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Abstract. This paper presents a new generic technique, named sieve-
in-the-middle, which improves meet-in-the-middle attacks in the sense
that it provides an attack on a higher number of rounds. Instead of
selecting the key candidates by searching for a collision in an intermedi-
ate state which can be computed forwards and backwards, we look for
the existence of valid transitions through some middle sbox. Combining
this technique with short bicliques allows to freely add one or two more
rounds with the same time complexity. Moreover, when the key size of
the cipher is larger than its block size, we show how to build the bi-
cliques by an improved technique which does not require any additional
data (on the contrary to previous biclique attacks). These techniques
apply to PRESENT, DES, PRINCE and AES, improving the previously
known results on these four ciphers. In particular, our attack on PRINCE
applies to 8 rounds (out of 12), instead of 6 in the previous cryptanal-
yses. Some results are also given for theoretically estimating the sieving
probability provided by some inputs and outputs of a given sbox.
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1 Introduction

Meet-in-the-middle (MITM) attacks are a widely used tool introduced by Diffie
and Hellman in 1977. Through the years, they have been applied for analyzing
the security of a substantial number of cryptographic primitives, including block
ciphers, stream ciphers and hash functions, e.g. [20, 5, 12, 15, 14]. They exploit
the fact that some internal state in the middle of the cipher can be computed
both forwards from the plaintext and backwards from the ciphertext, and that
none of these computations requires the knowledge of the whole master key. The
attacker then only keeps the (partial) key candidates which lead to a collision in
that internal state and discards all the other keys. This generic attack has drawn
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a lot of attention and raised many improvements, including the partial matching,
where the computed internal states are not completely known, the technique of
guessing some bits of the internal state [12], the all-subkeys approach [15], splice-
and-cut [2, 3, 13] and bicliques [18]. The most popular application of bicliques is
an accelerated exhaustive search on the full AES [4]. But, besides this degener-
ated application where the whole key needs to be guessed, short bicliques usually
allow to increase the number of rounds attacked by MITM techniques without
increasing the time complexity, but with a higher data complexity. Moreover, fol-
lowing [7], low-data attacks have attracted a lot of attention, motivated in part
by the fact that, in many concrete protocols, only a few plaintext-ciphertext pairs
can be eavesdropped. MITM attacks belong to this class of attacks in most cases
(with a few exceptions like bicliques): usually, 1 or 2 known plaintext-ciphertext
pairs are enough for recovering the key.

Our contribution. This paper first provides a new generic improvement of
MITM algorithms, named sieve-in-the-middle, which allows to attack a higher
number of rounds. Instead of looking for collisions in the middle, we compute
some input and output bits of a particular middle sbox S. The merging step
of the algorithm then consists in efficiently discarding all key candidates which
do not correspond to a valid transition through S. Intuitively, this technique
allows to attack more rounds than classical MITM since it also covers the rounds
corresponding to the middle sbox S (e.g. two middle rounds if S is a superbox).
This new improvement is related to some previous results, including [2] where
transitions through an ARX construction are considered; a similar idea was
applied in [17] in a differential attack, and in [8] for side-channel attacks. This
new generic improvement can be combined with bicliques, since short bicliques
also allow to add a few rounds without increasing the time complexity. But, the
price to pay is a higher data complexity. Here, we show that this increased data
requirement can be avoided by constructing some improved bicliques, if the key
size of the cipher is larger than its block size.

These new improvements and techniques are illustrated with four applica-
tions which improve previously known attacks. In Section 4, the sieve-in-the-
middle algorithm combined with the improved biclique construction is applied
to 8 rounds (out of 12) of PRINCE, with 2 known plaintext-ciphertext pairs,
while the previous best known attack was on six rounds. Due to the page limita-
tion, the other three applications are presented in the full version of this paper [9]
only. In [9], we describe a sieve-in-the-middle attack on 8 rounds of PRESENT,
which provides a very illustrative and representative example of our technique.
This attack applies up to 8 rounds, while the highest number of rounds reached
by classical MITM is only 6. A similar analysis on DES is presented in [9]; our
attack achieves 8 rounds, while the best previous MITM attack (starting from
the first one) was on 6 rounds. The cores of these two attacks have been im-
plemented, confirming our theoretical analysis. In [9], we also show that we can
slightly improve on some platforms the speed-up factor in the accelerated ex-
haustive search on the full AES performed by bicliques. The time complexity
of the sieve-in-the-middle algorithm highly depends on the sieving probability



of the middle sbox, i.e., on the proportion of pairs formed by a partial input
and a partial output which correspond to a valid transition for S. We then give
some results which allow to estimate the sieving probability of a given sbox. In
particular, we show that the sieving probability is related to the branch number
of the sbox, and we give a lower bound on the minimal number of known input
and output bits which may provide a sieve.

2 The Sieve-in-the-Middle Attack

2.1 Basic idea

The basic idea of the attack is as follows. The attacker knows one pair of plaintext
and ciphertext (P,C) (or several such pairs), and she is able to compute from
the plaintext and from a part K1 of the key candidate an m-bit vector u, which
corresponds to a part of an intermediate state x. On the other hand, she is able
to compute from the ciphertext and another part K2 of the key candidate a p-
bit vector v, which corresponds to a part of a second intermediate state y. Both
intermediate states x and y are related by y = S(x), where S is a known function
from Fn2 into Fn

′

2 , possibly parametrized by a part K3 of the key. In practice, S
can be a classical sbox, a superbox or some more complex function, as long as
the attacker is able to precompute and store all possible transitions between the
input bits obtained by the forward computation and the output bits obtained
backwards (or sometimes, these transitions can even be computed on the fly). In
particular, the involved intermediate states x and y usually correspond to partial
internal states of the cipher, implying that their sizes n and n′ are smaller than
the blocksize.

K1
Forward computation with K1 F

u

S K3

v

K2
Backward computation with K2 B

K=(K1 U K2, K3, K4)

Middle Sbox with K3

Fig. 1. Generic representation of Sieve-in-the-Middle.

Then, the attacker is able to compute some pairs (u, v) in Fm2 × Fp2 and
she wants to determine whether those pairs can be some valid parts of a pair
(x, S(x)) for some x ∈ Fn2 (and for some K3 if S depends on a part of the key).
If it appears that no input x ∈ Fn2 can lead to a given (u, v), then the keys
(K1,K2) from which (u, v) has been obtained do not form a valid candidate for
the key. In such a case, the (m + p) positions corresponding to (u, v) can be
used as a sieve. The sieving probability is then the proportion of pairs (u, v)
corresponding to valid parts of (x, S(x)). Obviously, in classical MITM attacks,
u and v correspond to the same n-bit part of an intermediate state and S = Idn;
the sieving probability is then equal to 2−n. We now define precisely when a pair
(I, J) of input and output positions can be used as a sieve.



Definition 1. Let S be a function from Fn2 into Fn
′

2 . Let I ⊂ {1, . . . , n} and J ⊂
{1, . . . , n′} be two subsets with respective sizes m and p. The sieving probability
of (I, J), denoted by πI,J , is the proportion of all elements in Fm+p

2 which can
be written as (xi, i ∈ I;Sj(x), j ∈ J) for some x ∈ Fn2 . The pair (I, J) is called
an (m, p)-sieve for S if πI,J < 1.

The smaller πI,J , the better the sieving, because more candidates will be dis-
carded. If S depends on a k3-bit value key K3, the definition similarly applies
but S must be seen as a function with (k3 + n) inputs.

When a large number of inputs and outputs of S can be computed by the
attacker, they can be used as a sieve, as shown in the following proposition.

Proposition 1. Any pair (I, J) of sets of size (m, p) with m+ p > n is a sieve
for S with sieving probability πI,J ≤ 2n−(m+p).

Proof. For any given u, there exists exactly 2n−m values of x such that (xi, i ∈
I) = u. Thus, (Sj(x), j ∈ J) can take at most 2n−m different values, implying
that πI,J ≤ 2n−(m+p).

However, smaller subsets I and J may provide a sieve even when m + p ≤ n.
This issue will be extensively discussed in Section 5. More generally, u and v may
consist of some information bits of x and y, i.e., of some linear combinations of
the bits of x and y. We then define two linear functions L : x ∈ Fn2 7→ u ∈ Fm2
and L′ : y ∈ Fn2 7→ v ∈ Fp2. The corresponding sieving probability π is now
the proportion of (u, v) such that there exists x ∈ Fn2 with L(x) = u and
L′(S(x)) = v. Then, π can be seen as the sieving probability of I = {1, . . . ,m}
and J = {1, . . . , p} for the function L′◦S◦L̃−1 where L̃ is any linear permutation

of Fn2 such that (L̃(x)i, i ∈ I) = L(x).

2.2 Description of the attack

We now precisely describe the improved MITM attack and provide its complex-
ity. The secret key K is divided into four (possibly non-disjoint) parts, K1 to
K4. K1 (resp. K2) is the part of the key used in the forward (resp. backward)
computation, while K3 is involved in the middle S function only (see Fig. 1).
The key bits corresponding to K4 are not involved in the MITM step. In the fol-
lowing, ki denotes the length of the key part Ki, while k is the total key length.
Moreover, K1 ∩K2 denotes the bits shared by K1 and K2, and κ corresponds to
the size of this intersection.

We denote by I (resp. J) the set of input positions of S (resp. output posi-
tions) corresponding to u (resp. v). The fact that a pair (u, v) corresponds to a
valid pair of inputs and outputs of S is characterized by a Boolean relation R
with (m+ p) inputs defined by

R(u, v) = 1 if and only if ∃x ∈ Fn2 : (xi, i ∈ I) = u and (S(x)j , j ∈ J) = v .

The attack proceeds as follows.



for all 2κ values of K1 ∩K2 do
Lf ← ∅ and Lb ← ∅
// Forward computation
for all 2k1−κ values of the remaining bits of K1 do

compute u = FK1
(P ) and add u to Lf

// Backward computation
for all 2k2−κ values of the remaining bits of K2 do

compute v = BK2
(C) and add v to Lb

// Merging step
Merge Lf and Lb w.r.t. Relation R and return the merged list Lsol.

// Testing the remaining candidates
for all K with (K1,K2) in Lsol do

if EK(P ) = C then
return K

Section 2.3 details some efficient algorithms for merging the two lists Lf and
Lb (i.e. for recovering all the (u, v) which satisfy R(u, v) = 1) with complexity
lower than the product of their sizes.

With a single plaintext-ciphertext pair. Obviously, the whole secret key
can be recovered only if the key length does not exceed the blocksize. Otherwise,
2k−b possible keys will be returned in average where b is the blocksize. The time
complexity of the attack is given by:

2κ
(
2k1−κcF + 2k2−κcB + Cmerge

)
+ π2kcE ,

where π is the sieving probability of (I, J) as defined in Definition 1, cE is the cost
of one encryption, while cF and cB correspond to the costs of a partial encryption
in the forward and backward directions. In most cases, cF ' cB ' cE/2. Cmerge

is the time complexity of the merging step, and it depends on k3. Its value is
discussed in the following section. The average time complexity of the attack
needs to be compared to 2kcE which is the cost of the exhaustive search. The
memory complexity is mainly determined by the memory needed in the merging
step. In some cases, it can be improved by storing only one among the two lists
Lf and Lb, when the auxiliary lists used in the merging step remain smaller.

With N plaintext-ciphertext pairs. IfN plaintext-ciphertext pairs are avail-
able to the attacker, then the average number of keys returned by the attack is
2k−Nb, implying that the whole key will be recovered when N ≥ k/b. The main
modification in the attack concerns the last step where all key candidates in Lsol
are tested: before performing an exhaustive search over (K1 ∩ K2) and K4 for
testing all keys with (K1,K2) ∈ Lsol, an additional sieving step is performed
in order to reduce the size of Lsol. Once a new solution (K1,K2) ∈ Lsol has
been found, (N − 1) additional pairs (ui, vi) generated from the other plaintext-
ciphertext pairs are considered, and only the keys for which R(ui, vi) = 1 are
kept in Lsol (note that, in some very particular situations, it might be more effi-
cient to directly include in Lf and Lb the values u and v generated from several



plaintext-ciphertext pairs, and then merge the lists). The average size of Lsol
after this additional sieving step is then πN2k1+k2−2κ . But this formula should
be adapted to the case where S depends on a part of the secret key K3: indeed
the merging step determines a candidate for (K1,K2,K3). Then, the sieving
probability of the additional sieving step π′ differs from π since the value of K3

is now fixed. π′ is then the sieving probability of (I, J) for SK3
averaged over

all K3. Then, in the case of N plaintext-ciphertext pairs, the cost of the forward
and backward computations are multiplied by N , while the cost of the testing
part decreases:

2κ
(
N2k1−κcF +N2k2−κcB + Cmerge

)
+ π(π′)N−12kcE .

2.3 Merging the two lists efficiently

Very often, the middle function S can be decomposed into several smaller sboxes,
and the merging step can be performed group-wise. The problem of merging
two large lists with respect to a group-wise Boolean relation has been defined
and addressed by Naya-Plasencia in [19, Section 2]. Here, we focus on three
algorithms proposed in [19], namely instant matching, gradual matching and an
improvement of the parallel matching due to [10]. We provide general and precise
formulas for the average time and memory complexities of these three algorithms.
Actually, in our case, the lists to be merged may be small. Then, the construction
of some auxiliary tables, which had a negligible cost in [19] for large lists, must
now be taken into account. It might even become the bottleneck of the algorithm.
Thus, when the involved lists are small, it is harder to determine a priori which
algorithm is the most efficient in a given case. Then, in each application, we need
to check thoroughly which algorithm provides the best complexity. The optimal
case may even sometimes correspond to the combination of two algorithms.

In the following, we consider two lists, LA of size 2`A and LB of size 2`B ,
whose roles are interchangeable. The elements of both lists can be decomposed
into t groups: the i-th group of a ∈ LA has size mi, while the i-th group of b ∈ LB
has size pi. The Boolean relation R can similarly be considered group-wise:
R(a, b) = 1 if and only Ri(ai, bi) = 1 for all 1 ≤ i ≤ t. The sieving probability
π associated to R then corresponds to the product of the sieving probabilities
πi associated to each Ri. Since each Ri corresponds to an sbox Si with ni-bit
inputs, a table storing all (ai, bi) such that Ri(ai, bi) = 1 can be built with
time complexity 2ni , by computing all (xi, Si(xi)), xi ∈ Fni

2 . The corresponding
memory complexity is proportional to πi2

mi+pi . This cost won’t be included
in the cost of the merging algorithm since, in the sieve-in-the-middle process,
the tables will be built once for all and not 2κ times. As we will see, in some
situations, these tables can be built “on-the-fly” with much fewer operations.

A complete description of the three matching algorithms is provided in the
full version [9]. It is worth noticing that the size of the list Lsol returned by the
matching algorithm is not included in the memory complexity since each of its
elements can be tested in the attack as soon as it has been found.



Instant Matching. Instant matching successively considers all elements LB :
for each b ∈ LB , a list Laux of all a such that R(a, b) = 1 is built, and each
element of Laux is searched within LA. Its complexity is

Time = π2`B+m + π2`A+`B and Memory = 2`A + 2`B .

Gradual Matching. Gradual matching is a recursive procedure: all elements
are decomposed into two parts, the first t′ groups and the last (t − t′), with
t′ < t. For each possible value β of the first t′ groups, the sublist LB(β) is built.
It consists of all elements in LB whose first t′ groups take the value β. Now, for
each α such that Ri(αi, βi) = 1, 1 ≤ i ≤ t′, LB(β) is merged with the sublist
LA(α) which consists of all elements in LA whose first t′ groups take the value

α. Then, we need to merge two smaller lists, of respective sizes 2`A−
∑t′

i=1mi and

2`B−
∑t′

i=1 pi .

Time =

 t′∏
i=1

πi

 2
∑t′

i=1mi+piCmerge and Memory = 2`A + 2`B .

where Cmerge is the cost of merging the two remaining sublists.

Parallel Matching without memory. We give here the first general descrip-
tion of the memoryless version of parallel matching. This algorithm applies an
idea from [10] to the parallel matching algorithm from [19]: instead of building
a big auxiliary list as in the original parallel matching, we here build small ones
which do not need any additional memory. In parallel matching, the elements
in both lists are decomposed into three parts: the first t1 groups, the next t2
groups, and the remaining (t− t1− t2) groups. Both lists LA and LB are sorted
in lexicographic order. Then, LA can be seen as a collection of sublists LA(α),
where LA(α) is composed of all elements in LA whose first t groups equal α.
Similarly, LB is seen as a collection of LB(β). The matching algorithm then pro-
ceeds as follows. For each possible value α for the first t groups, an auxiliary list
Laux is built, corresponding to the union of all LB(β) where (α, β) satisfies the
first t relations Rj . The list Laux is sorted by its next t2 groups. Then, for each
element in LA(α), we check if a match for its next t2 groups exists in Laux. For
each finding, the remaining (t− t1− t2) groups are tested and only the elements
which satisfy the remaining (t − t1 − t2) relations are returned. Details on the
evaluation of the time and memory complexities are given in [9].

Time =

(
t1∏
i=1

πi

)
2`B+

∑t1
i=1mi +

(
t1+t2∏
i=t1+1

πi

)
2`A+

∑t1+t2
i=t1+1 pi +

(
t1+t2∏
i=1

πi

)
2`A+`B

Memory = 2`A + 2`B +

(
t1∏
i=1

πi

)
2`B .



3 Combining Sieve-in-the-Middle and Bicliques

Sieve-in-the-middle, as a generic technique, can be combined with other improve-
ments of MITM attacks, in particular with bicliques [4, 18]. The general purpose
of bicliques is to increase the number of rounds attacked by MITM techniques.
Here, we briefly describe how bicliques can increase the number of rounds at-
tacked by the previously described sieve-in-the-middle algorithm. This can be
done at no computational cost, but requires a higher data complexity. In order to
avoid this drawback, we then present an improvement of bicliques which applies
when the key length exceeds the block size of the cipher.

3.1 Sieve-in-the-middle and classical bicliques

The combination of both techniques is depicted on Figure 2: the bottom part is
covered by bicliques, while the remaining part is covered by a sieve-in-the-middle
algorithm. In the following, HK8 : X 7→ C denotes the function corresponding

P

K1
Forward computation with K1 F

K3
S

K2
Backward computation with K2 B

X
K6 K5       K8=(K5,K6,K7)

H

C

Middle Sbox with K3

Bicliques

Fig. 2. Generic representation of Sieve-in-the-Middle and bicliques

to the bottom part of the cipher, and K8 represents the key bits involved in
this part. Then, K8 is partitioned into three disjoint subsets, K5, K6 and K7.
The value taken by Ki with 5 ≤ i ≤ 7 will be represented by an integer in
{0, . . . , 2ki − 1}. A biclique can be built if the active bits in the computation
of HK8(X) when K6 varies and the active bits in the computation of H−1K8

(C)
when K5 varies are two disjoint sets. In this case, an exhaustive search over K7 is
performed and a biclique is built for each value h of K7 as follows. We start from
a given ciphertext C0 and a chosen key K0

8 = (0, 0, h) formed by the candidate
for K7 and the zero value for K5 and K6. We compute X0

h = H−10,0,h(C0). Next,

we compute backwards from C0 the intermediate state Xi
h = H−1i,0,h(C0) for each

possible value i for K5. Similarly, we compute forwards from X0
h the ciphertext

Cjh = H0,j,h(X0
h) for each possible value j of K6. Since the two differential paths

are independent, we deduce that Hi,j,h(Xi
h) = Cjh for all values (i, j) of (K5,K6).

Then, the sieve-in-the-middle algorithm can be applied for each K7 and each
value for (K1 ∩K2). The list Lb of all output vectors v is computed backwards
from Xi

h for each value i of K5 and each value of K2 \ (K1 ∩K2). The list Lf
of all input vectors u is computed forwards from all plaintexts P jh corresponding



to Cjh for each value j of K6 and each value of K1 \ (K1 ∩K2). We then merge
those two lists of respective sizes 2|K2∪K5| and 2|K1∪K6|.

As in classical MITM with bicliques, the decomposition of K8 should be
such that the bits of K5 do not belong to K1, the bits of K6 do not belong to
K2 and the bits of K7 should lie in (K1 ∩ K2). The best strategy here seems
to choose (K5,K6) such that the bits of K5 belong to K2 \ (K1 ∩ K2), and
the bits of K6 belong to K1 \ (K1 ∩ K2). In this case, we have to add to the
time complexity of the attack the cost of the construction of the bicliques, i.e.,
2k7(2k5 + 2k6)cH (very rarely the bottleneck), where cH is the cost of the partial
encryption or decryption corresponding to the rounds covered by the bicliques.
The main change is that the data complexity has increased since the attack now
requires the knowledge of all plaintext-ciphertext pairs (P jh , C

j
h) corresponding

to all possible values (j, h) for (K6,K7). The data complexity then would cor-
respond to 2k6+k7 pairs of plaintext-chosen ciphertexts, but it is usually smaller
since the ciphertexts Cjh only differ on a few positions.

3.2 Improved bicliques for some scenarios

Now, we describe a generic idea for improving bicliques in certain scenarios and
reducing the data complexity to a single plaintext-ciphertext pair. Our improve-
ment usually applies when the total key size of the cipher is larger than the
block size. This occurs for instance when whitening keys are used. A detailed
and successful application is demonstrated on PRINCE in Section 4. The main
idea of our improvement is to gather some parts of the partial exhaustive search
over K7 into different groups such that, within a group, all obtained ciphertexts
Cj are equal to C0.

We consider a biclique repartition of keys consistent with the sieve-in-the-
middle part: we choose K5 ⊂ K2\(K1∩K2) as previously, and some set K ′6 ⊂ K1

(this differs from the classical biclique construction where we hadK6 ⊂ K1\(K1∩
K2)). Let ∆C

6 be the positions of the bits of C which may be affected by K ′6 when
computing forward from X, and let ∆X

6 be the positions of the bits of X which
may be affected by ∆C

6 and K ′6 during the backward computation. In classical
bicliques, the path generated in the backward direction by the different K5 must
be independent from the path generated in the forward direction by the different
K ′6. Here, we also require this first path generated by K5 to be independent from
the backward path generated when the ciphertext bits in positions ∆C

6 vary.
For instance, in the example depicted on Figure 3, H follows the Even-Mansour
construction, i.e., it is composed of an unkeyed permutation H ′ and the addition
of two whitening keys Ka and Kb. The positions of K5 and K ′6 are represented
in red and blue respectively, and it can be checked that the corresponding paths
are independent.

In this situation, an improved biclique without any additional data can be
built if the size of ∆X

6 is smaller than k′6. In our context, the algorithm has to
be repeated for each value h for K ′7 = K8 \ (K5 ∪ K ′6), but the index h will
be omitted in the description. First, we precompute the values obtained from a
chosen C0 when K ′6 takes all possible values. If the number of information bits
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Fig. 3. Example of the improved biclique construction.

in ∆X
6 is less than k′6, all 2k

′
6 transitions can be represented by several lists Lj ,

each containing the different values of K ′6 which all map C0 to the same value
of the state X, Xj (see Figure 4(a)). For the sake of simplicity, we assume that
all these lists have the same size 2`. In most cases, we have ` = k′6 − |∆X

6 |. For
the example depicted on Figure 3, we assume that H ′ is such that the function
obtained by restricting its inputs to the positions in ∆X

6 and its outputs to the
positions in ∆C

6 is a permutation. Then, it clearly appears that the number of
bits in ∆X

6 is equal to the number of bits of K ′6 ∩Kb, and thus strictly smaller
than the number of bits of K ′6. More precisely, there are exactly 2` values of K ′6,
with ` = |K ′6 ∩Ka| , which provide the same value of X = H ′−1(C0 +Kb) +Ka

when K ′6 varies and all other bits are fixed.

Now, for each of the 2k
′
6−` values of Xj , all transitions from C0 to Xj through

different values of K ′6 ∈ Lj can also be seen as the 2` biclique transitions from
Xj to C0 through some particular values of the key K ′6 (these transitions are
represented in black on Figure 4(b)).

C0
X0

Xj

X2k6−1

0,K ′6 ∈ L0

...

0,K ′6 ∈ L2k6−1

(a) Step 1

i,Kj

0,Kj C0Xj

Xj +∇i

2k5 − 1,Kj

C0

C0Xj +∇2k5−1

... ...

(b) Step 2: to be repeated for the

2k′6−` values of j

Fig. 4. Improved biclique construction.



Now, the second step consists in building the bicliques in the other direction:
from C0 for each value of Xj . For each of the 2k

′
6−` values of j, we fix the

value of K ′6 to a constant value Kj appearing in Lj . This way, the part of
X corresponding to ∆X

6 is the same for all the transitions of the bicliques,
and this property holds even when K5 is modified since both corresponding
paths are independent. We then consider the 2k5 possible values i for K5 and
compute the corresponding X = Xj + ∇i (see Figure 4(b)). We then deduce

the 2k5+k
′
6 transitions H(Xj + ∇i)(i,K′6) = C0 for all K ′6 ∈ Lj , from (2k

′
6 +

2k
′
6−`+k5) computations of the function. Indeed, the first term in the complexity

corresponds to the precomputation phase (Step 1), and the second one to the
number of lists Lj , 2k

′
6−`, multiplied by the cost for building the bicliques in

the other direction. The main advantage of this construction is that it can be
combined with the sieve-in-the-middle part as previously described, but it now
requires a single plaintext-ciphertext pair, the one formed by (P 0, C0).

Finally, we assume that the bits of K5 belong to K2 \ (K1 ∩K2), the bits of
K ′6 belong to K1 and the bits of K ′7 are the bits from (K1 ∪K2) \ (K5 ∪K ′6),
the time complexity of the attack is:

2k
′
7

(
2k
′
6 + 2k

′
6−`+k5

)
cH + 2k1cF + 2k2cB + 2κCmerge + π2kcE

where Cmerge is the cost of merging the lists of size 2k1−κ and 2k2−κ with respect
to the sieving conditions.

A similar idea can also be used for choosing an appropriate K5 which delays
the propagation of the unknown bits during the forward computation. This will
be shown in the case of Prince.

4 Application to PRINCE

PRINCE is a lightweight block cipher designed by Borghoff et al. [6]. Though
being very recent, it has already waked the interest of many cryptanalysts [21, 16,
1]. The best known attacks so far on the proposed cipher, including the security
analysis performed by the authors, reach 6 rounds. In particular, MITM with
bicliques (without guessing the whole key) is said to reach at most 6 rounds (out
of 12). In [16], a reduction of the security by one bit is presented, and in [1] an
accelerated exhaustive search using bicliques is presented. Here, we describe how
to build sieve-in-the-middle attacks on 8 rounds with data complexity 1 (or 2
if we want to the whole key instead of a set of candidates). In addition to the
new sieve-in-the-middle technique, we use the improved method for constructing
bicliques presented in Section 3.2.

4.1 Brief description of PRINCE

PRINCE operates on 64-bit blocks and uses a 128-bit key composed of two 64-bit
elements, Ka and Kb. Its structure is depicted on Figure 5. PRINCE is based
on the so-called FX-construction: two whitening keys Win = (Ka + Kb) and



Wout = (K ′a + Kb) are xored respectively to the input and to the output of a
12-round core cipher parametrized by Kb only. The value of K ′a involved in the
post-whitening key is derived from Ka by K ′a = (Ka ≫ 1)⊕ (Ka � 63).
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Fig. 5. Structure of PRINCE.

The round function is composed of:

– a non-linear layer SB corresponding to 16 parallel applications of a 4 × 4
sbox σ.

– a linear layer P ◦ M , where M is the parallel application of 4 involutive
mixcolumns operations on 16 bits each (defined either by M̂ (0) or by M̂ (1)).
This transformation is then followed by a permutation P of the 16 nibbles
which is the same as the ShiftRows transformation used in the AES.

– the addition of a round constant RCi and of the subkey Kb.

The first 5 rounds in PRINCE correspond to the previous round permutation
R, while the last 5 rounds are defined by the inverse permutation R−1. The two
middle rounds correspond to the successive applications of SB , M and S−1B .

4.2 Sieve-in-the-middle and improved bicliques on 8 rounds

Sieve-in-the-middle on six rounds. We first describe the sieve-in-the-middle
part of the attack, which covers Rounds 1 to 6 (see Figure 6). The internal
state X after Round 6 is supposed to be known, as well as the plaintext. The
sieving step is done with respect to a function S which covers Round 3 and the
SB level of Round 4. This middle function S can then be decomposed as four
16× 16 superboxes: the colored nibbles in the middle of Figure 6 represent the
nibbles belonging to the same superbox.

The 128 keybits in PRINCE are then decomposed as depicted on Figure 7:

– K1, i.e. the keybits known in the forward direction, are represented in white
and in blue in Kb and the first whitening key Win. They correspond to all
bits Kb and Win except the 11 leftmost bits of the third 16-bit group in Kb.

– K2, i.e. the keybits known in the backward direction, are represented in
white and in red in Kb and Win. They correspond to all bits of Kb and Win

except the leftmost nibble of Kb and the 16 bits at positions 0 and 49 to 63
in Win.

It follows that the intersection (K1 ∩K2) consists of κ = 97 information bits of
(Ka,Kb): the 49 white bits in Kb and the 48 white bits in Win.
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Fig. 6. Sieve-in-the-middle attack on 8 rounds of PRINCE with data complexity of 1.

The algorithm is described on Figure 6, where each nibble which contains
’K’ is known in the backward computation, each nibble which contains ’k’ is
known in the forward computation and ’1’ means that there is a known bit in
the nibble. The right part of the figure represents the key. We will exploit the
fact that, for each 16× 16 mixcolumns operation, there exist 4 output bits (one
per nibble), as well as 8 information bits of the output, which do not depend on
a given input nibble. Each of these 8 information bits corresponds to the sum
of two output bits (see [9, Sect. 6.2] for details). In the backward computation,
from State X and K2, we can compute 3 nibbles of each input of the mixcolumns
operations at Round 5. Then, we deduce one bit in each nibble of the output of
the middle function S, as well as 32 information bits which involve the outputs
of two different superboxes. When considering s < 4 superboxes together, the
number of information bits known is reduced to 8 if s = 2, and to 20 if s = 3.

In the forward computation, from the plaintext P and K1, we compute three
input nibbles of each superbox. From the mixcolumns operation in Round 2
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Fig. 7. Decomposition of the key in the attack on 8 rounds of PRINCE. Win = Ka⊕Kb

and Wout = (Ka ≫ 1) ⊕ (Ka � 63) ⊕Kb.

whose input is partially known, we can also have 4 additional information bits
on the input of the middle function S. When considering s < 4 superboxes
together, the number of information bits known is reduced to 0 if s = 2 and to
1 if s = 3.

Then, we need to merge the two lists Lf and Lb of respective sizes 24 and
211. Since m = 4× 12 + 4 = 52 input bits and p = 4× 4 + 32 = 48 output bits
are known, the total sieving probability π is at most 264−(52+48) = 2−36. In the
following, the tables Tj providing all transitions for the four superboxes Sj are
supposed to be known3.

We are going to first apply the instant matching on the first two blocks
(orange and green), i.e., instant matching as described in [9, Algo. 1] with pa-
rameters n1 = n2 = 16 and m1 = m2 = 12 and p1 +p2 = 8+8 = 16. The sieving
probability of these two superboxes together is then π1,2 = 232−(24+16) = 2−8.
We consider LA = Lb and LB = Lf . From the corresponding formula in Sec-
tion 2.3, we get that the time complexity of this step is 2−824+16 +2−8215 ≈ 212.
With this complexity we have found 215π1,2 = 27 input-output pairs of S which
are valid for the first two superboxes. We can now check whether each of these
pairs is also valid for the two remaining superboxes. Now, the sieving proba-
bility for the remaining part is at most 2−36 × 2+8 = 2−28 as the total sieving
probability is at most 2−36.

Therefore, at the end of the merging step, for each guess of the κ = 113
bits of (K1 ∩ K2), we have a probability of 27−28 = 2−21 of finding a correct
configuration for the 15 remaining bits of (K1,K2). This means that the testing
step will consider 2113−21 = 292 keys, and it will recover 264 possible candidates
for the whole key. If two plaintext-ciphertext pairs are available, the testing step
will consider 292−36 = 256 keys instead of 292, leading to performing a test over
256 candidates for recovering the correct key.

Improved bicliques part. Our attack combines the previous sieve-in-the-
middle algorithm with bicliques built as described in Section 3.2, without in-
creasing the data complexity. We define K ′6 as the five nibbles corresponding
to the union of the leftmost nibble of Kb and the four leftmost nibbles of the
whitening key Wout = (K ′a + Kb). Then, ∆C

6 is represented on Figure 6 by the
four ’O’ symbols in the line before C. Also, ∆X

6 then corresponds to the ’O’
symbols in X. Then, |∆C

6 | = 16 and |∆X
6 | = 16. The remaining ’O’ show the

3The orange and green superboxes that involve common key bits only can be com-
puted on the fly and will be used first for the instant matching. For each pair we obtain,
the whole key is already known, so we can repeat the on-the-fly procedure.



path from ∆C
6 to ∆X

6 . All 220 transitions obtained when K ′6 varies correspond,
for each one of the 216 possible values of j, to 24 biclique transitions from Xj to
C. Then, K5 is defined as the 11 leftmost bits of the third 16-bit group of Kb,
implying that K5 is equal to K2\(K1∩K2). The path generated in the backward
direction, represented in red, is then independent from the blue path generated
by K ′6, and also from the path with ’O’ symbols from ∆C

6 to ∆X
6 .

The complete algorithm then consists in performing an exhaustive search
over the κ = 97 common bits corresponding to the white bits of Kb and Win

in Figure 7. The previously described bicliques determine 216 states Xj , and 24

transitions from each Xj to C. Then, for each Xj , we examine the corresponding
24 values of K ′6. For those K ′6, we compute forwards from the plaintext P the
list of all 24 vectors u. It is worth noticing that even if the red bits of Ka and Kb

are unknown in the forward direction, their sum is known (see Fig. 7). Similarly,
the list Lb of all vectors v is computed backwards from the 211 Xi and their
associated value i for K5. From the formula given in Section 3.2, we deduce
that, for one plaintext-ciphertext pair, the time complexity is

Time = 297
(
220 + 216+11

)
cH+2117cF+2113cB+297×212+2−36×2128cE ' 2124cH .

We have then gained more than four bits over the exhaustive search (2128cE).
The memory complexity is of 220, corresponding to the precomputed table in
the construction of the improved bicliques, since the transition tables for the
superboxes can be computed on the fly.

5 Sieving Probability and Related Properties of the Sbox

5.1 General properties

In this section, we focus on the general problem of theoretically estimating the
sieving property provided by two subsets I ⊂ {1, . . . , n} and J ⊂ {1, . . . , n′},
with respective sizes m and p, for a given function S from Fn2 into Fn

′

2 . In partic-
ular, we provide some results on the minimal value of (m+ p) for which a sieve
exists. In the following, SJ denotes the function from Fn2 into Fp2 corresponding
to the p coordinates of S defined by J . Also, for any affine subspace W , S|W de-
notes the restriction of S to W , i.e., the function defined on W by S|W (x) = S(x).
Obviously, S|W can be identified with a function of dimW input variables.

For a given input set I, V denotes the linear subspace V = {x ∈ Fn2 : xi =
0, i ∈ I}. Then, the sieving probability of (I, J) can be expressed in terms of the
sizes of all Range(SJ)|u+V when u varies (see Prop 2 in [9]). Most notably, we
deduce:

Corollary 1. The sieving probability of (I, J) satisfies πI,J ≥ 2−p, with equality
if and only if SJ does not depend on its inputs at positions in {1, . . . , n} \ I.

Link with the branch number of S. We associate to S the (nonlinear) code
CS of length (n + n′) and of size 2n defined by CS = {(x, S(x)), x ∈ Fn2}. The
minimum distance of CS is the lowest value of wt(x + y) + wt(S(x) + S(y))



for distinct x, y. It corresponds to the branch number of S. Obviously, when
m+p > n, the sieving probability of any (I, J) of size (m, p) is at most 2n−(m+p)

(see Prop 1). Now, the following proposition shows that this upper bound is tight
when (m+ p) exceeds some bound depending on the branch number of S.

Proposition 2. Let m and p be two integers with m+ p ≥ n. Then, all (m, p)-
sieves have probability 2n−(m+p) if and only if m+ p > n+n′− dmin where dmin

is the branch number of S (i.e., the minimal distance of CS).

For instance, the branch number of the 4 × 4 PRESENT sbox is equal to 3. It
follows that any (m, p) sieve with m+ p ≥ 6 has probability 2n−(m+p).

Lower bound on the minimal value of (m + p). Even if the code CS is a
nonlinear code, its dual distance can be defined as follows (if CS is linear, this
definition coincides with the minimum distance of the dual code C⊥S ).

Definition 2. Let C be a code of length N and size M over Fq and A =
(A0, . . . , AN ) be its distance distribution, i.e., Ai = 1

M#{(x, y) ∈ C × C :
dH(x, y) = i} .

Let A′ = (A′0, . . . , A
′
N ) be the image of A under the MacWilliams transform,

A′(X,Y ) = A(X + (q − 1)Y,X − Y ) where A(X,Y ) =
∑N
i=0AiX

N−iY i and

A′(X,Y ) =
∑N
i=0A

′
iX

N−iY i. The dual distance of C is the smallest nonzero
index i such that A′i 6= 0.

The dual distance of CS is a lower bound on the lowest (m + p) for which an
(m, p)-sieve exists.

Theorem 1. Let d⊥ be the dual distance of the code CS. Then, for any (m, p)
such that m + p < d⊥, there is no (m, p)-sieve for S. Moreover, there exists no
(m, p)-sieve for S with m+p ≤ n if and only if CS is an MDS code, which cannot
occur if S is defined over F2.

In some scenarios, S is defined over a larger alphabet, and I and J may be
defined as two sets of byte (or nibble) positions. Then, the previous theorem
proves that, if the corresponding code CS is an MDS code, there is no (m, p)-
sieve for m+ p ≤ n, and we deduce also from Proposition 2 that all (m, p)-sieve
with m+ p > n have probability 2n−(m+p).

5.2 Sieving probability for some particular values of (m, p)

(m, 1)-sieves and nonlinearity. When p = 1, a pair (I, {j}) of size (m, 1) is
a sieve if and only if Sj is constant on some coset u + V . Therefore, if (I, {j})
is a sieve, then Sj is (n − m)-normal, i.e. constant on an affine subspace of
dimension (n−m). In particular, it can be approximated by an affine function
with a probability at least 1

2 (1+2−m) [11]. It follows that, if S provides the best
resistance to linear cryptanalysis for even n, then it has no sieve (I, {j}) with
|I| < n

2 − 1. As an example, the AES Sbox does not have any (2, 1)-sieve.

(n − 1, p)-sieves. When m = n − 1, the sieving probability can be easily de-
termined by the difference table of S.



Proposition 3. Let I = {1, . . . , n} \ {`} and let J ⊂ {1, . . . , n′} with |J | = p.
Then,

πI,J = 2−(p−1) − 2−(p+n)
∑

β∈Fn′−p
2

δ(e`, (0J , β)) ,

where δ(a, b) = |{x ∈ Fn2 : S(x+ a) +S(x) = b}| is the element of index (a, b) in
the difference table of S, and e` is the input vector with a 1 at position `. Thus,
(I, {j}) is a sieve except if Sj is linear in x`.

Since the branch number of the PRESENT sbox is 3, Prop. 2 implies that
(m, p)-sieves with m+p = 5 exist for this sbox. Indeed, by considering its differ-
ence table, we get that all (I, J) of size (3, 2) correspond to a sieving probability
πI,J ∈ { 12 ,

1
2 −

1
32 ,

1
2 −

1
16}. For instance, the sieve used in the attack in [9],

I = {0, 1, 2} and J = {0, 1} has probability 1
2 . We also derive from Prop. 3 the

exact sieving probability involved in the attack on the DES in [9].

6 Conclusions

The main contributions of this paper are a generic improvement of MITM at-
tacks, the sieve-in-the-middle technique, which allows to attack more rounds,
and an improved biclique construction which avoids the need of additional data.
These two methods have been applied to PRESENT, DES, AES and PRINCE.
Moreover, some general results on the sieving probability of an sbox are given,
which allow to theoretically estimate the complexity of the attack.

A future possible line of work is to investigate some possible combinations
with other existing MITM improvements: with the guess of intermediate state
bits [12], or with the all-subkeys approach [15]. A promising direction would be to
try to make a first selection within each of the two lists before the merging step,
by keeping only the input values (resp. output values) which have the lowest
probability of corresponding to a valid transition. This introduces some non-
detection probability, since some correct candidates would be discarded, but the
sieving would be improved. Such an approach does not seem easy, but it would
surely be a big step forward for further improving MITM attacks.
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17. Dmitry Khovratovich, Maŕıa Naya-Plasencia, Andrea Röck, and Martin Schläffer.
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