumptions A1 with s � 4, A2 with r � 1 and B with p(n) �
o((n=log (n))1=4) hold. Then

sup
0< j,1

j^ψ j,n ÿ ψ jj � o(1) (n !1) almost surely.

Proof. This follows from Theorem 3.2 in Bühlmann (1995c). u
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5.2. PROPERTIES OF THE SIEVE BOOTSTRAP SAMPLE

We first present some results about the resampled innovations ε�t i.i.d. ^Fε,n. By the definition
of ^Fε,n (see Section 2) we have

E�[ε�t ] � 0:

The next lemma gives results about higher moments.

Lemma 5.3. Let assumptions A1 with s � max f2w, 4g w 2 N, A2 with r � 0 and B with
p(n) � o((n=log (n))1=2) hold. Then

E�[(ε�t )2w] � E[(ε t)
2w]� oP(1):

Proof. To prove the lemma, we need the equality

E�[(ε�t )2w] � (nÿ p)ÿ1
Xn

t� p�1

(ε̂ t,n ÿ ε̂(:)
n )2w, (5:1)

where ε̂(:)
n � (nÿ p)ÿ1

Pn
t� p�1 ε̂ t,n.

Denote by φ p � (φ1,n, . . . , φ p,n)T the solutions of the theoretical Yule–Walker equations
Γpφ p � ÿγ p (compare with assumption B and replace the sample moments by true
moments). For ease of notation we set ^φ j,n � φ j,n � 0 for j . p, ^φ0,n � φ0,n � 1. We write

ε̂ t,n � ε t ÿ ( �X ÿ µX )
X1

j�0

φ j � Qt,n � Rt,n, (5:2)

where Qt,n �
P p

j�0(^φ j,n ÿ φ j,n)(X tÿ j ÿ �X ), Rt,n �
P

1

j�0(φ j,n ÿ φ j)(X tÿ j ÿ �X ). We first
show

ε̂(:)
n � oP(1): (5:3)

We have

ε̂(:)
n � (nÿ p)ÿ1

Xn

t� p�1

ε t ÿ ( �X ÿ µX )
X1

j�0

φ j

 !

�

Xn

t� p�1

Qt,n �
Xn

t� p�1

Rt,n

( )

� S1 � S2 � S3: (5:4)

By assumptions A1 and A2 we have

S1 � OP(nÿ1=2): (5:5)

By the Cauchy-Schwarz inequality

jS2j <
Xp

j�0

(^φ j,n ÿ φ j,n)2

 !1=2

(nÿ p)ÿ1
Xn

t� p�1

Xp

j�0

(X tÿ j ÿ �X )2

 !1=2

: (5:6)
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In the proof of Theorem 5 in An et al. (1982), it is shown under the assumption about p(n)
that

Xp

j�0

(^φ j,n ÿ φ j,n)2
� o((log (n)=n)1=2) almost surely.

Thus by (5.6)

S2 � o((log (n)=n)1=4)OP( p1=2) � oP(1): (5:7)

Furthermore, by the extended Baxter inequality,

X1

j�0

jφ j,n ÿ φ jj < const:
X1

j� p�1

jφ jj

(see the proof of Bühlmann’s (1995c) Theorem 3.1). Thus

EjS3j < EjX t ÿ �X j
Xp

j�0

jφ j,n ÿ φ jj < EjX t ÿ �X j
X1

j� p�1

jφ jj � oP(1): (5:8)

By virtue of (5.4), (5.5), (5.7) and (5.8) we have shown (5.3).
Next we show that

(nÿ p)ÿ1
Xn

t� p�1

(ε̂ t,n)2w
� E[(ε t)

2w]� oP(1): (5:9)

Analogously as for proving (5.7), (5.8) and using the fact that Ejε tj
2w ,1, we arrive at

(nÿ p)ÿ1
Xn

t� p�1

jQt,nj
2w
� oP(( p1=2(log (n)=n)1=4)2w) � oP(1), (5:10)

(nÿ p)ÿ1
X1

t� p�1

jRt,nj
2w
� OP

X1

j� p�1

jφ jj

 !2w
0

@

1

A
� oP(1): (5:11)

Now expand the right-hand side of (5.2). Then by (5.10), (5.11), the ergodicity of fε tg t2Z and
using Hölder’s inequality, we can show (5.9). Finally, by a binomial expansion in (5.1) and
using (5.3), (5.9) and again Hölder’s inequality, we complete the proof. u

Lemma 5.4. Let assumptions A1 with s � 4, A2 with r � 1 and B with p(n) �
o((n=log (n))1=2) hold. Then

ε�t !
d�

ε t in probability.

Proof. Let Fε,n(x) � (nÿ p)ÿ1
Pn

t� p�1 1[ε t<x], Fε(x) � P[ε t < x] and denote by d2(:, :) the
Mallows metric (cf. Bickel and Freedman 1981). Then it is known that

d2(Fε,n, Fε) � o(1) almost surely

138 P. Bühlmann



(see Bickel and Freedman 1981, Lemma 8.4). Thus it remains to prove that

d2(^Fε,n, Fε,n) � oP(1), (5:12)

for ^Fε,n defined as in Section 2.
Let S be uniformly distributed on fp� 1, . . . , ng and let Z1 � εS , Z2 � ~εS,n, where ~ε t,n

is defined as in Section 2. Then

d2(^Fε,n, Fε,n)2 < ES jZ2 ÿ Z1j
2
� (nÿ p)ÿ1

Xn

t� p�1

(~ε t,n ÿ ε t)
2

� (nÿ p)ÿ1
Xn

t� p�1

Qt,n � Rt,n ÿ ( �X ÿ µX )
X1

j�0

φ j ÿ ε̂(:)
n

 !2

,

where we have used the same notation as in the proof of Lemma 5.3. But the last expression
converges to zero in probability by (5.3), (5.10), (5.11) and �X ÿ µX � oP(1). Hence (5.12)
holds. u

In the next step we extend Lemma 5.4 for the innovations ε�t to the observations X�t .

Lemma 5.5. Let assumptions A19 with s � 4, A2 with r � 0 and B with p(n) �
o((n=log (n)1=4) hold. Then

X�t !
d�

Xt in probability.

Proof. Let M . 0; we specify its value later. We decompose

X�t ÿ �X �

X1

j�0

^ψ j,nε�tÿ j �

XM

j�0

ψ jε�tÿ j � U�t,n � V�t,n,

where U�t,n �
PM

j�0(^ψ j,n ÿ ψ j)ε�tÿ j, V�t,n �
P

1

j�M�1
^ψ j,nε�tÿ j.

Let x 2 R be a continuity point of the c.d.f. of Xt ÿ µX and let γ . 0 be arbitrary. Then,
as for proving Slutsky’s theorem,

P�[X�t ÿ �X < x] < P�
XM

j�0

ψ jε�tÿ j < x� γ

2

4

3

5� P�[jU�t,nj. γ=2]� P�[jV�t,nj. γ=2]:

Let k . 0 be arbitrary. Applying Lemma 5.2 and 5.3 and Lemma 5.1 and 5.3, respectively,
we can choose M � M(γ, k) such that, for n sufficiently large,

P�[jU�t,nj. γ=2] < k=2 in probability,

P�[jV�t,nj. γ=2] < k=2 in probability.

Therefore

Sieve bootstrap for time series 139



P�[X�t ÿ �X < x] < P�
XM

j�0

ψ jε�tÿ j < x� γ

2

4

3

5� k in probability, (5:13)

and analogously

P�[X�t ÿ �X < x] > P�
XM

j�0

ψ jε�tÿ j < xÿ γ

2

4

3

5ÿ k in probability. (5:14)

By Lemma 5.4, combined with the i.i.d property of fε tg t2Z and the conditional i.i.d. property
of fε�t g t2Z, we have, for n sufficiently large,

�
�
�
�
P�

XM

j�0

ψ jε�tÿ j < x� γ

2

4

3

5ÿ P
XM

j�0

ψ jε tÿ j < x� γ

2

4

3

5

�
�
�
�

< k in probability. (5:15)

Analogously, as before, we can show, for an arbitrary æ . 0,

P
XM

j�0

ψ jε tÿ j < x� γ

2

4

3

5 < P[X t ÿ µX < x� γ� æ]� k, (5:16)

P
XM

j�0

ψ jε tÿ j < xÿ γ

2

4

3

5 > P[Xt ÿ µX < xÿ γÿ æ]ÿ k: (5:17)

By (5.13)–(5.17) we have, for n sufficiently large,

P�[X�t ÿ �X < x] < P[X t ÿ µX < x� γ� æ]� 3k in probability,

P�[X�t ÿ �X < x] > P[X t ÿ µX < xÿ γÿ æ]ÿ 3k in probability.

Since γ, æ and k are arbitrary, x is a continuity point of the c.d.f. of Xt ÿ µX and
X ÿ µX � oP(1), the proof is complete. u

Corollary 5.6. Suppose that the assumptions of Lemma 5.5 hold. Then for every d 2 N,
t1, . . . , td 2 Z

(X�t1
, . . . , X�td

) !
d�

(X t1 , . . . , X td ) in probability.

Proof. We use the Cramér–Wold device and show that

Xd

i�1

ci X
�

t i
!

d� X
d

i�1

ci X ti in probability (ci 2 R):

For this we decompose X�t i
as in the proof of Lemma 5.5 and proceed along the same lines.

u
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5.3. PROOFS OF MAIN RESULTS

Proof of Theorem 3.1. (i) By successively using Lemma 5.3, Lemma 5.1 with r � 1 and
Lemma 5.2 we have

nvar� ( �X�n ) �
Xnÿ1

k�ÿn�1

X1

j�0

^ψ j,n ^ψ j�jkj,n(1ÿ jkj=n)E�jε�t j
2

�

Xnÿ1

k�ÿn�1

X1

j�0

^ψ j,n ^ψ j�jkj,n(1ÿ jkj=n)Ejε tj
2(1� oP(1))

�

X1

j�0

^ψ j,n

 !2

Ejε tj
2(1� oP(1))

�

X1

j�0

ψ j

 !2

Ejε tj
2
� oP(1):

Since nvar ( �X n) � (
P

1

j�0 ψ j)2Ejε tj
2
� o(1) we have shown (i).

(ii) We truncate the MA(1) representation of X�t ÿ �X and set

X�t,M ÿ
�X �

XM

j�0

^ψ j,nε�tÿk , �X�n,M � nÿ1
Xn

t�1

X�t,M :

Then, as for proving (i),

nvar� ( �X�n,M ) �
XM

j�0

ψ j

0

@

1

A

2

Ejε tj
2
� oP(1):

We now use a blocking technique with ‘small, negligible’ and ‘large, dominating’ blocks. Let

An,i �
Xia�(iÿ1)b

t�(iÿ1)(a�b)�1

(X�t,M ÿ
�X ), i � 1, . . . , [n=(a� b)],

Bn,i �
Xi(a�b)

t�ia�(iÿ1)b�1

(X�t,M ÿ
�X ), i � 1, . . . , [n=(a� b)],

where a � a(n) !1, b � b(n) !1, a(n) � o(n), b(n) � o(a(n)). Let N (a� b) � n and
assume without loss of generality that N 2 N. Then

n1=2( �X�n,M ÿ
�X ) � nÿ1=2

XN

i�1

An,i � nÿ1=2
XN

i�1

Bn,i:

We first show that
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nÿ1=2
XN

i�1

Bn,i � oP�(1) in probability. (5:18)

We have that E�[nÿ1=2
PN

i�1 Bn,i] � 0. Since the X�t,M s are M-dependent with respect to P�,
the fBn,ig

N
i�1 are (conditionally) independent for n sufficiently large and, hence, as for

proving (i)

var� nÿ1=2
XN

i�1

Bn,i

 !

� nÿ1 N var� (Bn,1)

� nÿ1 Nb
XM

j�0

ψ j

0

@

1

A

2

Ejε tj
2
� oP(1) � oP(1):

Therefore (5.18) holds.
We next show that

nÿ1=2
XN

i�1

An,i !
d�

N 0,
XM

j�0

ψ j

0

@

1

A

2

Ejε tj
2

0

B
@

1

C
A in probability. (5:19)

Again E�[nÿ1=2
PN

i�1 An,i] � 0. As above, and by using Na , n,

var� nÿ1=2
XN

i�1

An,i

 !

� nÿ1 N var� (An,1)

�

XM

j�0

ψ j

0

@

1

A

2

Ejε tj
2
� oP(1): (5:20)

Then we check Lindeberg’s condition

N E�
A2

n,1

σ 2
n

1[jA n,1=σ nj.k]

" #

� oP(1) for k. 0, (5:21)

where σ 2
n � var� (

PN
i�1 An,i) � const:n in probability.

But by reasoning as for Chebyshev’s inequality

N E�
A2

n,1

σ 2
n

1[jAn,1=σ nj.k]

" #

< Nk
ÿ2σÿ4

n E�jAn,1j
4
:

A direct calculation using Lemmas 5.1 and 5.3 leads then to E�jAn,1j
4
� OP(a2) and hence

N E�
A2

n,1

σ 2
n

1[jA n,1=σ nj.k]

" #

� OP(Nnÿ2a2) � OP(nÿ1a) � oP(1),

which proves (5.21).
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Thus by (5.20), (5.21) and the M-dependence of the X�t,M s we have shown (5.19) and
hence by (5.18)

n1=2( �X�n,M ÿ
�X ) !

d�
N 0,

XM

j�0

ψ j

0

@

1

A

2

Ejε tj
2

0

B
@

1

C
A in probability. (5:22)

Finally we show that the effect of truncation is negligible. Let

n1=2
�Y�n,M � n1=2( �X�n ÿ �X�n,M ) � nÿ1=2

Xn

t�1

X1

j�M�1

^ψ j,nε�tÿ j:

Then, by Lemmas 5.1 and 5.3,

var� (n1=2
^Y�n,M ) �

Xnÿ1

k�ÿn�1

X1

j�M�1

^ψ j,n ^ψ j�jkj,n(1ÿ jkj=n)E�jε�t j
2

< const:
X1

j�M�1

j^ψ j,nj < const:Mÿ1
X1

j�M�1

jj^ψ j,nj in probability. (5:23)

By (5.22) and (5.23) we complete the proof for (ii) (for this kind of reasoning cf. Anderson
1971, Corollary 7.7.1). u

Proof of Theorem 3.2. Note that cov� (X�0 , X�k ) � ^R(k)(E�jε�t j
2)=σ̂ 2 for jkj < p, where

σ̂ 2
�

^R(0)� ^φT
pγ̂ p is the Yule–Walker estimate of σ 2

� Ejε tj
2. The difference between

E�jε�t j
2 and σ̂ 2 is due to initial conditions such as X pÿ1 �� � �� X 0 � �X . These edge

effects are negligible, i.e., (E�jε�t j
2)=σ̂ 2

� 1� OP( pnÿ1). We have, by using Lemmas 5.1 and
5.3,

nvar� ( �X�n ) �
Xp

k�ÿ p

^R(k)(1ÿ jkj=n)(1� OP( pnÿ1))� 2
Xnÿ1

k� p�1

X1

j�0

^ψ j,n ^ψ j�k,n(1ÿ k=n)E�jε�t j
2

�

Xp

k�ÿ p

^R(k)(1ÿ jkj=n)(1� OP( pnÿ1))� OP

X1

j� p�1

j^ψ j,nj

 !

�

Xp

k�ÿ p

^R(k)(1ÿ jkj=n)(1� OP( pnÿ1))� OP( pÿr):

Now (i) follows by Theorem 9.3.4 in Anderson (1971).
For (ii) we observe that

jnvar� ( �X�n )ÿ 2π^f AR(0)j <

�
�
�
�
nÿ12

Xnÿ1

k�1

k cov� (X�0 , X�k )

�
�
�
�
� 2

�
�
�
�

X1

k�n

cov� (X�0 , X�k )

�
�
�
�
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< nÿ12
X1

j�0

j^ψ j,nj
X1

j�0

jj^ψ j,nj � nÿ12
X1

j�0

X1

j�n

jj^ψ j,nj

� O(nÿ1) almost surely,

where the last bound follows from Lemma 5.1. u

Proof of Theorem 3.3. We only sketch the main steps of the proof; details can be found in
Bühlmann (1995b). Write X t � (X t, . . . , X t�mÿ1))T, X�t � (X�t , . . . , X�t�mÿ1)T. The strategy
is to show that

(nÿ m� 1)ÿ1=2
Xnÿm�1

t�1

(g(X�t )ÿ E�[g(X�t )]) !
d�

N (0, Σq3q) in probability , (5:24)

where (Σ)u,v �
P

1

k�ÿ1 cov (gu(X0), gv(Xk)) is the asymptotic covariance matrix of
(nÿ m� 1)ÿ1=2

Pnÿm�1
t�1 (g(X t)ÿ E[g(X t)]). Then we will use the Delta technique.

We proceed similarly as for proving Theorem 3.1(ii). We write X�t,M �
�X �

PM
j�0 ^ψ j,nε�tÿ j, X t,M � µX �

PM
j�0 ψ jε tÿ j and define X�t,M and X t,M analogously as for

X�t and X t.
Since the function g is smooth, satisfying a Lipschitz condition for the hth derivative,

one can show, by using Taylor expansions and Minkowski’s inequality, that

E�jgu(X�0,M )j2�2=(h�1)
� OP(1), 1 < u < q: (5:25)

This implies uniform integrability of jgu(X�0,M )j2 for 1 < u < q. Then, by the M-dependence
of the X�t,M s and by Corollary 5.6,

cov� (nÿ m� 1)ÿ1=2
Xnÿm�1

t�1

gu(X�t,M ), (nÿ m� 1)ÿ1=2
Xnÿm�1

t�1

gv(X�t,M )

 !

� (ΣM )u,v � oP(1),

1 < u, v < q, (5:26)
where (ΣM )u,v �

PM�mÿ1
k�ÿMÿm�1 cov (gu(X0), gv(Xk)).

We now invoke the Cramér–Wold device for showing the convergence of the random
vector (nÿ m� 1)ÿ1=2

Pnÿm�1
t�1 (g(X�t,M )ÿ E�[g(X�t,M )]). Let l (x) �

Pq
u�1 cugu(x), cu 2 R.

We use the same blocking technique (and notation) as in the proof of Theorem 3.1(ii) and
outline how to show the Lindeberg condition as in (5.21), where now An,1 �Pa

t�1(l (X�t,M )ÿ E�[l (X�t,M )]). We bound

N E�
A2

n,1

σ 2
n

1[jAn,1=σ nj.k]

" #

< Nk
ÿδσÿ2ÿδ

n E�jAn,1j
2�δ, δ . 0: (5:27)

By using the M-dependence of the X�t,M s with respect to P� we obtain

E�jAn,1j
2�2=(h�1) < const:a(n)1�2=(2h�2),

since one can show E�jl (X�t,M )j2�2=(h�1)
� OP(1) (compare with (5.25)) and by using

moment bounds for φ-mixing variables. Choose δ � 2=(h� 1) in (5.27). Therefore by (5.27),
the Lindeberg condition holds. Hence, by invoking (5.26),
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(nÿ m� 1)ÿ1=2
Xnÿm�1

t�1

(g(X�t,M )ÿ E�[g(X�t,M )]) !
d�

N (0, ΣM ) in probability. (5:28)

We can show in a straightforward way, by using Taylor expansions for the smooth
functions g, Minkowski’s inequality and

P
1

j�0 jjψ jj,1, that

lim
M!1

(ΣM )u,v � (Σ)u,v, u, v � 1, . . . , m: (5:29)

To show that the effect of truncating the MA(1) representation of X�t is negligible, we
will prove

var� (nÿ m� 1)ÿ1=2
Xnÿm�1

t�1

(l (X�t )ÿ l (X�t,M ))

 !

< const:Mÿ1 in probability. (5:30)

To see this, let Z�t � l (X�t )ÿ l (X�t,M ). Then

var� (nÿ m� 1)ÿ1=2
Xnÿm�1

t�1

(l (X�t )ÿ l (X�t,M ))

 !

<
X1

k�ÿ1

jcov� (Z�0 , Z�k )j:

Let k . m be fixed. Write

~X�k ÿ �X �

Xkÿm

j�0

^ψ j,nε�kÿ j, . . . ,
Xkÿm

j�0

^ψ j,nε�k�mÿ1ÿ j

0

@

1

A

T

,

~X�k,M ÿ
�X �

XM^(kÿm)

j�0

^ψ j,nε�kÿ j, . . . ,
XM^(kÿm)

j�0

^ψ j,nε�k�mÿ1ÿ j

0

@

1

A

T

:

Then

Z�k � l (~X�k )ÿ l (~X�k,M )� V1 ÿ V2,

where V1 � l (X�k )ÿ l (~X�k ), V2 � l (X�k,M )ÿ l (~X�k,M ). By the independence of (l (~X�k ) ÿ
l (~X�k,M )) and Z�0 with respect to P�, we have

jcov� (Z�0 , Z�k )j < jE�[(Z�0 ÿ E�[Z�0 ])V1]j � jE�[(Z�0 ÿ E�[Z�0 ])V2]j

< i Z�0 ÿ E�[Z�0 ]i
�2(iV1i

�2 � iV2 i
�2),

where i·i
� p denotes the usual L p-norm with respect to P�. By using Taylor expansions for

the smooth function l (·), Minkowski’s and Hölder’s inequalities, we obtain

i Z0i
�2 < const:

X1

j�M�1

j^ψ j,nj in probability,

iV1i
�2 < const:

X1

j�kÿm�1

j^ψ j,nj in probability,

iV2i
�2 < const:

XM

j�(M^(kÿm))�1

j^ψ j,nj in probability,
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For 0 < k < m the bound for i Z�0 i
�2 applies. Hence

X1

k�ÿ1

jCov� (Z�0 , Z�k )j < const:
X1

j�M�1

j^ψ j,nj
X1

j�0

jj^ψ j,nj

< const:Mÿ1 in probability,

where the last bound follows by Lemma 5.1 with r � 1. This proves (5.30) and therefore, by
(5.28), (5.29) and by applying Corollary 7.7.1. in Anderson (1971), we have shown (5.24).

Finally, we use the Delta technique. Similarly as for (5.26), we can show
iθ� ÿ θi � oP(1). Using this and the continuous differentiability of f, we can show, along
the same lines as in the proof of Theorem A in Serfling (1980, p. 122), that
n1=2(T�n ÿ f (θ�)) has the same asymptotic normal distribution as n1=2(Tn ÿ f (θ)). This
completes the proof. u
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