
SieveStore: A Highly-Selective, Ensemble-level Disk Cache
for Cost-Performance

Timothy Pritchett
School of Electrical and Computer Engineering

Purdue University
tpritche@purdue.edu

Mithuna Thottethodi
School of Electrical and Computer Engineering

Purdue University
mithuna@purdue.edu

ABSTRACT

Emerging solid-state storage media can significantly improve
storage performance and energy. However, the high cost-
per-byte of solid-state media has hindered wide-spread adop-
tion in servers. This paper proposes a new, cost-effective
architecture – SieveStore– which enables the use of solid-
state media to significantly filter access to storage ensembles.
Our paper makes three key contributions. First, we make
a case for highly-selective, storage-ensemble-level disk-block
caching based on the highly-skewed block popularity dis-
tribution and based on the dynamic nature of the popular
block set. Second, we identify the problem of allocation-
writes and show that selective cache allocation to reduce
allocation-writes – sieving – is fundamental to enable effi-
cient ensemble-level disk-caching. Third, we propose two
practical variants of SieveStore. Based on week-long block-
access traces from a storage ensemble of 13 servers, we find
that the two components (sieving and ensemble-level caching)
each contribute to SieveStore’s cost-effectiveness. Compared
to unsieved, ensemble-level disk-caches, SieveStore achieves
significantly higher hit ratios (35%-50% more, on average)
while using only 1/7th the number of SSD drives. Further,
ensemble-level caching is strictly better in cost-performance
compared to per-server caching.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management—Storage
hierarchies

General Terms

Design, Performance

1. INTRODUCTION
The storage layer is a significant factor in the capital cost,

operating cost (energy), and performance of servers and
data-centers. Emerging high-performance, low-energy, non-
volatile, solid-state storage media (e.g., flash-based mem-
ory, phase-change memory) show enormous promise to solve
two of the three problems (storage performance and energy);

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

but cost remains a concern. Recent work has examined sev-
eral ways to use flash-based solid-state media; as a buffer-
cache [11, 10], as swap space for virtual memory [19], and as
the storage component of custom-architectures [3]. Further,
there has also been research on the organization of solid-
state drives (SSDs) for improved performance [4, 7]. How-
ever, in spite of the many advances and significantly higher
performance of solid-state drives (SSDs), the high cost-per-
byte of solid-state media has hindered wide-spread adoption
in servers. Per-server SSD deployment incurs excessive cost
for modest performance improvements. To enable servers to
benefit from high-performance SSDs, we propose a highly-
selective, ensemble-level disk cache – SieveStore– which rep-
resents a superior cost-performance point. SieveStore en-
ables the use of a small amount of solid-state media (∼16GB-
32GB, thus reducing cost) to serve a significant fraction of
accesses (thus improving performance) to larger storage en-
sembles that support several servers (e.g., 10+ servers, 5-10
TB total capacity, 1.5TB-2.5TB daily accesses).

SieveStore’s architecture is based on the following two key
observations from analysis of storage access traces of an en-
semble of 13 servers over a week [14, 15].

(O1) A very small fraction (∼1%) of “popular” blocks ac-
cessed each day account for a significant fraction of
accesses (between 14%-53%). Beyond the top 1% of
blocks, the number of accesses per block diminishes
rapidly. For example, 99% of all blocks accessed in
a day see 10 or fewer accesses. The least popular
97% of all blocks accessed in a day see 4 or fewer ac-
cesses. This is not surprising because the buffer caches
in memory filter out most reuse leaving very little reuse
at the block device layer.

(O2) Though the degree of skew for the ensemble as a whole
remains invariant (i.e., not much reuse beyond the top
1% popular blocks), the distribution of the popular
blocks varies across servers, across storage volumes of
the same server and over time.

Per-server disk-caches incur high cost, and may also per-
form poorly because the disk-cache capacity associated with
servers that have few hot blocks cannot be shared by the
hot blocks of other servers. In contrast, a small, shared,
ensemble-level disk-cache of the popular blocks would be
better because (1) the combination of small and shared ca-
pacity keeps costs low and (2) the cache would capture the
popular blocks (via temporal locality) as well as the dynamic
changes in the popular block set (by dynamically sharing
cache space).

However, while the costs of a small, shared disk-cache
are indeed low, achieving high performance is challenging

163

because conventional disk-cache allocation policies such as
allocate-on-demand (AOD), which allocates on a miss, and
write-no-allocate (WMNA), which allocates only on read
misses, will result in poor performance because of three
problems. First, because a large number of blocks have little
reuse (O1), a large fraction of accesses will be misses, each of
which will allocate and write a block in the cache (allocation-
writes). Because the cache uses write-asymmetric storage
media like flash-based SSDs, where writes are significantly
slower than reads, such allocation-writes can have a signif-
icant impact on performance. Second, the large number of
low-reuse blocks can cause cache pollution, reducing the hit
ratio. Third, aggregating the hot blocks of several servers in
a single disk cache may create a bandwidth bottleneck.

To avoid the cost of allocation-writes (the first problem),
SieveStore uses selective cache allocation policies that aim
to reduce allocation writes while improving the hit-ratio –
sieving. One may think that sieving is simply an alternate
way to perform the same function as the replacement policy
(i.e., modulate the contents of the cache). However, while
they may both be used to control the contents of the cache
(and hence the hit-ratios), only sieving can limit allocation-
writes caused by misses to low-reuse data. We show in Sec-
tion 3.1 that, in the absence of sieving, even an ideal (oracle)
replacement policy will not achieve significant performance
improvement. We also show that using selective allocation
to maximize hits does not necessarily minimize allocation-
writes.

Sieving, if done accurately to capture the popular blocks,
avoids the problem of cache pollution (the second problem).
However, correctly identifying popular blocks poses a chal-
lenge that conventional caches do not face. Conventional
caches that use unsieved allocation (i.e., AOD or WMNA)
maintain metastate for only those blocks that are present
in the cache because the allocation decision depends only
on the current state of the cache (hit/miss) and the type of
the request (read/write). In contrast, sieving fundamentally
requires us to maintain state for many blocks that are not
present in the cache. We propose two practical sieving vari-
ants that differ in how they identify popular blocks and in
how they maintain metastate.

The first approach is an offline, discrete-allocation variant
– SieveStore-D – which enforces selectivity using an access-
count based discrete batch-allocation (ADBA) mechanism.
SieveStore-D maintains precise metastate, by logging each
access, and periodically combines the metastate in an offline
pass. Blocks are allocated a frame only if their access count
in an epoch exceeds a threshold. The second approach is an
online, continuous allocation variant – SieveStore-C – which
sieves accesses using a hysteresis-based, lazy cache allocation
mechanism wherein disk blocks are allocated a frame on the
nth (for some threshold n) miss over a recent time window.
To minimize the metastate of uncached blocks, SieveStore-
C uses a two-tier structure; a preliminary tier that sieves
with imprecise (potentially aliased) metastate, followed by
an accurate tier to maintain quality of sieving.

Finally, in spite of aggregating the hot blocks of several
servers in a single cache, SieveStore can handle the increased
traffic, partly because SSDs that are currently in the market
offer significantly higher I/O throughput (IOPS), and partly
because correlated I/O bursts across independent servers in
the ensemble are rare [14]. Both variants of SieveStore can
handle the increased traffic with only one enterprise-class
SSD over 99.9% of the time and with two SSDs 100% of
the time. Further, without any special effort on the part of

I

Sieved Unsieved

SieveStore−C

Per−Server

SieveStore−D II

III IV

Ensemble−
Level

Figure 1: Design space

SieveStore to limit writes, there are no SSD wearout/lifetime
problems even though SieveStore caches write-hot blocks as
well.

Implementation and Overheads: A SieveStore imple-
mentation can be realized as a transparent appliance (with
processor, memory, SSD drives) that plugs in to existing
storage ensembles at a data-center. The minimal cost of the
one additional box for a small data-center has to be weighed
against the benefit of significant reduction in accesses to the
storage ensemble.

In summary, the major contributions of this paper are:

• Driven by our observations of (1) extreme popularity
skew in real storage traces, and (2) dynamic changes
in the popular block sets, we propose SieveStore – a
highly-selective, ensemble-level disk-cache.

• We identify sieving – selective cache-allocation to re-
duce allocation-writes while improving the hit ratio –
as a fundamental mechanism to enable cost-effective,
ensemble-level disk-caching.

• We propose two variants of SieveStore – one with dis-
crete sieving (SieveStore-D), and another with contin-
uous sieving (SieveStore-C).

The two key ideas proposed in this paper – ensemble-level
disk caching and sieving – can be applied independently of
each other. Consider the quadrants in the design space, as
shown in Figure 1. To show that SieveStore, which com-
bines both the ideas (i.e., quadrant I in Figure 1), is a supe-
rior cost-performance design point, we evaluate SieveStore
against other quadrants using traces of a storage-ensemble
of 13 servers over a week. Our key results are:

• SieveStore-D and SieveStore-C, which lie in quadrant
I, capture 35% and 50%, respectively, more accesses
than the best unsieved ensemble-level disk-cache (quad-
rant II) while requiring (1/7)th the number of SSD
drives.

• Both variants of SieveStore, due to to their ensemble-
level caching approach, capture more accesses at the
same cost (and the same number of accesses at lower
cost) than an ideal per-server cache (quadrants III
and IV), which is not surprising given the dynamic
nature of popular blocks (O2).

The rest of the paper is organized as follows. Section 2
analyzes the traces to support our observations. Section 3
describes the two SieveStore variants. Section 4 describes
our evaluation methodology. Section 5 discusses experimen-
tal results. Related work is described in Section 6. Section 7
briefly discusses some forward-looking issues on scaling and
tuning. Finally, Section 8 concludes this paper.

164

Table 1: Trace Summary (from [14, 15])
Key Name Vol- Spindles Size

umes (GB)
Usr User home dirs 3 16 1367
Proj Project dirs 5 44 2094
Prn Print server 2 6 452
Hm Hardware monitor 2 6 39
Rsrch Research projects 3 24 277
Prxy Web proxy 2 4 89
Src1 Source control 3 12 555
Src2 Source control 3 14 355
Stg Web staging 2 6 113
Ts Terminal server 1 2 22
Web Web/SQL server 4 17 441
Mds Media server 2 16 509
Wdev Test web server 4 12 136

Total 36 179 6449

2. STORAGE ENSEMBLE ACCESS

CHARACTERISTICS
We analyze storage ensemble behavior using traces from

[14]. The traces capture requests to block devices below the
buffer cache, and are typical of small/medium datacenters.
Table 1 reproduces the key trace characteristics (reproduced
from [14]). The traces span eight calendar days for each
server although the trace length is for seven days because
trace collection started at 5:00pm GMT on the first day.
We analyze all traces on a calendar day basis, so we treat it
as an 8-day trace.

Popularity Skew.
For each day of the trace, we sort the blocks in descend-

ing order of popularity and group them into 10,000 bins
such that each bin contains 0.01% (=1/10, 000) of all blocks
accessed on that day. Figure 2(a) plots the average access
count of each bin (Y-axis, log-scale) against the percentile
rank of the bin (X-axis, log-scale) with one curve for each
day. For example, the vertical line at 1% corresponds to
the 100th bin of blocks which is at the top first percentile in
popularity. Though the most popular 0.01th percentile bin
of blocks have an average of over 1000 accesses on each day,
the bin at the top 1st percentile, averages fewer than 10 ac-
cesses per day. Further, because the averages at the top 1st
percentile do not hide any large variations within the bin,
the maximum number of accesses (not shown) is also 10 on
all days except on day 2 when it is 11. Similarly, when we
exclude the top 3%, blocks have fewer than 4 accesses on
average. Below the 50th percentile, blocks that are accessed
are never reused.

To illustrate the fraction of accesses the popular blocks
account for Figure 2(b) plots for each bin (shown in ranked
percentile order on the X-axis), the cumulative fraction of
accesses (Y-axis) for all bins that are at higher percentiles.
Because the knee of the curve occurs close to the very top
1st percentile, we show a zoomed in graph of the same data
but limit the X-axis to the top 5% most popular blocks in
Figure 2(c). The knee-of the curve occurs at less than 1%
of blocks accessed on any given day. Though the amount
of data accessed in a day varies from a minimum of 335
GB to a maximum of 1190 GB (685GB/day, on average) for
the ensemble, the most popular 1% of blocks is significantly

smaller (at most 11.9GB) and would fit comfortably within
a modest 16-32GB SSD with room to spare.

Note, day 1’s accesses are an outlier because of our deci-
sion to use traces partitioned by calendar days.

Popularity Skew Variation.
While the above analysis considered the trace of the entire

storage ensemble, it is important to understand whether the
observed popularity skew is truly a property that emerges
at the ensemble-level even though that behavior may not be
uniformly present in the traces of individual servers, or if
the same behavior is also observable at the individual server
level. If each server’s accesses exhibits the same skewed be-
havior, then the per-server caching approach (quadrants III
and IV from Figure 1) might be attractive (ignoring mini-
mum drive sizes). If, on the other hand, there is significant
variation in behavior at the individual server level, then an
ensemble-level approach (quadrants I and II) may be well-
motivated.

Our trace analysis (Figure 3) reveals that the popularity
skew behavior exhibits significant variation across servers,
across storage volumes of the same server and across time
for the same server. Figure 3(a), which plots the cumula-
tive access distribution (Y-axis) for block bins (in sorted,
descending order of access count on the X-axis) from the
proxy server (Prxy) and the source control server (Src1), il-
lustrates server-to-server variation in popularity skew. The
proxy server exhibits popularity skew with a small fraction of
blocks accounting for nearly all of the days accesses. On the
other hand, the source control server’s near-linear cumula-
tive access count shows that the popularity skew is minimal.
Figure 3(b) uses similar axes with curves for individual stor-
age volumes within a single server (Web, volumes 0 and 1) to
compare the access characteristics of storage volumes within
a server. While both volumes exhibit some degree of skew
for the most popular blocks, volume-0 exhibits significantly
more skew than volume-1. Even within the same server the
popularity skew may vary in time as shown in Figure 3(c).
For the web staging server (Stg), day 5 exhibits significant
popularity skew, but day 3 does not.

Finally, returning to the ensemble trace, Figure 3(d) plots
the composition of the most popular 1% of blocks in the
ensemble in terms of what fraction is contributed by each
server (Y-axis) for each day of the trace (X-axis). The vari-
ation in contribution from each server demonstrates time-
varying behavior that no statically (potentially unequally)
partitioned per-server cache can capture.

Summary.
Trace analysis reveals that there is significant variation in

popularity skew across servers, within servers across storage
volumes, and in time for the same server. Despite such vari-
ation, the aggregate trace of the whole ensemble exhibits
stable emergent behavior wherein the most-accessed 1% of
blocks account for a large fraction of total accesses. The next
section examines how this observation may be exploited to
improve storage.

3. SieveStore
The goal of SieveStore is to capture the top 1% most popu-

lar blocks of the storage ensemble in an SSD cache to achieve
cost-effective storage acceleration. There are two ways to
modulate the contents of a cache to ensure that it holds the
desirable blocks; either by controlling who gets in (allocation

165

(a) Block access count distribution

(b) Block popularity (CDF) (c) Zoomed-in CDF for Top 5th percentile

Figure 2: Popularity Skew Characterization

policy) or by controlling who gets evicted (replacement pol-
icy). One of the claims in this paper is that disk-caching at
the ensemble-level fundamentally requires selective cache al-
location to prevent low-reuse blocks from entering the cache.
Section 3.1 uses a thought-experiment to justify the above
claim by showing that (1) in the absence of sieving, even an
ideal (oracle) replacement policy will not achieve significant
performance improvement and (2) an ideal (but impractical)
sieve offers significant benefits. We also show that perform-
ing selective allocation solely to maximize hits is inadequate
to control the number of allocation-writes. Section 3.2 and
Section 3.3 describe our two practical sieve implementations
that capture most of the benefits of the ideal (impractical)
sieve.

3.1 The case for sieving
Consider an oracle-replacement algorithm that magically

evicts only those blocks that are not in the top 1% frequently
accessed blocks on each day. Narayanan et.al. consider a
similar oracle-replacement algorithm called LTR (Long-term
Random; a policy that retains frequently accessed blocks
over the long-term) at the per-server level [15]. (Note, the
above oracle policy is not the same Belady’s MIN/OPT ora-
cle replacement algorithm [2] which replaces the block which

is accessed farthest out in the future. We discuss MIN briefly
at the end of this section.)

To isolate the cost of allocation-writes from that of misses,
we conservatively assume that using the above-defined ideal
(oracle) replacement policies can ensure that the top 1% of
blocks are always cache-resident for both on-demand alloca-
tion (AOD) and the write-miss no-allocate (WMNA) alloca-
tion policies. We can now compare the number of allocation
writes for each of the allocation policies, as compared to an
ideal selective allocation policy (distinct from the ideal re-
placement policy). For AOD, each access (hit or miss) causes
an SSD operation with a (slow) allocation-write operation
for each miss. Table 2 computes the number of writes as-
suming a hit rate of 35% (the approximate average hit-rate
for the ideal-allocation scheme over all eight calendar days),
and assuming a 3:1 ratio of reads and writes in both hits
and misses. The mechanism will cause 73.75% of all ensem-
ble accesses to initiate writes to a single SSD (see first row,
Table 2). The number of SSD operations increase from 35%
(hits only) to 100% (all accesses), a large fraction of which
are slow writes (73.75%).

With the WMNA allocation policy and the oracle replace-
ment policy (second row of Table 2), while the hit-ratio
remains unchanged, allocation-writes are avoided on write
misses. (Note, changing allocation policies does affect the

166

(a) Server-to-server (b) Volume-to-volume (same server)

(c) Time (Same server) (d) Server Distribution of Top 1%ile blocks

Figure 3: Popularity skew variation

hit-ratio. However, because of our assumption that the or-
acle policy ensures that the most popular 1% of blocks al-
ways remains cache-resident, we conservatively assume the
same hit rate.) Allocation writes will account for 48.75%
(read misses = (1 − 35%) × 3/4) of all the accesses, which
results in (1) more than doubling the number of SSD oper-
ations (2.4X), and (2) increasing the number of SSD writes
by a factor of 5.6X. In contrast, the ideal allocation cache
causes exactly 1% of accessed blocks to result in allocation-
writes to bring in the top 1% of blocks. Note, the number of
allocation-writes is 1% of the number of unique blocks ac-
cessed which is smaller than 1% of the accesses (and hence
written as ε% in the last row of Table 2).

To extend the analysis to Belady’s MIN algorithm, (as-
suming AOD allocation, as in the original paper) we attain
bounds on the number of allocation-writes in terms of num-
ber of unique blocks (as opposed to number of accesses used
in Table 2). Recall from Figure 2(a) that 50% of the blocks
have at most 1 access and that the next 47% of blocks have 4
or fewer accesses, which implies that 97% of blocks will incur
a minimum of 50% + 47%/4 = 61.75% compulsory misses,
and hence allocation-writes. Note, in comparison that ideal
sieving requires only 1% of blocks to be allocated.

Finally, we show that extending Belady’s replacement al-
gorithm to do selective allocation does not necessarily min-
imize allocation-writes. Such an extension would allocate a
block only if the block’s next use is earlier than the next use
of at least one of the blocks in the cache. However, while
such an extension will maximize the number of hits, it is
not guaranteed to minimize allocation-writes. A simple ex-

ample can be constructed using a 1-entry cache and the ad-
dress stream a,a,b,b,a,a,c,c,a,a,d,d,a,a,e,e,... and
so on. Belady’s selective allocation would allocate blocks in
a,b,a,c,a,d,a,e,... order with the long term hit ratio
converging to 50%. Effectively, each miss causes an allo-
cation because the block has an immediate use after that
miss, resulting in 50% of accesses causing allocation-writes.
In contrast, using a fixed allocation for the address a cap-
tures nearly the same number of hits in the long-term (nearly
50%) while also minimizing the allocation-writes to exactly
1.

While the above discussion proved that ideal sieving is
effective in reducing the number of SSD write operations,
ideal sieving is impractical. In the next two sections, we
present two practical variants of SieveStore.

3.2 Discrete SieveStore (SieveStore-D)
SieveStore-D employs a discrete caching model wherein al-

location and replacement occur in batches at discrete epoch
boundaries. All blocks selected by SieveStore-D’s sieving
mechanism at the end of the ith epoch are batch-allocated
to the cache where they remain (i.e., no replacement) till
the end of the (i+1)th epoch. Logically, each resident block
is replaced at the end of the epoch and is replaced by the
newly allocated blocks. In practice, if a block that is to be
replaced at the end of an epoch is found to be allocated for
the next epoch, the replacement and allocation cancel each
other to eliminate unnecessary block moves.

SieveStore-D uses access counts to sieve cache allocation
in the following way. All blocks whose access-count in the

167

Table 2: Impact of Allocation Policies (assuming oracle replacement policy)
Allocation Policy Hits Misses Alloc.-writes SSD operations

Read hits Write hits + Alloc.-writes
Allocate-on-demand (AOD) 35% 65% 65% 26.25% 73.75% (=8.75% + 65%)
Write-no-allocate (WMNA) 35% 65% 48.75% 26.25% 57.5% (=8.75%+48.75%)
Ideal-selective-allocate (ISA) 35% 65% ε% 26.25% <9.75% (=8.75%+ε%)

ith epoch exceeds a threshold (t) are selected for allocation
at the end of the ith epoch. Our design choice of access-
count-based sieving in general, and the choices of the epoch
as one day and the threshold t = 10 in particular, flow di-
rectly from our observation (O1) that 99% of blocks have low
(fewer than 10/day) access counts. One may think there is a
tension between our claim that the top 1% popular block set
is dynamic from day-to-day and SieveStore-D’s strategy of
using one day’s access counts to identify the hot set for the
next day (which implies persistence of the hot-set). There
is no real contradiction between those claims; while popular
sets do drift from day-to-day (with the hot set drifting signif-
icantly with increasing time separation), there is significant
overlap in successive days.

There are two potential problems that sieving must ad-
dress. First, SieveStore-D must maintain access-counts for
all blocks – even the blocks that are not cache resident.
SieveStore-D logs all accesses for offline analysis. The anal-
ysis requires simple, per-key reductions to gather counts of
all the addresses that are logged to SieveStore-D node’s lo-
cal storage (not the SSD-based disk-cache). Such per-key-
reduction can be efficiently implemented by using a map-
reduction-like structure where (1) each access is logged as a
< address, 1 > tuple to one of R files where the file is se-
lected by a hash-function on the address, and (2) each of the
R files are sorted, and (3) contiguous n-long “runs” of the
same address are counted and emitted as a < address, n >
tuple. Further, such per-key reductions may be periodically
performed in an incremental way to reduce the size of the
logs. At the end of the epoch, tuples with n value greater
than the threshold, are allocated for the next epoch.

Second, because the blocks are allocated at the end of
each discrete epoch, the bulk data movement required at
the end of each epoch could be a bottleneck. In practice,
the movement of allocated data can be staggered by moving
data when the periodic analysis of access logs identify the
high-access count blocks. We show later in Section 5 that
the number of blocks moved is insignificant compared to the
number of accesses (≤ 0.5%), and that there are significant
periods of slack bandwidth in the SSD where such moves
may be scheduled. Consequently, SieveStore-D moves can
avoid creating a burst of heavy traffic.

3.3 Continuous SieveStore (SieveStore-C)
SieveStore-D’s discrete allocation model limits the rate

at which the system can adapt to changes in the hot set.
To address that problem, we develop another variant called
SieveStore-C. SieveStore-C’s sieving is performed in an on-
line fashion where each access is first checked if it is a hit or
a miss. If it is a miss, it is further checked if it qualifies for
allocation (i.e., sieving). If it does, the block is allocated.
If not, the block is accessed directly from the underlying
storage ensemble.

SieveStore-C uses hysteresis-based lazy allocation to en-
sure that only the nth miss of a block in a recent window of

time (W) results in an allocation. Such lazy allocation fun-
damentally requires us to maintain metastate for blocks that
are accessed even if the block is not resident in the cache
because block-miss-counts must be maintained. Unlike in
SieveStore-D’s case where the metastate was maintained in
files and was never on any access critical path, SieveStore-
C’s continuous allocation model poses another key challenge:
the metastate must be looked up on each miss to determine
if the block is to be allocated. Thus the metastate must
be memory resident. Unfortunately, because of the large
number of unique blocks that are accessed, even assuming a
small amount of state per accessed block results in state ex-
plosion that makes perfect state tracking infeasible (at least
in a cost-effective way).

To address the state explosion problem, SieveStore-C uses
a two-tier sieve where the first tier maintains imprecise (po-
tentially aliased) miss-counts and the second tier maintains
accurate miss-counts. At the first tier, SieveStore-C uses an
imprecise miss count table (IMCT) of fixed size. Because the
space of block addresses is significantly larger than the size
of the IMCT table, the mapping from blocks to entries in
the table is many-to-one. Such many-to-one mapping may
be prone to aliasing, which results in access counts being in-
accurate. Indeed, we found aliasing to be a significant prob-
lem because too many blocks with low-reuse were found to
be piggy-backing on the miss-counts of more popular blocks
and receiving undeserved cache allocations. Such cache al-
locations cause pollution, and allocation-writes; symptoms
that single-tier sieving was not effective.

To address ineffective sieving at the imprecise layer, we
employ an additional perfect Miss Count Table (MCT) which
is implemented as a hash-table. With the IMCT/MCT two-
tier sieve, only blocks that see a minimum number of misses
in the IMCT (say threshold t1) make it past the IMCT
to the MCT. However, because IMCT is prone to aliasing,
SieveStore-C further requires each block that satisfies the
IMCT threshold to undergo a precise MCT threshold check.
As part of the MCT check, the block has to further see an
additional minimum number of misses (say threshold t2).
The two tier approach worked well in practice because the
IMCT reduced the amount of perfect metastate that must
be tracked and the MCT reduced the number of low-reuse
blocks that are allocated cache space. We experimentally
tuned t1 and t2 to be 9 and 4, respectively. For the traces,
our implementation of IMCT and MCT occupied about 8GB
of memory.

One note on the implementation of IMCT and MCT. Log-
ically, the IMCT and MCT track the number of misses over
the past W time units (say hours). However, since keeping
miss counts for every time slice is impractical, we discretize
the time window into k subwindows of W/k hours each. The
implementation uses k counters to track the misses in each
subwindow and a counter to track the last time the counters
were updated. If during a miss, the current time window
is larger than the last-updated counter by k or more, then

168

Devices

BUFFER

CACHE

FILE

SYSTEM

BUFFER

CACHE

FILE

SYSTEM

BUFFER

CACHE

FILE

SYSTEM

Block

I/O

File I/O

Block

BUFFER

CACHE

BUFFER

CACHE

BUFFER

CACHE

Block

I/O

File I/O

FILE

SYSTEM

FILE

SYSTEM

FILE

SYSTEM

SIEVE

STORE

Devices

Block

SIEVE

Storage &

Compute

Servers

iSCSI

Storage

Block
STORE

LAN+SAN

(a) Base storage-ensemble (b) Logical organization (c) Physical organization

Figure 4: SieveStore Organization

all counters are inferred to be stale and zeroed out. Peri-
odically we prune the MCT to eliminate stale blocks. We
experimentally tuned the parameters to set W to 8 hours,
with k set to 4 (i.e., four subwindows of 2 hours each).

Implementation.
Both SieveStore variants may be implemented as a trans-

parent caching appliance that can easily be deployed in ex-
isting storage-area-networks to cover a larger storage en-
semble. Though the logical organization corresponds to the
illustration shown in Figure 4(b) (a central cache with by-
pass paths), the physical realization is shown in Figure 4(c).
Figure 4 assumes iSCSI block protocol and hence shows a
common LAN/SAN for illustration purposes only. In prac-
tice, any connection fabric (Fibre Channel) or protocol may
be used. Even if iSCSI-over-Ethernet is used, the network
may use dedicated links/switches for performance.

One concern that SieveStore must address is the issue of
the entire ensemble’s I/O funneling through the SieveStore
node. The issue may be subdivided into four different activi-
ties that are aggregated in SieveStore. First, requests are ag-
gregated at the SieveStore node. Request processing is not a
significant concern because (1) request processing is entirely
in memory (e.g., cache-hit determination and sieving) ex-
cept for hits and allocation-writes, and (2) the entire week’s
request traffic amounts to approximately 434 million multi-
block requests, which is dwarfed by the amount of traffic that
hits in the disk-cache. Second, the issue of handling the I/O
requests that require SSD operations (hits and allocation-
writes) is discussed later in Section 5.2. Third, the issue of
SSD-wearout because SieveStore aggregates write-hot blocks
in the SSD is also shown not to be a significant concern
later in Section 5.1. Fourth, there is concern that the Sieve-
Store node could become a network bottleneck. There are
two sources of network traffic; SSD hits wherein blocks are
served from the SieveStore node and the allocated-misses
wherein blocks are copied to the SieveStore node. A simple
worst case analysis reveals that servicing hits is well within
the network bandwidth of a reasonably configured node with
four Gigabit Ethernet links. Even the maximum SSD access
throughput (100% sequential reads, 250MB/s) accounts for
approximately 50% of the network bandwidth. In practice,
the SSD accesses are neither sequential nor all-writes. Fur-
ther, the SSD load is considerably lower than 100% of an
SSD’s bandwidth, as we show later in Section 5.2. The sec-
ond source of network traffic (allocation data) is negligible
because sieving is effective in reducing the number of allo-
cation writes, as shown later in Section 5.1.

4. EXPERIMENTAL METHODOLOGY
Trace analysis, as well as analysis of the ideal case and

SieveStore-D involved access-counting and was performed
using simple scripts and mapreductions. (Recall, there is
no need for cache-simulation for SieveStore-D because al-
location/deallocation are only at epoch boundaries.) For
SieveStore-C, we developed a trace-based simulator that in-
cludes the data-structures for sieving (IMCT and MCT) and
for the metastate of a fully-associative, 16GB cache with
LRU replacement (tags, LRU stack information). Note,
LRU replacement was common for all the continuous con-
figurations (i.e., SieveStore-C, AOD, and WMNA; but not
SieveStore-D) irrespective of allocation policies.

The cache simulations operate on the trace and faithfully
model the cache operation including allocation-writes. Be-
cause allocation requests can occur only after the data has
been fetched from the underlying storage, each allocation
request to a block was assumed to start at the time that
the corresponding request in the original trace completed
(as reported in the trace). We used linear interpolation to
infer completion times for individual blocks in cases of large,
multi-block requests.

Because SieveStore funnels all of the ensemble’s hot blocks
to a single node, it is important to ascertain that the IOPS
and bandwidth requirements can both be satisfied at that
node. At a high-level, the increased IOPS/bandwidth re-
quirements of SieveStore is helped by the high IOPS and
high bandwidth provided by SSDs. However, there may be
peak bursts where the requests of 13 individual servers sat-
urate even the high I/O throughput of the SSD, thus requir-
ing more SSDs for parallelism. To catch such peaks, if any,
our cache simulator exports the required IOPS and required
bandwidth (MB/s) (separately for reads and writes) in each
minute of the trace.

We assume SieveStore uses an SSD for caching blocks.
The SSD’s parameters are modeled after Intel’s X25-E Ex-
treme SATA SSD [8], which achieves 35,000 random read
IOPS, 3300 random write IOPS, 250MB/s sustained sequen-
tial read bandwidth and 170MB/s sustained sequential write
bandwidth, assuming 4KB pages. The random bandwidth
(computed from random IOPS for 4KB transfers) is 140MB/s
and 13.2 MB/s which is a tighter constraint than sequential
bandwidth. So we evaluate the drives needed under the
tighter IOPS constraint.

To assess cost, we compute the drives needed to satisfy
the IOPS requirements of our workloads. To that end, we
compute a Drive IOPS occupancy metric for each minute
in the trace. We assume that each 4KB read I/O occu-

169

Table 3: Allocation policies
Key Allocation Policy When is a block allocated?
AOD Allocate-on-demand On a miss
WMNA Write-no-allocate On a read-miss
SieveStore-D Access count-based, discrete batch-

allocation with threshold=n
Blocks that are accessed at least n times in an epoch
enter the cache at the end of that epoch

SieveStore-C Lazy allocation, threshold=n,
window=W

On the nth miss in the previous time window.

pies the drive for 1/35000th of a second (because read IOPS
is 35000/s) and each 4KB write I/O occupies the drive for
1/3300th of a second (because write IOPS is 3300/s). This
is a rather simple model that ignores queueing. However,
we will show that, with SieveStore variants, the drives are
typically operating at a significantly lower load point than
supported by the SSD. Consequently, queueing is unlikely to
be a significant problem. The number of drives needed each
minute is computed as the ceiling of the drive occupancy of
all requests for that minute. Because the SSD performance
parameters are specified for 4KB units, we assumed 4KB ac-
cesses. However, because there were a small number (6%)
of accesses that were not 4KB-aligned, we conservatively as-
sessed the same cost for a sub-4KB I/O as that of a 4KB I/O.
(We use this conservative approximation only for assessing
drive-needs. All other numbers count I/O blocks/accesses
assuming 512-byte blocks for accuracy.)

Finally, we arrive at the required number of drives for the
whole trace under various coverage assumptions. For 100%
coverage, the number of drives needed is the maximum of
the number of drives for each minute of the trace, which is
a worst-case design. We also consider reducing coverage in
cases where a large decrease in the number of drives may be
obtained by sacrificing a little coverage.

5. RESULTS
There are three primary conclusions from our experiments.

1. We show that sieving fundamentally enables ensemble-
level caching to achieve higher performance. SieveStore-
D (SieveStore-C) improves the number of hits by 35%
(50%) over the best unsieved ensemble-level caching,
while also reducing the number of allocation-writes by
over two orders of magnitude. (Section 5.1.)

2. With a single SSD, SieveStore-D (SieveStore-C) can
satisfy the IOPS and bandwidth requirement of the en-
semble with 100% (99.9%) time coverage. (Section 5.2.)

3. SieveStore’s approach of ensemble-level caching is a su-
perior cost-performance point compared to ideal pri-
vate (per-server) caching because it can achieve higher
performance at the same cost OR lower cost for the
same performance. (Section 5.3.)

5.1 Sieved vs. Unsieved Ensemble-level caches
We compare the two SieveStore variants with the unsieved

allocation policies for ensemble-level caches (quadrant I vs.
quadrant II in Figure 1). Figure 5 plots the total number
of accesses captured by ensemble-level caches (normalized
to the total number of accesses, Y-axis) allocated on each
day of the trace (X-axis) by each allocation technique (bars
in each group). The accesses caught by the ideal Sieve-
Store that captures the top 1% of blocks each day is the

left-most bar. In addition to the ideal case, we include
the sieve-based techniques SieveStore-C and SieveStore-D
as well as two randomized allocation policies (RandSeive-
BlkD and RandSieve-C) to illustrate the fact that SieveStore
truly identifies and captures hot blocks (beyond what ran-
dom sampling would achieve). The RandSieve-BlkD variant
allocates a randomly chosen 1% of the blocks accessed each
day and batch-allocates them to the cache for the next day.
RandSieve-C is a continuous variant that randomly allocates
1% of all misses. We also include the two unsieved allo-
cation policies (AOD, WMNA). For the unsieved ensemble
caches, we also compare against a cache that is twice the size
(32GB) of the SieveStore variants to account for the possi-
bility that the additional hits from sieving may be captured
by using the additional DRAM/storage needed to hold the
sieve data-structures/logs. Like the 16GB cache, the 32GB
cache is also fully-associative with LRU replacement. The
accesses of the non-ideal allocation mechanisms also show
the breakdown of reads and writes.

On average, SieveStore-D and SieveStore-C1 are within
14% and 4% of the ideal case. Both SieveStore variants are,
at worst, within 16.7% and 6.6% of the ideal case, with the
exception of SieveStore-D on days 1 and 2. On average,
SieveStore-D and SieveStore-C capture 35% and 50% more
accesses (hits) than the best of AOD and WMNA.

SieveStore-D shows zero accesses on day 1 because it needs
one day’s access logs to bootstrap its sieve. Consequently,
the average excludes the first day. The exceptional behav-
ior of SieveStore-D on day 2 is because block popularity on
day 1 is significantly more skewed than the remainder of
the days because of our calendar-day-based analysis (Sec-
tion 2); only 0.04% of accessed blocks have 10 or more ac-
cesses (Figure 2(a)). Consequently, SieveStore-D which al-
locates blocks only if their access count exceeds 10, allocates
a significantly smaller set of blocks at the end of day 1. In
spite of the smaller number of blocks, SieveStore-D captures
more than half of accesses on day 2. In contrast, SieveStore-
C can react on a continuous basis and achieves a significantly
higher hit-ratio on day 2. On days 3 , 4 and 8, SieveStore-C
achieves a marginally higher hit-ratio than the (day-by-day)
ideal case.

Neither of the two random sieving variants (bars A and
D in Figure 5) performs well, achieving only marginally
higher hitrates than the unsieved allocation policies. The ex-
tremely poor hit ratio of RandSieve-BlkD is to be expected
because of the low likelihood of randomly selecting the hot
blocks. However, the poor performance of RandSieve-C re-
quires some explanation. One may think that RandSieve-C
should work well in principle because popular blocks occur

1The ideal configuration uses day-by-day discrete allocation,
and hence is an upper-bound for SieveStore-D, but not for
SieveStore-C because SieveStore-C can continuously change
the blocks it holds.

170

Figure 5: Sieving Effectiveness: Accesses Captured

Figure 6: Sieving Effectiveness: Allocation Writes

repeatedly in the miss-stream and are thus more likely to be
sampled. However, because the fraction of accesses that
come from low-reuse blocks is significant (approximately
60%, on average), random sieving will result in 60% of allo-
cations being those of low-reuse blocks. Such spurious allo-
cations explain the lower hit ratio.

Finally, while larger disk-caches help the unsieved ensem-
ble caches (bars labeled E,F in Figure 5), there remains a
significant gap between the hit ratios of SieveStore variants
and AOD/WMNA. In the rest of the paper, we use the 32GB
variant of AOD/WMNA as they offer better hit ratios.

Allocation writes.
Figure 6 plots the number of allocation-writes (Y-axis,

log-scale) for each day of the trace (X-axis) for our alloca-
tion mechanisms (bars). The number of allocation-writes
required by SieveStore-D and SieveStore-C is a more than
two orders of magnitude smaller than those of AOD and
WMNA. (Though not shown in Figure 6 the number of
allocation-writes for 16GB caches with AOD and WMNA
were qualitatively similar.) The random sampling sieves do
reduce the number of allocation writes significantly com-
pared to AOD and WMNA. However, they are almost an
order of magnitude (8.5X) worse than the SieveStore vari-
ants, on average.

SSD accesses.
In order to account for the total number of accesses to

the SSD, and also to put the magnitude of the allocation-
writes in the context of other accesses, Figure 7 combines the
information from both Figure 5 and Figure 6. The Y-axis

shows all SSD operations (at 512-byte block granularity).
Each bar has three components: reads (hits), writes (hits)
and allocation-writes. Three key observations can be made
from Figure 7.

First, the allocation-writes bar reveals the importance of
sieving. Without sieving, the allocation-writes constitute
the dominant fraction of all SSD accesses. Combined with
the fact that writes are slower in SSDs, such allocation-
writes can have a crippling impact. For SieveStore-C and
SieveStore-D, the bars for the allocation-writes are included
as a thin (nearly-invisible at scale) bar.

Recall, from Section 1 that we do not differentiate between
reads and writes in SieveStore. One may think that caching
write-hot blocks can (1) reduce lifetime for SSDs and (2) im-
pose an opportunity cost by preventing other read-hot blocks
which can benefit from significantly higher IOPS. However,
because the number of writes for SieveStore (= write hits
+ allocation-writes) never exceeds 500 million writes of 512
bytes each on any given day, and because the X25-E SSD
drive can endure 1 petabyte (1015B) of writes [8], the disk’s
endurance is over 10 years = (1015/(5 × 108

× 512 × 365)).
Further, there is no opportunity cost in the sense that write-
hot blocks preclude read-hot blocks because a 16GB disk can
contain all the top 1% popular blocks with room to spare.
Finally, there is the “pull” factor that makes it attractive
to cache write-hot blocks; SSD write IOPS is an order of
magnitude higher than the write IOPs of enterprise HDDs.

Sensitivity.
Due to lack of space, we briefly summarize the results of

sensitivity analysis without providing detailed results. We

171

Figure 7: Total SSD Accesses

found that SieveStore is sensitive to variations in the thresh-
old in only one direction. If the threshold is too low (e.g.,
below 8 for SieveStore-D), we have inadequate sieving and
poor performance. But if the threshold is varied in the high
range (e.g., 8-20 for SieveStore-D), the hit-rate does not vary
significantly. Similarly, SieveStore was relatively insensitive
to significant variations in epoch/window lengths although
we observed that lengths shorter than 8 hours caused some
performance degradation.

5.2 Assessing costs of SieveStore
Recall, the methodology for computing the number of

drives uses IOPS rating of the Intel X25-E SSD drive and
compares that to the IOPS requirement in each of the 10080
(=7 × 24 × 60) minutes of the trace.

Figure 8 plots two graphs showing the drive IOPS oc-
cupancy (Y-axis) against each minute in the trace (X-axis,
in chronological order). Individually, Figure 8(a) and Fig-
ure 8(b) compare WMNA allocation policy with SieveStore-
D and SieveStore-C, respectively. AOD is omitted because it
is strictly worse than WMNA. The cost of the large number
of allocation-writes of the WMNA policy is manifested in
the regions where drive IOPS occupancy peaks (gray curve
in both Figure 8(a) and Figure 8(b)). In contrast, the occu-
pancy of SieveStore variants is significantly lower and mostly
under 1. SieveStore-D never requires more than one disk
with the caveat that SieveStore-D assumes that batch al-
location can be done during periods of low disk activity.
Note, the assumption is reasonable because there is signif-
icant downtime in SSD activity. SieveStore-C, which ex-
plicitly accounts for all allocation-writes, maintains its drive
IOPS occupancy under 1 more than 99.9% of the time. The
requirement goes up to two drives for only 9 minutes out of
a total of 10080 minutes of the trace.

Figure 9 plots the number of drives needed (Y-axis) for
each minute (X-axis) of the trace for each allocation pol-
icy (curves in the figure). The Y-axis values in Figure 9
are simply the values of the curves in Figure 8 rounded up
to the next integer (i.e., ceiling function). Note, the min-
utes are not in chronological order but in increasing order
of drive-requirements. Note the small peak at the right for
SieveStore-C that represents the 9 minutes where we need
two drives. The WMNA policy would require 7 drives for
99.9% coverage. Even after diluting the coverage require-
ment to 90% WMNA would require 4 drives.

At a higher level, the result that a large fraction of the
ensemble’s accesses can be satisfied comfortably by a single
SSD in 99.9% of the cases is not surprising because (1) the

(a) SieveStore-D vs. WMNA

(b) SieveStore-C vs. WMNA

Figure 8: Drive IOPS occupancy

IOPS offered by the SSD is two orders of magnitude higher
for reads and one order of magnitude higher for writes when
compared to HDDs, and (2) the probability that a large
number of servers across the ensemble will experience a cor-
related burst of disk activity at the same time is low [14].

5.3 Ensemble vs. per-server caching
In this section, we extend the comparison to include per-

server disk-caches (quadrant III and quadrant IV in Fig-
ure 1). To strengthen our argument that ensemble-level
caching, in general, and SieveStore, in particular, are supe-
rior in cost-performance, we compare the cost/performance
of SieveStore-C and SieveStore-D to that of two ideal per-
server caching configurations. First, under the unreason-
able, but conservative, assumption that SSD capacity is elas-
tic (i.e., arbitrarily small SSDs can be built without changing
the cost per byte), we compare against a per-server configu-
ration in which each server caches the top 1% of its accessed
blocks. Such a configuration is effectively an iso-capacity
(and hence iso-cost, by our elasticity assumption) config-

172

Figure 9: Number of drives needed

uration with a proportional, static partition of the cache
capacity among servers.

Second, under a more reasonable assumption that there is
a minimum size for SSDs (i.e., non-elastic drives, we assume
16GB), the per-server caching incurs the cost of 13 SSDs.
On the other hand, each server is now able to cache more
data. Again, we conservatively assume that the per-server
caches are filled with as many of the most popular blocks as
the capacity allows.

Figure 10 compares the cost-benefit tradeoffs for the var-
ious ensemble caching configurations (ideal and SieveStore)
and the two ideal per-server caching configurations. We use
the number of SSDs (X-axis) as a proxy for cost and the
fraction of ensemble accesses (Y-axis) that hit in the disk
cache as a measure of performance.

First, focusing purely on the ideal cases with elastic SSDs,
we observe that the Ideal ensemble version which caches the
top 1% of blocks is significantly better than the Ideal-private
configuration with elastic drives which caches the top 1%
of blocks of each server. Even though the cost of the two
configurations are the same, the ensemble version captures
45% more accesses than the per-server version.

Second, we compare the ideal ensemble version with ideal
per-server configuration with non-elastic drives. In that
case, we assume that each server has the capacity to cache
as much as 1% of the entire ensemble’s data, which will be
a larger fraction of the server’s data. This configuration in-
creases the cost by a factor of 13X (1300%) since it needs one
SSD drive per server. However, the accesses captured goes
up by only 11%. This is not surprising because the benefits
of increasing cache capacity beyond the 1% most popular
blocks are minimal because of low-reuse (Section 2). To em-
phasize this point, we include an ensemble-level ideal con-
figuration that captures the same number of accesses as the
per-server configuration (labeled as Iso-performance in Fig-
ure 10). Such an ensemble configuration requires fewer SSD
drives than the per-server approach (i.e., lower cost for the
same benefit). More importantly, it illustrates the fact that
caching more data beyond the top 1% is not cost-effective
even at the ensemble-level because the cost increase (4X) is
not commensurate with the benefits (11%).

Finally, SieveStore-D and SieveStore-C which are both
practical, capture 21% and 37% more accesses than the
ideal (impractical) iso-cost, per-server caching configuration.
Thus practical variants of our ensemble-level caching per-
form better than an ideal version of the per-server caching
technique at the same cost.

6. RELATED WORK
The advantage of dynamically sharing resources in the

specific context of data-center ensembles have been widely-

Figure 10: Cost-Performance Tradeoffs

studied. Various researchers have described the benefits of
managing power at the ensemble level [16, 5]. More re-
cently, Lim et.al. proposed using a shared pool of mem-
ory that could be dynamically allocated to computers in
an ensemble to alleviate the reducing memory-capacity per
core [13]. Narayanan et.al. have shown that treating storage
bandwidth of an ensemble as a pooled resource enables ef-
ficient handling of peak throughput bursts [14]. SieveStore
applies similiar ensemble-level management in another con-
text. Note, the ensemble-level approach cannot blindly be
applied to other resources. Just as the observation that not
all nodes in the ensemble were operating at peak power (or
utilizing large amounts of memory, or placing peak demand
for I/O bandwidth) at the same time was central to moti-
vating the ensemble-level power-management (or memory-
pooling, or storage-bandwidth pooling) techniques, our ob-
servations that there is extreme dynamic popularity skew in
storage-ensemble block-access traces, and that sieving can
filter allocation-writes, led to the SieveStore design.

There is a large body of work on replacement algorithms
that achieve better hit ratios than LRU replacement by
handling special cases (e.g., loop/streaming accesses) sep-
arately [6, 17], and by considering frequency in addition to
recency [12]). As shown in Section 3.1, our sieving is funda-
mentally different in its ability to reduce allocation-writes.
In the context of microprocessor caches, various static and
dynamic bypassing policies have been proposed to avoid al-
locating cache blocks that have little reuse/value [20, 9, 18].
Because the allocation-write problem is not significant in mi-
croarchitectural SRAM caches, such bypass techniques have
focused on improving hits without aiming to minimize al-
location writes. In contrast, our policies aim to minimize
allocation writes (while also improving hits). As shown in
Section 3.1, maximizing hits need not necessarily reduce al-
location writes, even when using selective allocation. Fi-
nally, Behar et.al. use a sampling-based selective allocation
for improved tracecache performance [1]. As discussed ear-
lier in Section 5, applying randomized sampling in ensemble-
level disk caches performs poorly compared to SieveStore
variants.

Prior work has examined the use of flash-based memories
as extensions of the VM system (a fast swap space) [19],
and in customized architectures [3]. Our work is orthogo-
nal. We emphasize that though our work uses SSD as one
possible caching mechanism, our primary contribution is the
use of ensemble-level disk caching based on sieving and is in-
dependent of underlying storage medium. Indeed the stor-
age medium could be phase-change memory. Battery-backed

173

DRAM could also be used. Although DRAM write-accesses
are as fast as reads, sieving is still valuable because of other
benefits such as improved memory bandwidth (by avoid-
ing allocation writes) and network bandwidth (by avoiding
allocation traffic). Kgil et.al. have proposed a flash-based
per-server buffer cache [11, 10]. Recall from Section 5.3,
sieve-based, ensemble-level disk-caches are superior to per-
server disk-caches in cost and performance.

7. DISCUSSION: SCALING AND TUNING
While our results showed that a 16GB SieveStore was ad-

equate for the ensemble of 13 servers, the more general ques-
tion of provisioning SieveStore for larger ensembles with dif-
ferent capacity, IOPS, and bandwidth requirements must
also be considered. If SieveStore’s limited capacity is in-
adequate to hold all the blocks that make it past the sieve
(an indicator of underprovisioning), the glut of blocks be-
ing allocated to the cache could result in cache pollution
and/or degraded performance. The above problem has two
possible solutions. First, multiple SieveStore nodes may be
added by exploiting parallelism (1) across groups of servers,
wherein smaller ensembles would each be assigned a Sieve-
Store node, or (2) across block addresses, wherein block ad-
dresses would be striped/partitioned across the two Sieve-
Store nodes. Second, if adding SieveStore nodes is not an
option, adaptively raising the thresholds in SieveStore-D and
SieveStore-C may increase selectivity and gracefully handle
SieveStore underprovisioning. We leave a study of scaling
and adaptive threshold tuning for future work.

8. CONCLUSIONS
The adoption of SSDs to accelerate/filter accesses to tra-

ditional magnetic hard disk-drive based storage is attrac-
tive from a power/performance point of view. But cost-
effectiveness remains a serious impediment because of the
high cost-per-byte of SSD capacity [15]. We propose Sieve-
Store – a highly selective, ensemble-level, disk-cache that
filters a significant fraction of disk accesses of a server en-
semble with a small, shared SSD. SieveStore is driven by
the observations that (1) there is extreme popularity skew
among blocks that are accessed, and (2) that the popular set
is dynamic. While the above observations directly make the
case for ensemble-level caching, conventional cache alloca-
tion policies incur a high overhead because of a large num-
ber of allocation-writes caused by misses. We show that
selective allocation to avoid such overhead – sieving – is
necessary. We describe two practical SieveStore variants –
SieveStore-D and SieveStore-C. Trace-based evaluations re-
veal that SieveStore’s twin strategies of ensemble-level disk-
caching with sieving is a superior cost-performance point
compared to per-server caches and unsieved ensemble-level
caches.

Acknowledgments.
We thank the anonymous reviewers for their feedback. We

thank T. N. Vijaykumar for comments on an early draft
of this paper. This work is supported in part by National
Science Foundation (Grant no. CCF-0621457).

9. REFERENCES
[1] M. Behar, A. Mendelson, and A. Kolodny. Trace cache

sampling filter. In Proc. of the 14th International
Conference on Parallel Architectures and Compilation
Techniques, pages 255–266, 2005.

[2] L. A. Belady. A study of replacement algorithms for a
virtual-storage computer. IBM Systems Journal,
5(2):78–101, 1966.

[3] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon:
using flash memory to build fast, power-efficient clusters for
data-intensive applications. SIGPLAN Not., 44(3):217–228,
2009.

[4] C. Dirik and B. Jacob. The performance of pc solid-state
disks (ssds) as a function of bandwidth, concurrency, device
architecture, and system organization. In ISCA ’09: Proc.
of the 36th annual international symposium on Computer
architecture, pages 279–289, 2009.

[5] X. Fan, W.-D. Weber, and L. A. Barroso. Power
provisioning for a warehouse-sized computer. In ISCA ’07:
Proc. of the 34th annual international symposium on
Computer architecture, pages 13–23, 2007.

[6] G. Glass and P. Cao. Adaptive page replacement based on
memory reference behavior. In Proc. of the 1997 ACM
SIGMETRICS international conference on Measurement
and modeling of computer systems, pages 115–126, 1997.

[7] A. Gupta, Y. Kim, and B. Urgaonkar. Dftl: a flash
translation layer employing demand-based selective caching
of page-level address mappings. In ASPLOS ’09: Proc. of
the 14th intl. conference on Architectural support for
programming languages and operating systems, pages
229–240, 2009.

[8] Intel. Intel X25-E SATA Solid State Drive Datasheet.
http://download.intel.com/design/flash/nand/extreme/
319984.pdf.

[9] T. L. Johnson and W.-m. W. Hwu. Run-time adaptive
cache hierarchy management via reference analysis. In
Proc. of the 24th annual International Symposium on
Computer architecture (ISCA ’97), pages 315–326, 1997.

[10] T. Kgil and T. Mudge. Flashcache: a nand flash memory
file cache for low power web servers. In Proc. of the 2006
international conference on Compilers, architecture and
synthesis for embedded systems, pages 103–112, 2006.

[11] T. Kgil, D. Roberts, and T. Mudge. Improving nand flash
based disk caches. In Proc. of the 35th International
Symposium on Computer Architecture, pages 327–338,
2008.

[12] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho,
and C. S. Kim. Lrfu: A spectrum of policies that subsumes
the least recently used and least frequently used policies.
IEEE Trans. Comput., 50(12):1352–1361, 2001.

[13] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch. Disaggregated memory for
expansion and sharing in blade servers. SIGARCH
Comput. Archit. News, 37(3):267–278, 2009.

[14] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and
A. I. T. Rowstron. Everest: Scaling down peak loads
through i/o off-loading. In OSDI, pages 15–28, 2008.

[15] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and
A. Rowstron. Migrating server storage to ssds: analysis of
tradeoffs. In EuroSys ’09: Proc. of the 4th ACM European
conference on Computer systems, pages 145–158, 2009.

[16] P. Ranganathan, P. Leech, D. Irwin, and J. Chase.
Ensemble-level power management for dense blade servers.
SIGARCH Comput. Archit. News, 34(2):66–77, 2006.

[17] Y. Smaragdakis, S. Kaplan, and P. Wilson. Eelru: simple
and effective adaptive page replacement. SIGMETRICS
Perform. Eval. Rev., 27(1):122–133, 1999.

[18] E. S. Tam, J. A. Rivers, V. Srinivasan, G. S. Tyson, and
E. S. Davidson. Active management of data caches by
exploiting reuse information. IEEE Trans. Comput.,
48(11):1244–1259, 1999.

[19] H.-W. Tseng, H.-L. Li, and C.-L. Yang. An energy-efficient
virtual memory system with flash memory as the secondary
storage. In ISLPED, pages 418–423, 2006.

[20] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A
modified approach to data cache management. In MICRO
28: Proc. of the 28th annual international symposium on
Microarchitecture, pages 93–103, 1995.

174

