```
ED 055 109
AUTHOR
TITLE
INSTITUTEON
PUB DATE
NOTE
EDRS PRICE
DESCRIPTORS
```

ED 055109
AUTHOR
TITLE

INSTITUTEON PUB DATE NOTE

EDRS PRICE DESCRIPTORS

TH 000836
Van Thillo, Marielle; Joreskog. Karl G. SIFASP: A General Computer Program for Simultaneous Factor Analysis in Several populations. Educational Testing Service, Princeton, N.J. Nov 70 59 p .

MF-\$0.65 HC-\$3.29
*Computer Programs; Factor Analysis; *Factor Structure; Hypothesis Testing; 产Mathematical Models; *Research Methodology; *Sampling; Statistical Analysis

```
ABSTRACT
A computer program for simultaneously factor analyzing dispersion matrices obtained Erom independent groups is described. This program is useful when a battery of tests has been administered to samples of examinees from several populations and one yants to study similarities and differences in factor structure between the different populations. (CK)
```


This Bulletin is a draft for interoffice circulation. Corrections and suggestions for revision ar solicited. The Bulletin should not be cited as a reference without the specific permission of the authors. It is automatically superseded upon formal publication of the material.

Educational Testing Service
Princeton, New Jersey
November 1970

SIFASP
 A General Computer Program for Simultaneous Factor
 Analysis in Several Populations
 1. Introduction

1.1 The General Model

We shall describe a computer program for simultaneously factor analyzing dispersion matrices obtained from independent groups. A common situation, when this program will be useful, is when a battery of tests has been administered to samples of examinees from several populations and one wants to study similarities and differences in factor structures between the different populations. The most important feature of the program is that parameters in the factor aralysis models (factor loadings, factor variances, factor covariances, and unique variances) for the different populations may be assumed to be known a priori or specified to be invariant over populations. Given such a specification, the model is estimated by the maximum likelihood method yielding a large sample x^{2} test of goodness of fit. By computing several solutions under different specifications one can test various hypotheses. For example one can test the hypothesis of an invariant factor pattern. The method is capable of dealing with any degree of invariance, from the one extreme, where nothing is invariant, to the other extreme, where everything is invariant. A detailed account of the method, on which the program is based, is given by Jðreskog (1970).

Consider a set of m populations. These may be different nations, or culturally different groups, groups of individuals selected on the basis of

[^0]some known or unknown selection variable, groups receiving difざerent tieatments, ezc. In fact, they may be any set of exclusive groups cf individuals that are clearly defined. It is assumed that a battery of p tests has been administered to a sample of individuals from each population. The battery of tests need not be the same for ch group, but to be interesting, it is necessary that some oi the tests in each battery are the same or at least content-wise equivalent.

Let x_{g} be a vector of order p, representing the measurements obtained in group g. We regard x_{g} as a random vector with mean vector μ_{g} and variance-covariance \sum_{g}. It is assumed that a factor analysis model holds in each populaivion so that X_{g} can be accounted for by k common factors f_{g} and p unique factors z_{g}, as

$$
\begin{equation*}
x_{g}=\mu_{g}+\Lambda_{g} f_{g} \quad z_{g} \tag{1}
\end{equation*}
$$

with $\varepsilon\left(f_{g}\right)=0$ and $\mathcal{E}\left(z_{g}\right)=0$ and $\Lambda_{g} \quad$ a factor pattern of order $p_{g} x_{g} k$ The usual factor analytic assumptions then imply that
(2) $\quad \Sigma_{g}=\dot{\Lambda}_{g} \Phi \Lambda_{g}^{\prime}+\Psi_{g}^{2}$
where $\Phi_{\tilde{\xi}}$ is the variance-covariance matrix of f_{g} and ψ_{g}^{2} is the diagonal variance-ccvariance matrix of z_{g}.

In addition to assuming that a factor analytic model holds in each population the model may specify that certain parameters in $\Lambda_{g}, \Phi_{g}, \Psi_{g}$, $g=1,2, \ldots, m$ have assigned values and that some set of unknown elements in Λ_{g}, Φ_{g} and ψ_{g} are the same for all g. Thus, parameters in Λ_{g}, Φ_{g} and $\psi_{g}, g=1,2, \ldots, m$ are of three kinds: (i) fixed parameters which
have been assigned given values, (ii) constrained parameters which are unknown but equal to one or more other parameters and (iii) free parameters which are unknown and not constrained to be equal to any other parameter. Equality constraints between parameters for the same populations may also be used though this would be unusual in practice. The advantage of this approach is the great generality and flexibility obtained by the various specifications that may be imposed. The most common situation is when the same battery has been administered to each group and when the whole factor pattern Λ_{g} is assumed to be invariant over groups. This case will hereafter be referred to as the standard case.

1. 2 Identification of Perameters

Before an attempt is made to estimate a model of this kind, the identification problem must be examined. The identification problem depends on the specification of fixed, free and constrained parameters. Under a given specification, each $\Lambda_{g}, \Phi{ }_{g}$ and ψ_{g} generates one and $\sim n l y$ one Σ_{g} but it is well known that . .t Λ_{g} and ${ }_{g}{ }_{g}$ generate the same Σ_{g}. It should be noted that if Λ_{g} is replacea by $\Lambda_{g} T_{g}^{-1}$ and Φ_{g} "วy $T_{g} \Phi_{g} T_{g}^{\prime}$, where T_{g} is an arbitrary nonsingular matrix of order $k_{g} k_{g}$, then Σ_{g} is urshanged. Since T_{g} has k_{g}^{2} independent elements, t is suggests tiat ${\underset{g}{2}}_{2}$ indepentent conditions should be imposed on Λ_{g} anci, or Φ_{g} to malie these uniquely iefined and hence that $\sum_{g=1}^{m} k_{g}^{2}$ independenconditieas altogether should be imposed. However, when equality con三aints over groups are taken into exccount, all the elements oI all the tran ormation matric:s are not independent of each other and there Sore a less.
number of conditions need to be imposed. It is hard to give further specific rules in the general case. To make sure that all indeterminacies have been eliminated, one should verify that the only transformations $T_{1}, T_{2}, \ldots, T_{m}$ that preserve the specification about fixed, free and constrained parameters are identity matrices.

In the standard case when the whole factor pattern is invariant over groups, however, a more precise consideration of the identification problem can be given. Suppose that the Λ is replaced by $\Lambda^{*}=\Lambda T^{-1}$ and each Φ_{g} is replaced by $\underset{g}{\Phi^{*}}=T \Phi T^{\top}, ~ g=1,2, \ldots, m$, where T is an arbitrary nonsingular matrix of order $k x k$. Then each \sum_{g} remains the same. Since the matrix T has k^{2} independent elements, this means that at least k^{2} independent conditions must be imposed on the parameters in $\Lambda, \Phi_{1}, \Phi_{2}, \ldots, \Phi_{m}$ to make these uniquely defined.

The most convenient way of doing this is to let all the Φ_{g} be free and t. fix one nonzero alement and at least $k-1$ zeros in each column of Λ. In an exploratory study one can ixix exactly $k-1$ zeros in almost arbitrary positions. For example one may choose zero loadings where one thinks there should be "small" loadings in the factor pattern. The resulting solution may be rotated further, if desired, to facilitate better interpretation. In a confirmatory study, on the other hand, the positions of the fixed zeros, which often exceed $k-1$ in each column, are given a priori by an hypothesis and the resulting solution cannot be rotated without destroying the fixed zeros.

1. 3 Estination and Testing of the Model

Let N_{G} be the number of individuals in the sample from the $g^{\text {th }}$ population and let \bar{x}_{g} be the usual sample mean vector and S_{g} the usual sample variance-covariance metrix with $n_{g}=N_{g}-I$ degrees of freedom. The only requirement for the sampling procedure is that it produces independent measurements for the different groups.

If we assume that X_{g} has a multinormal distribution it follows that S_{g} has a Wishart distribution based on \sum_{g} and n_{g} degrees of freedom. The logarithm of the likelinood for the $g^{\text {th }}$ sample is

$$
\begin{equation*}
\log I_{g}=-\frac{1}{2} n_{g}\left[\log \left|\Sigma_{g}\right|+\operatorname{tr}\left(S_{g} \Sigma^{-1}\right)\right] \tag{3}
\end{equation*}
$$

Since the samples are independent, the log-likelihood for all the samples

$$
\text { (4) } \log I_{1}=\sum_{g=1}^{m} \log I_{g}
$$

Maximum likelihood estimates of the. unknown elements in $\Lambda_{g}, \Phi_{g}, \psi_{g}$, $g=1,2, \ldots, m$, may be obtained by maximizing log I. Howerer, it is slightly more convenient to minimize

$$
\begin{equation*}
F=\frac{1}{2} \sum_{g=1}^{m} n_{g}\left[\log \left|\sum_{g}\right|+\operatorname{tr}\left(s_{g \cdot g}^{\Sigma_{g}^{-1}}\right)-\log \left|s_{g}\right|-p\right] \tag{5}
\end{equation*}
$$

instead. At the minimum, F equals minus the logarithin of the likelihood ratio for testing the hypothesis implied by the model against the general alternative tinat each Σ_{g} is unconstrained. Therefore, twice the minimum value of F is approximately distributed, in large samples, as χ^{2} with degrees of freedom equal to

$$
\begin{equation*}
\mathrm{d}=\frac{1}{2} \mathrm{p}(\mathrm{p}+1)-\mathrm{t} \tag{6}
\end{equation*}
$$

where t is the total number of independent parameters estimated in the model.

The minimization of F with respect to the independent parameters is done $b y$ means of a modification of the iterative method of Fletcher and Powell (1963) described by Gruvaeus and JOreskog (1970). The minimization method makes use of the first-order derivatives and approximations to the secondorder derivatives of F and converges rapidly from an arbitrary starting point to a local minimum of F. If there are several minima of F there is no guarantee that the method will converge to the absolute minimum.

The adaptation of the problem of minimizing F to the FletcherPowell method is described by JBreskog (1970, section 2.4).

1.4 Scaling of Observed Variables

When the units of measurements in the different tests are arbitrary, it is usually convenient, though not necessary, to rescale the observed variabies, before the factor analysis. Let

$$
\begin{equation*}
s=(1 / n) \sum_{g=1}^{m} n_{g} s_{g} \tag{7}
\end{equation*}
$$

with $n=\sum_{g=1}^{m} n g$ and let
(8)
$D=(\operatorname{diag} s)^{-1 / 2}$.

Then the variance-covariance matrices for the rescaled variables are
(9)

$$
S_{g}^{*}=D S_{g} D \quad, \quad g=1,2, \ldots, m
$$

The weighted average of the S_{g}^{*} is a correlation matrix. The advantage of this rescaling is that, when combined with the rescaling of the factors as described in the next section, the factor loadings are of the same order of magnitude as usuel when correlation matrices are analyzed and when factors are standardized to unit variances. This makes it easier to choose start values for the minimization (see JUreskog, 1970, section 3.5) and interpret the results.

It should be pointed out that it is not permissible to stardardize the variables in each group and to analyze the correlation matrices instead of the variance-covariance matrices. This violates the likelihood function (4) which is based on the distribution of the observed variances and covariances.

1. 5 Scaling of Factors

The fixed nonzero loading in each column of Λ can have any value. This is only used to fix a scale for each factor which is common to ail groups. In the standard case, when the maximum likelihood solution has been obtained, the factors may be rescaled so that their average variance is unity. This rescaling is obtained as follows. Let
(10) $\quad \hat{\Phi}=(1 / n) \sum_{g=1}^{m} n_{g} \hat{\Phi}_{g}$,
with $n=\sum_{g=1}^{m} n_{g}$, as before, and
(11) $D=(\operatorname{diag} \hat{\Phi})^{-1 / 2} \quad$.

Then the rescaled solution is
(12) $\quad \hat{\Lambda}^{*}=\hat{\Lambda}^{-1}$
(13) $\quad \hat{\Phi}_{\mathrm{g}}^{*}=\hat{D}_{\mathrm{g}} \mathrm{D}, \quad \mathrm{g}=1,2, \ldots, \mathrm{~m}$.

The matrix $\hat{\Lambda}^{*}$ has zeros wherever $\hat{\Lambda}$ has zeros but the fixed nonzeros in $\hat{\Lambda}$ have changed their values. The weighted average ci $\underset{\mathrm{\Phi}}{\hat{\mathrm{~g}}} \hat{\mathrm{~g}}^{*}$ is a correlation matrix.

2. The Program

In tinis section we describe briefly what the program does. Details about the input and output are given in sections 3 and 4 respectively.

2.1 What the Program Does

The input data may be correlation matrices with standard deviations or dispersion matrices. From these input matrices, variables may be selected to be included in the analysis, so that the matrices to be analyzed may be of smaller order than the input matrices. Variables may also be interchangei with one another. The matrices to be analyzed may be dispersion matrices or dispersion matrices scaled by the program (see 1.4).

The user can request an accurate or an approximate solution. If an accurate solution is requested, the iterations of the minimization method are continued until the minimum of the function is found, the convergence criterion bejing that the magnitude of all derivatives be less than . 00005 N , where $N=(1 / m) \sum_{g=1}^{m} n_{g}$. The solution is then usually correct to three significant digits. If an approximate solution is requested, the iterations terminate when the decrease in function values is less than 5%. The approximate solution may be useless but the residuals and the value of x^{2} will usually give an indication of how reasonable the hypothesized model is. The option of an approximate solution has been included in the program for the plupose of saving computer time in exploratory studies where the primary purpose is to find a reasonable model. Once such a model has been found, an accurate solution may be computed.

A variety of options for the printed output is available. Residuals for each population may be printed. These are defined as the differences between observed $\left(S_{g}\right)$ and estimated $\left(\Sigma_{g}\right)$ variances and covariances, which are useful for judging the goodness of fit of the model to the data. x^{2} is printed as an overall goodness of fit test statistic and, in one version of the program, standard errors for the estimated parameters may be requested (see 2.3).

2.2 How Fixed, Free and Constrained Parameters Are Specified

The elements of the parameter matrices are ordered as follows. The matrices are assumed to be in the order $\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{m}, \Phi_{1}, \Phi_{2}, \ldots, \Phi_{m}$, $\psi_{1}, \psi_{2}, \ldots, \psi_{m}$ and within each matrix, the elements are ordered row-wise. Only the lower half including the diagonal of the symmetric matrices $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{m}$ are stored. The diagonal matrices $\psi_{1}, \psi_{2}, \ldots, \psi_{m}$ are treated as row-vectors.

For each of the parameter matrices, a pattern matrix is defined, with elements $0,1,2$ and 3 depending on whether the corresponding element in the parameter matrix is fixed, free, constrained follower and constrained leader, respectively. A constrained parameter is called a constrained leader the first time it appears in the sequence. The parameters, appearing later in the sequence and assumed to be equal to the constrained leader are called constrained followers.

The above technique defines uniquely the positions of the fixed, free and constrained leader parameters. It does not define, however, which followers go with which leaders, if there is more than one leader. To do so one must spe¿ify all the followers associated with a given leader. This is done by assigning to each leader and follower a four-digit number MCCC,
where M defines the matrix in which the constrained parameter appears. $M=1$ for $\Lambda, 2$ for Φ and 3 for ψ, where Λ is $\Lambda_{\perp}, \Lambda_{2}, \ldots, \Lambda_{m}$ reading row-wise one matrix after the other, Φ is $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{m}$ and ψ is $\psi_{1}, \psi_{2}, \cdots ; \psi_{m}$. The position of the parameter in the matrix is described by CCC . For example,

100110052003
defines the first element in Λ, λ_{1}, to be equal to the fifth element in Λ, λ_{5}, as well as the thirci element $=\Phi, \Phi_{3}$, where λ_{2} is the leader and λ_{5} and ϕ_{3} ane the followers.

Pattern matrices have to be provides for each matrix containing both fixed and free parameters and for each matrix containing constrained parameters. Patterns for matrices whose elements are all fixed or all free are set up by the program.

We give a simple example to illustrate the above specifications. Suppose we have two populations and

$$
\begin{array}{ll}
\Lambda_{1}=\left[\begin{array}{ll}
\lambda_{1} & 0 \\
\lambda_{3} & 0 \\
0 & \lambda_{6} \\
0 & \lambda_{8}
\end{array}\right] \quad \Phi_{1}=\left[\begin{array}{ll}
1 \\
\Phi_{2} & 1
\end{array}\right] \quad \Psi_{1}=\left[\begin{array}{llll}
\psi_{1} & 0 & 0 & 0 \\
0 & \psi_{2} & 0 & 0 \\
0 & 0 & \psi_{3} & 0 \\
0 & 0 & 0 & \psi_{4}
\end{array}\right] \\
\Lambda_{2}=\left[\begin{array}{ll}
\lambda_{9} & 0 \\
\lambda_{11} & 0 \\
0 & \lambda_{14} \\
0 & \lambda_{16}
\end{array}\right] \quad \Phi_{2}=\left[\begin{array}{ll}
1 \\
\Phi_{5} & 1
\end{array}\right] \quad \psi_{2}=\left[\begin{array}{llll}
\psi_{5} & 0 & 0 & 0 \\
0 & \psi_{6} & 0 & 0 \\
0 & 0 & \psi_{7} & 0 \\
0 & 0 & 0 & \psi_{8}
\end{array}\right]
\end{array}
$$

with $\lambda_{1}=\lambda_{3}=\lambda_{9}=\lambda_{11}, \quad \lambda_{14}=\lambda_{16}, \psi_{1}=\psi_{2}=\psi_{5}=\psi_{6}$ and $\psi_{7}=\psi_{8}$. The pattern matrices for $\Lambda_{1}, \Lambda_{2}, \Phi_{1}, \Phi_{2}, \psi_{1}$ and ψ_{2} are

$$
\begin{array}{ll}
P_{\Lambda_{1}}=\left[\begin{array}{ll}
3 & 0 \\
2 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right] & P_{\Phi_{1}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad P_{\Psi_{1}}=\left[\begin{array}{lll}
3 & 1 & 1
\end{array}\right] \\
P_{\Lambda_{2}}=\left[\begin{array}{ll}
2 & 0 \\
2 & 0 \\
0 & 3 \\
0 & 2
\end{array}\right] & P_{\Phi_{2}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad P_{\Psi_{2}}=\left[\begin{array}{llll}
2 & 2 & 3 & I
\end{array}\right]
\end{array}
$$

and the specifications of leaders and followers are

1001	1003	1009	1011
1014	1016		
3001	3002	3005	3006
3007	3008		

In this model ten independent parameters will be estimated. This is the number or. 3 's and I's in the pattern matrices.

In addition to the above specifications for fixed, free and constrained parameters, start values have to be given for all parameters, except when one or more of the parameter matrices are of standard form, i.e., $\Lambda_{\mathrm{g}}=\mathrm{I}$, $\Phi_{g}=I, \psi_{g}=0, g=1,2, \ldots, m$. The start values define the fixed parameters and initial values for the minimization procedure for the other parameters. Constrained parameters which are assumed to be equal must be given the same values. Otherwise, initial values may be chosen arbitrarily but the closer they are to the final solution the less computer time it will take to reach this soıution (see Jbreskog, 1970, secticin 3.5).

2.3 Limitations

The program is written in FORTRAN IV-G and has been tested out on the IBM 360/65 at Educational Testing Service. Double precision ... used in floaiing-point arithmei;ic throughout the entire program. Witr minor changes the program should run on any computer with a FORTRAN IV compis a. In computers with a single word length of 36 bits or more, single recision is probably sufficient.

Three versions of the program are available: SIFASP, SFASPL and SFASPF. Their limitations as to the maximum number of populations, variables, factors and independent and nonfixed parameters they can handle as well as their storage requirements on the IBM 360/65 are given in the following table. The given storage requirements assume the programs are overlayed.

Max. no. of populations (m)	10	10	10
Max. no. of variables (p) before selection	120	200	120
Max. no. of variables (p) after selection	24	40	24
Max. no. of factors (k)	12	20	12
Max. $\left(\frac{m}{2} p(p+1)\right)$	312	820	312
Max. (mpk)	288	800	288
Max. (mp)	48	80	48
Max. ($\frac{\mathrm{m}}{2} \mathrm{k}(\mathrm{k}+1)$)	78	210	78
Max. no. of independent parameters	120	200	120
Max. no. of nonfixed parameters	150	300	120
Storage requirements ($K=1024$ bytes)	144 K	280K	146K
SIFASP and SFASPL are identical except f	dinens	Neither of	
these programs use expressions for second-order derivatives; instead the matrix $E^{(1)}$ of the Fletcher and Powell procedure is an identity matrix			
(see Fletcher \& Powell, 1963; dUreskog, 1970;	Gru	J®rr	

1970). SFASPF, on the other hand, makes use of such expressions and the speed of convergence is therefore somewhat faster. Standard errors for דhe estimated parameters can only be obtained with SFASPF.

2.4 Availability

A copy of the program may je obtained by writing to one of the authors. The user must provide a tape on which the program will be loaded. The program will be written on the tape with 80 characters per record. The tape will be unlabeled. The user must specify whether he wants the tape blocked or unblocked, on 7-track or 9-track, in EBCDIC or BCD mode, as well as the density and parity required. Test data will be at the end of the program. The test data are described in the Appendix. Anyone using the program for the first time should make sure that the test data run correctly.

2.5 Disclaimer

Although the program has been working satisfactorily for all data analyzed so far, no claim is made that it is free of error and no warranty is given as to the accuracy and functioning of the program.

3. Input Data

For each data to be analyzed, the input consists of the fillowing.

1. Title card
2. Parameter cards (2)
3. Selection of variables from the input matrix
4. Input matrices
5. Pattern matrices for the parameter matrices
6. Equalities
7. Initial values for the parameter matrices
8. New data set or a STOP card

Sections 3.1 through 3.8 describe in general terms the function and setup of each of the above quantities. Illustrative examples are given in the Appendix.

Whenever a matrix or vector for m populations is read in it is preceded by a format card, containing at nost 80 columns, beginning with a lefit parenthesis and ending with a right parenthesis. The format must sfecify floating point numbers for the input and parameter matrices, and fixed point numbers for the pattern matrices, consistent with the way in which the elements of the matrix are punched on the following cards. Users who are unfamiliar with FORTRAN are referred to a FORTRAN Manual, where format rules are given. Matrices are punched as one long vector, reading rowWise, each population beginning on a new card. For the symmetric matrices only the lower half of the matrix including the diagonal should be punched.

3.1 Titie Card

Whatever appears on this card will appear on the first page of the printed output. All 80 columns of the card are available to the user.

3.2 Parameter Cards (2)

Card I: All quantities on this card, except for the logical indicators, must be punched as integers right adjusted within the field.
cols. I.-5 Number of populations m
cols. 6-10 Order of the input matrix (p), before selection of variables
cols. 11-15 Number of columns in Λ (k)
cols. 16-25 Total estimated execution time in seconds for all stacked data (SEC). This should be a number slightly less than the time requested on the control cards so the program will have tine to print and/or punch results up to that point. (Note: SEC should be read in for each data set and should be the same for all data sets in the stack.)
cols. 31-37 Logical indicators (see below)
cols. 45-46 Integer output indicators (see below)
Logical Indicators (cols. 3l-37): The logical indicators control the input and output as described below.

Column 31 determines whether dispersion matrices, or correlation matrices and vectors of standard deviations, are read in as input to determine the matrices to be analyzed.
col. 31: $=T$, if a dispersion matrix with diagonal is read in for each population
col. 31: = F , if correlation matrices without diagonal, followed by vectors of standard deviations are read in for each population

Column 32 determines whether the matrices $S_{g}, g=1,2, \ldots, m$ to be analyzed are different from the matrices analyzed in the previous data set. col. 32: $=\mathbb{T}$, if new matrices are to be analyzed (note: this is always true for the first data set)
col. 32: = F, same matrices as for previous data set are analyzed Column 33 determines whether the matrices to be analyzed are scaled or not.
col. 33: $=\mathbb{T}$, matrices to be analyzed are scaled by the program to

$$
\begin{aligned}
& S_{g}^{*}=D S_{g} D, g=1,2, \ldots, m \text { where } D=(\operatorname{diag} S)^{-1 / 2}, \\
& S=\frac{1}{n} \sum_{g=1}^{m} n_{g} S_{g}, \quad n=\sum_{g=1}^{m} n_{g}
\end{aligned}
$$

col. 33: = F, analysis performed on the unscaled $S_{g}, g=1,2, \ldots, m$ Column 34 determines whether selection of variables from the input matrices is desired.
col. $34:=T$, if selection of varicbles is wanted
col. 34: $=\Gamma$, if no selection of variables is wanted
Column 35 determines whether we are considering the standard case or not.
ccl. 35: $=\mathbb{T}$, the standard case is considered (i.e., $\Lambda_{i}, i=2,3, \ldots, m$ are constrained to be equal to \wedge_{1}; in this case the
pattern matrix and starting matrix for Λ will be read in for the first population only)
col. 3う: = $=$ we are not considering the standard case (pattern matrices and starting values for all m populations will be read in)
Column 36 determines whether the starting values for $\Phi_{g}, g=1,2, \ldots, m$ are dispersion matrices or correlation matrices with standard deviations from which the dispersion matrices will be computed.
col. $36:=T$, starting Φ^{\top} s are dispersion matrices
col. $36:=\mathrm{F}$, starting $\Phi^{\prime \prime}$ s are correlation matrices without diagonal and with standard deviations

Column 37 determines whether an accurate or an approximate solution
is required.
col. $37:=T$, if an approximate solution is required
col. $37:=F$, if an accurate solution is required

Integer Output Indicators (cols. 45-46)
Column 45 determines the type of printed output wanted. This can be standard output (S), the matrices to be analyzed and parameter specifications (R), residuals and Σ for each population (C), and technical output from minimization (T).

```
col. 45: = 0, for S
col. 45: = 1, for S + R
col. 45: = 2, for S + C
col. 45: = 3, for S + R + C
col. 45: = 4, for S +T
```

col. 45: $=5$, for $S+R+T$
col. $45:=6$, for $S+C+T$
col. 45: $=7$, for $S+R+C+T$
Column 46 determines certain extra printed or punched output. This can be standard errors (F) which is only applicable to SFASPF, punched solution (P), and a scaled solution (G)

```
col. 46: = 0, if no extra output is wanted
col. 46: = 1, for F (never set to I for SIFASP or SFASPL)
col. 46: = 2, for P
col. 46: = 3, for F + P
col. 46: = 4, for G
col. 46: = 5, for F+G
col. 46: = 6, for P +G
col. 46: = 7, for F + P+G
```

Card 2: This card will specify the number of observations or sample size for each population. Thus there will be m integer numbers punched, right-adjusted in five column fields.

Caution: When specifying m, p, k on card l of the ${ }^{2}$ rameter cards be sure you have read the limitations imposed on them (see 2.3).

3.3 Selection of Variables

These cards will be read in only if the parameter card has a T in column 32 and a T in column 34. Omit otherwise.

The first cara will have an integer value $p_{\text {new }}$ punched in columns l-5, right adjusted within the field. This integer will specify the order of the $S_{g}, g=1,2, \ldots, m$ after selection $\left(p_{n e w} \leq p\right)$.

The next card will contain integers, right-adjusted in five column fields, (i.e., sixteen stech values will fit on one card) specifying which columns (rows) are to be included. For example: if $p=6, p_{n e w}=3$ and the lst, 2nd and 5 th columns (rows) are to be excluded. This card would have a 3 punched in column 5, a 4 punched in column 10 and a 6 punche in column 15.

Note that if $p_{\text {new }}=p$ there will be no reduction in the size of the S_{g} but columns (rows) can be irterchanged.

3.4 Input Matrices

Omit if coluril 32 of the parameter card is F. Otherwise read in a format card followed on subsequent cards by the input matrices, starting a new card for each population.

If column 31 of the parameter card is F, the input matrix for the first population, preceded by a format card, is read in without the diagonal. This is immediately followed by a format card and the vector of standard deviations for the first population. Subsequent cards are input matrices without diagonal for the remaining populations each followed on a new card by its vector of standard deviations, and starting a new card for each population. The formats for the first population will apply to subsequent populations.

3.5 Pattern Matrices

The pattern matrices are preceded by a data card with entries in columns I-3, the column defining the matrix in question, 1 for $\Lambda, 2$ for Φ and 3 for ψ.
cols. l-3: $\quad \begin{aligned} & C C C \\ & C=0, \text { if the matrix is fixed } \\ & C=1, \text { if the matrix is free } \\ & C=2, \text { if the matrix has mixed values }\end{aligned}$
A pattern matrix.should be provided only when $C=2$ (see 2.2).
For example, if columns $1-3$ are punched 201 , the matrix Λ (i.e., $\Lambda_{g}, g=1,2, \ldots, m$) contains mixed values, Φ (i.e., $\Phi_{g}, g=1,2, \ldots, m$) is all fixed and ψ (i.e., $\psi_{g}, g=1,2, \ldots, m$) is all free. In this case only pattern matrices for $\Lambda_{g}, g=l, 2, \ldots, m$ are read in.

The pattern matrix consists of a format card specifying an I-format and subsequent cards with the integer entries of the parameter matrix, beginning a new card for each population.

3.6 Equalities

Omit if the pattern matrices do not contain any elements 2 or 3. Otherwise starting in column 1 punch the four-digit numbers MCCC as described in section 2.2. For each new constrained leader start a new card. The last entry on each "equality" card is a zero indicaiing more "equality" cards follow, or a four indicating it is the last one (see Appendix for examples).

3.7 Initial Values for the Parameter Matrices

The initial values are preceded by a data card with entries in columns 1-3, the column defining the matrix in question.
cols. l-3: CCC where $C=0$, if the matrix is of standard form
(see 2.2)

$$
C=1, \text { if the matrix is nonstandard }
$$

This card is then followed by the necessary start values (see 2.2) for matrices with $C=1$. That is, each nonstandard matrix of m populations is read in
with its own format card, starting a new card for each population. If column 36 of the parameter card is F, Φ_{1}, preceded by a format card, is read in without the diagonal. This is immediately followed by a format card and the vector of standard deviations for the first population. Subsequent cards are $\Phi_{i}, \quad i=2,3, \ldots, m$ without diagonal each followed on a new card by its vector of standard deviations, and starting a new card for each population. The formats for the first population will apply to subsequent populations. 3.8 Stacked Data

In sections 3.1 to 3.7 we have described how each set of data should be set up. Any number of such sets of data may be stacked together and analyzed in one run. After the last set of data in the stack, there must be a card with the word STOP punchud in columns 1-4.

4. Printed and Punched Output

The output consists of a series of printed and punched tables as described in section 4.1-4.7. Examples of printed output are given in the Appendix.

4.1 Standard Output (S)

The standard output is always obtained, regardless of the value punched in columns 45 and 46 of the parameter card (see 3.2). The standard output consists of the title with parameter listing, the final solution and the result of the test of goodness of fit.

The parameter listing gives the information supplied on the parameter card.

The final solution consists of the three matrices Λ, Φ and ψ, printed for each population.

The test on goodness of fit gives the value of x^{2} and the corresponding degrees of freedom. The probability level is also given. This is defined as the probability of getting a x^{2} value larger than that actually obtained, given that the hypothesized structure is true.

Just above the table giving the final solution, the following message is printed

$$
" I N D=X^{17}
$$

Usually $X=0$, but if, for some reason, it has not been possible to determine the final solution, X will be 1, 2, 3, 4 or 5. If IND is 1, 2 or 3, "serious problems" have been encountered and the minimization of the function cannot continue. One reason for this may be erroneous input data. Another
reason may be that a point has been found, where one of the matrices Σ_{g} is not positive cefinite. A third reason may be that insufficient arithmetic precision is used. If IND is 4, the number of iterations has exceeded 250. If IND is 5, the time limit SEC has been exceeded (see 3.2). If IND $\neq 0$, the solution obtained so far is automatically punched on cards in such a way as to be immediately available as initial estimates for a new run with the same data. Thus there is little loss of information when execution is terminated with IND $\neq 0$.
4.2 Matrices S_{g} and Parameter Specifications (R)

If column 45 of the parameter card is 1,3 , 5 or 7 (s. 5), the matrices to be analyzed, $S_{g}, g=1, \check{c}, \ldots, m$ as obtaineci nter excusion of variables and/or scaling (see 1.4), if any, are printed. Whese matrices are printed row-wise with four decimals. Al o a table of prameter specifications, containing the information provided by the pattern matrices (see 2.2), is printed. For each population, three integer matrices are printed corresponding to Λ, Φ and ψ. In each matrix an element is an integer equal to the index of the corresponding parameter in the sequence of independent parameters. Flements corresponding to fixed parameters are 0 and elements corresponding to the same constrained parameter have the same value. Examples are given in the Appendix.

4.3 Technical Output (T)

If column 45 of the parameter card is $4: 5,6$ or 7 (see 3.2), the technieal output is printed. This consistr of a series of tables which describe the behavior of the iterative procedure and give various measures
of the accuracy of the final scilution. Ordinary users will have little interest in these tables.

The first table of the technical output gives the initial estimates for $\Lambda_{\mathrm{g}}, \quad \Phi_{\mathrm{g}}, \quad \psi_{\mathrm{g}}, \quad \mathrm{g}=1,2, \ldots, \mathrm{~m}$.

The next two tables show the behavior of the iterative procedure under the steepest descent iterations and under the following iterations by the Fletcher and Powell method. For interpretation of these tables the reader is rejerred to Gruvaeus and JUreskog (1970). If something gees wrorg, so that IND is l, 2 or 3 (see 4.1), these tables may contain valuable ivior ration.
4.4 Matrices $\hat{\Sigma}_{\mathrm{g}}$ and Residuals (c)

If column 45 of the parameter card is 2, 3, 6 or 7 (see 3.2), the matrices $\hat{\Sigma}_{g}=\hat{\Lambda}_{g} \hat{\Phi}_{g} \hat{\Lambda}_{g}^{\prime}+\hat{\psi}_{g}^{2}$ and the residual matrices $S_{g}-\hat{\Sigma}_{g}, \quad g=1,2, \ldots, m$, are printed. The matrices $\hat{\Sigma}_{g}$ axe computed from the final solution. If the fit is good, $\hat{\Sigma}_{g}$ should agree well with S_{g} and the residual matrices should be small. Elements of the residual matrices may suggest how the hypothesized structure should be modified to obtain a better fit. The matrices are printed row-wise, each element with four decimals.
4.5 Scaled Solution (G)

It column 46 of the parameter card is $4,5,6$ or 7 (see 3.2), a scaled solution is printed. (See 1.5 on scaling of factors.)
4.6 Standard Errors (E)

If column 46 of the parameter card is 1,3 . 5 or 7 (see 3.2), lange sample approximations to the standard errors of the estimated parametars ase printed. These are grinted row-wise in matrix form and each number Es printed with three decinals. The reader is Jöreskog (1970) for info mation about how the standard errcrs are obtained. The standard errors are for the parameters of the unscaled solution.
4.7 Punched Output (P)

If column 46 of the parameter cana is $2,3,6$ or 7 (see 3.2), the final solution is puncted on cards. The matrices are puncined on carcs jin vector form, reading row-wise, beginning a new card for each population and each matrix. Each of the three matrices Λ, Φ, Ψ are preceded by a format card where by Λ we mean $\Lambda_{g}, g=1,2, \ldots, m$, by Φ we mean $\Phi_{g}, \quad g=1,2, \ldots, m$ and by ψ we mean $\psi_{g}, g=1,2, \ldots, m$. In the standard case only one Λ is punched regardless of the number of populations.

Re-erences

Hetciner, R. and Poweli. $M . \therefore$. A rapidly convergent desceat method for minimization. The Computier Journa1, 1963, 6, 163-168.

Gruvaeus, G. and JBreskog, K. G. A computer program for mirimizing a function of several vriables. Research Bulletin 70-14. E inceton, N. J.: Educational Testing Service, 1970.

JOreskog, K. G. Simultaneous factor analysis in several popilȧions. Research Bul1etin 70-61. Princeton, N. J.: Educationa Testing Service, 1970.

APFENDIX

". \because shall illustwa": row incut data are set up and what the printout loors -ike by meazs of Tro small sets of data. These data also serve as test data to be run when tre Mrcgram has been compiled on a different computer. Both sets oI data jre anaIyzed ミn one run with SFASPF. Pages A4-A5 show cerd by card hc: twinput data are punched. One line corresponds to one cand. Pages $A 6-A=\cdots$ show the corresponding printout obtained.

Tre first set of $\dot{d} E=$ "Holzinger-Swineford Data," consists of four 9×9 correlation matrises without diagonal each with a set of standard deviations. All variables are included in the analysis, and the input matrices are to be scaled by the progran before being analyzed. The following model is assumed:

$$
\begin{aligned}
& \Lambda_{1}(9 \times 3)=\Lambda_{2}=\Lambda_{3}=\Lambda_{4}=\left[\begin{array}{ccc}
-798 & 0 & 0 \\
\lambda_{4} & 0 & 0 \\
\lambda_{7} & 0 & 0 \\
0 & .796 & 0 \\
0 & \lambda_{14} & 0 \\
0 & \lambda_{17} & 0 \\
0 & 0 & .597 \\
0 & 0 & \lambda_{24} \\
0 & 0 & \lambda_{27}
\end{array}\right] \\
& \Phi_{1}=\left[\begin{array}{ll}
\Phi_{1} \\
\Phi_{2} & \Phi_{3} \\
\Phi_{4} & \phi_{5}
\end{array} \phi_{6}\right.
\end{aligned}
$$

-A2-

$$
\begin{aligned}
& \Phi_{2}=\left[\begin{array}{ccc}
\cdots & & \\
\vdots & \ddots & \\
\vdots & \vdots & \phi_{12}
\end{array}\right], \\
& \Phi_{3}=\left[\begin{array}{lll}
\phi_{1} & & \\
\phi_{I} & 15 & \\
\phi_{1} & -7 & \phi_{18}
\end{array}\right], \\
& \Phi_{4}=\left[\begin{array}{lll}
\phi_{1} & & \\
\Phi_{2} & 21 & \\
\phi_{2} & 23 & \Phi_{24}
\end{array}\right],
\end{aligned}
$$

and the ψ^{\prime} s are constrained to be equal,

$$
\psi_{1}=\psi_{2}=\ddot{=}=\psi_{4}=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, \psi_{5}, \psi_{6}, \psi_{7}, \psi_{8}, \psi_{9}\right)
$$

Initial values for Λ_{g}, Φ_{g} and Ψ_{g} were obtained from preliminary analyses of each population semarately. All printed output is requested.

The second set 0 " data, "Artificial Data for Illustrative Purposes,"
consists of two $10 \approx 10$ cispersion matrices with the $10^{\text {th }}$ variable excluded and with the $9^{\text {th }}$ verrwble moved to the first position. Tae following model is assumed:

$$
\Lambda_{1}=\left[\begin{array}{lll}
0 & 0 & \lambda_{3} \\
1 & 0 & 0 \\
\lambda_{7} & 0 & 0 \\
\lambda_{10} & 0 & 0 \\
0 & 1 & 0 \\
0 & \lambda_{17} & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & \lambda_{27}
\end{array}\right], \quad \Lambda_{2}=\left[\begin{array}{lll}
0 & 0 & \lambda_{30} \\
1 & 0 & 0 \\
\lambda_{34} & 0 & 0 \\
\lambda_{37} & 0 & 0 \\
0 & 1 & 0 \\
0 & \lambda_{44} & 0 \\
0 & \lambda_{47} & 0 \\
0 & 0 & 1 \\
0 & 0 & \lambda_{54}
\end{array}\right]
$$

$$
\begin{aligned}
& \Phi_{1}=\left[\begin{array}{lll}
\phi_{1} & & \\
\Phi_{2} & \phi_{3} & \\
\Phi_{4} & \phi_{5} & \phi_{6}
\end{array}\right], \quad \Phi_{2}=\left[\begin{array}{ccc}
\phi_{7} & & \\
\phi_{8} & \phi_{9} & \\
\phi_{10} & \phi_{11} & \phi_{12}
\end{array}\right], \\
& \psi_{1}=\left[\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, \psi_{5}, \psi_{6}, \psi_{7}, \psi_{8}, \psi_{9}\right], \\
& \psi_{2}=\left[\psi_{10}, \psi_{11}, \psi_{12}, \psi_{13}, \psi_{14}, \psi_{15}, \psi_{16}, \psi_{17}, \psi_{18}\right]
\end{aligned}
$$

In this analysis we impose the constraints $\lambda_{7}=\lambda_{34}, \lambda_{10}=\lambda_{37}, \lambda_{17}=\lambda_{44}$ $\lambda_{20}=\lambda_{47}$. Initial values have been chosen as 0.9 for all nonfixed λ^{\prime} s except λ_{27} and λ_{54} which have an initial value of 0.4 . All ψ^{\prime} s have initial values of 0.8 . The Φ_{g} are read in as correlation matrices, each followed by its vector of standard deviations. Only the standard output, the matrices to be analyzed and the parameter specifications and the standard errors are requested as printed output.

At various places in the output, time estimates are printed. The time shown is the time taken to compute the solution that follows the time astimate. This time includes only the iterations and not the time for printing, except possibly the technical printout.

-A5-				
0.4395305000	0.1116168001	0.8722642000	0.5650579000	0.5271286000
U.66372180 00	0.9594916000	0.8604758000	0.8453196000	
0.4395305000	0.11161680 01	0.8722642000	0.5050579000	0.5271286000
0.6637218000	0.9594916000	0,8604758000	0.8953196000	
ARTIFICIAL DATA	FUR Illustrati	ve purpuses		
$210 \quad 3$	220	TTFTFFF 11		
61184				
9				
912	$3 \quad 45$	$\begin{array}{lll}6 & 7 & 8\end{array}$		
(5015.7)				
0.1123817001	0.4081763000	0.1447772001	0.5219276000	0.4072726000
0.1052065001	0.36723970 00	$0.12454370-01$	$0.63700680-01$	0.1071379001
0.2912128000	0.12:12750-01	0.1.0337040-01	0.8202047000	0.1116295001
0.4199384 D 00	0.3098141000	0.1015779000	0.6150361000	0.6591857000
0.9807439000	0.5187977000	0.4480431000	0.2629329000	0.1809105000
$0.86176420-01$	0.4154172000	0.1357694001	0.1270356000	$0.60078140-01$
0.30728330-01	-0.82690960-01	$0.63304870-01$	0.1879005000	0.3374391000
0.9972245 D 00	0.2543552 D 00	-0.50208240-01	0.10700000-01	-0.53989160-01
0.1102185000	0.2479442000	0.2309508000	0.3958631000	0.10882530 Ol
0.3443672000	0.42003820-01	$0.17812340-01$	$0.1442567 \mathrm{D}-01$	0.1224889 L 00
0.7856332000	0.4556322000	0.7753222000	0.1233565000	0.9885641000
0.9212509 D 00	0.1979813000	0.7386590000	0.2186251000	0.1872518000
0.9807595000	0.2963624000	0.4146429D-01	0.2197816000	0.9310318000
$0.35493461: 00$	0.2088523000	0.1883403000	0.6432352000	0.1116295001
0.3487737500	$0.86750570-01$	0.1094574000	0.5746251000	0.7038558000
0.10188270 ul	0.2124934 D 00	$0.86487610-02$	-0.64760760-01	0.8738898001
0.11695370 00	0.1218887000	0.10226600 01	-0.2120913 $4-01$	-0.9495634U-02
-0.14224100 00	$0.53303320-01$	$0.93385910-01$	0.334らら90u-01	0.2112455 U 00
0.1220686001	$0.86197200-01$	-0.12006320 00	-0.53291480-01	0.1540501000
$0.21085270-01$	0.1208624000	0.1500201000	0.3197126000	0.9956796100
0.1231236000	0.4456757000	0.5563245000	0.2244535000	0.1122457000
$0.45567880-01$	0.2123452000	0.4425136000	0.2135788000	0.9425635000
211 (1)				
(8011)				
001000300300000030030000001				
001000200200000020020000001				
100710340				
101010370				
101710440				
102010474				
111				
(40F2.1)				
00910090		0 youy 0 O 0	11004	
(10F5.0)				
(471 -677 . 249				
1.203	1.0021 .057			
. 493.106 .208				
(40F2.1)				
8 8 8 8 8 8 8	B 8			
$\begin{array}{lllllllllll}8 & 8 & 8 & 8 & 8 & 8 & \text { b }\end{array}$	88			
STOP				

NP(1)= 77
$\operatorname{NP}(2)=-79$
NP(3) $=\quad 74$
NP(4)= 71
$M=\quad 4$
$P=\quad 9$
$K=\quad 3$
LOGICAL INDICATORS(COLUMNS 51-57):FTTFTTF
OUTPUT INDICATORS $=75$

ESTIMATED TIME IN SECONDS $=220$.
\qquad

3
POPULATION 1
S

s

	1	2	3	4	5	6	7	?	9
1	1.126								
2	0.410	1.461							
3	0.523	0.409	1.053						
4	0.308	0.013	0.064	1.072					
5	0.293	0.013	0.011	0.824	1.127			--	- ----
6	0.420	0.311	0.102	0.615	0.662	0.780			
7	0.523	0.454	0. 265	0.182	0.087	C. 418	1.377		
9.	0.128	0.062	0.031	-0.083	0.064	0.189	0.341	1.004	
9	0.255	-0.050	0.011	-0.054	0.111	0.248	0.233	0.398	1.091

PARAMETER SPECIFICATIGNS
POPULATION 1

| LAMBDA | | |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |
| 1 | 0 | 0 |
| 2 | 0 | 0 |
| 0 | 0 | 0 |
| 0 | 3 | 0 |
| 0 | 4 | 0 |
| 0 | 0 | 0 |
| 0 | 0 | 5 |
| 0 | 0 | 6 |

POPULATIDN 2

\qquad
4. Athincs

\qquad

\qquad

\qquad
\qquad

_-1.,

_
initial solution
POPULATION 1
LAMBDA

PDPULATION 2 \qquad
LAMBDA

POPULATIDA 3 \qquad
LAMBDA
\qquad

-Al2-

ITER	TRY	ABSCISSA	S.LOPE	FUNCTION
1	0	0.0	-0.233559170 03	0.145497203
	1	0.10000000000	-0.138935780 03	0.12720243003
	2	0.24667528000	-0.493682800 02	0.113884370 03
	3	0.39349876000	0. 11604644 D 02	0.111352380 .33
2	0	0.0	-0.858531940 02	9.211352380 03
	1	0.39349876000	0.21466636003	$\mathrm{C}, 12774018 \mathrm{O} 03$
	2	0.15511569000	0.134910580 01	0.10440717003
3	0	0.0	-0.555000310 02	0.10440717003
	1	0.15511569000	C. 38443661002	0.10370998003
	2	0.816778010-01	$\rightarrow 0.431493360-01$	0.10224375003
4	0	$0=0$	-0.438528850 02	0.10224375003
	1	0.816778010-01	-0.15850.530 01	0.10031534003

\qquad

40

ITER	TRY	ABSCISSA	SLEPE	FUNCTION
1	0	0.0	-0.271456080 02	6.10031534003
	1	0.10000000000	-0. 24345003002	0.977418120 02
	2	0.130695170 .1	0.219462650 02	0.90882199002
	3	0.89284712000	-0.103216290 01	0.87133319002
$?$	0	0.0	-0.443376460 0.	0.87133319002
	1	0.89284712000	0.236240450 C	6.315787100 02
	2	0.3514657 CD 00	0.68090146000	0.86359070002
	3	0.31668022 D 00	-0.183255920-01	0.863477000 02
3	0	0.0	-0.378507610 01	0.86347700002
	1	0.31668022000	0.87552759001	0.87172461002
	2	0.918617420-01	0.44427133D-01	0.86178250002
4	0	0.0	-0.173665760 01	0.861782500 02
	1	0.918617420-01	0.15386002 D 00	0.86105439 O
5	0	0.0	-0.51584948000	0.86105439002
	1	0.918617420-01	0.12009728001	0.86135550002
	2	0. $286151890-01$	0. $263741310-03$	0.36098023002
6	0	0.0	-0.374555770 00	c. 86039023 C
	1	$0.286191850-01$	0.39157427000	0.860982930 .2
	2	$0.139397700-01$	0.136963210-05	0,860954360 02
7	0	0.0	-0. 23740794 D 00	0.86095416 D 02
	1	0.1393977CD-01	-0.128916340-02	0.360937520 02
8	0	0.0	-0.157947960 00	0.86093752002
	1	0. $139397700-01$	-0.380156440-01	0.860923870 .02
	2	0.183756610-01	$0.38591097 \mathrm{D}-05$	0.86092302 D 02
9	3	0.0	$-0.21+99105000$	0.86092302002
	1	$0.183756610-01$	$0.24735026 \mathrm{D}-01$	0.86090552002
	2	$0.164857810-01$	-0.697786220-06	0.86090528002
10	0	0.0	-0.499976380 00	0.86090528002
	1	0.164857810-01	-0.206316460 00	0.85084703002
	2	$0.27979363 \mathrm{D}=01$	0.274312020-04	0.860835160.02
11	0	0.0	-0.726083180 00	0.86083516002
	1	$0.279793630=01$	-0.759500480-01	O. $860722670{ }^{\text {O }}$
	2	0. $3121328.70-01$	0.116280200-04	0.85072144002
12	0	0.0	-0.362406960 00	0.86072144062
	i	$0.312132870-5$	0.48471324000	0.86074044 D 02
	2	$0.133679700 \cdot 0 \leq$	0.50631263D-05	0.86069721002
13	0	0.0	-0.144536140 00	0.86069721002
	1	$0.133675700-01$	0.21331617000	0.86070179002
	2	$0.54061048 \mathrm{D}-02$	0.47653989D-06	0.860693300 02
14	0	0.0	-0.438668810-01	0.86069330002
	1	0. $540610480-02$	0.11994020000	0.86069536D 02
	2	0.145019640-02.	0,843588480-07	0.86069298002
$15 \ldots 0$		0.0	-0.156252680-01	0.860692980 02

-AI4

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
MAXIMUM LIKELIHOOD SOLUTION

POPULATION 3
$\triangle \overline{A M B D A}$ $1 \ldots 3$
 ON 4
LAMEDA

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

POPULATION
 $S I G M A=L A M B D A \neq P H I * L A M B D A A^{\prime \prime}+P S I * 2$

\qquad

```
SCaLED SOLUTION
    POPULATION 1
```

\qquad

```
LAMADA
```


POPULATIUN ?
LAMPDA

\qquad
\qquad
POPULATIUN 3
LAッBDA

LATION 4
L $\triangle M B D A$
\qquad

1	2	3
0.721	$0 . \mathrm{c}$	0.0
0.424	0.0	0.0
0.513	0.0	0.0
0.0	0.797	0.0
0.0	0.848	0.0
0.0	$0.7 \div 7$	0.0
0.0	ก. 0	0.583
C. 0	0.0	0.484
C .0	000	0.565
,		
1	2	3
1.380		
r. 426	1.124	
0.710	0.271	1.249

STANDARD ERRORS
POPULATION I
LAMBDA

POPULATION?
LAMBDA

- .. POPULATITEN 3 \qquad

1. AMBDA
\qquad

3	0.037	0.0	0.0
4	0.0	0.0	0,0
5	0.0	0.062	0.0
6	0.0	0.059	0.0
7	0.0	0.0	0.0
8	0.0	$\mathrm{C} \cdot 0$	0.091
9	C 0	0.0	0.998

PHL

	1	2	3						
1.	0.200								
$?$	0.149	0.226	0.311						
3	0.154	0.167							
PSI									
	1	2	3	4	5	6	7	8	0.046
1	0.055	0.047	0.042	0.037	0.042	0.0ご	0.047	0.043	0.046

UL \triangle TION 4
LAMBDA

	1	2	3
1	0.0	0.0	0.0
2	0.083	0.0	0
3	0.08	0.0	0.0
4	0.0	0.0	0.0
5	0.0	0.062	0.0
	0.0	0.050	0.0
7	0.0	0.0	
3	0.0	0.0	0.0 .01
9	0.0	0.0	0.098

\qquad
\qquad
\qquad 9.046
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

54

\qquad
\qquad
\qquad

\qquad 0
 \qquad

\qquad

PULATIGN?
CAMBDA

	1	2	3
1	0.0	0.0	1.527
2	1.000	0.0	0.0
3	0.495	0.0	0.0
4	0.594	0.0	0.0
5	0.0	1.000	0.0
6	0.0	1.174	0.0
7	0.0	0.962	0.0
5	0.0	0.0	1.000
4	0.0	0.0	1.9 .94

\qquad
\qquad
\qquad

PSI
\qquad
TEST DF GODDNESS OF FIT
CHISQUARE WITH 52 DEGREES DF FREEOOM IS
PRQBABILITY LEVEL IS 0.001
\qquad
\qquad
\qquad
\qquad - -
\qquad
\qquad
\qquad !
\qquad
\qquad

\qquad
\qquad

\qquad

STANDARD ERRORS
POPULATION 1

POPULATIDN ? \qquad
LAMRDA

…-............. PH!
\qquad
1
$\cdots .120$
0.063
0.030
\cdots
\qquad

[^0]: * Research reported in this paper has been supported by grant NST-GB-12959 from National Science Foundation.

