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Abstract

Image-based virtual try-on for fashion has gained con-

siderable attention recently. The task requires trying on a

clothing item on a target model image. An efficient frame-

work for this is composed of two stages: (1) warping (trans-

forming) the try-on cloth to align with the pose and shape

of the target model, and (2) a texture transfer module to

seamlessly integrate the warped try-on cloth onto the tar-

get model image. Existing methods suffer from artifacts and

distortions in their try-on output. In this work, we present

SieveNet, a framework for robust image-based virtual try-

on. Firstly, we introduce a multi-stage coarse-to-fine warp-

ing network to better model fine grained intricacies (while

transforming the try-on cloth) and train it with a novel per-

ceptual geometric matching loss. Next, we introduce a try-

on cloth conditioned segmentation mask prior to improve

the texture transfer network. Finally, we also introduce a

duelling triplet loss strategy for training the texture trans-

lation network which further improves the quality of gen-

erated try-on result. We present extensive qualitative and

quantitative evaluations of each component of the proposed

pipeline and show significant performance improvements

against the current state-of-the-art method.

1. Introduction

Providing interactive shopping experiences is an impor-

tant problem for online fashion commerce. Consequently,

several recent efforts have been directed towards deliver-

ing smart, intuitive online experiences including clothing
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Figure 1: The task of image-based virtual try-on involves

synthesizing a try-on output where the target model is wear-

ing the try-on cloth while other characteristics of the model

and cloth are preserved.

retrieval [11, 3], fine-grained tagging [1, 13], compatibility

prediction [4, 21] and virtual try-on [22, 6]. Virtual try-on is

the visualization of fashion products in a personalized set-

ting. The problem consists of trying on a specific garment

on the image of a person. It is especially important for on-

line fashion commerce because it compensates for the lack

of a direct physical experience of in-store shopping.

Recent methods based on deep neural networks [22, 6],

formulate the problem as that of conditional image genera-

tion. As depicted in Figure 1, the objective is to synthesize

a new image (henceforth referred to as the try-on output)

from two images - a try-on cloth and a target model image,

such that in the try-on output the target model is wearing the

try-on cloth while the original body shape, pose and other

model details (eg. bottom, face) are preserved.

Successful virtual try-on experience depends upon syn-

thesizing images free from artifacts arising from improper

positioning or shaping of the try-on garment, and inefficient

composition resulting in blurry or bleeding garment textures

in the final try-on output. Current solutions [6, 22] suffer

from these problems especially when the try-on cloth is sub-

2182



Figure 2: Inference Pipeline of the SieveNet framework

ject to extreme deformations or when characteristics of the

try-on cloth and original clothing item in target model dif-

fer. For example, transferring a half-sleeves shirt image to

a target model originally in a full-sleeves shirt often results

in texture bleeding and incorrect warping. For alleviating

these problems, we propose:

1. A multi-stage coarse-to-fine warping module trained

with a novel perceptual geometric matching loss to bet-

ter model fine intricacies while transforming the try-on

cloth image to align with shape of the target model.

2. A conditional segmentation mask generation module

to assist in handling complexities arising from com-

plex pose, occlusion and bleeding during the texture

transfer process, and

3. A duelling triplet loss strategy for training the texture

translation network to further improve quality of the

final try-on result.

We show significant qualitative and quantitative improve-

ment over the current state-of-the-art method for image-

based virtual try-on. An overview of our SieveNet frame-

work is presented in Figure 2 and the training pipeline is

detailed in Figure 3.

2. Related Work

Our work is related to existing methods for conditional

person image synthesis that use pose and shape information

to produce images of humans, and to existing virtual try-on

methods - most notably [22].

Conditional Image Synthesis Ma et al. [12] proposed

a framework for generating human images with pose guid-

ance along with a refinement network trained using an ad-

versarial loss. Deformable GANs [20] attempted to allevi-

ate the misalignment problem between different poses by

using an affine-transformation on the coarse rectangle re-

gion, and warped the parts on pixel-level. In [5], Esser et al.

introduced a variational U-Net [17] to synthesize the person

image by restructuring the shape with stickman pose guid-

ance. [15] applied CycleGAN directly to manipulate pose.

However, all of these methods fail to preserve the texture

details of the clothes in the output. Therefore, they cannot

directly be applied to the virtual try-on problem.

Virtual Try-On Initial works on virtual try-on were based

on 3D modeling techniques and computer graphics. Sekine

et al. [19] introduced a virtual fitting system that captures

3D measurements of body shape via depth images for ad-

justing 2D clothing images. Pons-Moll et al. [14] used a 3D

scanner to automatically capture real clothing and estimate

body shape and pose. Compared to graphics models, image-

based generative models provide a more economical and

computationally efficient solution. Jetchev et al. [9] pro-

posed a conditional analogy GAN to swap fashion articles

between models without using person representations. They

do not take pose variant into consideration, and during in-

ference, they required the paired images of in-shop clothes

and a wearer, which limits their applicability in practical

scenarios. In [6], Han et al. introduced a virtual try-on net-

work to transfer a desired garment on a person image. It

uses an encoder-decoder with skip connections to produce

a coarse clothing mask and a coarse rendered person image.

It then uses a Thin-plate spline (TPS) based spatial trans-

formation (from [8]) to align the garment image with the

pose of the person, and finally a refinement stage to overlay

the warped garment image on to the coarse person image to

produce the final try-on image. Most recently Wang et al.

[22] present an improvement over [6] by directly predicting

the TPS parameters from the pose and shape information

and the try-on cloth image. Both of these methods suffer

from geometric misalignment, blurry and bleeding textures

in cases where the target model is characterized by occlu-

sion and where pose variation or garment shape variation

is high. Our method, aligned to the approach in [22], im-

proves upon all of these methods. SieveNet learns the TPS

parameters in multiple stages to handle fine-grained shape

intricacies and uses a conditional segmentation mask gen-

eration step to aid in handling of pose variation and occlu-

sions, and improve textures. In Section 5.2, we compare our

results with [22].

3. Proposed Methodology

The overall process (Figure 2) comprises of two main

stages - warping the try-on cloth to align with pose and

shape of the target model, and transferring the texture from

the warped output onto the target model to generate the fi-

nal try-on image. We introduce three major refinements

into this process. To capture fine details in the geometric

warping stage, we use a two-stage spatial-transformer based

warp module (Section 3.2). To prevent the garment tex-
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Figure 3: An overview of the training pipeline of SieveNet, containing (A) Coarse-to-Fine Warping Module, (B) Conditional

Segmentation Mask Generation Module, and (C) Segmentation Assisted Texture Translation Module.

tures from bleeding onto skin and other areas, we introduce

a conditional segmentation mask generation module (Sec-

tion 3.4.1) that computes an expected semantic segmenta-

tion mask to reflect the bounds of the target garment on the

model, which in turn assists the texture translation network

to produce realistic try-on results. We also propose two new

loss computations - a perceptual geometric matching loss

(Section 3.3) to improve the warping output, and a duelling

triplet loss strategy (Section 3.4.3) to improve the output

from the texture translation network.

3.1. Inputs

The framework uses the try-on cloth image (Ip), a 19-

channel pose and body-shape map (Ipriors) generated as

described in [22] as input to the various networks in our

framework. Ipriors is a cloth-agnostic person representa-

tion created using the model image (Im) to overcome the

unavailability of ideal training triplets as discussed in [22].

A human parsing semantic segmentation mask (Mgt) is also

used as ground-truth during training of the conditional seg-

mentation mask generation module (described in Sections

3.3 and 3.4.1). For training, the task is set such that data

consists of paired examples where the model in Im is wear-

ing the clothing product Ip.

3.2. Coarse­to­Fine Warping

The first stage of the framework warps the try-on prod-

uct image (Ip) to align with the pose and shape of the tar-

get model (Im). It uses the priors Ipriors as guidance for

achieving this alignment. Warping is achieved using thin-

plate spline (TPS) based spatial transformers [8], as intro-

duced in [22] with a key difference that we learn the trans-

formation parameters in a two-stage cascaded structure and

use a novel perceptual geometric matching loss for training.

3.2.1 Tackling Occlusion and Pose-variation

We posit that accurate warping requires accounting for in-

tricate modifications resulting from two major factors:

1. Large variations in shape or pose between the try-

on cloth image and the corresponding regions in the

model image.

2. Occlusions in the model image. For example, the long

hair of a person may occlude part of the garment near

the top.

The warping module is formulated as a two-stage net-

work to overcome these problems of occlusion and pose-
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variation. The first stage predicts a coarse-level transforma-

tion, and the second stage predicts the fine-level corrections

on top of the coarse transformation. The transformation

parameters from the coarse-level regression network (θ) is

used to warp the product image to produce an approximate

warp output (I0stn). This output is then used to compute

the fine-level transformation parameters (∆θ) and the cor-

responding warp output (I1stn) is computed using (θ +∆θ)

to warp the initial try-on cloth Ip and not I0stn. This is

done to avoid the artifacts from applying the interpolation

in the spatial transformer twice. To facilitate the expected

hierarchical behaviour, residual connections are introduced

to offset the parameters of the fine-transformation with the

coarse-transformation. The network structure is schema-

tized in Figure 3 (A). Ablation study to support the design

of the network and losses is in Section 5.3.

3.3. Perceptual Geometric Matching Loss

The interim (I0stn) and final (I1stn) output from the warp-

ing stage are subject to a matching loss Lwarp against the

Igt−warp (segmented out from the model image) during

training. Lwarp is defined below which includes a novel

perceptual geometric matching loss Lpgm component. The

intuition behind this loss component Lpgm is to have the

second stage warping incrementally improve upon that from

the first stage.

Lwarp = λ1L
0

s + λ2L
1

s + λ3Lpgm

L0

s = |Igt−warp − I0stn|

L1

s = |Igt−warp − I1stn|

(1)

Here, Igt−warp = Im ∗M cloth
gt , and Lpgm is the perceptual

geometric matching loss which comprises of two compo-

nents. Igt−warp is the cloth worn on the target model in Im
and M cloth

gt is the binary mask representing the cloth worn

on the target model.

Lpgm = λ4Lpush + λ5Lalign (2)

Minimizing Lpush pushes the second stage output I1stn
closer to the ground-truth Igt−warp compared to the first

stage output.

Lpush = k ∗ L1

s − |I1stn − I0stn| (3)

The scalar k is a multiplicative margin used to ensure

stricter bound for the difference (k = 3 is used for our ex-

periments).

For Lalign, I0stn, I1stn and Igt−warp are first mapped to

the VGG-19 activation space, and then the loss attempts to

align the difference vectors between I0stn and Igt−warp, and

I1stn and Igt−warp in the feature space.

V 0 = V GG(I0stn)− V GG(Igt−warp)

V 1 = V GG(I1stn)− V GG(Igt−warp)

Lalign = (CosineSimilarity(V 0, V 1)− 1)2
(4)

Figure 4: Visualization of the Perceptual Geometric Match-

ing Loss in VGG-19 Feature Space.

Figure 5: Illustrating work of Conditional Segmentation

Mask Prediction Network

Minimizing Lalign facilitates the goal of minimizing

Lpush.

3.4. Texture Transfer

Once the product image is warped to align with the pose

and shape of the target model, the next stage transfers the

warped product to the model image. This stage computes a

rendered model image, and a fractional composition mask

to compose the warped product image onto the rendered

model image. We break down this stage into two steps -

conditional segmentation mask prediction and segmentation

assisted texture translation.

3.4.1 Conditional Segmentation Mask Prediction

A key problem with existing methods is their inability to

accurately honor the bounds of the clothing product and hu-

man skin. The product pixels often bleeds into the skin pix-

els (or vice-versa), and in the case of self-occlusion (such

as with the case of folded arms), the skins pixels may get

replaced entirely. This problem is exacerbated for cases

where the try-on clothing item has a significantly different

shape than the clothing in the model image. Yet another sce-

nario that aggravates this problem is when the target model

is in a complex pose. To help mitigate these problems of

bleeding and self-occlusion as well as to handle variable
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and complex poses, we introduce a conditional segmenta-

tion mask prediction network.

Figure 3 (B) illustrates the schematics of the network.

It takes the pose and shape priors (Ipriors) and the product

image (Ip) as input, to generate an “expected” segmentation

mask (Mexp). This try-on clothing conditioned seg. mask

represents the expected segmentation of the generated try-

on output where the target model is now wearing the try-on

cloth. Since we are constrained to train with coupled data

(Ip and Im), this expected (generated) segmentation mask

(Mexp) is matched against the ground-truth segmentation

mask (Mgt) itself. We intend to highlight that the network

is able to generalize to unseen models at inference since it

learns from a sparse clothing agnostic input (Ipriors) that

does not include any effects of worn cloth in target model

image or segmentation mask (to avoid learning identity). At

inference time, the generated Mexp is directly used down-

stream. Figure 5 demonstrates some examples of the cor-

rected segmentation masks generated with our network, and

ablation studies to support the use of the conditional seg-

mentation mask is in Section 5.3.

The network (a 12-layer U-Net [17] like architecture)

is trained with a weighted cross-entropy loss, which is

the standard cross-entropy loss for semantic segmentation

with increased weights for skin and background classes.

The weight of the skin is increased to better handle occlu-

sion cases, and the background weight is increased to stem

bleeding of the skin pixels into the background.

3.4.2 Segmentation Assisted Texture Translation

The last stage of the framework uses the expected segmen-

tation mask (Mexp), the warped product image (I1stn), and

unaffected regions from the model image (Im) to produce

the final try-on image. The network is a 12-layer U-Net

[17] that takes the following inputs:

• The warped product image I1stn

• The expected seg. mask Mexp, and

• Pixels of Im for the unaffected regions, (Texture Trans-

lation Priors in Figure 3). E.g. face and bottom cloth,

if a top garment is being tried-on.

The network produces two output images - an RGB ren-

dered person image (Irp) and a composition mask Mcm,

which are combined with the warped product image I1stn
using the following equation to produce the final try-on im-

age:

Itry−on = Mcm ∗ I1stn + (1−Mcm) ∗ Irp (5)

Because the unaffected parts of the model image are pro-

vided as prior, the proposed framework is also able to better

translate texture of auxiliary products such as bottoms onto

the final generated try-on image (unlike in [22] and [6]).

The output of the network is subject to the following

matching losses based on L1 distance and a perceptual dis-

tance based on VGG-19 activations:

Ltt = Ll1 + Lpercep + Lmask

Ll1 = |Itry−on − Im|

Lpercep = |V GG(Itry−on)− V GG(Im)|

Lmask = |Mcm −M cloth
gt |

(6)

The training happens in multiple phases. The first K steps

of training is a conditioning phase that minimizes the Ltt to

produce reasonable results. The subsequent phases (each

lasting T steps) employ the Ltt loss augmented with a

triplet loss (Section 3.4.3) to fine-tune the results further.

This strategy further improves the output significantly (see

ablation study in Section 5.3).

3.4.3 Duelling Triplet Loss Strategy

A triplet loss is characterized by an anchor, a positive and

a negative (w.r.t the anchor), with the objective being to si-

multaneously push the anchor result towards the positive

and away from the negative. In the duelling triplet loss strat-

egy, we pit the output obtained from the network with the

current weights (anchor) against that from the network with

weights from the previous phase (negative), and push it to-

wards the ground-truth (positive). As training progresses,

this online hard negative mining strategy helps push the re-

sults closer to the ground-truth by updating the negative at

discrete step intervals (T steps). In the fine-tuning phase, at

step i (i > K) the triplet loss is computed as:

iprev = K + T ∗ (⌊
i−K

T
⌋ − 1)

Di
neg = |Iitry−on − I

iprev
try−on|

Di
pos = |Iitry−on − Im|

Li
d = max(Di

pos −Di
neg, 0)

(7)

Here Iitry−on is the try-on image output obtained from the

network with weights at the ith iteration. The overall loss

with the duelling triplet strategy in use is then computed for

a training step i as:

Li
tryon =

{

Ltt i ≤ K

Ltt + Li
d i>K

(8)

4. Experiments

4.1. Datasets

We use the dataset collected by Han et al. [6] for train-

ing and testing. It contains around 19,000 images of front-

facing female models and the corresponding upper-clothing
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Figure 6: SieveNet can generate more realistic try-on results

compared to the state-of-the-art CP-VTON.

isolated product images. There are 16253 cleaned pairs,

which are split into a training set and a testing set with

14221 and 2032 pairs, respectively. The images in the test-

ing set are rearranged into unpaired sets for qualitative eval-

uation and kept paired for quantitative evaluation otherwise.

4.2. Implementation Details

All experiments are conducted on 4 NVIDIA 1080Ti on

a machine with 16 GB RAM. The hyper-parameter con-

figurations were as follows: batch size=16, epochs=15,

optimizer=Adam[10], lr=0.002, λ1=λ2=λ3=1, λ4=λ5=0.5.

4.3. Quantitative Metrics

To effectively compare the proposed approach against

the current state-of-the-art, we report our performance us-

ing various metrics including Structural Similarity (SSIM)

[23], Multiscale-SSIM (MS-SSIM) [24], Fréchet Inception

Distance (FID) [7], Peak Signal to Noise Ratio (PSNR), and

Inception Score (IS) [18]. We adapt the Inception Score

metric in our case as a measure of generated image quality

by estimating similarity of generated image distribution to

the ground truth distribution. For computing pairwise MS-

SSIM and SSIM metrics, we use the paired test data.

4.4. Baselines

CP-VTON[22] and VITON [6] are the latest image based

virtual try-on methods, with CP-VTON being the current

state-of-the-art. In particular, [6] directly applied shape

context [2] matching to compute the transformation map-

ping. By contrast, [22] estimates the transformation map-

ping using a convolutional network and has superior perfor-

mance than [6]. We therefore use results from CP-VTON

[22] as our baseline.

5. Results

The task of virtual try-on can be broadly broken down

into two stages, warping of the product image and texture

transfer of the warped product image onto the target model

image. We conduct extensive quantitative and qualitative

evaluations for both stages to validate the effectiveness of

our contributions (coarse-to-fine warping trained with per-

ceptual geometric matching loss, try-on cloth conditioned

segmentation mask prior, and the duelling triplet loss strat-

egy for training the texture translation network) over the ex-

isting baseline CP-VTON [22].

5.1. Quantitative Results

Table 1 summarizes the performance of our proposed

framework against CP-VTON on benchmark metrics for

image quality (IS, FID and PSNR) and pair-wise structural

similarity (SSIM and MS-SSIM). To highlight the benefit

of our contributions in warp and texture transfer, we ex-

periment with different warping and texture transfer con-

figurations (combining modules from CP-VTON with our

modules). All scores progressively improve as we swap-in

our modules. Using our final configuration of coarse-to-fine

warp (C2F) and segmentation assisted texture translation

with duelling triplet strategy (SATT-D) improved FID from

20.331 (for CP-VTON) to 14.65. Also, PSNR increased by

around 17% from 14.554 to 16.98. While a higher Inception

score (IS) is not necessarily representative of output qual-

ity for virtual try-on, we argue that the proposed approach

is able to better model the ground truth distribution as it

produces an IS (2.82 ± 0.09) which is closer to the IS for
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Figure 7: Comparison of our C2F warp results with GMM

warp results. Warped clothes are directly overlaid onto tar-

get persons for visual checking. C2F produces robust warp

results which can be seen from preservation of text (row 1)

and horizontal stripes (row 2, row 3) along with better fit-

ting. GMM produces highly unnatural results.

ground-truth images in the test set (2.83 ± 0.07) than CP-

VTON (2.66 ± 0.14). These quantitative claims are further

substantiated in subsequent sections where we qualitatively

highlight the benefit from each of the components.

5.2. Qualitative Results

Figure 6 presents a comparison of results of the proposed

framework with those of CP-VTON. The results are pre-

sented to compare the impact on different aspects of quality

- skin generation (row 1), handling occlusion (row 2), varia-

tion in poses (row 3), avoiding bleeding (row 5), preserving

unaffected regions (row 4), better geometric warping (row

4) and overall image quality (row 6). For all aspects, our

method produces better results than CP-VTON for most of

the test images. These observations are corroborated by the

quantitative results reported in Table 1.

5.3. Ablation Studies

In this section, we present a series of ablation studies to

qualitatively highlight the particular impact of each our con-

tributions: the coarse-to-fine warp, try-on product condi-

tioned segmentation prediction and the duelling triplet loss

strategy for training the texture translation module.

Impact of Coarse-to-Fine Warp Figure 7 presents sam-

ple results comparing outputs of the proposed coarse-to-

fine warp approach against the geometric matching module

(GMM) used in CP-VTON [22]. Learning warp parame-

ters in a multi-stage framework helps in better handling of

large variations in model pose and body-shape in compar-

ison to the single stage warp in [22]. The coarse-to-fine

(C2F) warp module trained with our proposed perceptual

Figure 8: Using the conditional segmentation mask as prior

to texture transfer aids in better handling of complex pose,

occlusion and helps avoid bleeding.

Figure 9: Finetuning texture translation with the duelling

triplet strategy refines quality of generated images by han-

dling occlusion and avoiding bleeding.

geometric matching loss does a better job at preserving tex-

tures and patterns on warping. This is further corroborated

through the quantitative results in Table 1 (row 2 vs row 3).

Impact of Duelling Triplet Loss In Figure 9, we present

sample results depicting the particular benefit of training the

texture translation network with the duelling triplet strategy.

As highlighted by the results, using the proposed triplet loss

for online hard negative mining in the fine-tuning stage re-

fines the quality of the generated results. This arises from

better handling of occlusion, bleeding and skin generation.

These observations are corroborated by results in Table 1

(row 3 vs 4).
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Configuration SSIM MS-SSIM FID PSNR IS

GMM + TOM (CP-VTON) 0.698 0.746 20.331 14.544 2.66 ± 0.14

GMM + SATT 0.751 0.787 15.89 16.05 2.84 ± 0.13

C2F + SATT 0.755 0.794 14.79 16.39 2.80 ± 0.08

C2F + SATT-D (SieveNet) 0.766 0.809 14.65 16.98 2.82 ± 0.09

Table 1: Quantitative comparison of Proposed vs CP-VTON. GMM, TOM are the warping and texture transfer modules from

CP-VTON. C2F is the coarse-to-fine warp network and SATT is the segmentation assisted texture translation network we

introduce in this framework. SATT-D is SATT trained with the duelling triplet loss strategy.

Figure 10: Proposed Duelling Triplet Loss helps in better

handling of texture and avoiding blurry effects in generated

results than the GAN Loss.

Impact of Conditional Segmentation Mask Prediction

Figure 8 presents results obtained by training the texture

transfer module of CP-VTON (TOM) [22] with an addi-

tional prior of the try-on cloth conditioned segmentation

mask. It can be observed that this improves handling of skin

generation, bleeding and complexity of poses. Providing

the expected segmentation mask of the try-on output image

as prior equips the generation process to better handle these

issues. These observations are corroborated through results

in Table 1 (row 1 vs 2).

Impact of Adversarial Loss on Texture Transfer Many

recent works on conditional image generation [22, 16, 12]

employ a discriminator network to help improve quality of

generated results. However, we observe that fine-tuning

with the duelling triplet strategy instead results in better

handling of texture and blurring in generated images with-

out the need for any additional trainable parameters. Sam-

ple results in Figure 10 corroborate the claim.

Failure Cases While SieveNet performs significantly bet-

ter than existing methods, it has certain limitations too. Fig-

ure 11 highlights some specific failure cases. In some cases,

generated result is unnatural due to presence of certain ar-

tifacts (as the gray neckline of the t-shirt in the example

(a) Failure in correctly occluding the back portion of the t-shirt.

(b) Failure in predicting the correct segmentation mask owing to er-

rors in key-point prediction.

Figure 11: Failure Cases

in row 1) that appear in the output despite the correct fit

and texture being achieved. This problem can be alleviated

if localized fine-grained key-points are available. Further,

texture quality in try-on output may be affected by errors in

the predicted conditional segmentation mask. This happens

due to errors in predicting pose key-points. For instance,

this may happen in model images with low-contrast regions

(example in row 2). Using dense pose information or a pose

prediction network can help alleviate this problem.

6. Conclusion

In this work, we propose SieveNet, a fully learnable

image-based virtual try-on framework. We introduce a

coarse-to-fine cloth warping network trained with a novel

perceptual geometric matching loss to better model fine-

grained intricacies while transforming the try-on cloth im-

age to align with shape of the target model. Next, we

achieve accurate texture transfer using a try-on cloth con-

ditioned segmentation mask prior and training the texture

translation network with a novel duelling triplet loss strat-

egy. We report qualitatively and quantitatively superior re-

sults over the state-of-the-art methods.
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