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ABSTRACT. The empirical likelihood cannot be used directly sometimes when an infinite

dimensional parameter of interest is involved. To overcome this difficulty, the sieve empirical

likelihoods are introduced in this paper. Based on the sieve empirical likelihoods, a unified

procedure is developed for estimation of constrained parametric or non-parametric regression

models with unspecified error distributions. It shows some interesting connections with certain

extensions of the generalized least squares approach. A general asymptotic theory is provided. In

the parametric regression setting it is shown that under certain regularity conditions the proposed

estimators are asymptotically efficient even if the restriction functions are discontinuous. In the

non-parametric regression setting the convergence rate of the maximum estimator based on the

sieve empirical likelihood is given. In both settings, it is shown that the estimator is adaptive for

the inhomogeneity of conditional error distributions with respect to predictor, especially for

heteroscedasticity.

Key words: asymptotic efficiency, conditional equations, generalized least squares, generalized

method of moments, semiparametric and non-parametric regressions, sieve empirical likelihood

1. Introduction

Regression analysis is usually based on a parametric likelihood. For example, we assume

observations ðyi; xiÞ, 1 � i � n are i.i.d with density fY jX ðy; hðxÞÞf ðxÞ, where Y denotes a

q-dimensional response, X denotes a p-dimensional predictor, the density f ðxÞ of X is

unknown and is not related to h, and the conditional density, fY jX ðy; hðxÞÞ, of Y given X is

assumed to be known up to a regression function h. To estimate h, we might choose ĥh to

maximize the conditional likelihood
Qn
i¼1 fY jX ðyi; hðxiÞÞ over a subset of some metric space.

The behaviour of ĥh is well studied. It is known that:

ðaÞ When h belongs to an infinite dimensional space, under appropriate conditions the

convergence rate of ĥh is determined by the entropy of a certain space of score functions or

of density functions under some suitable metric—in particular, for the normal or Cauchy

likelihood, this rate might be the best in a sense (Stone, 1982; Wong & Severini, 1991;

Wong & Shen, 1995);

ðbÞ When h is restricted to a finite dimensional subspace, under some conditions ĥh is

asymptotically efficient (Lehmann, 1983, p. 415); for the normal regression model with

smooth but unknown scale function, the estimator based on the estimated normal

likelihood is adaptive to total lack of knowledge of the functional form of the scale

(Carroll, 1982);

ðcÞ For some smooth functional qðhÞ, the plug-in estimator qðĥhÞ is asymptotic efficient

(Lehmann, 1983; Wong & Severini, 1991; Shen, 1997).
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There are many situations in which we do have some external knowledge about the function

form of fY jX while this knowledge is not sufficient for specifying it fully. A prototype situation

is that the regression function h and the conditional distribution of Y given X are constrained

by a set of conditional equations, say

E½GkðY ; hðX ÞÞjX � ¼ 0; k ¼ 1; 2; . . .; ko; ð1Þ

where G ¼ ðG1; . . .;GkoÞ
s is a predetermined vector-valued restriction function. For example,

we can set G ¼ Y � hðX Þ in the ordinary conditional expectation regression model and

G ¼ IðY � hðX ÞÞ � 1=2 in the median regression model. Here and hereafter Ið	Þ denotes the

indicator function of a set. These equations represent the non-sample information on the

model. Usually G is a vector-valued function of residuals. Via the conditional equations, this

formulation provides substantial flexibility for using the auxiliary information to solve non-

regular estimation problems (Newey, 1993; Powell, 1994). Under it, many interesting models

are subsumed. In this paper, two typical settings will be considered. One is the parametric

regression setting (or the semiparametric setting) where h is a linear function of X , say X sb or

ðX sb; kÞ; where k is some unknown finite dimensional nuisance parameter. In this setting, the

above model is a special kind of semiparametric model with the finite dimensional parameter b
or ðb; kÞ and the infinite dimensional parameter P . The other is the non-parametric regression

setting where h is a vector-valued function of X lying in some smooth class of functions.

In the above situation the parametric likelihood inference is unsuitable. This is because ĥh
might be inconsistent or not asymptotically efficient when the parametric assumption is

violated. See Zhang & Liu (2000) for some details. Therefore, it is desirable to develop some

alternative non-parametric likelihood method. We hope that it can capture departures from a

working parametric assumption and take into account both the sample and auxiliary

information to increase efficiency. Then the questions of what kind of non-parametric

likelihood should be used and of whether it maintains the basic properties such as (a), (b) and

(c) of the above parametric likelihood, arise naturally. One difficulty with these questions is

how to construct a non-parametric likelihood procedure, which can adapt for possible

heteroscedasticity in regression models. As pointed out before, a result of this type has been

proved by Carroll (1982) for the parametric counterpart with hðxÞ linear in x and smoothness

conditions on the scale. Bickel et al. (1993, p. 112) conjectured that neither the linearity nor the

smoothness conditions, nor the requirement of Gaussianity are essential in Carroll’s result. It

is natural to conjecture further that Carroll’s result holds even if the parametric likelihood is

replaced by some non-parametric likelihood.

The idea of empirical likelihood (Owen, 1988) holds considerable promise for answering our

questions. However, some special difficulties exist in using Owen’s empirical likelihood. For

example, the normal likelihood can identify an arbitrary dimensional smooth regression

function, whereas Owen’s is usually employed for a finite dimensional regression function. To

estimate an infinite dimensional regression function, an infinite number of constraints are

required. However, currently no theory is available for the empirical likelihood when the

number of constraints is infinite.

To overcome the difficulties caused by heteroscedasticity and infinite number of constraints,

in this paper a type of (global) non-parametric likelihoods called sieve empirical likelihoods

(SEL) for the regression function h are constructed via the local empirical likelihoods. Unlike

LeBlanc & Crowley (1995), we construct SEL for the finite dimensional parameter as well as

for the infinite dimensional parameter. The name originates from the ideas of using n
constraints at observations xi; i ¼ 1; 2; . . .; n,

E½GðY ; hðX ÞÞjX ¼ xi� ¼ 0; i ¼ 1; 2; . . .; n
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as approximations of the infinite constraints in (1) and of using a random sieve approximation

of the underlying distribution. In this sense, SEL, which include LeBlanc & Crowley’s (1995)

likelihood as a special case, can be viewed as some approximation to the empirical likelihood

when there exist an infinite number of constraints. Like LeBlanc and Crowley’s likelihood, the

key idea behind SEL is building the global likelihood from the local ones. To see the intuitive

reason why this idea is promising, we recall one advantage of the local estimation that it can

automatically reduce the effect of heteroscedasticity by using the local data (Fan, 1997).

However, the advantage will disappear when the data structure is approximately linear

because the bandwidth should not be made to tend to zero in this case. Indeed, there is a

conflict in reducing the effect of heteroscedasticity and achieving the efficiency. Intuitively,

hybridizing the local and global estimation techniques may solve this conflict at the cost of a

certain computation. Moreover, the other advantages of the local and global estimation

methods are expected to hold in the final likelihood. This strategy has been proved effective at

least in the semiparametric setting in this paper.

Base on SEL, a unified framework for simultaneously estimating the regression function

and the conditional distribution of the response is developed. As one of the contributions, a

first theoretical analysis of the proposed procedures is provided. It is shown that the SEL

estimators are asymptotically efficient under some regularity conditions in the parametric

regression setting. In particular, these estimators are adaptive for the heteroscedasticity in the

model. This property is comparable to property (b) of the parametric maximum likelihood

estimator and gives a partial answer to the conjecture of Bickel et al. (1993) mentioned

before.

To give an intuitive device for analysing SEL, we proved that SEL is asymptotically

equivalent to some extensions of the generalized least squares (EGLS). Although Carroll

(1982) and Robinson (1987) showed that the generalized least squares (GLS) estimator is

asymptotically efficient in the presence of heteroscedasticity, GLS usually requires G to be a

linear function with respect to the response (Carroll & Ruppert, 1988) and seems unsuitable

for the situation with a discontinuous or non-linear G. This shortcoming is overcome in

EGLS. Indeed, our theoretical analysis shows that EGLS has the strength to compete with the

well-known approach—the generalized method of moments (GMM) (Hansen, 1982; Cham-

berlian, 1992). For example, in the parametric regression setting, the asymptotic efficient (or

optimal) estimator can be constructed via the EGLS method even if G is discontinuous. This is

in contrast with the asymptotic efficient (or optimal) GMM estimation theory in which G is

usually required to have derivatives (Newey, 1993). Unlike GMM, in EGLS no instrumental

variables (the functions of the predictor variable that are known to be independent of the error

terms) are required to be specified and thus the idea can be easily extended to the non-

parametric regression setting.

In the non-parametric regression setting, it is shown that the SEL based maximum estimator

can attain the optimal global convergence rate in some cases. This is similar to property (a) of

the parametric likelihood above.

The following is a brief review of some related works and problems. The GMM estimator

has the usual advantage of the moment method over the parametric maximum likelihood that

a weaker restriction is imposed on the model. However, it requires a stable estimator of scale.

This will lead to a biased estimator in the small sample case (Kitamura, 1997; Kitamura &

Stutzer, 1997). LeBlanc & Crowley (1995) proposed an alternative non-parametric likelihood

procedure for a single semiparametric functional where the likelihood is constructed through

certain local empirical likelihoods. They showed that their idea can be easily extended to the

other models, for example, censored survival data models. Most importantly, they reported

that their method seems to work well in some simulated and real data examples. But less is
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known about the theory of such kinds of estimators. For example, whether their method is

efficient relative to the other existing methods?

The remains of this paper proceed as follows. Section 2 gives the definitions and intuitive

illustrations of the proposed likelihoods and estimators. A large sample study of these

estimators is presented in section 3. Some examples can be found in section 4. Some possible

extensions are discussed in section 5. The technical conditions used in this paper and the

proofs of the main results are presented in the appendix. Throughout this paper, Pn and P
stand for the empirical and underlying distributions of ðX ; Y Þ, respectively. PY jX and PX denote

the conditional distribution of Y given X and the distribution of X , respectively. EY jX and EX
denote the associated expectations. f denotes the Lebesgue density of PX : Except for several

specified cases, in the following sections, jj 	 jj denotes the Euclidean norm. Let ���!L ’’ denote

convergence in distribution.

2. Sieve empirical likelihood

2.1. Definition

We use the non-parametric likelihood to illustrate the idea behind SEL. Suppose we have n
independent observations fðxi; yiÞ : 1 � i � ng from ðX ; Y Þ. Let F be a space of distributions

for ðX ; Y Þ. Following Shen et al. (1999), to construct a sieve likelihood we first make a

(random) sieve approximation of F by Fn; a class of distributions with a finite support, say

Sn. Then we focus on the sieve likelihood for Q 2 Fn:

Yn
i¼1

qðxi; yiÞ

where qðxi; yiÞ ¼ ½dQ=dln�ðxi; yiÞ is the mass that Q places at point ðxi; yiÞ and ln is the

counting measure on Sn: Unlike Shen et al. (1999), we take Sn ¼ fðxi; yjÞ :
1 � i � n; 1 � j � ng; rather than the sample fðxi; yiÞ : 1 � i � ng, as the support. We will

see that such an overparametrization provides a flexible device to exploit the structural

information of the underlying distribution in defining a profile sieve likelihood—SEL.

Suppose that PX is not informative about the regression function. This for example

excludes applications to random effect models, but allows for fixed effect models. Under

the non-informativeness assumption, the above likelihood of the regression is proportional

to the conditional non-parametric likelihood

Yn
i¼1

qY jX¼xiðyiÞ ð2Þ

where

qY jX¼xið	Þ ¼
qðxi; 	ÞPn

j¼1

qðxi; yjÞ

with the support fyj : 1 � j � ng. Obviously, without any auxiliary information, the non-

parametric maximum likelihood estimator (MLE) of P is of the form qðxi; yiÞ ¼
1=n; qðxi; yjÞ ¼ 0, j 6¼ i; 1 � j � n; 1 � i � n: That is, we put the equal mass 1=n on each

sample point ðxi; yiÞ. The corresponding non-parametric MLEs of PY jX¼xi ; 1 � i � n satisfy

qY jX¼xiðyiÞ ¼ 1; qY jX¼xiðyjÞ ¼ 0, for j 6¼ i, 1 � j � n, 1 � i � n. So the profile conditional log-

likelihood
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sup
Q2Fn

Xn
i¼1

log qY jX¼xiðyiÞ ¼ 0: ð3Þ

Of course the above estimators are not very useful. To get certain meaningful estimators,

we need some auxiliary information of PY jX : However, if we add the auxiliary information

such as (1) to the likelihood (2), then the corresponding profile likelihood may not exist.

The problem we faced is, given each xi, only a single observation yi from PY jX¼xi is

available. This hampers the use of the auxiliary information (1). This problem can be

solved by ‘‘borrowing’’ information from the nearby observations if we assume that both

PY jX¼x and hðxÞ are continuous with respect to x (Tibshirani & Hastie, 1987; LeBlanc &

Crowley, 1995). In other words, in a neighbourhood around xi, we approximate PY jX¼x and

hðxÞ by

PY jX¼x � PY jX¼xi ; hðxÞ � hðxiÞ; for x � xi:

This implies that all the yj with xj lying in this neighbourhood can be roughly viewed as

observations from PY jX¼xi : These yj form a set, say fzik : 1 � k � nig. Then, with this

augmented sample, the auxiliary information (1) can be used via the empirical likelihood

technique. This yields an estimator of PY jX¼xi , say P̂PY jX¼xi , with the support fzik : 1 � k � nig.
At the same time we obtain the local empirical log-likelihood ð1=niÞ

Pni
k¼1 logfP̂P Y jX¼xiðzikÞg.

Furthermore, treating the augmented sample sets fzik : 1 � k � nig, 1 � i � n as if they are

independent, we have a total conditional log-likelihood simply by adding up all these local

empirical log-likelihoods.

An improved version of the above idea is to include a smoothing weight function, which

weighs down the contribution to the ith local empirical likelihood of h from yj with xj being

away from xi: In this setting, for each i, all yj are augmented into yi. If we use wji; 1 � j � n
with

Pn
j¼1 wji ¼ 1 to weigh the contributions of yj; 1 � j � n to the ith local likelihood, then,

the logarithm SEL can be constructed by the following two steps.

Step 1. Given the values of hðxiÞ; 1 � i � n, for 1 � i; j � n, let qji ¼ QY jX¼xifyjg denote the

mass we put on yj: For each i, we maximize

Xn
j¼1

wji log qji

subject to

Xn
j¼1

qjiGðyj; hðxjÞÞ ¼ 0;

Xn
j¼1

qji ¼ 1; qji � 0; j ¼ 1; . . .; n:

Let q̂qji; 1 � j � n be the solution. Then, for 1 � j � n;

q̂qji ¼
wji

1þ anðxi; hÞsGðyj; hðxjÞÞ

where ko-vector anðxi; hÞ satisfies

Xn
j¼1

wji
Gðyj; hðxjÞÞ

1þ anðxi; hÞsGðYj; hðxjÞÞ
¼ 0: ð4Þ
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Define

lði; hÞ ¼
Xn
j¼1

wji log q̂qji:

Step 2. Define the log-SEL by

lsðhÞ ¼
Xn
i¼1

lði; hÞ:

Note that without the local constraints (1) the log-SEL becomes
Pn

i¼1

Pn
j¼1 wji logwji.

Furthermore, if there is no knowledge of the continuity of PY jX¼x with respect to x, then we

should set wii ¼ 1, wji ¼ 0; j 6¼ i. In this case, the log-SEL agrees with the profile conditional

log-likelihood in (3).

The logarithm of the likelihood ratio between the approximate empirical likelihoods with

and without local constraints has the form

lsr ¼ lsðhÞ �
Xn
i¼1

Xn
j¼1

wji logwji:

Generally, for each i, we can choose Ni � f1; . . .; ng and define

lði; hÞ ¼
X
j2Ni

wji

( )�1X
j2Ni

wji log q̂qji

in step 1. This leads to a possible reduction of the degree of correlation among lði; hÞ;
1 � i � n; but on the other hand also to a loss of some information due to dropping

q̂qji; j 62 Ni; 1 � i � n. For simplicity, in the following sections, we consider only the cases

with Ni ¼ f1; . . .; ng; 1 � i � n and Ni ¼ fig; 1 � i � n; respectively. Note that when Ni ¼
fig; 1 � i � n; we recover LeBlanc and Crowley’s log-likelihood lc and likelihood ratio lcr
which are defined by

lcðhÞ ¼
Xn
i¼1

log q̂qii; lcrðhÞ ¼ lcðhÞ �
Xn
i¼1

logwii:

With lsr we can introduce some estimators, called the SEL estimators, for the regression

functions as follows.

Parametric regression function. Suppose that hðX Þ ¼ X sb, where b is the parameter of interest.

For the simplicity of symbols, we use lsrðbÞ to denote lsrðhÞ: Then, the estimator of b is defined

as

b̂b ¼ argmax lsrðbÞ:

A similar estimator can be defined for the case with hðxÞ ¼ ðbsx; kÞ.

Non-parametric regression function. Assume h is lying in an appropriately chosen function

space, say H. Then, the maximum estimator ĥh is defined as

ĥh ¼ argmax
h2H

lsrðhÞ:

Estimators of conditional distributions. Let ĥh be the estimator defined above. Then, the

estimate of FY jX¼x, namely, F̂F Y jX¼x; is obtained by replacing h and xi in (4) by ĥh and x
respectively. Note that, it is supported by fyj; 1 � j � ng with masses p̂pjðxÞ; 1 � j � n.
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2.2. Quadratic approximations

To get a better insight into the above procedure, we first investigate the behaviour of the

proposed likelihood. Suppose for each i, anðxi; hÞ in (4) tends to zero. Then, we have the

following informal approximations of anðxi; hÞ and lsr;

anðxi; hÞ ¼
Xn
j¼1

wjiGðyj; hðxjÞÞGsðyj; hðxjÞÞ
( )�1Xn

j¼1

wjiGðyj; hðxjÞÞð1 þ opð1ÞÞ; 1 � i � n;

lsr ¼� 1

2

Xn
i¼1

Xn
j¼1

wjiGðyj; hðxjÞÞ
 !s Xn

j¼1

wjiGðyj; hðxjÞÞGsðyj; hðxjÞÞ
( )�1

�
Xn
j¼1

wjiGðyj; hðxjÞÞ
 !

ð1þ opð1ÞÞ: ð5Þ

and we also have the following population version in the neighbourhood of the true value of

parameter, say ho;

1

n
lsr ¼ � 1

2
EX EY jXGðY ; hðX ÞÞs½EY jXGðY ; hðX ÞÞGsðY ; hðX ÞÞ��1EY jXGðY ; hðX ÞÞ
n o

þ opð1Þ:

Applying the same argument, we have

lcr ¼�
Xn
i¼1

Xn
j¼1

wjiGsðyj; hðxjÞÞ
Xn
j¼1

wjiGðyj; hðxjÞÞGsðyj; hðxjÞÞ
( )�1

Gðyj; hðxjÞÞ

þ 1

2

Xn
i¼1

Xn
j¼1

wjiGsðyj; hðxjÞÞ
 ! Xn

j¼1

wjiGðyj; hðxjÞÞGsðyj; hðxjÞÞ
( )�1

� Gðyi; hðxiÞÞGsðyi; hðxiÞÞ
Xn
j¼1

wjiGðyj; hðxjÞÞGsðyj; hðxjÞÞ
( )�1

�
Xn
j¼1

wjiGðyj; hðxjÞÞ
 !

ð1þ opð1ÞÞ: ð6Þ

Clearly, the approximation of lsr is quadratic while that of lcr is not. However, the population

versions of lcr and lsr are the same.

Let Kð	Þ be a bounded univariate kernel function. Set

wjðxÞ ¼ Kðjjxj � xjj=hÞ=
Xn
i¼1

Kðjjxk � xjj=hÞ and wji ¼ wjðxiÞ

for 1 � i; j � n; where the bandwidth h ¼ hðxÞ may depend on x: Note that the dependence of

wjðxÞ on h is suppressed for notational convenience. Recall the definition of ao in the condition

(P2) in appendix A. We show that anðxi; hÞ does tend to zero uniformly in xi below.

Theorem 1

(i) (Parametric regression setting): If for some constants do > 0; d1 > 1 and

0 < g < ðao � 2Þ=ðao þ 2Þ; do � hðxÞpng � d1; x 2 X; then under the conditions (K0), (X0),

(P1)–(P6) in appendix A, (5) and (6) hold uniformly in b; jjb � bojj � rn ¼ Oðn�1=aoÞ. The similar
result holds for the case hðxÞ ¼ ðbsx; kÞ:
(ii) (Non-parametric regression setting): If for some positive constants do; d1 and g,
do � hðxÞpng � d1; where for w* in (N6), g satisfies
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g <
min

�
2ðao � 4Þ

2ao þ w�ðao � 4Þ ;
2ðw� þ ao � 2Þ
ð2 þ w�Þao

�
; when 0 < w� � 2;

ao � 4

ðao � 2Þw� ; when w� > 2;

8>><
>>:

then under conditions (K1), (X0), (N1)–(N6) in appendix A, (5) and (6) hold uniformly in h;
jjh � hojj � rn ¼ Oðn�1=aoÞ.
When G is bounded, the results in (i) and (ii) still hold if we replace ao by 1.

The above theorem implies that SEL is asymptotically equivalent to the following

modifications of the classical weighted least squares criterion.

Population version

RðhÞ ¼ 1

2
EXfEY jXGsðY ; hðX ÞÞU�1ðX ; hÞEY jXGðY ; hðX ÞÞg

where UðX ; hÞ ¼ EY jXGðY ; hðX ÞÞGsðY ; hðX ÞÞ.

Sample versions

R̂RsðhÞ ¼
1

2
ÊEX fÊEY jXGsðY ; hðX ÞÞÛU�1ðX ; hÞÊEY jXGðY ; hðX ÞÞg

R̂RcðhÞ ¼ ÊEfÊEY jXGsðY ; hðX ÞÞÛU�1ðX ; hÞGðY ; hðX ÞÞg � 1

2
ÊEfÊEY jXGsðY ; hðX ÞÞ

� ÛU�1ðX ; hÞGðY ; hðX ÞÞGsðY ; hðX ÞÞÛU�1ðX ; hÞÊEY jXGðY ; hðX ÞÞg

where ÛUðX ; hÞ ¼ ÊEY jXGðY ; hðX ÞÞGsðY ; hðX ÞÞ, and ÊE, ÊEY jX and ÊEX are some estimators of the

expectation operators E, EY jX and EX ; respectively. In practice, we often replace ÛUðX ; hÞ by

ÛUðX ; ĥhIÞ where ĥhI is a consistent initial estimator of h.
The RðhÞ based estimation is a two-stage approach: First, make the kernel regressions of

GðY ; hðX ÞÞ and GðY ; hðX ÞÞGsðY ; hðX ÞÞ on X ; then, minimize the summation of the local v2-

square statistics of h. For example, we consider the ordinary linear regression Y ¼ X sb þ e
with known constant error variance r2. The population version of the least squares criterion

becomes

EðY � X sbÞ2 ¼ EðY � EY jX Y Þ2 þ r2RðhÞ:

Obviously, the regression of GðY ; hðX ÞÞ on X is not required in the least squares method. This

implies that, similar to the difference between the least absolute deviation regression and the

LeBlanc–Crowley likelihood based regression, for the linear regression model, the EGLS

estimator may be more variable than the least squares estimator for a small sample although

two estimators are asymptotically equivalent (LeBlanc & Crowley, 1995, p. 102). In fact, there

is room for improving the EGLS estimator via the following equality: for any measurable

function HðY ; hðX ÞÞ,

EXfEY jXGsðY ; hðX ÞÞU�1ðX ; hÞEY jXGðY ; hðX ÞÞg

¼ EfEY jX ðGðY ; hðX ÞÞ � HðY ; hðX ÞÞÞ þ HðY ; hðX ÞÞgsU�1ðX ; hÞ
� fEY jX ðGðY ; hðX ÞÞ � HðY ; hðX ÞÞÞ þ HðY ; hðX ÞÞg

� EfHðY ; hðX ÞÞ � EY jXHðY ; hðX ÞÞgsU�1ðX ; hÞfHðY ; hðX ÞÞ � EY jXHðY ; hðX ÞÞg:

Suppose that HðY ; hðX ÞÞ � EY jXHðY ; hðX ÞÞ is independent of h. Then the above equality

shows that RðhÞ is proportional to
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RM ðhÞ ¼
1

2
EffEY jX ðGðY ; hðX ÞÞ � HðY ; hðX ÞÞÞ þ HðY ; hðX ÞÞgsU�1ðX ; hÞ

� fEY jX ðGðY ; hðX ÞÞ � HðY ; hðX ÞÞÞ þ HðY ; hðX ÞÞgg:

The associated sample version:

R̂RM ðhÞ ¼
1

2
ÊEffÊEY jX ðGðY ; hðX ÞÞ � HðY ; hðX ÞÞÞ þ HðY ; hðX ÞÞgsU�1ðX ; hÞ

� fÊEY jX ðGðY ; hðX ÞÞ � HðY ; hðX ÞÞÞ þ HðY ; hðX ÞÞgg:

Obviously, compared with R̂RsðhÞ, R̂RM ðhÞ avoids making an unnecessary regression of

HðY ; hðX ÞÞ on X . Similarly, we obtain the following variant of EGLS:

R̂RN ðhÞ ¼
1

2
ÊEfÊEY jXGsðY ; hðX ÞÞÛU�1ðX ; hÞGðY ; hðX ÞÞg

by noting that

RðhÞ ¼ 1

2
EX fEY jXGsðY ; hðX ÞÞU�1ðX ; hÞGðY ; hðX ÞÞg:

It follows from theorem 1 and the results in the next section that the SEL estimator has the

same asymptotic distribution as those of R̂RsðhÞ; R̂RM ðhÞ; R̂RN ðhÞ and R̂RcðhÞ based estimators. For

convenience, here and hereafter we use RðbÞ, R̂RrðbÞ and R̂RcðbÞ to denote RðhÞ, R̂RrðhÞ and R̂RcðhÞ
when hðX Þ ¼ X sb: Similarly, we define Rðb; kÞ; R̂Rrðb; kÞ and R̂Rcðb; kÞ.

3. Asymptotic properties

This section presents some general theory on the consistency, convergence rates and

asymptotic normalities of the SEL estimators. As before we use the kernel weights. We assume

that the true value of the parameter of interest is an inner point of the parameter space.

3.1. Parametric regression setting

For simplicity, we consider the case that hðxÞ ¼ xsb: Denote by bo the true value of b: Recall

the definition of ao in the condition ðP2Þ: We first show the SEL estimator is weakly consistent

in the following theorem.

Theorem 2

Suppose that the conditions (X0), (K0), (P1)–(P7) in appendix A hold. If, for some positive

constants do; d1 and g; do � hðxÞpng � d1; and 0 < g < ðao � 4Þ=ao; then b̂b � bo ¼ opðn�1=aoÞ.

Remark 1. By substituting the above SEL estimator into
Pn

j¼1 wjiGðyj; xsjbÞGsðY ; xsjbÞ, we

obtain a consistent estimator for EY jX¼xiGðY ;X sbÞGsðY ;X sbÞ. Then, under the above

conditions, the EGLS estimator is also weakly consistent.

Assume that there exists a positive definite matrix V such that

V �1 ¼ EX
@EY jXGsðY ;X sboÞ

@b

� �
EY jXGðY ;X sboÞGsðY ;X sboÞ
� ��1 @EY jXGðY ;X sboÞ

@b

� �� �
:

V can be derived by calculating the second derivative of RðbÞ. Then the next theorem states

that b̂b is asymptotically normal.
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Theorem 3

We suppose that when G is bounded, the conditions (K0), (X0), (P1)–(P8) in appendix A hold; and

that when G is unbounded, the conditions (K0), (X0), (P1)–(P9) in appendix A hold. Suppose

EY jX¼xGðY ;X sbÞ has a continuous derivative with respect to x. Suppose that for some positive
constants do; d1; do � hðxÞng � d1; x 2 X, where

0 < g <

1=2; G is bounded,

min

�
ao � 4

ao
;
ao � 1

ao þ 1

�
1

2
þ f1 � 1

ao � 1

��
; G is unbounded.

8<
:

Then

n1=2ðb̂b � boÞ�!
L
Nð0; V Þ:

Remark 2. In practice, G often satisfies the Lipschitz condition that f1 ¼ 1 in the condition

(P9). For an unbounded G, the restriction on g in theorem 3 becomes 0 < g < 7=18 if ao ¼ 8

and f1 ¼ 1; 0 < g < 1=3 if ao ¼ 6 and f1 ¼ 1: This implies theorem 3 does cover the optimal

bandwidth h ¼ n�1=5.

Theorems 1, 2 and 3 show that the SEL and EGLS estimators asymptotically have the same

distributions as the GMM estimators based on the optimal instrumental variables.

Furthermore, they are asymptotically efficient in the sense of Hansen (1982) and Bickel et al.

(1993) even if G is discontinuous. When G is discontinuous, by the result of Hansen (1982), we

can get the optimal instrumental variable, @EY jXGðY ;X sbÞ=@bU�1ðX Þ: However, it is still

unknown whether the GMM estimator is asymptotically efficient in this case.

3.2. Non-parametric regression setting

Let jjhjj1 ¼ supx2X jjhðxÞjj and jjhjj2 ¼ EX jjhðX Þjj2: Let ho be the true value of h: The following

theorem shows that the SEL estimator ĥh is also weakly consistent.

Theorem 4

Suppose the conditions (X0), (K1), (N1)–(N7) in appendix A hold. If, for some positive constants

do; d1 and g; do � hðxÞpng � d1; and 0 < g < 2ðao � 4Þ=ðaoð2þ w�ÞÞ with w� in (N6), then

jjĥh � hojj ¼ opðn�1=aoÞ. Similar to remark 1, we obtain the weak consistency of the EGLS

estimator.

To obtain a better convergence rate of ĥh, we consider the following parameter space of h,

H ¼fh 2 Cq½0; 1� : hð0Þ ¼ hð1Þ; hð1Þð0Þ ¼ hð1Þð1Þ; jjhðjÞjj1 � Lj; jjhðqÞjjH � Lq;

for j ¼ 0; . . .; qg

where r > 0; and Lj; j ¼ 0; . . .; q are fixed constants and jjhjjH ¼ supx 6¼y jhðxÞ � hðyÞj=jx� yjr:
Set X ¼ ½0; 1�; w� ¼ 1=ðqþ rÞ < 1; and q � 1: Let b1 ¼ 2=ð2þ w�Þ; b2 ¼ 2ð1� w�Þ=ð2 � w�Þ;
1 � a1 � 2 and

p� ¼ min
1

3ð2=ð1� w�Þ � b2 � 1Þ þ 2b2 � a1b1
;

�
2

ð6þ w�Þð2=ð1 � w�Þ � b2 � 1Þ þ 4b2 � 2w� � a1b1ð2 � w�Þ ;

1

3ða1b1 � b2Þ þ 2b2 � a1b1
;

2

ð6þ w�Þða1b1 � b2Þ þ 4b2 � 2w� � a1b1ð2� w�Þ

�
:
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For any po < p�, write

g1ðpoÞ ¼min

�
poða1b1 � b2Þ;

2po
1� w� � poðb2 þ 1Þ

�
;

g2ðpoÞ ¼min
1

3
ð1� 2b2po þ a1b1poÞ;

2

6 þ w� ð1 � 2b2po þ w�po þ
1

2
a1b1ð2 � w�ÞpoÞ

� �
:

Theorem 5

Under the conditions (X0), (K1), (N1), (N2), (N3), (N6), (N7), and (N8) in appendix A, for any

0 � po < p�; g1ðpoÞ < g < g2ðpoÞ, we have

jjĥh � hojj ¼ Opðmaxfn�1=ð2þw�Þ; n�po=ð1�w�ÞgÞ;

jjĥhð1Þ � hð1Þo jj ¼ Opðmaxfn�ð1�w�Þ=ð2þw�Þ; n�pogÞ:

Remark 3. Obviously, theorem 5 can be directly extended to the p-dimension. Also the

exponential order moment condition N8(i) can be relaxed via the technique used in theorem 1.

It follows from theorem 5 that when w� � 1=4;

jjĥh � hojj ¼ Opðn�1=ð2þw�ÞÞ; jjĥhð1Þ � hð1Þo jj ¼ Opðn�ð1�w�Þ=ð2þw�ÞÞ;

which are the optimal convergence rates in the ordinary non-parametric regression case. See

example 6 in the next section and Stone (1982). When w� ¼ 1=2; 1=3; p�=ð1� w�Þ ¼ 0:276 and

0:411; both of which have not attained the corresponding optimal values 0:4 and 4=9 in the

ordinary non-parametric regression case. This may be due to the inaccuracy estimation of the

convergence rate of ĥh
ð1Þ

in terms of the uniform norm by using the interpolation inequality.

Note that in the ordinary non-parametric regression case, Stone (1982) showed that the

optimal convergence rates of the regression function in terms of the L2 norm and the uniform

norm, respectively, differ from each other by only a factor log n.

4. Examples

In what follows, we assume that b̂b and ĥh are the SEL or EGLS estimators based on i.i.d.

observations ðxi; yiÞ, i ¼ 1; . . .; n. Let FejX and fejX denote the conditional distribution function

and density of e given X : Let bo and ko denote the true value of b and k; respectively. We

demonstrate that the proposed methods are more generally applicable than both the

generalized least squares and GMM through the following examples.

We begin with the following two prototype examples, which are the generalizations of the

well-known symmetric location model (e.g. Bickel et al. 1993, pp. 75, 400–405).

Example 1 (Linear regression with a symmetric error distribution). Consider the linear

regression model Y ¼ X sb þ e: Suppose that given X ; e is symmetrically distributed. To use the

information about e; we choose 0 ¼ so < s1 < 	 	 	 < sko and Sk ¼ ½sk�1; skÞ; 1 � k � ko: Set

GkðY ;X sbÞ ¼ IðY � X sb 2 SkÞ � IðY � X sb 2 �SkÞ; 1 � k � ko: Then, G satisfies the condi-

tional equations in (1). Furthermore, we have

RðbÞ ¼
Xk1
k¼1

EX
ðFejX ðSk þ X sðb � boÞÞ � FejX ð�Sk þ X sðb � boÞÞÞ2

FejX ðSk þ X sðb � boÞÞ þ FejX ð�Sk þ X sðb � boÞÞ
:

We assume fejX¼xðzÞ is continuous and bounded with respect to ðz; xÞ: Suppose that jjbojj is
bounded by a known constant, and that the conditions (K0), (X0) and 0 < g < 1=2 hold. Then

it follows from theorems 1, 2 and 3 that
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n1=2ðb̂b � boÞ�!
L
Nð0; V Þ

with

V �1 ¼
Xko
k¼1

EX
ðfejX ðskÞ þ fejX ð�skÞ � fejX ðsk�1Þ � fejX ð�sk�1ÞÞ2

2ðFejX ðskÞ � FejX ðsk�1ÞÞ
XX s

 !
:

This directly implies that if fejX¼xðzÞ can be written in the form goðz=sðxÞÞ with known go and

unknown sðxÞ, then b̂b is adaptive for heteroscedasticity. Moreover, we can show that, under

certain smoothness and symmetry conditions on fejX ; if max1�k�koðsk � sk�1Þ ! 0; sko ! 1;

then

V �1 ! EX EejX
@ log fejX

@z

� �2

XX s

( )
:

Thus, when the underlying probability distribution for observations is symmetric, an

approximately efficient and adaptive estimator can be obtained by refining the sequence of

fskg. See Bickel et al. (1993).

Example 2 (Non-parametric regression with a symmetric error distribution). Consider the

regression model Y ¼ hðX Þ þ e with EejX e2 ¼ hðX Þ2 þ 1: Suppose that given X ; e is symmetric

distributed. Set G1 ¼ ðY � hðX ÞÞ2 � hðX Þ2 � 1; GkðY ; hðX ÞÞ ¼ ðY � hðX ÞÞ2ðk�1Þþ1; 1 � k �
ko � 1: Then, G satisfies the conditional equations in (1).

Let uðX Þ ¼ ðuiðX ÞÞ1�i�ko be ko dimensional vector with u1ðX Þ ¼ 2hoðX Þ and

ukðX Þ ¼
Xk�2

t¼0

ð2ðk � 2Þ þ 1Þ!
ð2t þ 1Þ!ð2ðk � 2� tÞÞ!EejX expð2ðk � 2 � tÞÞðho � hÞ2t; 2 � k � ko:

Let vðX Þ ¼ ðvijðX ÞÞ1�i;j�ko with v11ðX Þ ¼ EejX e4 � ðEejX e2Þ2; v1kðX Þ ¼ vk1ðX Þ ¼ 0; 2 � k � ko;
and vijðX Þ ¼ EejX expð2ðiþ j� 3ÞÞ; 2 � i; j � ko: Then, as jjh � hojj ! 0,

RðhÞ ¼ 1

2
EX ðhoðX Þ � hðX ÞÞ2usðX Þv�1ðX ÞuðX Þð1þ oð1ÞÞ:

This shows that SEL and EGLS can weight the observations according to the conditional

moments. Note that, the local quasi-likelihood in Fan & Gijbels (1996) allows for only the

second moment information and in general fails to produce an efficient estimator when the

other moment information is available.

Assume that UðxÞ ¼ EY jX¼xGðY ; hoðX ÞÞGsðY ; hoðX ÞÞ is uniformly positive definite with

respect to x 2 X ¼ ½0; 1�, and that supx2X jjUðxþ tÞ � UðxÞjj � cjtj for some positive constant

c. Assume that EejX expðtojejÞ <1 for some positive constant to. Then, theorem 5 holds.

Example 3 (Mean regression model). Consider the linear regression model Y ¼ X sb þ e
with unknown parameter b: Suppose EejX e ¼ 0 and r2ðX Þ ¼ EejX e2 > 0: Let GðY ;X sbÞ ¼
Y � X sb; then

RðbÞ ¼ 1

2
EX ðbo � bÞs XX

s

r2ðX Þ ðbo � bÞ 1

1 þ ðbo � bÞsXX sðbo � bÞ=r2ðX Þ

� �

RM ðbÞ ¼
1

2
E

1

rðX Þ2
ðY � X sbÞ2 1

1þ ðbo � bÞsXX sðbo � bÞ=r2ðX Þ

( )
:

Assume that the error e satisfies the following conditions: EejX e ¼ 0; supx2X EY jX¼xjejao<1;

ao � 6: Then, under the conditions (K0), (X0), do � hpng � d1 and 0 < g < 1=3, it follows from

theorems 1, 2 and 3 that
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n1=2ðb̂b � boÞ�!
L
Nð0; V Þ

with V �1 ¼ EX ðXX s=EejX e2Þ: Thus, b̂b is asymptotically as efficient as Carroll’s estimator

(Carroll, 1982; Robinson, 1987).

Example 4 (An endogenous dummy variable model) (Newey, 1993). Consider the non-

linear model

Y ¼ kS þ /ðX ; bÞ þ e;

where EejX e ¼ 0; / is known, S and e are correlated, and ðbs; kÞ is the parameter of interest.

This model has many important applications in economics and has been studied by Newey

(1993) via GMM. Here we estimate ðbs; kÞ via SEL. First, we define Y � ¼ ðY ; SÞs,
GðY �;X sb; kÞ ¼ Y � kS � /ðX ; bÞ: Then, we have

Rðb; kÞ ¼ 1

2
EX

½ðko � kÞESjX IðS ¼ 1Þ þ /ðX ; boÞ � /ðX ; bÞ�2

EejX e2 þ ESjX ½ðk � koÞS þ /ðX ; bÞ � /ðX ; boÞ�2

( )
:

Under the conditions similar to those in example 3, using theorem 1, 2 and 3, we have

n1=2 b̂b
k̂k

� �
� bo

ko

� �� �
�!L Nð0; V Þ

with

V �1 ¼ EX ðEejX e2Þ�1TT s; T ¼ @/ðX ; boÞ
@b

;ESjX IðS ¼ 1Þ
� �s

:

Example 5 (Regression quantiles) (Koenker & Bassett, 1978). Consider the linear model

Y ¼ X sb þ e with unknown parameter b: Suppose FejX ð0Þ ¼ q, 0 < q < 1: Let GðY ;X sbÞ ¼
IðY � X sbÞ � q, where Ið	Þ is the indicator function. Then

RðbÞ ¼ EX
½FejX ðX sðb � boÞÞ � q�2

FejX ðX sðb � boÞÞð1� 2qÞ þ q2 :

Note that when q ¼ 1=2, G2ðY ;X sbÞ � 1: So the classical weighted least squares method

completely fails in this situation. When GMM is used, we need to estimate

@EY jX¼xGðY ;X sbÞ=@b. Note that G is not differentiable at the points where Y ¼ X sb. So we

usually use a numerical derivative, say

1

h�
Xn
j¼1

wjiðGðyj; xsjðb � h�ÞÞ � Gðyj; xsjðb þ h�ÞÞÞ

to estimate it, where h� ¼ ðh�; . . .; h�Þ and h� is another bandwidth. Taking into consideration

the difficulty in selecting h�, we conclude that EGLS is simpler than GMM because in EGLS

no partial derivative of EY jX¼xGðY ; xsbÞ is involved.

Assume that fejX¼xðzÞ is continuous and bounded with respect to ðz; xÞ: Note that fejX¼xð0Þ
may depend on x as pointed out by Jung (1996). Suppose that jjbojj is bounded by a known

constant, and that the conditions (K0), (X0) and 0 < g < 1=2 hold. Then it follows from

theorems 1, 2 and 3 that

n1=2ðb̂b � boÞ�!
L
Nð0; V Þ

with V �1 ¼ ½1=qð1 � qÞ�EX ððfejX ð0ÞÞ2XX sÞ. Thus, b̂b has the same asymptotic distribution as the

quasi-likelihood based regression quantile estimator investigated by Jung (1996). In particular,
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it is adaptive to the unequal behaviour of conditional error densities given different values of

the predictor.

The similar phenomenon is also found in the multiple quantile regression (Welsh et al.,

1994; Zhang & Gijbels, 1999).

Note that in example 5, we can develop some instrumental variable estimator based on a

characterization of the conditional quantile as the solution to a particular expected loss

minimization problem (Powell, 1994). However, it seems difficult to find such kind of

characterizations in example 1.

Example 6. Consider the ordinary non-parametric regression model Y ¼ hðX Þ þ e with

unknown function hðX Þ and EejX e ¼ 0. Let ðyi; xiÞ; i ¼ 1; . . .; n be i.i.d. observations. Write

GðY ; hðX ÞÞ ¼ Y � hðX Þ. Then

lsrðhÞ ¼ � 1

2

Xn
i¼1

Xn
j¼1

wjiðyj � hðxjÞÞ
 !2 Xn

j¼1

wjiðyj � hðxjÞÞ2
" #�1

ð1þ opð1ÞÞ

R̂RM ðhÞ ¼ � 1

2

Xn
i¼1

yi � hðxiÞð Þ2
Xn
j¼1

wjiðyj � hðxjÞÞ2
" #�1

:

lsrðhÞ is a summation of n local v2-statistics for h. lsrðhÞ and R̂RM ðhÞ are asymptotically adaptive

for the unequal variances. Especially, R̂RM ðhÞ recovers the objective function for weighting the

unequal variances of errors suggested by Silverman (1985) in his smoothing spline estimator.

The numerical results in Silverman (1985) support our observation.

Let X ¼ ½0; 1�: Assume that EejX expðtojejÞ < 1 for some positive constant to;minx2X

rðxÞ > 0; and jr2ðxþ tÞ � r2ðxÞj � cjtj for all x 2 X, where r2ðxÞ ¼ EejX¼xe2 and c > 0 is a

constant. Then, a result similar to example 2 holds. In particular, when w� � 1=4; the SEL

estimator attains the optimal global convergence rate in the L2 norm.

5. Discussions

5.1. Bandwidth

There are two typical candidates for the weights wji; 1 � i; j � n:

(i) the kernel weights with a constant bandwidth: wji / Kðjjxj � xijj=hÞ; 1 � i; j � n; where

Kðj 	 jÞ is a univariate kernel function;

(ii) the kernel weights with a nearest neighbour bandwidth: let hðx;mÞ be the mth smallest

number among jjxk � xjj, 1 � k � n. Then, wji / Kðjjxj � xijj=hðxi;mÞÞ. Usually we set

KðjjtjjÞ ¼ ð1� jjtjj3Þ3þ (Cleveland, 1979).

We extend a theorem due to Fan & Gijbels (1996) that the nearest neighbour bandwidth is

adaptive for the design points.

Proposition 1

Suppose X has a compact support X and a continuous positive density f. If mn=n! 0 and

mn=log n! 1, then for any x 2 X,

hðx;mnÞp ¼
1

f ðxÞcðpÞ
mn
n
ð1þ oð1ÞÞ

where cðpÞ is the Lebesgue measure of the p-dimensional hypersphere fx 2 Rp : jjxjj � 1g, and
oð1Þ ! 0 almost surely and uniformly in x 2 X.
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We note that under condition (X0), by the above proposition, there exist two positive

constants do and d1 independent of x such that when n is large, for h ¼ hðx;mnÞ, we have

hpnl ¼ don�g � hp � d1n�g ¼ hpnu. Some issues on how to select the bandwidth for a finite

sample in practice and how to compute the associated estimators have been addressed in

LeBlanc & Crowley (1995). There is some further progress in this direction (Zhang & Liu,

2000).

5.2. Conclusions

The empirical likelihood cannot be directly applied to a problem with certain infinite

dimensional parameters of interest involved. To overcome this difficulty, we proposed the

sieve empirical likelihood (SEL) approach. The large sample study shows such a method is

promising. Like the parametric likelihood based maximum estimators (Lehmann, 1983; Wong

& Severini, 1991), the SEL based maximum estimators are asymptotically optimal in the

parametric regression setting and can achieve the optimal global convergence rate in the non-

parametric regression setting. It is shown that the SEL procedure is adaptive for

heteroscedasticity in the model. Furthermore, the SEL ratio statistic for a finite dimensional

parameter is asymptotically v2 distributed (LeBlanc & Crowley, 1995). Recently this theorem

has been extended to the case of infinite dimensional parameter (Fan et al., 2001; Fan &

Zhang, 2000). Like LeBlanc & Crowley (1995), the SEL can be constructed for censored

survival data and for a random effect regression model. However, their properties are still

unknown.
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Appendix A. Technical conditions

In this appendix, we collect the conditions used in the previous sections. We begin with some

notations. Let Nð�; q;FÞ be the covering number, the smallest number of �-balls in metric q
needed to cover F. Let NBð�; q;FÞ be the bracketing covering number, the smallest number m
for which there exist f lk � f uk , k ¼ 1; . . .;m with max1�k�m qðf uk � f lk Þ � � and

F �
Sm
k¼1½f lk ; f uk �: The commonly used metrics are the L1 and LrðQÞ, 0 < r < 1 with respect

to a probability measure Q: The corresponding metric entropies are defined by

Hð�;q;FÞ ¼ logNð�; q;FÞ and HBð�; q;FÞ ¼ logNBð�; q;FÞ: Let Kð	Þ be a univariate

16 J. Zhang and I. Gijbels Scand J Statist 30

� Board of the Foundation of the Scandinavian Journal of Statistics 2003.



density function. Let ro denote a predetermined positive constant. We first introduce the

condition for X :

(X0)

X has a compact and convex support X: And the density f of X is continuous over X and

0 < supx2X f ðxÞ < 1:

The conditions for the parametric regression setting are as follows.

As before, consider the case that hðxÞ ¼ xsb. Denote by bo the true value of b: For

1 � k;m � ko, set

FGk ¼ fGkð	; 	sbÞ : jjb � bojj � rog; FGkGm ¼ fGkð	; 	sbÞGmð	; 	sbÞ : jjb � bojj � rog:

In addition to ðX0Þ; we assume:

(K0)

KðsÞ is non-increasing as s goes from 0 to 1: For any do > 0,Z
KðjjtjjÞdt ¼ 1;

Z
KðjjtjjÞt dt ¼ 0;

Z
KðjjtjjÞð1þdoÞ=do dt < 1: ð7Þ

(P1)

Almost surely for x 2 X;EY jX¼xGðY ;X sboÞ ¼ 0.

(P2)

There exists ao > 4 such that

E sup
jjb�bo jj�ro

jGkðY ;X sbÞjao < 1; 1 � k � ko:

(P3)

For 1 � k � ko;

sup
x2X;jjb�bo jj�ro

EY jX¼xG
4
kðY ;X sbÞ < 1:

(P4)

For 1 � k;m � ko; EY jX¼xGkðY ;X sbÞGmðY ;X sbÞ is finite and continuous with respect to

ðx; bÞ: And the smallest eigenvalue of EY jX¼xGðY ;X sboÞGsðY ;X sboÞ is positive for x 2 X:

(P5)

For 1 � k � ko;

sup
x2X;jjb�bo jj�ro

@EY jX¼xGkðY ;X sbÞ
@b

����
���� < 1:

(P6) (Covering number)

For 1 � k � ko,

Nð�;L1ðPnÞ;FGk Þ � AðPnÞ��w;

where lim supn EAðPnÞ < 1; and w is a positive constant.

(P7)

As z! 0;

sup
x2X;jjb�bojj�ro

jEY jX¼xþzGðY ;X sbÞ � EY jX¼xGðY ;X sbÞj ! 0;

sup
x2X;jjb�bojj�ro

jEY jX¼xþzGmðY ;X sbÞGkðY ;X sbÞ � EY jX¼xGmðY ;X sbÞGkðY ;X sbÞj ! 0;

for 1 � m; k � ko:
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For any q > 0;

sup
jjb�bojj�q

jjEGðY ;X sbÞjj 6¼ 0;

and for any sequences of constants, 0 < qn1 < qn2 ! 0; there exists a constant c such that

sup
qn2�jjb�bojj�qn1

jjEGðY ;X sbÞjj � cqn1:

(P8)

For each 1 � k � ko; there exists a positive constant b1 such that for any jjb � bojj � ro and

x 2 X;

EY jX¼xjGkðY ;X sbÞ � GkðY ;X sboÞj2 � b1jjb � bojj;
jEY jX¼xþuGkðY ;X sbÞ � EY jX¼xGkðY ;X sbÞ�j ¼ oðjjb � bojjÞ; as u! 0:

(P9)

There exist ao > 4 and 0 < f1 � 1 such that for 1 � k � ko and any jjb � bojj � ro;

jGkðy; xsbÞ � Gkðy; xsboÞj � Mðy; xÞjjb � bojjf1

with

supEMaoðY ;X Þ < 1; sup
z2X

EY jXM
4ðY ; zÞ < 1:

The conditions for the non-parametric regression setting are as follows.

For 1 � k;m � ko; and for any positive sequence frng with rn ! 0; write

F�
Gk ¼ fGkð	; hð	ÞÞ : jjh � hojj � rng; F�

GkGm ¼ fGkð	; hð	ÞÞGmð	; hð	ÞÞ : jjh � hojj � rng:

In addition to the condition (X0), we assume

(K1)

For some positive constant co; and for any s1; s2 2 R1; jKðs1Þ � Kðs2Þj � cojs1 � s2j: And (7)

holds.

We define the conditions (N1), (N2), (N3) and (N5) by replacing xsb; X sb and jjb � bojj � ro
in the conditions (P1), (P2), (P3) and (P5) by hðxÞ; hðX Þ and jjh � hojj � ro; h 2 H;

respectively.

(N4)

For 1 � k;m � ko; Dkm ¼ GkGm; as u! 0:

sup
jjh�hojj�ro ;h2H;z2X

jEY jX¼zþuDkmðY ; hðX ÞÞ � EY jX¼zDkmðY ; hðX ÞÞj ! 0:

The smallest eigenvalue of EY jX¼zGðY ; hðX ÞÞGsðY ; hðX ÞÞ is uniformly positive for

jjh � hojj � ro; h 2 H and z 2 X.

(N6) (Entropy)

For 1 � k;m � ko,

HBð�; L2ðP Þ;F�
Gk Þ � A�ðPÞð�=rnÞ�w

�
; HBð�; L2ðP Þ;F�

GkGmÞ � B�ðP Þð�=rnÞ�w
�
;

where A�ðP Þ and B�ðP Þ are some positive constants.

(N7)

As z! 0;
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sup
x2X;jjh�ho jj�ro

jjEY jX¼xþzGðY ; hðX ÞÞ � EY jX¼xGðY ; hðX ÞÞjj ! 0;

sup
x2X;jjh�ho jj�ro

jEY jX¼xþzGmðY ; hðX ÞÞGkðY ; hðX ÞÞ � EY jX¼xGmðY ; hðX ÞÞGkðY ; hðX ÞÞj ! 0;

for 1 � m; k � ko:

For any q > 0;

sup
jjh�ho jj�q

jjEGðY ; hðX ÞÞjj 6¼ 0:

Moreover, for any 0 < qn1 < qn2 ! 0; there some constant c such that

sup
qn2�jjh�ho jj�qn1

jjEGðY ; hðX ÞÞjj � cqn1:

(N8)

(i) There exist some measurable function Mðy; xÞ and a positive constant to such that for any

hi 2 H; i ¼ 1; 2; and k ¼ 1; . . .; ko;

jGkðy; h1ðxÞÞ � Gkðy; h2ðxÞÞj � Mðy; xÞjh1ðxÞ � h2ðxÞj

and

sup
x2X

EY jX expðtoMðY ; xÞÞ < 1:

(ii) For k ¼ 1; . . .; ko; EY jX¼xGkðY ; hðX ÞÞ has a bounded first derivative with respect to h which

satisfies for any hi 2 H, i ¼ 1; 2; and x 2 X;

@EY jX¼xGkðY ; h1ðX ÞÞ
@h

�
@EY jX¼xGkðY ; h2ðX ÞÞ

@h

����
���� � cjh1ðxÞ � h2ðxÞj

where c is a constant.

(iii) Let UðxÞ ¼ EY jX¼xGðY ; hoðX ÞÞGsðY ; hoðX ÞÞ: UðxÞ satisfies supx2X jjUðxþ tÞ � UðxÞjj � cjtj
and the minimum eigenvalue of UðxÞ is uniformly positive with respect to x 2 X:

Remark 4. These conditions are not necessarily independent. For example, the condition

(N8) used to prove theorem 5 implies the condition (N6).

Appendix B. Proofs

Throughout the remains of the paper, we denote fmax ¼ maxx f ðxÞ; fmin ¼ minx f ðxÞ;
hpnl ¼ hpnlðgÞ ¼ don�g and hpnuðgÞ ¼ d1n�g for some positive constants do and d1: Write

Anðx; hÞ ¼
Xn
j¼1

wjðxÞGðyj; hðxjÞÞ;

Snðx; hÞ ¼
Xn
j¼1

wjðxÞGðyj; hðxjÞÞGsðyj; hðxjÞÞ;

ZnðhÞ ¼ max
1�j�n

jjGðyj; hðxjÞÞjj:

Let enðx; hÞ be the minimum eigenvalue of Snðx; hÞ: For convenience, we use Anðx; bÞ; ZnðbÞ;
Snðx; bÞ and enðx; bÞ to denote Anðx; hÞ; ZnðhÞ; Snðx; hÞ and enðx; hÞ in lemmas 1 and 3–6 below.

The proofs of the lemmas in this appendix are omitted but available from Zhang & Gijbels

(1999).
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Lemma 1

If

sup
h2H;jjh�hojj�rn ;x2X

ð1þ jjZnðhÞjjÞjjAnðx; hÞjj
enðx; hÞ

¼ opð1Þ;

then opð1Þ in (5) and (6) tends to zero uniformly in h 2 H; jjh � hojj � rn; and x 2 X.

The following lemma follows directly from the proof of th. 37 of Pollard (1984).

Lemma 2

Let Fn be a class of functions with envelop 1. Let tn denote the empirical process

tnðgÞ ¼ n�1=2
Xn
j¼1

ðgðyj; xjÞ � EgðY ;X ÞÞ

for g 2 Fn. Suppose that for some constants v; w and dn,

sup
g2Fn

varðgÞ � v; Nð�; L1ðPnÞ;FnÞ � AðPnÞðdn�Þ�w

where lim supEAðPnÞ is bounded by some positive constant AðP Þ. Then, for M > 0, when n is
sufficiently large,

P ðsup
Fn

jtnðgÞj > MÞ � c1ðP Þð
ffiffiffi
n

p
ðMdnÞ�1Þw expð�M2=ð2� 642 � vÞÞ þ c2ðPÞv�w expð�nvÞ

where c1ðP Þ and c2ðP Þ are two positive constants.
Lemmas 3–6 below will be used to prove theorem 1.

Lemma 3

Suppose hðX Þ ¼ X sb. Then, under the conditions (K0), (X0), (P1)–(P3), (P5) and (P6),

0 < g < ðao � 2Þ=ao and rn ¼ Oðn�1=aoÞ, we have sup ð1þ ZnðbÞÞjAnðx; bÞjf g ¼ opð1Þ, where
the supremum is with respect to ðx; b; hpÞ with fx 2 X; jjb � bojj � rn; h

p
nl � hp � hpnug.

Lemma 4

Suppose hðX Þ ¼ X sb. Then, under the conditions (K0), (X0), (P1)–(P4), 0 < g < ðao � 2Þ=
ðao þ 2Þ and rn ! 0, we have Snðx; bÞ ¼ EY jX¼xGðY ;X sbÞGsðY ;X sbÞ þ opð1Þ, where opð1Þ is
uniform in x 2 X; jjb � bojj � rn and h

p
nl � hp � hpnu.

Lemma 5

Suppose h0 is an inner point of H. Under the conditions (K1), (X0), (N1)–(N3), (N5) and (N6),

rn ¼ Oðn�1=aoÞ, and

0 < g <

min

�
ao � 2

ao
;
2ðao � 2þ w�Þ
ð2þ w�Þao

�
; 0 < w* � 2,

min
ao � 2

ao
;
1

w�

� �
; w* > 2,

8>><
>>:

we have sup ð1þ ZnðhÞÞjAnðx; hÞjf g ¼ opð1Þ, where the supremum is respect to ðx; h; hpÞ with
x 2 X; jjh � hojj � rn; h 2 H and hpnl � hp � hpnu.

Lemma 6

Suppose that h0 is an inner point of H: Then, under the conditions (K1), (X0), (N1)–(N4), (N6),

rn ! 0; and
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0 < g <

2ðao � 4Þ
2ao þ w�ðao � 4Þ ; 0 < w� � 2;

ao � 4

ðao � 2Þw� ; w� > 2;

8>><
>>:

we have Snðx; hÞ ¼ EY jX¼xGðY ; hðX ÞÞGsðY ; hðX ÞÞ þ opð1Þ where opð1Þ is uniform in x 2 X;

jjh � hojj � rn; h 2 H; and hpnl � hp � hpnu; and ho is the true value of h.

Proof of theorem 1. It follows from lemmas 1, 3, 4, 5 and 6.

Proof of theorem 2. It is similar to the proof of theorem 1 in Zhang & Liu (2000) and thus

omitted.

Recall that UðxÞ ¼ EY jX¼xGðY ;X sboÞGsðY ;X sboÞ. To facilitate the proof of theorem 3, we

establish lemmas 7–10 below.

Lemma 7

We suppose that when G is bounded, the conditions (K0), (X0), (P1), (P4), (P5), (P6) and (P8)

hold; and that when G is unbounded, the conditions (K0), (X0), (P1), (P2) and (P6)–(P9) hold. If

rn ! 0 and

0 < g <
1=2; G is bounded,
ao � 1

ao þ 1

1

2
þ f1 � 1

ao � 1

� �
; G is unbounded,

8<
:

thenXn
k¼1

wkðxÞðGðyk ; xskbÞ � Gðyk; xskboÞÞ
s � EY jX¼x½GsðY ;X sbÞ� ¼ opðmaxfjjb � bojj; n�1=2gÞ

where op is uniform in ðx; b; hÞ with x 2 X; jjb � bojj � rn and h
p
nl � hp � hpnu.

Lemma 8

Under the same conditions in lemma 7, we have

1

n

Xn
i¼1

wiðxÞEY jX ½GsðY ; xsi bÞ�U�1ðxiÞ ¼ EY jX¼x½GsðY ;X sbÞU�1ðxÞ�

þ opðmaxfjjb � bojj; n�1=2gÞ

where op is uniform in x 2 X; jjb � bojj � rn and h
p
nl � hp � hpnu:

Lemma 9

Suppose that when G is bounded, (P1), (P3)–(P8) hold; when G is unbounded, (P1) to (P9) hold.

Then, EGðY ;X sbÞ ¼ Oðjjb � bojjÞ and
1

n

Xn
j¼1

ðGðyj; xsjbÞ � Gðyj; xsjboÞ � EGðY ;X sbÞÞ ¼ opðmaxfjjb � bojj; n�1=2gÞ:

Lemma 10

Suppose that when G is bounded, (P1), (P3)–(P6), (P8) hold; when G is unbounded, (P1)–(P9)

hold. Then

1

n

Xn
j¼1

EY jX¼xj ½GsðY ;X sbÞ�U�1ðxjÞðGðyj; xsjbÞ � Gðyj; xsjboÞ � EY jX¼xj ½GðY ;X sb�ÞÞ

¼ opðmaxfjjb � bojj2; n�1gÞ:
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Proof of theorem 3. We take for example hðxÞ ¼ xsb. It suffices to establish the asymptotic

normality of the estimator defined by minimizing

R̂RsðbÞ ¼
1

2

Xn
i¼1

Xn
j¼1

wjiGðyj; bsxj

 !s Xn
j¼1

wjiGðyj; bsxjÞGðyj; bsxjÞs
" #�1 Xn

j¼1

wjiGðyj; bsxjÞ
 !

where the minimization is performed over jjb � bojj � rn; and frng is a sequence of constants

satisfying rn � cn�1=ao for some constant c > 0.

For this purpose, we first easily observe from lemmas 7, 8 and 9 that under the conditions

(P1) to (P9), and 0 < g < ðao � 2Þ=ðao þ 2Þ,

R̂RsðbÞ � R̂RsðboÞ ¼ ðb � boÞs
1

n

Xn
j¼1

@EY jX¼xj ½GsðY ;X sboÞ�
@b

U�1ðxjÞGðyj; xsjboÞ

þ 1

2
ðb � boÞs

(
1

n

Xn
j¼1

@EY jX¼xj ½GsðY ;X sboÞ�
@b

U�1ðxjÞ

	
@EY jX¼xj ½GsðY ;X sboÞ�

@b

)
ðb � boÞ þ opðmaxfjjb � bojj2; n�1gÞ:

where, without loss of generality, we drop the factor 1 þ opð1Þ: Here and hereafter opð1Þ is

always uniform in ðx; b; hÞ; x 2 X; jjb � bojj � rn and hpnl � hp � hpnu. Then via the same

argument and symbols of th. 5 of Pollard (1984, p. 141), we have

D ¼ Dðy; xÞ ¼
@EY jX¼x½GsðY ;X sboÞ�

@b
U�1ðxÞGðy; xsboÞ

and ED ¼ 0;

EDDs ¼ E
EY jXGðY ;X sboÞ

@b

� �s

U�1ðX Þ
EY jXGðY ;X sboÞ

@b

� �� �
:

Therefore, let V ¼ EDDs; we haveffiffiffi
n

p
ðb̂b � boÞ�!

L
Nð0; V Þ:

The proof is completed.

Proof of theorem 4. It is similar to th. 1 of Zhang & Liu (2000) and thus omitted. Lemmas

11–14 below are employed to prove theorem 5.

Lemma 11

Under the conditions (X0), (K1), (N1), N8(i) and N8(ii), if p1 � 0; q � 1; and

g � p1ð1� b2Þ; g > p1ða1b1 � b2Þ; g <
1

3
ð1� 2b2p1 þ a1b1p1Þ;

g <
2

6þ w� 1� 2b2p1 þ w�p1 þ a1b1
�
1� w

�

2

�� �
;

then

Xn
j¼1

wjðxÞðGðyj; hðxjÞÞ � Gðyj; hoðxjÞÞ � EY jX¼xGðY ; hðX ÞÞ ¼ Opðngþb2p1Þ

where Op is uniform in h and x with jjh � hojj � cn�p1 ; jjhð1Þ � hð1Þo jj � c1n�p1 and x 2 X; and c1 is
any fixed positive constant.
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Lemma 12

In addition to the assumptions in lemma 11, we assume that N8(iii) holds. Then, we have

Xn
i¼1

wiðxÞEY jX¼xi ½GsðY ; hðX ÞÞ�U�1ðxiÞ � EY jX¼x½GsðY ; hðX ÞÞ�U�1ðxÞ ¼ Opðn�ðgþb2p1ÞÞ

where Op is uniform in h and x with jjh � hojj � c1n�p1 ; h 2 H, and x 2 X:

Lemma 13

Under the conditions (X0), (N1), N8(i) and N8(ii), if p1 < 1; then

1

n

Xn
j¼1

ðGðyj; hðxjÞÞ þ Gðyj; hoðxjÞÞÞ ¼ Opðn�p1 Þ

uniformly in h with jjh � hojj � c1n�p1 and h 2 H:

Lemma 14

Under the conditions (X0), (N1) and (N8), if 0 < p1 < 1=ð2þ w�Þ and 0 < w� < 2: Then

uniformly in h with jjh � hojj � c1n�p1 and h 2 H

1

n

Xn
j¼1

EY jX¼xj ½GsðY ; hðX ÞÞ�U�1ðxjÞðGðyj; hðxjÞÞ � Gðyj; hoðxjÞÞ � EY jX¼xGðY ; hðX ÞÞÞ

¼ Opðn�p1�1=ð2þw�ÞÞ:

Proof of theorem 5. First of all, we claim Op and op below are uniform in h 2 H: By

theorems 1 and 4, we need only to consider the EGLS estimator defined on the parameter set

fh 2 H : jjh � hojj � rng with the constant rn ! 0: Note that, as jjh � hojj � rn ! 0; applying

the similar arguments used to prove theorem 1, we obtain

R̂RsðhÞ � R̂RsðhoÞ ¼ � 1

2

Xn
i¼1

Xn
j¼1

wjiGðyj; hðxjÞÞ
 !s

U�1ðxÞ
Xn
j¼1

wjiGðyj; hðxjÞÞð1þ opð1ÞÞ: ð8Þ

The strategy adopted in the remainder of the proof, similar to Shen & Wong (1994), is to

improve the rate iteratively by obtaining increasingly faster uniform approximation rate of the

objection function R̂RsðhÞ in a sequence of shrinking neighbourhoods.

Iteration. Let the initial value of p1 is zero. If at the previous step we have obtained

jjĥh � hojj ¼ Opðn�p1Þ; jjĥhð1Þ � hð1Þo jj ¼ Opðn�p1 Þ;

and if p1 satisfy

g � p1ð1� b2Þ; g > p1ða1b1 � b2Þ; g <
1

3
ð1� 2b2p1 þ a1b1p1Þ;

g <
2

6þ w� 1� 2b2p1 þ w�p1 þ a1b1 1� w
�

2

� �� �
;

then in the next step we can show

jjĥh � hojj ¼ Opðn�ðp1þp2Þ=2Þ þ Opðn�ðp1=2þ1=ð2þw�ÞÞÞ; ð9Þ

jjĥhð1Þ � hð1Þo jj ¼ Opðn�ðp1þp2Þð1�w�Þ=2Þ þ Opðn�ðp1=2þ1=ð2þw�ÞÞð1�w�ÞÞ; ð10Þ
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and replace p1 by ð1� w�Þminfðp1 þ p2Þ=2; ðp1=2þ 1=ð2þ w�ÞÞg. Write

aðx; hðxÞÞ ¼ U�1=2ðxÞEY jX¼xGðY ; hðX ÞÞ; Wj ¼ �U�1=2ðxjÞGðyj; hoðxjÞÞ; j ¼ 1; . . .; n:

Write p2 ¼ g þ b2p1 and b2 ¼ 2ð1 � w�Þ=ð2� w�Þ: Then, the combination of (8) and lemmas

11 to 14 gives

R̂RsðhÞ � R̂RsðhoÞ ¼ � 1

n

Xn
j¼1

asðxj; hðxjÞÞWj þ
1

2n

Xn
j¼1

jjaðxj; hðxjÞÞjj2

þ Opðn�ðp2þp1ÞÞ þ Opðn�ðp1þ2=ð2þw�ÞÞÞ ð11Þ

provided

1=ð2þ w�Þ � p1 � 0; w� � 1; ð12Þ

g > p1ða1b1 � b2Þ; g <
1

3
ð1 � 2b2p1 þ a1b1p1Þ; ð13Þ

g <
2

6þ w� 1� 2b2p1 þ w�p1 þ a1b1 1� w
�

2

� �� �
: ð14Þ

Let jjajj2 ¼ EjaðX ; hðX ÞÞj2 and Op be uniform with respect to h 2 H: By (11) and the definition

of ĥh, and by th. 2.2 and 2.3 of Mammen & van de Geer (1997), we find

�maxfjjað	; ĥhð	ÞÞjj1�w
�=2;n�ð2�w�Þ=ð2ð2þw�ÞÞgOpðn�1=2Þ þ 1

2
maxfjjað	; ĥhð	ÞÞjj2;Opðn�2=ð2þw�ÞÞg

� Opðn�ðp2þp1ÞÞ þOpðn�ðp1þ2=ð2þw�ÞÞÞ

which together with the assumptions implies (9). Invoke the Sobolev interpolation inequality,

there exists a constant b, for any 0 < q < 1,

jjĥhð1Þ � hð1Þo jj2 � bðq�2jjĥh � hojj2 þ q2ðqþr�1ÞjjĥhðqÞ � hðqÞo jj2H Þ

where jj 	 jjH is the Hölder norm. Let q ¼ c1jjĥh � hojjw
�
with w� ¼ 1=ðqþ rÞ: Then, we derive

(10).

The above iteration continues if (12)–(14) hold, p1 < ð1� w�Þ=ð2� w�Þ, g � p1ð1� b2Þ; and
ðg þ 2b2p1 þ p1Þð1� w�Þ > 2p1: Now the proof is completed by some simple calculations.

Proof of proposition 1. See Zhang & Gijbels (1999).
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