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SIFASP

A General Computer Program for Simultaneous Factor

Analysis in Several Populations

1. Introduction

1.1 The General Model

We shall describe a computer program for simultaneously factor analyzing

dispersion matrices obtained from independent groups. A common situation,

when this program will be useful, is when a battery of tests has been

administered to samples of examinees from several populations and one wants

to study similarities and differenc:es in factor structures between the dif-

ferent populations. The most important feature of the program is that param-

eters in the factor analysis models (factor loadings, factor variances, fac-

tor covariances,and unique variances) for the different populations may be

assumed to be known a priori or specified to be invariant over populations.

Given sueh a specification, the model is estimated by the maximum likelihood

method yielding a large sample X
2 test of goodness of fit. By computing

several solutions under different specifications one can test various hypothe-

ses. For example one can test the hypothesis of an invariant factor pattern.

The method is capable of dealing with any degree of invariance, from the one

extreme, where nothing is invariant, to the other extreme, where everything

is invariant. A detailed account of the method, on which the program is

based, is given by J8reskog (1970).

Consider a set of m populations. These may be different nations, or

culturally different groups, groups of individuals selected on the basis of

'*Research reported in this paper has been supported by grant NSF-GB-12959
from National Science Foundation.
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some known or unknown selection variable, groups receiving diffrent treat-

ments, etc. In fact, they may be any set of exclusive groups et individuals

that are clearly defined. It is assumed that a battery of p tests has

been administered to a sample of individuals from each population. The

battery of tests need not be the same for ch group, but to be interesting,

it is necessary that some of the tests in each battery are the same or at

least content-wise equivalent.

Let x be a vector of order p , representing the measurements ob-

tained in group g We regard x as a random vector with mean vector

and variance-covariance Eg . It is assumed that a factor analysis

model holds in each population so that x can be accounted for by k

common factors f and p unique factors z , as

( 1) x = +Af z
g g gg

with g(t ) = 0 and g(z ) = 0 and A a factor pattern of order p
g
x k .

g

The usual factor analytic assumptions then imply that

(2) Z = A 0 A! + *2
g gggg

2
where 0 iis the variance-covariance matrix of f and * s the diagonal

g g g

variance-covariance matrix of z .

g

In addition to assuming that a factor analytic model holds in each

population the model may specify that certain parameters in A , 0 , * ,

g g g

g = 1,2,...,m have assigned values and that some set of unknown elements in

A , 0 and * are the same for all g Thus, parameters in A , 0
g g g g g

and *
g

, g = 1,2,...,m are of three kinds: (i) fixed parameters which
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have been assigned given values, (ii) constrained parameters which are unknown

but equal to one or more other parameters and (iii) free Parameters which are

unknown and not constrained to be equal to any other parameter. Equality

constraints between parameters for the same populations may also be used

though this would be unusual in practice. The advantage of this approach

is the great generality and flexibility obtained by the various specifica-

tions that may be imposed. The most common situation is when the same

battery has been administered to each group and when the whole factor

pattern A is assumed to be invariant over groups. This case will

hereafter be referred to as the standard case.

1.2 Identification of Parameters

Before an attempt is made to estimate a model of this kind, the iden-

tification problem must be examined. The identification problem depends

on the specification of fixed, free and constrained parameters. Under a

given specification, each A , 0 and IV generates one and flnly one

Z but it is well knon t A and g gnerate the sa
g

Z, It should be noted that if A is replaced by A T
-1

and 0 3y
g g

T 0 TT , -where T is an arbitrary nonsingular matrix of order k .k ,

2
then i ur.,hanged. Since T

g
ihas k ndependent elements,

suggests tLilat independent conditions should be imposed on A .anO,jor

m 2
0 to malie these uniquely defined and hence that E k independen-=-
g g=1 g

conditio=ls altogether shoula be imposed. However, when equality con,=aints

over groups are taken into z.cconnt, all the elements of ell the tran- .Drma-

tion matric.=:s ar-e not izdependent of each other and there7ore a
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nuMber of conditions need to be imposed. It is hard to give further spe-

cific rules in the general case. To make sure that all indeterminacies

have been eliminated, one should verify that the only transformations

T T Tm that preserve the specification about fixed, free and con--1' 2"
strained parameters are identity matrices.

In the standard case when the whole factor pattern is invariant over

groups, however, a more precise consideration of the identification problem

can be given. Suppose that the A is replaced by A* = AT
-1

and each

is replaced by 0* = TO TT , g = 1,2,...,m , where T is an arbitrary

nonsingular matrix of order k x k . Then each E remains the same.

Since the matrix T has k
2

independent elements, this means that at

least k
2

independent conditions must e imposed on the parameters in

A 01,02,...,0m to make these uniquely defined.

The most convenient way of doing this is to let all the 0 be free

and t fix one nonzero clement and at least k 1 zeros in each column

of A . In an exploratory study one can fix exactly k - 1 zeros in

almost arbitrary positions. For example one may choose zero loadings

where one thinks there should be "small" loadings in the factor pattern.

The resulting solution may be rotated further, if desired, to facilitate

better interpretation. In a confirmatory study, on the other hand, the

positions of the fixed zeros, which often exceed k - 1 in each column,

are given a_priori by an hypothesis and the resulting solution cannot be

rotated without destroying the fixed zeros.
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1-3 Estimation and Testing of the Model

Let N be the nutber of individuals in the sample from the g
th popu-

6

lation and let x be the usual sample mean vector and S the usual sample

variance-covariance matrix with n = N - 1 degrees of freedom. The only

requirement for the sampling procedure is that it produces independent

measurements for the different groups.

If we assume that x has a multinormal distribution it follows that

S has a Wishart distribution based on E and n degrees of freedom.

The logarithm of -Elie likelihood for the
gth sample is

(3)
-

log L = ng
[logIZ 1 + tr(S

g
1)] .

g 2 g

Since the samples are independent, the log-likelihood for all the samples

in

(4) log L = E log L
g=1

Maximum likelihood estimates of the.unknown elements in A , 0 , *

g = 1,2,...,m , m-)..y be obtained by maximizing log L . However, it is

slightly more convenient to minimize

(5)
1 m -

F = E n [logIE 1 + tr(S E 1)

g=1 g
g.g

- 1ogIS 1 - p]

instead. At the minimum, F equals minus the logarithm of the likelihood

ratio for testing the hypothesis implied by the model against the general

alternative that each E is unconstrained. Therefore, twice the minimum

value of F is approximately distributed, in large samples, as X
2 with

degrees of freedom equal to
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(6) d pk
,p ± 1) -

where t is the total number of independent parameters estimated in the

model.

The minimization of F with respect to the independent parameters is

done by means of a modification of the iterative method of Fletcher and Powell

(1963) described by Gruvaeus and J8reskog (1970). The minimization method

makes use of the first-order derivatives and approximations to the second-

order derivatives of F and converges rapidly from an arbitrary starting

point to a local minimum of F If there are several minima of F there

is no guarantee that the method will converge to the absolute minimum_

The adaptation of the problem of minimizing F to the Fletcher-

Powell method is described by J8reskog (1970, section 2.4).

1.4 Scaling of Observed Variables

When the units of measurements in the different tests are arbitrary,

it is usually convenient, though not necessary, to rescale the observed

variables, before the factor analysis. Let

(7) S (l/n) E n S
g=l g g

with n = n and let

g=1 g

(8) D = (diag S)-1/2 .

5

Then the variance-covariance matrices for the resealed variables are



(9) S* = DS D g 1,2,...,m

The weighted average of the S* is a correlation matrix. The advantage of

this resealing is that, when combined with the resealing of the factors as de-

scribed in the next section, the factor loadings are of the same order of magni-

tude as usuel when correlation matrices are analyzed and when factors are stan-

dardized to unit variances. This makes it easier to choose start values for

the minimization (see J8reskog, 1970, section 3.5) and interpret the results.

It should be pointed out that it is not permissible to standardize the

variables in each group and to analyze the correlation matrices instead of

the variance-covariance matrices. This violates the likelihood function (4)

which is based on the distribution of the observed variances and covariances.

1.5 Scaling of Factors

The fixed nonzero loading in each column of A can have any value.

This is only used to fix a scale for each factor which is common to all

groups. In the standard ease, when the maximum likelihood solution has

been obtained, the factors may be resealed so that their average variance

is unity. This resealing is obtained as follows. Let

(10) $ (l/n) E n $
g=1 g g

with n = E n , as before, and
g=1 g

(11) D (diag

Then the resealed solution is



(12) = -AD-1

(13) $* = D

-8-

g= ...,m .

The matrix Pi* has zeros wherever A has zeros but the fixed nonzeros
-

in A have changed their values. The weighted average of is a

correlation matrix.
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2. The Program

In this section we describe briefly what the program does. Details

about the input and output are given in sections 3 and 4 respectively.

2.1 What the Program Does

The input data may be correlation matrices with standard deviations

or dispersion matrices. From these input matrices, variables may be

selected to be included in the analysis, so that the matrices to be

analyzed may be of smaller order than the input matrices. Variables may

also be interchanged with one another. The matrices to be analyzed may be

dispersion matrices or dispersion matrices scaled by the program (see 1.4).

The user can request an accurate or an approximate solution. If an

accurate solution is requested, the iterations of the minimization method

are continued until the minimum of the function is found, the convergence

criterton being that the magnitude of all derivatives be less than .00005N,

where N = (l/m) E n The solution is then usually correct to three
g=1 g

significant digits. If an approximate solution is requested, the iterations

terminate when the decrease in function values is less than 5%. The approxi-

mate solution may be useless but the residuals and the value of X
2

will

usually give an indication of how reasonable the hypothesized model is. The

option of an approximate solution has been included in the program for the

purpose of saving computer time in exploratory studies where the primary

purpose is to find a reasonable model. Once such a model has been found,

an accurate solution may be computed.

10
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A variety of options for the printed output is available. Residuals

for each population may be printed. These are defined as the differences

between observed (S ) and estimated (E ) variances and covariances, which

are useful for judging the goodness of fit of the model to the data. X
2

is

printed as an overall goodness of fit test statistic and, in one version of

the program, standard errors for the estimated parameters may be requested

(see 2.3).

2.2 How Fixed, Free and Constrained Parameters Are Specified

The elements of the parameter matrices are ordered as follows. The

matrices are assumed to be in the order Ai,P2,...,Am

*1,1112,...,11m and within each matrix, the elements are ordered row-wise.

Only the lower half including the diagonal of the symmetric matrices

are stored. The diagonal matrices *1,11,2,...,*m are treated

as raw-vectors.

For each of the parameter matrices, a pattern matrix is defined, with

elements 0, 1, 2 and 3 depending on whether the corresponding element in

the parameter matrix is fixed, free, constrained follower and constrained

leader, respectively. A constrained parameter is called a constrained

leader the first time it appears in the sequence. The parameters, appearing

later in the sequence and assumed to be equal to the constrained leader are

called constrained followers.

The above technique defines uniquely the positions of the fixed, free

and constrained leader parameters. It does not define, however, which

followers go with which leaders, if there is more than one leader. To do

so one must specify all the followers associated with a given leader. This

is done by assigning to each leader and follower a four-digit number MCCC,



where M defines the matrix in which the constrained parameter appears.

M = 1 for A, 2 for 0 and 3 for * , where A is reading

row-wise one matrix after the other, 0 is 01,02,...,0m and * is

. The positiDn of the parameter in the matrix is described by

CCC FOr example,

1001 1005 2003

defines the first element in A , Ti to be equal to the fifth element in

A,T,,aswellasthethircielerEentf_70,4)_,where 7 is the

leader and 7\5 and az.e the fo1l3we-Irs.

Pattern matrices have to be providat for each matrix containing both

fixed and free parameters and for each liatrix containing constrained param-

eters. Patterns for matrices whose elements are all fixed or all free are

set up by the program.

We give a simple example to illustrate the above specifications.

Suppose we have two populations and

A

A2

T
1

?\3

0

0

_
T
9

2\

11

0

0
_

-
0

0

T6

T8

0

0

7\14

7\16_

0
1

-

1)2

=
(I)

2

0
5

1
1

1

*1

*2

=

-74f

1

0

0

0

*5

0

0

0

0

*2

0

0

0

*6

0

0

0

0

*3

0

0

0

*7

0

0

0

0

*4_

0

0

0

*8
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with ?\1 = 7N3 =
'9 All ' ?'14 A16 '

*I = - 4r5 *6 and

01 , 02 , *1 and *2 areThe pattern matrices

P =
Al

PA =
-2

for

[2 001

°
0 1

01

2 0

0 3

0 2

Al ,

-1

2

A

=

,

0

[1

[01

P = [

.0,1

5

p, = [2 2
1

oJ 4'2

and the specifications of leaders and follawers are

1001 1003 1009 1011

1014 1016

3001 3002 3005 5006

3007 3008

In this model ten independent parameters will be estimated. This is the number

o1,5's and l's in the pattern matrices.

In addition to the above specifications for f::xed, free and constrained

parameters, start values have to be given for all parameters, except when

one or more of the parameter matrices are of standard form, i.e., A = ,

0 = I , * = 0 g 1,2,...,m . The start values define the fixed param-
g

eters and initial values for the minimization procedure for the other param-

eters. Constrained parameters which are assumed to be equal must be given

the same values. Otherwise, initial values may be chosen arbitrarily but

the closer they are to the final solution the less computer time it will

take to reach this so-ution (see J8reskog, 1970, sectica 5.5).



2.3 Limitations

The program is written in FORTRAN IV-G and has been tested out on the

IBM 360/65 at Educational Testing Service. Double precision used in

floating-point arithmetic throughout the entire prcgram. With minor changes

the program should run on any computer with a FORTRAN TV comp± f. In

computers with a single word length of 36 bits or more, single :recision

is probably sufficient.

Three versions of the program are available: SIFASP, SPASPI, and SFASPF.

Their limitations as to the maximum number of populations, variables, factors

and independent and nonfixed parameters they can handle as well as their

storage requirements on the IBM 360/65 are given in the following table.

The given storage requirements assume the programs are overlayed.

Max. no. of populations (m)

Max. no. of variables (p) before selection

Max. no. of variables (p) after selection

Max. no. of factors (k)
m

Max. (7 p(p + 1))

Max. (mpk)

Max. (mp)
m

Max. (7 k(k + 1))

Max. no. of independent parameters

Max. no. of nonfixed parameters

Storage requirements (K = 1024 bytes)

SIFASP SFASPL SFASPF

10

120

24

12

312

288

48

78

120

150

144K

10

200

40

20

820

800

80

210

200

300

280K

10

120

24

12

312

288

48

78

120

120

146K

SIFASP and SFASPL are identical except for ainensions. Neither of

these programs use expressions for second-order derivatives; instead the

matrix E (1)
of the Fletcher and Powell procedure is an identity matrix

(see Fletcher & Powell, 1963; J8reskog, 1970; or Gruvaeus & J8reskog,
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1970). SFASPF, on the other hand, makes use of such expressions and the

speed of convergence is therefore somewhat faster. Standard errors for

the estimated parameters can only be obtained with SFASPII.

2.4 Availability

A copy of the program may be obtained by writing to one of the authors.

The user must provide a tape on which the program will be loaded. The program

will be written on the tape with 80 characters per record. The tape will be

unlabelad. The user must specify whether he wants the tape blocked or un-

blocked, on 7-track or 9-track, in EBCDIC or BCD mode, as well as the density

and parity required. Test data will be at the end of the ipogram. The test

data are described in the Appendix. Anyone using the program for the first

time should make sure that the test data run correctly.

2.5 Disclaimer

Although the program has been working satisfactorily for all data

analyzed so far, no claim is made that it is free of error and no warranty

is given as to the accuracy and functioning of the program.



3. Input Data

For each data to be analyzed, the input consists of the fllawing.

1. Title card

2. Parameter cards (2)

3. Selection of variables from the input matrix

4. Input matrices

5. Pattern matrices for the parameter matrices

6. Equalities

7. Initial values for the parameter matrices

8. New data set or a STOP card

Sections 3.1 through 3.8 describe in general terms the function and setup

of each of the above quantities. Illustrative examples are given in the

Appendix.

Whenever a matrix or vector for m populations is read in it is pre-

ceded by a format card, containing at most 80 columns, beginning with a left

parenthesis and ending with a right parehthesis. The format must specify

floating point numbers for the input and parameter matrices, and fixed

point numbers for the pattern matrices, consistent with the way in which

the elements of the matrix are punched on the following cards. Users who

are unfamiliar with FORTRAN are referred to a FORTRAN Manual, where format

rules are given. Matrices are punched as one long vector reading row-

wise each population beginning on a new card. For the symmetric matrices

only the lower half of the matrix includin the dia onal should be punched.
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3.1 Title Card

Whatever appears on this card will appear on the first page of the

printed output. All 80 columns of the card are available to the user.

3.2 Parameter Cards (2)

Card 1: All quantities on this card, except for the logical indicators,

must be punched as integers right adjusted within the field.

cols. 1-5 Number of populations m

cols. 6-10 Order of the input matrix ( p ), before selection of

variables

cols. 11-15 Number of columns in A (k)

cols. 16-25 Total estimated execution time in seconds for all

stacked data (SEC). This should be a number slightly

less than the time requested on the control cards so

the program will have time to print and/or punch results

up to that point. (Note: SEC should be read in for

each data set and should be the same for all data sets

in the stack.)

cols. 31-37 Logical indicators (see below)

cols. 45-46 Integer output indicators (see below)

Logical Indicators (cols. 31-37): The logical indicators control the

input and output as described below.

Column 31 determines whether dispersion matrices, or correlation matrices

and vP,.ctors of standard deviations, are read in as input to determine the

matrices to be analyzed.
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col. 31: T , if a dispersion matrix with diagonal is read in for

each population

col. 31: = F , if correlation matrices without diagonal, followed by

vectors of standard deviations are read in for each

population

Column 32 determines whether the matrices S , g = 1,2,...,m to be

analyzed are different from the matrices analyzed in the previous data set.

col. 32: = T , if new matrices are to be analyzed (note: this is

always true for the first data set)

col. 32: = F , same matrices as for previous data set are analyzed

Column 33 determines whether the matrices to be analyzed are scaled

or not.

col. 33: . T , matrices to be analyzed are scaled by the program to

S* = DS D g 1,2,...,m where D (diag S)-1/2

1S E n S , n= Z n
g.1 g g g=1 g

col. 33: = F , analysis performed on the unsealed Sg , g = 1,2,...,m

Column 34 dete mines whether selection of variables from the input

matrices is desired.

col. 34: T if selection of varic.bles is wanted

col. 34: = F , if no selection of variables is wanted--

Column 35 determines whether we are consideJ:.ing the standard case or

not.

col. 35: = T , the standard case is considered (i.e., AI , =

are constrained to be equal to Ai ; in this case the
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pattern matrix and starting matrix for t, will be

read in for the first population only)

col. 35: = 7 We are not considering the standard case (pattern
--

matrices and starting values for all m populations

will be read in)

Column 36 determines whether the starting values for 0 , g 1,2,...,m

are dispersion matrices or correlation matrices with standard deviations from

which the dispersion matrices will be computed.

col. 36: = T , starting OTS are dispersion matrices

col. 36: = F , starting O's are correlation matrices without diagonal

and with standard deviations

Column 37 determines whether an accurate or an approximate solution

is required.

col. 37: T , if an approximate solution is required

col. 37: . F , if an accurate solution is required

Integer Output Indicators (cols. 45-46)

Column 45 determines the type of printed output wanted. This can be

standard output ( S ), the matrices to be analyzed and parameter specif5ca-

tions ( R ), residuals and E for each population ( C ), and technical output

from minimization ( T ).

col. 45: = 0 , for S

col. 45: . 1 , for S R

col. 45: = 2 , for S C

col. 45: = 3 , for S R C

col. 45: = 4 , for S T
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col. 45: = 5 , for S + R + T

col. 45: = 6 , for S + C + T

col. 45: = 7 , for S+R+C+ T

Column 46 determines certain extra printed or punched output. This

errors ( F ) which is only applicable to SFASPF, punched

and a scaled solution ( G )

0 , if no extra output is wanted

1 , for F (neve:: set to 1 for SIFASP or SFASPL)

2 , for P

can be standard

solution ( P ),

col. 46: =

col. 46: =

col. 46: =

col. 46: = 3 , for F + P

col. 46: = 4 , for G

col. 46: = 5 , for F + G

col. 46: = 6 , for P + G

col. 46: = 7 , fox F + P + G

Card 2: This card will specify the number of observations or sample

size for each population. Thus there will be m integer numbers punched,

right-adjusted in five column fields.

Caution: Vhen specifying m , p , k on card 1 of the .3,rameter

cards be sure you have read the limitations imposed on them (see 2.3).

3.3 Selection of Variables

These cards will be read in only if the parameter card has a T in

column 32 and a T in column 34. Omit otherwise.

The first card will have an integer value Pnew
punched in columns

1-5, right adjusteq within the field. This integer will specify the order

of the S , g = 1,2,...,m after selection (p
new < P)
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The next card will contain integers, right-adjusted in five column

fields, (i.e., sixteen su,ch values will fit on one card) specifying which

columns (rows) are to be included. For exainple: if P 6 ' Pnew
= 3

and the 1st, 2nd and 5th colamns (rows) are to be excluded. This card

would have a 3 punched in column 5, a 4 punched in column 10 and a 6

punch( in column 15.

Note that if p
new.

= p there will be no reduction in the size of

the S but columns (rows) can be interchanged.

3.4 Input Matrices

Omit if column 32 of the parameter card is F . Otherwise read in a

format card followed, on subsequent cards by the input matrices, starting a

new card for each population.

If column 31 of the parameter card is F the input matrix for the

first population, preceded by a format card, is read in without the diagonal.

This is immediately followed by a format card and the vector of standard

deviations for the first population. Subsequent cards are input matrices

without diagonal for the remaining populations each followed on a new card

by its vector of standard deviations, and starting a new card for each

population. The formats for the first population will apply to subsequent

populations.

3.5 Pattern Matrices

The pattern matrices are preceded by a data card with entries in columns

1-3, the column defining the matrix in question, 1 for A , 2 for 1, and

5 for * .



cols. 1-3: CCC where C = 0 , if the matrix is fixed

C = 1 , if the matrix is free

C = 2 , if the matrix has mixed values

A pattern matrix should be provided only when C = 2 (see 2.2).

For example, if columns 1-3 are punched 201, the matrix A (i.e.,

A , g = 1,2,...,m ) contains mixed values, 0 (i.e., 0 g = 1,2,...,m )

is all fixed and * (i.e., * g = 1,2,...,m ) is all free. In this case

only pattern matrices for A , g = 1,2,...,m are read in.

The pattern matrix consists of a format card specifying an I-format

and subsequent cards with the integer entries of the parameter matrix,

beginning a new card for each population.

3.6 Equalities

Omit if the pattern matrices do not contain any elements 2 or 3. Other-

wise starting in column 1 punch the four-digit numbers MCCC as descrfbed

in section 2.2. For each new constrained leader start a new card. The last

entry on each "equality" card is a zero indicacing more "equality" cards

follow, or a four indicating it is the last one (see Appendix for examples).

3.7 Initial Values for the Parameter Matrices

The initial values are preceded by a data card with entries in columns

1-3, the column defining the matrix in question.

cols. 1-3: CCC where C = 0 , if the matrix is of standard form

(see 2.2)

C = 1 , if the matrix is nonstandard

This card is then followed by the necessary start values (see 2.2) for matrices

with C = 1 . That is, each nonstandard matrix of m populations is read in
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with its own format card, starting a new card for each population. If column

36 of the parameter card is F , 0
1 '

preceded by a format card, is read in

without the diagonal. This is immediately followed by a format card and the

vector of standard deviations for the first population. Subsequent cards are

= without diagonal each followed on a new card by its vec-
i

tor of standard deviations, and starting a new card for each population. The

formats for the first population will apply to subsequent populations.

3.8 Stacked Data

In sections 3.1 to 3.7 we have described how each set of data should

be set up. Any number of such sets of data may be stacked together and

analyzed in one run. After the last set of data in the stack, there must

be a card with the word STOP punchud in columns 1-4.

23
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4. Printed and Punched Output

The output consists of a series of printed and punched tables as described

in section 4.1-4.7. Examples of printed output are given in the Appendix.

4.1 Standard Output (S)

The standard output is always obtained, regardless of the value punched

in columns 45 and 46 of the parameter card (see 3.2). The standard output

consists of the title with parameter listing, the final solution and the

result of the test of goodness of fit.

The parameter listing gives the information supplied on the parameter

card.

The final solution consists of the three matrices A , 0 and * ,

printed for each population.

The test of goodness of fit gives the value of X
2

and the corresponding

degrees of freedom. The probability level is also given. This is defined

as the probability of getting a X
2

value larger than that actually obtained,

given that the hypothesized structure is true.

Just above the table giving the final solution, the following message is

printed

Usually X = 0 , but if, for some reason, it has not been possible to determine

the final solution, X will be 1, 2, 3, 4 or 5. If IND is 1, 2 or 3, "seri-

ous problems" have been encountered and the minimization of the function

cannot continue. One reason for this may be erroneous input data. Another

24
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reason may be that a point has been found, where one of the matrices E is

not positive definite. A third reason may be that insufficient arithmetic pre-

cision is used. If IND is 4, the number of iterations has exceeded 250. If

IND is 5, the time limit SEC has been exceeded (see 3.2). If IND / 0 ,

the solution obtained so far is automatically punched on cards in such a

way as to be immediately available as initial estimates for a new run with

the same data. Thus there is little loss of information when execution is

terminated with IND / 0 .

4.2 Matrices S and Parameter Specifications (R)

If column 45 of the parameter card is 1, 5, 5 or 7 (,-, the

matrices to be analyzed, S , g = 1,2,...,m as obtainari 2ter exclition

of variables and/or scaling (see 1.4), if any, are printed. These matrlIces

are printed row-wise with four decimals. Al o a table of -1-ameter speci-

fications, containing the information provided by the pattern matrices (see

2.2), is printed. For each population, three integer matrices are printed

corresponding to A , 0 and * . In each matrix an element is an integer

equal to the index of the corresponding parameter in the sequence of inde-

pendent parameters. Elements corresponding to fixed parameters are 0

and elements corresponding to the same constrained parameter have the same

value. Examples are given in the Appendix.

4.3 Technical Output (T)

If column 45 of the parameter card is 4, 5, 6 or 7 (see 3.2), the

technical output is printed. This consistr of a series of tables which

describe the behavior of the iterative procedure and give various measures
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of the accuracy of the final solution. Ordinary users will have little

interest in these tables.

The first table of the technical output gives the initial estimates for

. 0 * g = 1,2, . . .,m

The next two tables show the behavior of the iterative procedure under

the steepest descent iterations and under the followimg iterations by the

Fletcher and Powell method. For interpretation of these tables the reacier

is referred to Gruvaeus and J8reskog (1970). If something gces wrong, so

that IND is 1, 2 or 3 (see 4.1), these tables may contain valuable

4.4 Matrices E and Residuals (C)

If column 45 of the parameter card is 2, 3, 6 o:c 7 (see 5.2), the
e "

,s2matrices E AO + * and the residual matrices S - E g = 1,2,...,m ,
g g g g g g

are printed. The matrices E are computed from the final solution. If

the fit is good, E should agree well with S and the residual matrices

should be small. Elements of the residual matrices may suggest how the

hypothesized structure should be modified to obtain a better fit. The

matrices are printed row-wise, each element with four decimals.

4.5 Scaled Solution (G)

It column 46 of the parameter card is 4, 5, 6 or 7 (see 3.2), a scaled

solution is printed. (See 1.5 on scaling of factors.)
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4.6 Standard Errors (7)

If column 46 of the parameter card is 1, 3. 5 or 7 (see 3.2), large

sample approximations to the standard errors of the estfmated parameters

are printed. These are zz..inted row-wise in matrix form and each m_imber

f3 printed with three des:imals. The reader is referred to the paper by

J8reskog (1970) for infomation about how the standard errors are Astained.

The standard errors are 'or the parameters of t2e unscaled

4.7 Punched Output (P)

If column 46 of paramepex card is 2, 6 or 7 (see 3.2), -she

final solution is pun&cd on cards. The matroes are punched on cards in

vector form, reading row-wise, beginning a new card for each popu1a7,74_on

and each matrix. Each of the three matrices A , , * are preceded

by a format card where by A we mean A ,

0 , g = 1,2,...,m and by * we mean * ,

g =

g

1,2,...,m , by 0 we mean

In the

standard case only one A is punched regardless of the number of populations.
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1:2PENDIX

shall illustzca:-- tr1PLI data are set up and what the printout

looLE _Like by mea.,2 of iiJl Sets of data. These data also serve as test

data tc, be run when the al,c.gram has been compiled on a different ccimputer.

Both sets of data . at6 a,51alyzed. in one run with SFASPI.. Pages A4-A7

show card by card hc": frpillt data are punched. One line corresponds to

one card. Pages A6-Afr:1 Ohow- the corresponding printout obtained.

The first set of f3te-, "Holzinger-Swineford Data," consists of four

9 x 9 correlation matri5 witriout diagonal each with a set of standard de-

viations. All variab1e.5 04"e iaeluded in the analysis, and the input matrices

are to be scaled by the lpfografa before being analyzed. The folluwing model

is assumed:

.798

7
4

7
7

0

0

o

o

.796

o

o

o

0

A1(9 x 3)
---.=. .A2 A3 A4 o 7

14
o

o 7
17

o

0 o .597

0 0 724
727

1

4

.1)

2 2

(1)3

)4 4)5
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0
2

=

21
0, ... .

'4'2,1 25
(2 24I

and the irs are constrained to be equal,

111
1112 177-- *4

Initial values for A , 0 and * were obtained from preliminary analyses

of each population seTarately. All printed output is requested.

The second set o 2 data, "Artificial Data for Illustrative Purposes,"

consists of two 10 10 Lispersion matrices with the 10
th

variable excluded

and with the g
th

is assumed:

A =
1

vable

-0

1

7\7

7\10

0

0

0

o

0
-

moved

0 7 \3

0 0

0 0

0 0

1 0

A
17

0

o

1

P 7\
27_,

to the

, A
.2.

first

..._

=

position. Tae

_
\0 0 ?3o

1 0 0

A34- 0 0

0 0
7\37
0 1 0

0 0
A44

0 0
?\47

0 0 1

o o 7\54
_

following model

30
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1)

1

[

2 3
0
4

0
5

01
,

0
7

2

[

8 9

4) lo °11 12

,

Iv
1

----- PP
1,

V
'2'

V
'3'

V
'4'
*
5'

V'
6'
V7

'
V
'8'

'0
'9

]
'

*2 E7P10,7P11,7P12'*'13' ^4114' 41'15' '4116' '4117' *183

In this analysis we impose the constraints .2\7 = "2\34 , "2\

10
= 2\

37 '

'2\

20
= 2\

47
. Initial values have been chosen as 0.9 for all nonfixed ?\'s

except 7\
27

and 7\
54

which have an initial value of 0.4. All Vs have

initial values of 0.8. The 0 are read in as correlation matrices, each

followed by its vector of standard deviations. Only the standard output,

the matrices to be analyzed and the parameter specifications and the standard

errors are requested as printed output.

At various places in the output, time estimates are printed. The time

shown is the time taken to compute the solution that follows the time esti-

mate. This time includes only the iterations and not the time for printing,

except possibly the technical printout.
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HOLZINGER
4 9

77 79
(16F5.0)

SWINEFORD
3

74 71

DATA
220 FTTFTTF 75

.32 .34 .18 .31 .24 .31 .22 .16 .29 .62 .27 .20 .32 .57 .61 .48

.31 .32 .18 .20 .29 .20 .01 .15 .06 .19 .15 .36 .42 .28 .40 .11

.07 .18 .35 .44
(16F5.0)

7.2 4.0 3.0 11.5 4.5 5.5 7.4 4.9 4.7
.34 .41 .21 .38 .32 .31 .40 .16 .24 .69 .42 .13 .35 .55 .65 .35
.27 .30 .17 .20 .31 .16. .01 .09 .31 .30 .34 .31 .35 .27 .09 .34
.27 .27 .38 .38
6.6 4.8 2.6 11.3 4.7 5.0 6.1 3.9 3.9
.24 .23 .22 .32 .05 .23 .35 .23 .18 .68 .36 .10 .11 .59 .66 .22
.01 --.07 .09 .11 .12 -".01 .-.13 .05 .08 .03 .19 .09 -.14 -.06 .16
.02 .12 .15 .29
6.7 4.0 2.8 11. 5.2 5.3 7.6 5.2 4.4
.32 .48 .33 .28 .01 .06 .26 .01 .01 .75 .40 .26 .10 .60 .63 .42
.32 .22 .15 .07 .36 .12 .05 .03 -,.08 .06 .19 .29 .23 -.04 .01 --.05
.10 .24 .19 .38
7.4 5.6 2.9 11.6 5.2 5.2 6.8 4.7 4.6

212
(80I1)
000100100000010010000001001
(80I1)
333333333
222222222
222222222
222222222
30013010301930280
30023011302030290
30033012302130300
30043013302230310
30053014302330320
30063015302430330
30073016302530340
30083017302630350
30093018302730364
111
(5015.7)
0.7976910D 00 0.0 0.0 0.39462980 00 0.0
0.0 0.4647047D 00 0.0 0.0 0.0
0.79604860 00 0.0 0.0 0.8489068D 00 0.0
0.0 0.75044760 00 0.0 0.0 0.0
0.59746870 00 0.0 0.0 0.4767417D 00 0.0
0.0 0.53825610 CO

(5015.7)
0.1448173D 01 0.47051361) 00 0.11268130 01 0.677083Y1) 00 0.24899620 00
0.11165070 01
0.65231210 00 0.49312340 00 0.10373300 01 0.1060768D 00 0.20846210 00
0.7169219D 00
0.9559079D 00 0.58233900 00 0.93265441) 00 0.55997130 00 0.4851271D 00
0.8452014D 00
0.8782915D 00 0.48270601) 00 0.88009351) 00 0.9986006D 00 0.36341570 00
0.1330246D 01

(5015.7)
0.4395305D 00 0.1116168D 01 0.8722642D 00 0.76505790 00 0.5271286D 00
0.6637218D 00 0.95949160 00 0.8604758D 00 0.8953196D 00
0.43953050 OU 0.11161680 01 0.87226420 00 0.5650579U 00 0.52712860 00
0.66372180 00 0.95949160 00 0,8604758L 00 0.89531960 00
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0.43953050 00
0.6637218D 00
0.4395305D 00
0.6637218D 00

0.11161680 01 0.8722642D 00
0.95949161) 00 0.8604758D 00
0.1116168D 01 0.87226421J 00
0.9594916D 00 0,8604758D 00

0.56505791) 00
0.89531960 00
0.56505790 00
0.89531960 00

0.527128613 00

0.52712860 00

ARTIFICIAL DATA FOR ILLUSTRATIVE PURPOSES
2 10 3 220 TTFTFFF 11

61 184
9
9 1 2 3 4 5 6 7 8

(51)15.7)
0.1123817U 01 0.4081763D 00 0.14477721) 01 0.5219276U 00 0.4072726D 00
0.10520650 01 0.3672397D 00 0.1245437D-01 0.6370068D-01 0.10713791) 01
0.2912128U 00 0.12,1275U-01 0./0837041)-01 0.8202047U 00 0.1116295U 01
0.4199384D 00 9.3098141D 00 0.1015779u 00 0.6150361D 00 0.6591857D 00
0.98074390 00 0.51879770 00 0.4486431D 00 0.26293291) 00 0.18091051) 00
0.8617642D-01 0.41541420 00 0.1357694U 01 0.1270356U 00 0.6007814D-01
0.3072833U-01 -0.8269096D-01 0.6330487D-01 0.1879005U 00 0.3374391D 00
0.9972245D 00 0.2543552D 00 -0.5020824D-01 0.1070006D-01 -0.5398916D-01
0.1102185D 00 0.2479442D 00 0.2309508D 00 0.39586311) 00 0.10882530 01
0.3443672u 00 0.4200382D-01 0r1781234D-01 0.14425671)-01 0.1224889U 00
0.7856332D 00 0.4556322D 00 0.77532221) 00 0.12335651) 00 0.9885641U 00
0.9212539D 00 0.1979813D 00 0.7386590D 00 0.2186251D 00 0.1872518U 00
0.9807595D 00 0.2963624D 00 0.4146429D-01 0.2197816U 00 0.9310318D 00
0.35493461 00 0.20885230 00 0.18834031) Oe 0.69323520 00 0.1116295U 01
0.34877376 00 0.8675057D-01 0.10995741) 00 0.57462511) 00 0.70385581) 00
0.10188270 01 0.21249341J 00 0.86487610-02 -0.6976076D-01 0.87388980-01
0.11695371) 00 0.1218887D 00 0.10126600 01 -0.2120913D-01 -0.9495634U-02

-0.14224161) 00 0.5330332U-01 0.9338541D-01 0.3345596U-01 0.21124550 00
0.12206860 01 0.86197200-01 -0.12006321J 00 -0.59291480-01 0.15405010 00
0.21085270-01 0.12086240 00 0.1506201u Ou 0.31971260 00 0.9956796u 00
0.12312360 00 0.44567570 00 0.5563245u 00 0.2244535U 00 0.1122457u 00
0.4556788D-01 0.21234520 00 0.4425136D 00 0.2135788u 00 0.9925635U 00

211
(80I1)
001000300300000030030000001
00 1000 200 20 00000 20020 000 00 1
100710340
101010370
101710440
102010474
111
(40F2.1)
0 0 9 1 0 0 9 0 0 9 0 0 0 1 0 0 9 0 0 9 (J0 01 0 0 4
0091 0 0 9 0 0 9 0 0 1 0 0 9 0 0 9 6 0 0 1 0 0 4

(16F5.0)
.471 .677 .249

(8FL0.0)
1.203 1.062 1.057

.493 .106 .208
.807 1.019 .847

(40F2.1)
8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 d 8 8

STOP
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SIMULTANIOUS FACTOR ANALYSIS IN SEVERAL POPULATIONS

HOLZINGER - SWINEFORD DATA

NP(1)= 77

NP(2)=

NP(3)=

79

4
NP(4)= 71

P=

4

9

K= 3

LOGICAL INDICATORS(COLUMNS 51-57):FTTFTTF

OUTPUT INDICATORS= 7 5

ESTIMATED TIME IN SECONDS= 220.



POPULATION 1

91 2 3 4 5 6

1 1.066
2 0.285 0.745
3 0.373 0.165 1.127
4 0.323 0.209 0.332 1.018
5 0.209 0.127 0.283 00575 0.844
6 0.292 0.181 0.356 0.602 0.58-E 1.097
7 0.489 0.264 0.335 0.179 0.181 0.300 0.974
8 0.216 0.009 0_._Lk6 01E063 0.182 0_164 0.371 1.092
9 0.463 0.258 0.453 0.118 0.069 0.201 0.369 0.491 1.139

POPULATION 2

1 2 3 4 5 6 7

1 0.895
2 0.333 1.073
3 0.357 0.200 0.846
4 0.356 0.329 0.283 0.983
5 0.363 0.159 0.212 0.656 0.920
6 0.378 0.128 0.307 0.519 0.594 0.906
7 0.269 0.228 0.225 00137 0.156 0.240 0.662
8 0.126 0.009 0.069 0.256 0.239 0.269 0.210 0.692
9 0,293 0.248 0.073 0.298 0.229 0.228 0.274 0.280 0.784

POPULATION 3

1 2 3 4 5 6 7

1 0.923
2 0.199 O.
3 0.219 0.188 0.982
4 0.297 0.042 0.220 0.931
S 0.357 0.211 0.189 0.696
6 0.349 0.087 0.110 0.575 0.70? 1.018
7 0.214 0.009 -0.070 0.088 0.118 0.123 1.027
8 -0_0021 0.010 -0.143 Ile(Y5A 0.094 0034 0.214 1.230
4 0.086 -0.121 -0.059 0.154 0.021 0.121 0.152 0.321 C.998

PO.PULATION 4

1 2 3 4 5 6 7

1 1.126
0.410 1.461
0.523 0.409 1.083

4 0.308 0.013 0.064 1.072
0.293 0.013 0.011 0.824 1.127
0.420 0.311 0.102 0.615 0.662 0.980

7 0.523 0.454 0.265 0.182 0.087 0.418 1.377
0.128 0.061 0.031 .--0.033 0.064 0.189 0.341 1.004
0.255 0.011 0.111 0.248 0.233 0.398 1.091
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PARAMETER SPECIFICATIONS

POPULATION I

LAMBDA
0 0 0
1 0 0
2 0 0
0 0 0
0 3 0
0 4 0
0 0 0
0 0 5

0 0 6

PHI
7
8 9

10 11 12

PSI
13 14 15 16 17 1 8 19 20 21

POPULATION 2

L AM80A
0 0 0
1 0 0
2 0 0
0 0 0

0 3 0
0 4 0
0 0 0
Ci 0 5

0 0 6

PHI
22
23 24
25 26 27

PST
13 14 15 16 17 18 19 20 21

POPULATION

A4i i:f ,14
0

3

0 0

1 0 0
2 0 0

0 0 0
3 0

0 4 0

0 0 0
0 0 5

0 0 6

PHI
28
29 30
31 32 33

PSI
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13 14 1 S 16 11 18 19 20 21

POPULATION 4

LAMBDA
0 0
1 0

_0
0

2 0 0
0 0 0
0 3 0
0 4 0
0 0 0
0 0 5
0 0 6

PHI
34
35 36
37 38 39

PSI
13 14 15 16 11 18 19 20 21



IN IT IAL

POPUL ATION 1

SOLUTION

AMBDA

1 2 3

1 0.798 0.0 0.0
0.395 0.0 0.9_ _____

3 0.465 0.0 0.0
4 0.0 0.796 0.0
5 0.0 0.849 0.0
6 0.0 0.750 0.0
7 0.0 0.0 0.597
9 0.0 0.0 0.477
o 0.0 0.0 0.538

PH:

1 2 3

1 1.448
2 0.471 1.127
3 0.677 0.249 1.117

P SI

1 2 3 4 5 ^ 7 8 . _ 9

1 0.440 1.116 0.87Z 0.565 0.527 664 0.959 6.860 0.395

POPUL AT ION 2

LAMBDA

I 2 3

I O. 798 0.0 0.0
0.395 0.0 0.0_______2

3 0.465 O. 0 0.0
4 0.0 0.796 0.0
5 0.0 0.849 0.0
6 0.0 0.750 0.0
7 0.0 0.0 0.597
A 0. 0 0. 0 0.477
o 0.0 0.0 0.538

I-I 1

1 2 3

0.652'.1
2 0.493 1.037

0.106 uxvu 0.717

P SI

2 . 3 4 5 6 7 a 9

1 0.440 1.116 0.872 0.565 0.527 0.664 0.959 0.860 0.895

POPULATION 3

L AMBDA

1 2 3

1 0.798 0.0 0.0
2 0.395 0.0 0.0
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3
4
5

0.465
0.0
0.0

0.0
0.796
0. 849

0.0
0.0
0.0

6 0.0 0. 750 0.0
7 0.0 0.0 0.597
a o. o o. o 0.477
9 O. 0 0. 0 0. 538

PHI

1 2 3
1
2 0. 582 0. 933
3 0. 560 0.485 0.845

P SI

1 2 3 4 5 6 7 9
1 0.440 1. 116 0.872 0.565 0.52? 0.664 0.959 0.860 0. 895

,t_IL AT ION 4

L AM:DA

1 2 3
1 0. 798 0. 0 0.0

0. 395 0. 0 0._0
3 0. 465 O. 0 0.0
4 O. 0 0.796 0.0

0. 0 0. 849 0.0
0. 0 0. 750 0.0

7 O. 0 0. 0 0.597
a O. 0 0.0 0.477

PHI

0.0 0. 0 0. 538

1 2 3
0. 878

2 0. 4113 0.880
3 0.999 0.363 1. 3.30

P SI

1 a 3 4 5 6 7 8 9
0.440 1. 1.16 0. 87.2 0.565 . 0.527 0.664 0. 959 0.860 0.895



BEHAVIOR UNDER STEEPES-4. OESCENT ITERATIONS

ITER TRY ABSCISSA SLOPE FUNCTION

1 0 0.0 -0.233659170 05 0.1454972[7 03
1 0.100000000 00 -0.13893578D 05 0.127202430 03
2 0.246615280 00 -G.493882800 02 0.113884370 03
3 0.39349P76D 00 0.116046440 02 0.111352380 C3

2 0 0.0 -1:48586.21.2AS!IAL- 0.111352380 03
1 0.393498760 00 0.214866360 03 0.127740180 03
2 0.155115690 00 0.134910580 01 0.104407170 03

3 0 0.0 -0.555000310 02 0.104407170 03
I. 0.15115690 00 C.384436610 02 0.103709960 03
2 0.818778010-.01 --0.43149336Qr0J 9.102243750 03

4 0 -0.438528850 02 0.4102243750 03
1 0.816778010-01 -0.155060990 01 -2.100315340 03
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BEHAVIOR UNDER FLEROW ITERATIONS

ITER TRY

1 0
1

2

3

0

1

2
3

ABSCISSA SLCPE FUNCTION

0.0
0.100000000 00
0.130695170 01
0.89284712D 00

0.0
0.89284712D 00
0.351465700 00
0.31668022D 00

3 0 0.0
1 0.31668022D 00
2 0.918617420-01

4 0 0.0
1 0.918617420-01

5 0 0.0
1 0.91861742D-01
2 0.286191890-01

-0.271456080 02
-0.243450030 02
0.219462650 02

-0.103216290 01

G.100315340 03
0.977418120 02
0008821990 02
0.871333190 02

-0.443376460 01 0.871333/90 02
0.236240450 02 0,915787100 02
0.680901460 00 0.863590700 02

-12.18325592D-01 0.863477000 02

-0.378507610 01
0.875527590 01
0.444271330-01

0.863477000 02
0.871724610 02
0.861782500 02

-0.173665760 01 0.86178250D 02
0.153860020 00 0.861054390 02

-0.515849480 00
0.120097280 01
0.263741310-03

0.861054390 02
0.8613555C0 02
0.860980230 02

6 0 0.0
1 0.286191E390-01
2 0.139397700-01

7 0 0.0
1 0.139397700-01

8 0 0.0
1 0139397700-01
2 0.18375661D-01

9 1 0.0
1 0.18375661D-01
2 0.164857810-01

10 0 0.0
0.164857810-01

-0.37455577D 00 0,86018023D 02
0.391574270 00 0.860982930 02
0.13696321D-05 0,86095416D 02

_1:f32;:(11-= 0.860954160 02
0,860937520 02

-0.15794796D 00 0.860937520 02
-0.380156440-01 0.860923870 02
0.38591097D-05 0.860923020 02

-0.21499105D 00 0.860923020 02
0.247350260-01 0.860905520 02

-0.69778622D-06 0.860905280 02

-0.49997638D 00
-0.206316460 00

0.27979363D-01 0.274312020-04

11 0 0.0
1 0.Z/9793630-01
2 0.31213287D-01

12 0.0
1. 0.312132870-
2 0.13367970C-01

13 0 0.0
1 0.133679700-01
2 0.54061048D-02

14 0 0.0
0.540610_4_80-02

2 0.145019640-02

15 _0 0.0

0.860905280 02
0.860847030 02
0.860835160 02.

-0.726083180 00 0.860835160 02
-0.759500480-01 Q.B60722670 02
0.116280200-04 0.860721440 02

-0.362406960 00 0.86072144D 62
0.484713240 00 0.860740440 02
0.506312630-05 0.860697210 02

-0.144536140 00 0.860697210 02
0.21331617D 00 0.860701790 02
0.47653984D-06 0.860693300 02

-0.438668810-01 0.860693300 02
0.11_9940200 00 0.860695360 02
0.843588480-07 0.860692980 02

-0.156252680-01 0.860692980 02



1 0.14501964002
2 0.66530294003
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0.18417496001
0.152483430-09

0.860693000 02
0.860692930 02

lb 0 0.0
1 0.65530294003
2 0.59757824003

- 0.132036270..-01
0.14963924002
0.18702463007

0.860692930 02
0.860692890 02
0.860692890 02

17 0 0.0
1 0.597578240-03
2 0.13641498002

18 0

0.33693271D-01
-.0.189336270-01
0.18559817005

0.0 -.0.299321660-01
1 0.136414980--02

19 0 0.0
1 0.136414.980-02
2 0.192870310...03

-0.660297220--03

- 0.193316080-01
0.117416520 00
0.65644734008

0.860692890 02
00860692740 02
0.860692660 02

0.860692660 02
0.860692450 02

0.860692450 02
0.860693120 02
0.860692440 02

20 0 0.0
1 0.1G287C31003
-2 0.9_335701CD-.04

21

-0.19779190002
0.210834990--02
0.16082493D---07

0.0 -0. 29334193D--02
0.9335701 CD-04 -0.167599060-03

22 0 0.0
1 0.9335701CD-04
2 0.245003750-03

23, 0 0.0
0.245CC3760-..03

2 0.727203930-04

0.685557270-..02
-.0_._424336540-02_
- 0.222160350--05

-0.326320370..-02
0.773092230.-02
0.478375060-07

0.860692440 02
0.860692440 02
0.860692430 02

0.860692430 02
o.8606924_10 2

0.150692430 02
0_,86069?.430 02
0.860692420 02

0.860692420 02
0.860692430 02
0.860692420 02

TIME= 57.37



MAXIMUM L IKELIHOOD SOLUTION

IND= 0

POPUL AT ION 1

2

L AMBDA

1 3

1

2

3

0. 798
0. 473
0. 568

0. 0
O. 0
0. 0

0.0
0.0
0.0

4 Oe 0 0. 796 0.0
5 O. 0 Os 847 00
6 O. 0 0. 746 0.0_
7 De 0 O. 0 0.597
8 0. 0. 0.0 0.496
9 Oe 0 O. 0 0.578

P HI

1 2 3

1 0. 838
0. 475 0.911

3 Oe 908 0. 348 1.238

P S I

I. 2 5 6 7 8 9

Oe 693 O. 904 0.858 Q.604 00530 0.9_665 0.812 0,875 0. 825
_

POPUL AT ION 2

LAMBDA

1 2 3

I 0. 798- O. 0 0.0
2 0.473 O. 0 0.0
3 01, 568 0. 0 0.0
4 0. 0 00 796 0.0
5 0.0 O. 847 0.0
6 01, 0 09_746 0.0

0. 0 O. 0 0.5977
8 0. 0 O. 0 0.496

Oe 0 0.578

PHI

2 3

0.731
2 0. 562 0. 928

O. 522 0.486 0.557

PSI

1 2 3 4 5 6 7 a 9

1 _ 049_69_3 _0_9_904 Om 85 8 0.604 0.530 0.665 0,812 0, 875 0.825

POPULATION 3

LAMBDA

1 2 3



a
3

0.798
0.473
0.568

O. 0
O. 0
0.0

0.0
0.0
0 0

4 0.0 Os 796 0.0
5 0. , 0.847 0.0
6 0.0 0.746
7 0.0 0. 0 0.597
8 O. 0 0. 0 0.496
9 Os 0 0.0 00578

PHI

1 2
Os 592

2 0.469 1.059
3 0.074 0.199 0.853

P S

1 2 4 5 6 7 8 9

1 0.693 Qs 904 0.858 0.604 0.530 0.665 0.812 o._875 0.825

ON 4

LAMBDA

1 2 3

1 0.798 0.0 0.0
0.473 0.0 0.0

3_ 0 5_65 0._0 0.0
4 0. 0 0.796 0.0
5 0. 0 0. 847 0.0
6 -- 0_._0 0.746 0.0
7 0.0 0.0 0.597
8 0.0 13 0 0.496
9 --(Le 0 04,0 0.578

PHI

1 2 3
1.128

2 0.386 1,127
0.627 0. 265 1.191

PS I

1 2 4 5 6 r A 9

0.904 0.858 0.604 0.530 0,.665 0.812 0.825
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TEST nF GOODNESS OF FIT

CHISOUARE WITH 141 DEGREES OF FREEDOM IS 172.1385

PROBABILITY LEVEL IS 0.038
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POPUL ATION 1

SIGMA = LAMBDA*P1-114,LAMBDA.+1,51**2

6 7 6 9

1 2 3 4 51 1.013
2 0.316 1.004
3 0.379 0.225 1.006
4 0.302 0.179 0.215 0.9425 0.321 0.191 0.229 0.614 0.934

_
6 0.283 0.168 0.201 0.541 0.575 0.9497 0.433 0.257 0.308 0.166 0.176 0.155 1.10"8 0.359 0.213 0.256 0.137 0.146 0.129 0.36i 1.0709 0.419 0.249 0.298 0.160 0.171 0.150 0.428 0.355 I.

R ES I DUA L S = SIGMA-S

1 3 4 5 6
9-0.053

2 0.031 0.259
3 0.007 0.060 -0.120
4 -0.021 -0. 00 -0.117 -0.0765 0.113 0.064 -0.054 0.040 0.0906 -0.009 -0.013 -0.155 -0.061 -0.011 -0.1467 -0.056 -0.007 -0.027 -0.014 -0.005 -0.145 0.128a 0.143 0.204 0.089 0.074 -0.036 -0.035 -0.005 -0.0229 -0.044 -0.009 -0.155 0.042 0.102 -0.051 0.059 -0.136 -0.-



POPULATION 2

SIGMA = LAMBDA*PHI*LAMPOA'+PSI**2

2 3 4 5 6 7 8 9

1 0.945
2 0.276 0.981

0.331 0.136 0.972
0.357 0.212 0.254 0.953

5 0.380 0.226 0.270 0.626 0.946
0.334 0.199 0.238 0.551 0.586 C,4.958

0.249 0.148 0.177 0.231 0.246 0.217 0.858
0.206 0.122 0.147 0.192 0.204 0.180 0.165 6.903

9 0.241 0.143 0.171 0.224 0.236 0.210 0.192 0.160 0,867

PFSIDUALS = SIGMA-S

1 2 3 9

1 0.049
2 -0.057 -0.093
3 -0.026 -0.004 0.126
4 0.001 -0.117 -0.029 -0.030
5 0.017 0.067 0.059 --.0.030 0.026
6 -0.044 0.070 --0.069

--0.048
0.032
0.094 0.090

0.052
-6-.1977 -0.021 -04080

8 0.080 0.114 0.078 -.-0.064 0.211
9, 70.0.3 --0.105 0.098 -0.075 0.009_ -0.120 0.083

4



:AT ION

SIGMA = LAM80AATHI*LAMBOA.+PS1**2

6 A1 2 3 4 5
1 0.856
2 0.224 0.949
3 0.268 0.159 0.927
4 C. 29A 0.177 0.212 1.036
5 0.317 0.188 0.225 0.714 1.041
6 0.279 0.166 0.198 0.629 0.669 1.031
7 0.035 0.021 0 025 0.095 0.101 0.089 0.964.. _ . .

8 0.029 0.017 0.021 0.079 0.084 0.074 0.253 0.975
9 0.034 0.020 0.024 0.092 0.097 0.086 0.295 0.245 0.966

RESIDUALS - SIGMA-5

2 3 4 5 6 7 8 9
1 -0.066
2 0.025 0.204
3 0.049 -0.029 -0.054
4 0.001 0.138 -0.008 0.105
5 -0.040 -0.023 0.036 0.018 -0.086
6 -0,070 Q, 07R 0,088 0.054 -0.038 0.013
7 -0.179 0.012 0.095 0.007 -0.018 -0.034 -0.063
8 0.051 0. C27 0.164 0.025 -0.011 0.040 0.u39 -0.254
9 -0.052 0.141 0.084 -0.063 0.076 -0.035 0.143 -0.077 -0.032
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POPULATION 4

SIGMA = LAMBDA*PHT*1AM8DA,+PSI**2

7 8 91

1.197
2 3 4 5 6

2 0.426 1.070
3 0.511 0.303 1.100

0.245 0.146 0.175 1.079
0.261 0.155 0.186 0.760 1.089

6 0.230 0.136 0.163 0.669 0.712 1.069
0.299 0.177 0.213 0.126 0.134 0.118 1.085
0.248 0.147 0.176 0.105 0.111 0.098 0.353 1.05s

9 0.289 0.172 0.206 0.122 0.130 0.114 0.411 0.341

RESInUALS = SIGMA-5

2 3 4 8 9
0.072

2 0.016 -0.391
3 -0.012 -0.106 0.047
4 -0.062 0.133 0.111 0.007
5 -0.032 0.142 0.175 -0.064 -0.038
6 -0.190 -0.175 n.062 0.054 0.050 0.089
7 -0.224 -0.277 -0.052 -0.056 0.047 -0.300 -0.292
9 0.120 0.067 0.145 0.188 0.047 -0.091 0.012 -'254

0.034 0.222 0.195 0.176 0.019 70.134 0.178 .C57 -0.1
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SCALED SOLUT ION

POPUL ATION 1

L AM B lA

1

1

0. 721
0.475
0.513
0. 0

000
0.0
e. o

2
0.0
O. 0

3

0.0
0.0_

3
.-

6
7
s

0. 0
0.797
0.848

00
0.0
0O

0.747
O. 0
o. o

0.0
0.583
00 484

0.0 0. 0 0.565

131-11

1 3

Oe 52 0.908
1.0 O. 356 1.298

P SI

2 3 4 5 6 7

1 0.693 Os 904 0.858 0.604 0.530 0.665 0,812

POPUL ATION 2

L AMPDA

1 ? 3

1 0.721 o. o 0.0
2 0. 428 0. 0 0.0
3 O. 51 3 0. 0 0.0
4 0. 0 0. 7c.:7 090
5 0.0
6

_.o.p
0. 0

_00348
0. 747 0.0

7 04. 0 Oo 0 0.593
4 0. 0 O. 0 0.484
9 0.0 0.0 0.565

PilI

1 2

1 11. d94

2 O. 621 0. 9? 5

3 es 591 0.497 O. 584

PSI

4 5 6

1 O. 6c3
_2_
0. 904

_3_
0.858 0.604 0.530 O 665 0.812

POPUL AT IfTh 3

L AM 8DA

1

O. 721 0. 0 0.0
0.0



-A23-

3
4

9

0.513
0. 0
0.0

0.0
0.797
0.84_8

0.0
0 0
0.0

6 0.0 0.747 0.0
7 C. 0 0.0 0.583
8 0.0 060 0.484

0.0 0.0 0.565
PH

1 2
1 O. 724

0.519 1.056
3 0. C94 0.203 0.895

PS I

2 4 6 7 8 9
0.693 0.904 0.858 0.604 0.530 0.665 0.512 0.875 0.825

L ATION _4

LAMBDA
_

1

2

.

1

n. 721
n. 429

2
o. c
n. o

3
0.0
o. o

3 0.513 0. C 0.0
4 0. 0 0.797 0.0
5 0.0 0.849 0.0
6 0.0 0.7,'. 7 0.0
7 0.0 0.0 0.583
9 C. 0 0,4 0.484 -
9 C.0 0.0 0.565

PHI

1 2

1 1.390
2 0.426 1124
3 0.710 0.271 1.249

S I
_

2 3 4 5 6 7 a 9
1 0.693 0.904 0.858- 0604 0.530

_
0.665 0.812 0.875 0.825



214- -

STANDARD

POPULATION 1

ERRORS

LAMBDA

1

2

1

0.0
0.083

2

0.0
0.0

3

0.0
0.0

3 0.087 0.0 0.0
4 0.0 0.0 0.0

a
5 0.0 O. 062 0.0
6 0.0 0.059 0.0
7 0.0 0.0 O. C
6 0,0 0_, 0 0.091_

0.0 0. C 0.098

PHI

2 3

1_ 0,242
2 0.152 0.195
3 0.232 0.177 0.396

P S I

3 4 5 6 7 6 9
1 0.055 `. 041 0.042 0.037 0.042 0.036 0.047 0.043 ();. 046

POPUL AT ION 2

LAMBDA

1 ? 3

1 0.0 0.0 0.0
C' 3 _0_, 0 0.0_Q.

0.087 0.0 0.0
4 0.0 0.0 0.0
5 062 0.0
6 0.0 0.059 0.0
7 0.0 0.0 0.0

0.0 0.0 0.091
0.0 0.0 0.098

PHI

1 2 3

0.220
0.151 0.196
0.163 0.154 0.237

S

1 2 3 5 6
1 0.055 0.041 0.042 0.037 0.042 0.036 0.047 0.043 0.046

POPULATION 3

L AMBDA

1 0.0 0.0 0.0
0.083 0.0
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SIMULTANIOUS FACTOR ANALYSIS IN SEVERAL POPULATICNS

ARTIFICIAL DATA FOR ILLUSTRATIVE PURPOSES

NPI11= 61

1.84

LOGICAL INCICATORW:OLUMNS S1-571:TTFTFFF

OUIPUT INDICA-IRS= 1 1

ESTIMATED TINE IN SECONDS= 220.



122'1 112'0 EE00 £60'0 z4,1"0- 600°0- 120 '0- OZZ 0 6 £10°T 221.0------ il-ffo L9-000 600'0 212'0 151'0 
6101 470L'0 545'0 011'0 480'0 121 '0 

917.'7. £69'0 8810 602.0 55E '0 120'0 9 
1£60 0220 962 '17 '751'0 

1860 L810 612'0 650'0- 47 

6E4'0 861'0 0210- 
US "Cr 980'0 2 

9660 1 
6 8 1 

NOiivlfl 

L66°0 LEE*0 881'0 8:900 £80'0- 1E0.0 0900 4210 968:0 6 85E°1 5140 9800 1810 E920 64747'0 615'0 
1860 6590 5190 zoi'o ole'0 OZ;7"o 84770 I. 

9111 0280 1100 £100 1620 01100 9 
_ 1401 .7900 2100 40E*0 47500- ',' 

250'i 4047'0 2250 1100 47 

84747.1 80.70 0500- 8: 

'721.1 47520 Z 
880'1 I 6 L 47 £ 2 1 
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PARAMETER SPECIFICAT IONS

POPULATION 1

L AMBDA
0 9 _I_

0 0
0
0 0

0
2
3
0 0 0
0 1 0
0 5 0
0 0 0
0 0 6

PHI
7
8 9

10 11 12

PSI
13 14 15 16 17 18 19 20 21

P _-)PUL AT I ON 2

L AM8DA
O 0 22
O 0 0
2 0 0_10 0

C 0
O 4 0
O 5
O 0
O o 2 3

PHI
24

25_2 6
27 28 29

PS I
30 31 32 33 34 35 36 37 38

TIME= 58.91

30



MAXIMUM LIKELIHOCD SOLUTION

INV= 0

HJI. A 1-11-.!

LAMBDA

2
O. a

3
I 1 . Z, 0.485
2 , -0C O. C 0.0
7 0..0 0.0
4 0.584 O.' 0.0
5 0.C. I. L:', 0 0.0

0.0 1,174 0.0
7 0.0 0.9f : 0.0
8 0.0 0.0 1.001.
C 0,0 0,0 0,510

2 3
1 0.902
2 0.276 0.647

0.473 0.159 9.669
PSI

1 ? 3 4 5 6 7 8 9
I 0.965 0.466 1.110 0.870 0.584 0.496 0.670 0.830 G. 90'

,UL ATION ?

L Am8 DA

I 2 3

1 0.0 0.0 1.527
2 1.000 0. 0.0
_ 0._495 O. Q___ OA. 0
4 0.584 0,0 Oz 0
5 0.0 1.000 0.0
6 0.0 1.174 0._!;-
7 0.0 0.962 0.0
5 C.0 0.0 1.000
co 0.0 0.0 L. 984

P1-i I

1 2 3
0.405

2 0,300 0.604
0.004 0.047 0.105

PSI

2 3 4 5 6 7 9
1 0.867 7_1_9 0.799 0.915 0.5,76 0.526 0.662 0.953 0.89'
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TEST OF GOODNESS OF FIT

CHISQUARE WITH 52 DEGREES OF FREEDOM IS 88.7335

PROBABILITY LEVEL IS 0.001
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STANDARD

POPUL ATION 1

ERROR

LAMBDA

1 2 3

1 0.0 0.0 0.247
2 0.0 0.0 0.0
3 0.123 0.0 0.0
4 0.132 0.0_ 0.0
5 0.0 O. 0 0.0
6 0.0 0.091 0.0
7 0.0 0.082 0.0
a 0,0 Q. 0 0.0
9 0.0 0.0 0.245

PHI

1 2 3

1 0.270
2 n. 123 0.151
3 0.167 0.123 0.348

PSI

1 2 3 4 5 6 7 8 9

1 0.098 0.214 0.105 0.090 0.075 0.093 0.076 0.182 0.09

AT ION 2_POPUL

LAMBDA

1 2 3

1 0.0 0.0 0.645
0.0 0.0 0.0

3 0.123 0.0 0.0
4 0.132 0.0 0.0

0, Q 0.0
6 0.0 0.091 0.0
7 0.0 0.08? 0.0
8 0,0 0,0
9 0.0 0.0

_0,0
0.905

PHI

1 2 3

. _1 0.120
0.0952 0.063

3 0.030 0.033 0.071

P S I

1 2 3 4 5 6 7 9

0. 072 0.119 0.033 0.055 0.046 0.059 0.044 0.065 0. 11


