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ABSTRACT

In this work, we present a SIFT-Bag based generative-to-
discriminative framework for addressing the problem of video
event recognition in unconstrained news videos. In the gen-
erative stage, each video clip is encoded as a bag of SIFT
feature vectors, the distribution of which is described by
a Gaussian Mixture Models (GMM). In the discriminative
stage, the SIFT-Bag Kernel is designed for characterizing
the property of Kullback-Leibler divergence between the spe-
cialized GMMs of any two video clips, and then this ker-
nel is utilized for supervised learning in two ways. On one
hand, this kernel is further refined in discriminating power
for centroid-based video event classification by using the
Within-Class Covariance Normalization approach, which de-
presses the kernel components with high-variability for video
clips of the same event. On the other hand, the SIFT-Bag
Kernel is used in a Support Vector Machine for margin-based
video event classification. Finally, the outputs from these
two classifiers are fused together for final decision. The ex-
periments on the TRECVID 2005 corpus demonstrate that
the mean average precision is boosted from the best reported
38.2% in [36] to 60.4% based on our new framework.

Categories and Subject Descriptors

I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision—Applications

General Terms

Algorithm, Performance, Experimentations

Keywords

SIFT-Bag, Kernel Design, Within-Class Covariation Nor-
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1. INTRODUCTION
Video based event recognition is an extremely challeng-

ing task due to all kinds of within-event variations, such as
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unconstrained motions, cluttered backgrounds, object oc-
clusions, environmental illuminations and geometric defor-
mations of objects. While there exists work attempting to
detect unusual or abnormal events [37] [2] in video clips, the
research on event recognition in unconstrained real-life video
is still at its preliminary stage [11] [13]. We define the scope
of this study as to recognize pre-defined events based on the
visual cues encoded in unconstrained video, e.g. broadcast
news video, as in [35] [36].

Many statistical models, e.g., Hidden Markov Model (HMM)
[28], coupled HMM [3], and Dynamic Bayesian Network [27],
were proposed to capture the spatial and temporal correla-
tions of video events, and then the learnt models are utilized
for pre-defined video event classification or abnormal event
detection. On the other hand, appearance-based techniques
were also widely used for video event detection and classi-
fication. Ke et al. [17] applied the boosting procedure for
choosing the volumetric features based on optical flow rep-
resentations. Niebles et al. [26] adopted the spatio-temporal
interest points [8] to extract the features and other works [8,
18, 32] extracted volumetric features from salient regions [14,
18]. There also exist works that used bag-of-words model to
tackle the problem of object/event recognition [39, 40]. In
addition, Bagdanov et al.[41] adopted bag-of-SIFTs to de-
tect and recognize object appearances in videos.

Most previous research on video event analysis is limited
to video captured by fixed cameras in surveillance applica-
tions or greatly constrained live video. More challenging
is video event recognition in unconstrained domains such
as broadcast news, which contains rich information about
objects, people, activities, and events [36]. For example,
events in broadcast news video may involve small objects,
large camera motion, and significant object occlusion, and
reliable object tracking becomes very challenging.

Some recent research attempted to provide solutions for
event analysis in news video. Ebadollahi et al. [10] pro-
posed to treat each frame in a video clip as an observation
and apply HMM to model the temporal patterns of event
evolution in news video. Xu and Chang [35] proposed to
encode a video clip as a bag of orderless descriptors ob-
tained from mid-level semantic concept classifiers extracted
from all of the constituent frames, along with the global fea-
tures extracted within each video frame, and then apply the
Earth Mover’s Distance (EMD) [31] to integrate similarities
among frames from two video clips. Multi-level temporal
pyramid structure was adopted to integrate the information
from different sub-clips with integer-value constrained EMD
to explicitly align the sub-clips.
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Figure 1: Overview on the SIFT-Bag based generative-to-discriminative framework for video event analysis.

Our proposed framework for video event recognition is
motivated by the following observations. First, low-level
global features, e.g. grid colore moments, Gabor texture
histogram, and edge direction histogram, are not sufficient
to characterize the image local details. Second, without the
motion information, the accuracy of event recognition is still
reasonably good as reported in [35]. Third, the video mis-
match may exist in both spatial and temporal domains, that
is, a sub-cube of one video clip may correspond to a sub-cube
of another video clip belonging to the same event, but their
positions and scales may be greatly different in both spa-
tial and temporal domains. The third observation suggests
video matching should be conducted based on smaller ele-
ments rather than whole frames or video clips.

In this work, we present a SIFT-Bag based generative-to-
discriminative framework to address the video event recog-
nition problem. In the generative stage, each video clip is
expressed as a bag of SIFT feature vectors, motivated by the
validated effectiveness of SIFT [23] in various applications.
SIFT features are local and scale invariant, and hence su-
perior over global features in expressing the local details of
video frames. The SIFT-Bag representation facilitates video
matching cross frames and in patch level instead of frame
level. The numbers of SIFT feature vectors vary between
different SIFT-Bags. Also these vectors lack correspondence
and are noisy, possibly with outliers. To tackle these prob-
lems, we model the overall distribution of all SIFT feature
vectors using a global Gaussian Mixture Models (GMM).
Each SIFT-Bag is then represented as a specialized Gaus-
sian Mixture Models, adapted from the learnt global GMM,
base on the SIFT feature vectors within the SIFT-Bag using
the Maximum a Posteriori approach.

In the discriminative stage, we design the SIFT-Bag Ker-
nel, which is used for centroid-based and margin-based clas-
sification respectively, followed by a final fusing scheme for
video event recognition. The SIFT-Bag Kernel is designed
based on the so-called Super-Vector, which is derived from
the upper bound of the Kullback-Leibler divergence of the
specialized GMMs of any two video clips. It characterizes
a simplified representation for computing the similarity be-
tween the SIFT feature vector distributions of the SIFT-Bag
pair. This super-vector constitutes the SIFT-Bag Kernel in
a way similar to the Gaussian kernel in common feature

space. The SIFT-Bag Kernel is used for supervised learning
in two ways. On one hand, to further enhance the discrimi-
nating power of the SIFT-Bag Kernel, the Within-Class Co-
variance Normalization (WCCN) approach is utilized to de-
press the kernel components with high-variability for video
clips labeled as the same event, and then the refined kernel
is used for similarity measurement in centroid-based video
event classification. On the other hand, the SIFT-Bag Ker-
nel is used in a Support Vector Machine [32] for margin-
based video event classification. Finally, the outputs from
these two classifiers are fused together for final video event
recognition.

This proposed SIFT-Bag based generative-to-discriminative
framework is evaluated on the large TRECVID 2005 corpus
[1], and the experiments demonstrate that 1) this new frame-
work boosts the video event recognition accuracy from the
best reported 38.2% in [36] to 60.4% in term of mean av-
erage precision, and 2) SIFT-Bag representation, WCCN,
and SVM all contribute to the improvement of video event
recognition accuracy.

The rest of this paper is organized as follows. Section 2
gives an overview on the entire framework. The generative
and discriminative stages are elaborated in Section 3 and
Section 4 respectively. Section 5 provides the details on the
corpus and compares experimental results of different con-
figures of the proposed framework. The concluding remarks
are given in Section 6.

2. FRAMEWORK OVERVIEW
The purpose of this work is to provide a framework, from

video descriptor to classifier design, for video event recogni-
tion in unconstrained news video. Basically, this framework
consists of two stages, generative stage and discriminative
stage, as illustrated in Figure 1.

The generative stage includes three main parts: 1) encod-
ing each video clip as a bag of orderless SIFT feature vectors
extracted at detected salient points; 2) learning the global
Gaussian Mixture Models (GMM) of the SIFT feature vec-
tor based on the SIFT feature vector ensemble extracted
from all training sample video clips; and 3) deriving a spe-
cialized GMM for each video clip by using the Maximum a
Posteriori approach.
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Figure 2: An illustration of SIFT-Bag extraction from video clip: a) original video frames within one video
clip, b) frames with detected salient points along with the corresponding scales and dominating orientation(s),
and c) SIFT-Bag. For better viewing, please see the color pdf file.

For the discriminative stage, we design the SIFT-Bag Ker-
nel, and further use it in supervised learning for centroid-
based and margin-based classification, which consequently
improves the algorithmic capability in video event recogni-
tion.

More details on these two stages will be elaborated in next
two sections respectively.

3. GENERATIVE STAGE
In this section, we elaborate on the generative stage of the

SIFT-Bag based generative-to-discriminative framework for
video event recognition.

3.1 SIFT-Bag: Video Event Descriptor
Robust feature extraction is generally critical for image

and video based recognition tasks, and video event recog-
nition requires robust features even in greater demand due
to the existing complex motions, cluttered backgrounds, ob-
ject occlusions, environmental illuminations, and geometric
variances of objects.

Recent work of Xu and Chang [35] [36] proposed to en-
code a video clip as a bag of orderless descriptors obtained
from mid-level semantic concept classifiers extracted from
all of the constituent frames, along with the global features
extracted within each video frame, and applied the Earth
Mover’s Distance (EMD) [21] to integrate similarities among
descriptors from both video clips. These semantic concept
classifiers, however, could be inaccurate, making video clip
similarity measure even more challenging. Furthermore, al-
though the semantic concept classifiers are shown effective
in certain applications [35] [36], these classifiers are intrinsi-
cally application-dependent.

In this work, we propose to use bag of SIFT feature vectors
as video event descriptor. Scale-Invariant Feature Transform
(SIFT) [23] is a widely used algorithm to detect and describe
salient local features within an image. The SIFT features
are local and based on the appearance at particular inter-
est points, and are invariant to image scale and rotation.
They are also robust to changes in illumination, noise, mi-
nor changes in viewpoint, as well as occlusion. The SIFT

features can be used for image matching, which is useful for
object tracking and 3D scene reconstruction, and they are
application-independent. In addition to these properties,
they are highly distinctive, relatively easy to extract, and
allow for correct object identification with low probability
of mismatch. All these characteristics make SIFT feature a
good candidate for video event representation.

The extraction of SIFT features consists of four major
steps: (1) scale-space extrema detection, (2) keypoint lo-
calization, (3) orientation assignment, and (4) keypoint de-
scriptor. The first step identifies potential keypoints from
all locations and scales of the image. In the second step,
candidate keypoints are localized to sub-pixel accuracy and
eliminated if found to be unstable. The third step identifies
the dominant orientation(s) for each keypoint based on the
histogram of gradient in its local image patch. The assigned
orientation, scale and location for each keypoint enable SIFT
to construct a canonical view for the keypoint, invariant to
affine transforms. The final step builds a local image descrip-
tor for each keypoint, based upon the histogram of gradients
adjusted by the dominant orientation(s). For each keypoint,
we extract a SIFT feature vector (e.g., with a dimension of
128 or less).

For the video event recognition problem, the SIFT fea-
ture vectors are detected and extracted for each frame, and
the SIFT feature vectors from all frames within a video clip
constitute the so-called SIFT-Bag, as a video clip represen-
tation. Figure 2 illustrates the construction of a SIFT-Bag.
Bag-of-Words [7] approach was widely used to transform
length-variant orderless feature set into a word frequency
vector of a fixed length, and then conventional machine
learning algorithms can be applied based on this fixed length
representation. A drawback of this Bag-of-Words model is
that some useful information may be lost in the quantiza-
tion process. In this work, we instead use the GMM to
describe the distribution of the SIFT feature vectors within
each video clip, better retaining the information in the orig-
inal SIFT feature vectors. In the following two subsections,
we present the details about how to obtain such a distribu-
tion model.

231



3.2 Global GMM for SIFT Distribution
Different from conventional Bag-of-Words framework, where

each word is used as a separate entity, we estimate a GMM
for the distribution of all SIFT feature vectors in the SIFT-
Bag for each video clip. The reason to use a GMM for char-
acterizing the SIFT-Bag is two-fold. First, the estimated
GMM is a compact description of the underlying distribu-
tion of all SIFT feature vectors within a SIFT-Bag. Yet,
with increasing number of components, the GMM can be
arbitrarily accurate in describing such a distribution. The
estimated GMM is less prone to noise, compared with the
SIFT feature vectors themselves. Second, although explicit
correspondence between SIFT feature vectors is not pursued
in this framework, the Gaussian components in GMM im-
pose an implicit multi-mode structure of the SIFT feature
vector distribution in a video clip. The corresponding Gaus-
sian components in two video clips may imply certain spatio-
temporal correspondence, particularly when the GMMs for
different video clips are adapted from the same global Gaus-
sian Mixture Models as described afterwards.

Instead of separately estimating a GMM for each video
clip, we estimate video clip specialized GMM by adapting
from a global GMM. It is necessary and desirable, because
1) the number of the SIFT feature vectors extracted from
one video clip is relatively small and insufficient for robust
estimation of a GMM even in moderate scale; and 2) video
clip specialized GMM adapted from the same global GMM
tends to directly offer the correspondence between the Gaus-
sian components of two GMMs.

We first estimate a global GMM using SIFT feature vec-
tors extracted from all training video clips, regardless of
their event labels. It is similar to the so-called Universal
Background Model (UBM) in speech/speaker verification
[30]. Then the distribution model of the SIFT feature vector
for a certain video clip is adapted from the global GMM by
Maximum a Posteriori (MAP) [20].

Here we denote z ∈ R
d as a SIFT feature vector, where

d = 64 in this work as we use Principal Component Analysis
to reduce the feature dimension from 128 to 64. The distri-
bution of the variable z is modeled by Gaussian Mixture
Models as

p(z; Θ) =

K
∑

k=1

wkN (z; µk, Σk), (1)

where Θ = {w1, µ1, Σ1, · · · }, wk, µk and Σk are the weight,
mean, and covariance matrix of the kth Gaussian compo-
nent, respectively, and K (set as 512 in this work) is the
total number of Gaussian components.

The density is a weighted linear combination of K uni-
modal Gaussian densities, namely,

N (z; µk, Σk) =
1

(2π)
d

2 |Σk|
1

2

e−
1

2
(z−µk)T Σ−1

k
(z−µk). (2)

We obtain a maximum likelihood parameter set of the
global GMM by the conventional Expectation-Maximization
(EM) approach. For computational efficiency, the covariance
matrices are restricted to be diagonal [30], which proves to
be effective and computationally economical.

3.3 Clip Specialized GMM by Adaptation
Generally the number of SIFT feature vectors is not enough

for robustly learning the parameters of the video clip special-
ized GMM. On the other hand, intuitively the global GMM

learnt from all training video clips may provide useful priors
for the video clip specialized GMM. Therefore, it is desirable
that the video clip specialized GMMs are derived in an Max-
imum a Posteriori way instead of an Maximum Likelihood
way.

More specifically, we derive the video clip specialized GMM
by adapting the mean vectors of the global GMM and re-
taining the mixture weights and covariance matrices. Mean
vectors are adapted using MAP adaptation with conjugate
priors [20], thus the parameters µ̂k’s are selected to maxi-
mize

ln p(θ̂, Z) =
K

∑

k=1

lnN (µ̂k; µk, Σk/r)

+

H
∑

i=1

ln

K
∑

k=1

wkN (zi; µ̂k, Σk), (3)

where θ̂ = {µ̂1, . . . , µ̂K} is the set of video clip specialized
GMM parameters, Θ = {w1, µ1, Σ1, . . .} are the parameters
of the global GMM, and Z = {z1, . . . , zH} are the SIFT
feature vectors extracted from the video clip being mod-
eled. As shown, the conjugate prior for parameter µ̂k is
itself Gaussian, N (µ̂k; µk, Σk/r), with a covariance matrix
shrunk by a smoothing parameter r. The joint distribution
function p(θ̂, Z) has the same form as the likelihood function

p(Z|θ̂), and may therefore be optimized in the same way as
a likelihood function, i.e., using EM with the hidden vari-
able Pr(k|zi) as the posterior probability of the Gaussian
component k for given SIFT feature vector zi [20].

So in the E-step, we compute the posterior probability as

Pr(k|zi) =
wkN (zi; µk, Σk)

∑K
j=1 wjN (zi; µj , Σj)

, (4)

nk =
H

∑

i=1

Pr(k|zi), (5)

and then the M-step updates the mean vectors, namely,

Ek(Z) =
1

nk

H
∑

i=1

Pr(k|zi)zi, (6)

µ̂k = αkEk(z) + (1 − αk)µk, (7)

where αk = nk/(nk + r). MAP adaptation using conjugate
priors is useful because it interpolates, smoothly, between
the hyper-parameters µk and the maximum likelihood pa-
rameters Ek(Z). If a Gaussian component has a high prob-
abilistic count, nk, then αk approaches 1 and the adapted
parameters emphasize the new sufficient statistics; other-
wise, the adapted parameters are determined by the global
model. In this work, r is adjusted, empirically, depending
on the total number of SIFT feature vectors for each video
clip.

4. DISCRIMINATIVE STAGE
Similar to video clip specialized GMM, we can also ob-

tain the event specialized GMM for certain event, and then
we can directly conduct video event recognition using the
log likelihood ratio criteria [30], which is yet often not the
best because 1) the derived event specialized model is not
exactly accurate due to the assumptions in MAP adapta-
tion for the purpose of simplicity, and 2) the learning of
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global and event specialized GMMs is in a generative man-
ner, and hence does not guarantee the optimality in dis-
criminating power. In this section, we introduce the design
of more powerful classifiers by supervised learning. More
specifically, the discriminative stage of the SIFT-Bag based
framework for video event recognition consists of four steps:
1) design of SIFT-Bag Kernel, 2) Within-Class Covariation
Normalization (WCCN) on SIFT-Bag Kernel for centroid-
based video event recognition, 3) integration of SIFT-Bag
Kernel and Support Vector Machine for margin-based video
event recognition, and 4) classifier fusing for final classifica-
tion.

4.1 SIFT-Bag Kernel
Besides converting the data of non-fixed lengths into fixed

length, designing specialized kernel is also a very popular
way to apply conventional machine learning algorithms on
data of variant lengths. Our work belongs to the second
category. The designed kernel is derived for characterizing
the KL-Divergence [24] between two video clip specialized
GMMs.

Suppose we have two video clips with extracted SIFT-
Bags as Za and Zb. Then, from the GMM adaptation pro-
cess in Equations (4-7), we can obtain two adapted GMMs
for them, denoted as ga and gb. Consequently, each video
clip is represented by a specialized GMM distribution model,
and a natural similarity measure between them is the Kullback-
Leibler divergence,

D(ga||gb) =

∫

ga(z)log

(

ga(z)

gb(z)

)

dz. (8)

The Kullback-Leibler divergence itself does not satisfy the
conditions for a metric, but there exists an upper bound from
the log-sum inequality,

D(ga||gb) ≤
K

∑

k=1

wkD(N (z; µa
k, Σk)||N (z; µb

k, Σk)), (9)

where µa
k denotes the adapted mean of the kth component

from SIFT-Bag Za, and likewise for µb
k. Based on the as-

sumption that the covariance matrices are unchanged during
the MAP adaptation process, the right side of the above in-
equality is equal to

d(Za, Zb) =
1

2

K
∑

k=1

wk(µa
k − µb

k)T Σ−1
k (µa

k − µb
k). (10)

It is easy to prove that d(Za, Zb)
1

2 is a metric function,
and can be considered as the Euclidean distance based on
the Super-Vector in another high-dimensional feature space,

φ(Za) = [

√

w1

2
Σ

− 1

2

1 µa
1 ; · · · ;

√

wK

2
Σ

− 1

2

K µa
K ], (11)

and then d(Za, Zb) = ‖φ(Za) − φ(Zb)‖
2.

In this work, we use this Super-Vector to design a kernel
defined as

k(Za, Zb) = e−‖φ(Za)−φ(Zb)‖2/δ2

= e−d(Za,Zb)/δ2

, (12)

where δ is a constant for controlling the final similarity and
we set it empirically in the experiments. Since the kernel is
based on SIFT-Bag descriptor, and hence it is called SIFT-
Bag Kernel hereafter.

4.2 Centroid-based Classification by WCCN
The KL-divergence is directly derived from the generative

GMM and does not consider inter-class or intra-class rela-
tionships, and hence it does not necessarily provide good
discriminating power. More specifically, the Super-Vector
φ(Za) is computed directly from the video clip Za by adapt-
ing the global GMM, and hence is not ensured to be close to
the Super-Vectors computed from video clips labeled as the
same event. To further enhance the discriminating power,
we propose applying Within-Class Covariance Normaliza-
tion (WCCN) [4], which depresses the components with high-
variability for video clips labeled as the same event.

The above kernel components are assumed in this work to
be characterized by a subspace spanned by the projection
matrix V . The goal of within-class covariance normalization
is to identify the subspace, V , that has maximum inter-
SIFT-Bag distance (maximum ‖V T φ(Zi) − V T φ(Zj)‖

2) for
video clip pair with the same label. Expressing this goal in
the form of an optimality criterion, we find that

V = arg max
V T V =I

∑

i�=j

||V T φ(Zi) − V T φ(Zj)||
2Wij , (13)

where Wij=1 when Zi and Zj belong to the same event,

otherwise Wij = 0. Denote Ẑ = [φ(Z1), φ(Z2), · · · , φ(ZN)],
where N is the total number of training sample video clips,
then the optimal V consists of the eigenvectors correspond-
ing to the top few largest eigenvalues of the matrix Ẑ(D −

W )ẐT , where D is a diagonal matrix with Dii =
∑N

j=1 Wij , ∀i.
V identifies the components in which feature similarity

and label similarity are most out of sync (high label simi-
larity corresponds to low feature similarity, and vice versa).
We must de-emphasize the components V T φ(Zi) prior to
computing the similarity.

By depressing the undesired components, the refined SIFT-
Bag Kernel is defined as

K(Za, Zb) = e−[φ(Za)−φ(Zb)]T (I−V V T )[φ(Za)−φ(Zb)]/δ2

, (14)

where we have taken advantage of the equality (I−V V T )(I−
V V T ) = (I − V V T ).

The video event recognition can be conducted directly
based on the kernel similarity and the Nearest Neighbor ap-
proach. Here we use the kernel similarity between a testing
video clip and the centroid of an event for similarity met-
ric, where the centroid of an event is defined in the Super-
Vector space, namely, the centroid, Z̄s, of the s-th event
corresponds to the Super-Vector as

φ(Z̄s) =
1

Ns

∑

i∈πs

φ(Zi), (15)

where Zi is the SIFT-Bag extracted from the i-th training
video clip, Ns is the number of video clips belonging to
the s-th event, and πs denotes the index set of the samples
belonging to the s-th event. Then, the final video event
recognition is based on normalized similarity vector as

C1(Z) = [
K(Z, Z̄1)

∑

s K(Z, Z̄s)
,

K(Z, Z̄2)
∑

s K(Z, Z̄s)
, · · · ,

K(Z, Z̄S)
∑

s K(Z, Z̄s)
],

where S (=10 in this work) is the total number of predefined
events, and Z is the SIFT-Bag extracted from a test video
clip.
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4.3 Margin-based Classification by SVM
To enhance the discriminating power, we can also use a

Support Vector Machine (SVM) [29] [12] [16] [19] [38] com-
bined with our designed SIFT-Bag Kernel for margin-based
video event classification. For a two-class problem, e.g.
shooting vs. non-shooting case, the decision function for a
test video clip with SIFT-Bag as Z has the following form:

g(Z) =
∑

i

αtytk(Z, Zi) − b, (16)

where k(Z, Zi) is the value of a kernel function for the train-
ing SIFT-Bag Zi and the test SIFT-Bag Z, yi is the class
label of Zi (+1 or −1), αt is the learnt weight of the training
sample Zi and b is the threshold parameter. The train-
ing samples with weight αt > 0 are called support vec-
tors. The support vectors and their corresponding weights
are learned using the standard quadratic programming op-
timization process or other variations. In this project, we
use tools from libsvm [5] based on the multi-class SVM in
our implementations.

The multi-class SVM can also output a so-called confi-
dence vector, denoted as

C2(Z) = [p1(Z), p2(Z), · · · , pS(Z)], (17)

where ps(Z) can be roughly considered as the probability of
the video clip with SIFT-Bag Z belonging to the s-th video
event. Then, the classification can be conducted based on
the output values in C2(Z).

4.4 Classifier Fusion
The motivations of centroid-based video event recognition

and margin-based video event recognition are essentially dif-
ferent. Our offline experiments show that the outputs from
these two classifiers are often complemental to each other,
which motivates us to fuse these two classifiers to further
enhance the classification capability of the whole frame-
work. In this work, we use a simple criteria for the fusion
of the outputs from these two classifiers. The vectors C1(Z)
and C2(Z) both roughly measures the probabilities of a test
video clip belonging to different video events, and hence we
can simply average them for a more robust output as

C(Z) =
C1(Z) + C2(Z)

2
, (18)

and then the classification can be done based on the averaged
probability vector C(Z).

5. EXPERIMENTS
Our experiments are conducted over the large TRECVID

2005 video corpus as in [36], and include two parts: 1) com-
parison of different configurations of our framework with
the state-of-the-art algorithm, called Temporally Aligned
Pyramid Matching (TAPM) [35] [36], and 2) extensive study
of algorithmic properties, i.e., SIFT-Bag visualization, eval-
uation by confusion matrix, and algorithmic robustness.

5.1 Corpus and Metric
As in [35], the following ten events are chosen from the

LSCOM lexicon [9] [25] [36] [6]: Car Crash, Demonstra-
tion Or Protest, Election Campaign Greeting, Exiting Car,
Ground Combat, People Marching, Riot, Running, Shoot-
ing, and Walking. They are chosen because these events are

relatively frequent in the TRECVID data set [25] and are
intuitively recognizable from visual cues. The number of
video clips for each event class ranges from 54 to 877. When
training the SVM, we use the video clips from the other nine
events as the negative samples. We randomly choose 60% of
the data for training and use the remaining 40% for testing,
with the same configurations as in [35][36].

It is computationally prohibitive to compute the similari-
ties among video clips and train multiple SVMs with cross-
validation over multiple random training and testing splits.
Therefore, we reported the results from the split used in [35]
[36]. In the experiments, the feature extraction for all video
clips costs about four hours for a 15-node computer clus-
ter with a dual-core 2.8GHz CPU and 1G memory for each
node; the global GMM training costs about one hour; the
MAP adaptation for all video clips costs about 80 minutes;
the WCCN and SVM step, along with the final classification,
is very fast, and can be finished within few minutes.

We use non-interpolated Average Precision (AP) [33][34]
as the performance metric, which is the official performance
metric in TRECVID. It reflects the performance on multi-
ple average precision values along a precision-recall curve.
The effect of recall is also incorporated when AP is com-
puted over the entire classification result set. Mean Average
Precision (MAP) is defined as the mean of APs over all ten
events.

5.2 Comparison With TAPM
TAPM is the state-of-the-art algorithm for video event

recognition in unconstrained news video. We also got the re-
sult by Bag-of-Words quantization with SVM classification.
Table 1 summarizes the comparison experimental results for
different algorithms. From all these results, we can have a
set of interesting observations:

1. The mean average precision is boosted from the best
reported 38.2% in [36] to 60.4% based on our new
framework with fusing stage.

2. For the video event of Election Campaign Greeting,
the average precision is dramatically increased from
the 13.9% to 94.8%.

3. The fusion of the two classifiers can generally further
improve the average precision compared with the single
classifier individually.

4. The centroid-based algorithm, namely KN+WCCN,
shows to be comparable with the margin-based algo-
rithm, namely KN+SVM.

5. Our proposed framework shows to work not as good
as the TAPM algorithm for the video event of Exiting
Car, and a possible explanation is that our framework
does not explicitly pursuit temporal information, and
the video event of Exiting Car heavily depends on the
temporal contextual information.

6. The components of GMM representation (compared
with Bag-of-Words quantization), SIFT-Bag Kernel de-
sign, WCCN, and SVM all contribute to the whole
framework, and the best result is achieved based on
the integration of them all.

234



Table 1: Comparison of Average Precision (%) using different algorithms. Note that: 1) TAPM-1 is the
TAPM algorithm with same weights for all the three levels; 2) TAPM-2 refers to the TAPM algorithm
with different weights for the three levels; 3) Hist+SVM refers to Bag-of-Words quantization with SVM
classification; 4)KN+NN is the algorithm based on SIFT-Bag Kernel and Nearest Neighbor classifier; 5)
KN+SVM means SIFT-Bag Kernel with SVM classification; 6) KN+WCCN refers to the centroid-based
algorithm using WCCN; and 7) WCCN+SVM refers to the algorithm based on the fusion of two classifiers.
The last row, referred to as Mean AP, is the mean of APs over ten events.

Event Name TAPM-1 [36] TAPM-2 [36] Hist+SVM KN+NN KN+SVM KN+WCCN WCCN+SVM

Car Crash 51.1 51.0 33.0 33.5 39.7 46.5 53.3
Demonstration 23.6 23.6 38.2 38.3 49.3 48.5 50.1

Election Campaign 13.9 13.7 82.5 79.2 92.6 94.8 94.4
Exiting Car 50.7 50.1 22.1 31.5 35.2 33.9 38.1

Ground Combat 44.2 44.1 68.1 58.2 71.4 72.8 73.4
People Marching 25.8 25.8 70.0 67.7 75.8 76.9 78.7

Riot 22.7 22.9 16.9 30.9 24.9 25.4 27.7
Running 86.7 86.6 88.1 89.3 91.4 89.9 91.9
Shooting 10.4 9.9 18.0 20.0 21.9 22.7 23.1
Walking 52.4 52.8 52.6 59.3 73.3 66.5 73.8

Mean AP 38.2 38.1 49.0 50.8 57.6 57.8 60.4

5.3 Extensive Study
In this subsection, we present an extensive study of the

SIFT-Bag based generative-to-discriminative framework in
three aspects as follows.

5.3.1 SIFT-Bag Visualization

A SIFT-Bag consists of the ensemble of SIFT feature vec-
tors extracted from a video clip. We present a visualization
approach to show that by modeling the SIFT feature vector
distribution of each SIFT-Bag using a GMM, we implicitly
establish the correspondence between the variant numbers
of SIFT feature vectors in two video clips.

First, we project the SIFT feature vector into a 2D feature
space using dimensionality reduction techniques, e.g. Local-
ity Preserving Projection [15]. All the component means of
the global GMM are mapped to this 2D space. For each
SIFT feature vector, its coordinates in this 2-D space are
the sums of the coordinates of the component means of the
global GMM, weighted by the posteriors of the components
for the given SIFT feature vector.

Figure 3 shows the 2D distributions of the SIFT-Bags from
three video clips, two of which belonging to the same video
event of Election Campaign Greeting, and the other one be-
longing to the video event of Running. We can see that the
SIFT feature vector distributions in the 2D space are charac-
terized by distribution within different components, as indi-
cated by the different colors in Figure 3. These components
implicitly establish the correspondence between feature vec-
tors in different SIFT Bags, which shows that SIFT-Bag
Kernel offers the capability to match the patches from two
video clips, similar in content yet different in spatial po-
sitions, scales, and temporal positions. For the video clips
from the same event we can see that the feature vector distri-
butions within the corresponding components tend to share
a similar structure, while they are relatively more different
for those from different events.

5.3.2 Evaluation by Confusion Matrices

Besides comparing our framework with the TAPM based

on average precision in Table 1, we present more details of
the performance using confusion matrices as in Figure 4.

From these confusion matrices, we observe that: 1) when
evaluated by the confusion matrices, the fusion of classifiers
again improves the recognition accuracy; and 2) the better
the overall recognition accuracy is, the more possible the
video event of Shooting is mis-recognized; and a possible
explanation is that the event of Shooting is visually very
similar to the event of Ground Combat, and cannot benefit
from the improved discriminating power for most general
events.

5.3.3 Algorithmic Robustness

For video event recognition, the boundaries of the video
clip are often ambiguous, and also the frame rate of the
video clip may vary. A good algorithm should be robust to
these factors, and hence we present a set of experiments to
evaluate the algorithmic robustness to these factors. In these
experiments only a random portion of the frames within each
video clip are used to construct the SIFT-Bag, with other
aspects of the video event recognition framework unchanged.

The detailed experimental results are shown in Figure 5,
with nine configurations using percentages of frames as 20%,
30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% respectively.
From these results, we can see that our framework is robust
to the variation of boundaries and the frame rates of video
clips. In particular, even when only 20% of the frames are
used, our result (55.3%) still outperforms the best result
(38.2%) reported in [36].

6. CONCLUSIONS
In this work, we study the challenging video event recog-

nition problem, and propose a generative-to-discriminative
framework based on SIFT-Bag representation. The SIFT-
Bag representation offers the capability to implicitly match
the similar contents within two video clips, different in spa-
tial positions, scales, and temporal positions. The designed
SIFT-Bag Kernel well characterizes the properties of the
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Figure 3: Visualization of SIFT-Bag in discriminating power and the capability of matching objects different
in spatial positions, scales, and temporal positions. For better viewing, please see the color pdf file.

KL-divergence between two GMMs used to model the SIFT
feature distributions of two video clips. The WCCN and
SVM in the discriminative stage further boost video event
recognition performance. The experiments shows that mean
average precision of video event recognition is boosted from
the best reported 38.2% in [36] to 60.4% using our proposed
SIFT-Bag based framework. Our future work will focus on
utilizing the motion features and spatial-temporal informa-
tion to further enhance the performance of video event recog-
nition in unconstrained news video.
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