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Abstract

Music identification via audio fingerprinting has been an active research field in recent years. In the real-world

environment, music queries are often deformed by various interferences which typically include signal distortions and

time-frequency misalignments caused by time stretching, pitch shifting, etc. Therefore, robustness plays a crucial role

in music identification technique. In this paper, we propose to use scale invariant feature transform (SIFT) local

descriptors computed from a spectrogram image as sub-fingerprints for music identification. Experiments show that

these sub-fingerprints exhibit strong robustness against serious time stretching and pitch shifting simultaneously. In

addition, a locality sensitive hashing (LSH)-based nearest sub-fingerprint retrieval method and a matching

determination mechanism are applied for robust sub-fingerprint matching, which makes the identification efficient

and precise. Finally, as an auxiliary function, we demonstrate that by comparing the time-frequency locations of

corresponding SIFT keypoints, the factor of time stretching and pitch shifting that music queries might have

experienced can be accurately estimated.

1 Introduction
With the proliferation of a huge amount of digital music,

online listening, downloading, and searching have become

very popular applications among end users of the Internet

in the past decade. Among the applications, music iden-

tification that is capable of recognizing unknown music

segments has attracted much attention from both the

research community and the industry. Music identifica-

tion technique relies on an audio fingerprint which is

defined as a unique and compact digest characterizing and

summarizing the perceptually relevant audio content. Dif-

ferent methods have been proposed to construct a valid

fingerprint, exploiting the properties of music characteris-

tics as in [1-3] or applying computer vision techniques on

the spectrogram of music signals as in [4,5]. Audio finger-

print is used in the music identification typically following

the framework described in [6]. First, the algorithm calcu-

lates fingerprints of the original music signals and stores
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them together with affiliated metadata into a fingerprint

database; then, when presented with an unlabeled and

probably distortedmusic segment, it extracts a fingerprint

from the query audio and compares it with those in the

database. If a match is found for the query fingerprint, the

unlabeled music segment is identified and the associated

metadata such as information concerning singers, album,

lyrics, and the like is returned.

The fingerprint for music identification should be

highly discriminative over a large number of distinct fin-

gerprints, compact for ease of storing and comparing,

scalable to a large database of music records or a large

number of concurrent identifications, and robust against

a range of environmental distortions and transmission

interferences. Among the above properties, robustness

plays a central role. In the real world, a person might

be interested to know the lyrics or singer of a song

played in a noisy environment, then she/he records a

short piece of music using a mobile phone and sends it

to a remote server for identification through fingerprint

matching. In this circumstance, to achieve a success-

ful matching, the extracted fingerprint must be robust

against serious distortions caused by, for example, poor
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speakers, cheap microphones, background noise, echo,

and wireless telecommunication. Moreover, many musi-

cal recordings played by TVs or radio broadcasts are

often played at arbitrarily different speeds with the pitch

changed or unchanged to comply with strict program

schedule constraints, which constitutes the most chal-

lenging problem in the context of music identification.

Specifically, such time-frequency distortions can be mod-

eled by time scaling (or linear speed change) which mod-

ifies both duration (or speed) and pitch of music signals

by resampling, time stretching (or time scale modifica-

tion (TSM)) which changes only the duration using cer-

tain algorithms, and pitch shifting which merely causes

the change of pitch. Roughly speaking, time scaling can

be approximately deemed as the combination of time

stretching and pitch shifting. Compared with other signal

degradations which only influence the perceptual quality,

time stretching/scaling and pitch shifting usually lead to a

more significant drop of identification performance since

they bring about desynchronization problems in the time

and/or frequency domains.

In this paper, we extend our previous work of [7] and

propose a novel music identification algorithm that is

highly robust to not only common audio signal distortions

but also serious time- and frequency-domain synchro-

nization warping simultaneously. The basic idea of our

algorithm follows the line of applying computer vision

techniques for music identification as did in [4] and [5].

Specifically, we first convert a music signal into a two-

dimensional spectrogram image, then a powerful local

descriptor, i.e., scale invariant feature transform (SIFT), is

computed from the image to construct a sub-fingerprint.

Thanks to the stability of the SIFT feature, the pro-

posed algorithm exhibits a high discrimination and strong

robustness. To our knowledge, this is the first algorithm

that can simultaneously resist the abovementioned three

challenging distortions, namely time scaling, time stretch-

ing, and pitch shifting. Moreover, introducing the SIFT

feature into the spectrogram image brings an auxiliary

contribution to this paper, i.e., a novel method of estimat-

ing the factor-of-time stretching and pitch shifting, which

provides further information on how the query music has

been wrapped in time and frequency. To make the iden-

tification efficient and precise, a locality sensitive hashing

(LSH)-based nearest sub-fingerprint retrieval method and

a matching determination mechanism are also integrated

into this algorithm.

The remainder of the paper is organized as follows.

Section 2 summarizes related works. Section 3 describes

the processes of spectrogram image construction and

robust audio fingerprint extraction. Section 4 details the

LSH-based nearest sub-fingerprint retrieval method and

the matching determination mechanism for robust sub-

fingerprint matching. Section 5 introduces the principle

of factor estimation of time stretching and pitch shift-

ing. Finally, robustness and identification experiments are

shown in Section 6 and the whole paper is concluded in

Section 7.

2 Related work
Recently, a variety of audio fingerprinting algorithms have

been proposed in the literature, each with a different

degree of robustness. Most of them generate audio finger-

prints from spectral features and obtain enough robust-

ness against common audio signal deformations such as

audio coding and noise addition and equalization. How-

ever, only few methods exhibit a certain capability of

resisting time stretching/scaling and pitch shifting, as

summarized below. Philips robust hash (PRH) [8] is one

of the most significant methods and is usually deemed

as a milestone. By segmenting audio signals into heavily

overlapped (31/32) frames and extracting a 32-bit sub-

fingerprint from 33 Bark-scale frequency sub-bands of

each frame according to the energy differences between

sub-bands, PRH exhibits a certain robustness when audio

lengths are stretched from−4% to +4%a on a small dataset

consisting of only four music excerpts. Unfortunately, the

basic idea of this algorithm makes it susceptible to even

a small amount (e.g., ±1%) of frequency misalignment

caused by speed change, with significantly dropped per-

formance. To overcome the pitch-sensitive problem, the

Philips authors commented that two simple methods can

be utilized. One is to store the original audio and its pitch-

shifted versions into the database, and the other attempts

to use multiple pitch-shifted queries for each audio clip to

be identified. However, the exhaustive nature makes both

methods inefficient. Namely, the first needsmorememory

space, and the second aggravates the retrieval complex-

ity since it needs to exhaustively search within a set of

possible scaling parameters.

To enhance the speed-change robustness of PRH, sev-

eral extensions of this method have been developed. In

[9], the Philips authors modified their original algorithm

and achieved ±6% tolerance of speed change by exploit-

ing shift invariance of the auto-correlation function of a

densely sampled power spectrum, which logarithmically

portions the energy from 300 to 2,000 Hz into 512 instead

of the original 33 sub-bands. Seo et al. [10] extracted

fingerprints from the phase components of the Fourier-

Mellin transform of locally normalized audio spectrum. In

a rather small testing dataset with only four different orig-

inal excerpts, scale invariance of the transform renders the

fingerprints robust against pitch shifting caused by speed

changes up to ±10%, and local normalization ensures the

robustness against other common audio manipulations.

Bellettini and Mazzini [11] replaced the original 33 Bark-

scale sub-bands of PRH with the sub-band division in

terms of 12-tone equal temperament (12-TET). Under the
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constraints of musical scale, the authors assume that gen-

erally pitch shifting will only occur on integer-multiples of

semitone, and their algorithm achieves as high as +41.42%

(+6 semitones) resistance against frequency misalignment

by shifting the fingerprint bits. As indicated above, the

major drawback of this method is that it cannot handle

random pitch shifting, which lowers its value.

Motivated by the human auditory algorithm, Sukittanon

et al. [12] proposed to use long-term modulation scale

features for audio content identification. Combined with

channel compensation and sub-band normalization tech-

niques, this method achieves certain insensitivity to dis-

tortions such as low-bit-rate MP3 and WMA, frequency

equalization, dynamic range normalization, and TSM

(±5%). Whereas, experiments on pitch shifting are not

reported. Seo et al. [13] first divided the audio spectrum

(300 ∼ 5,300 Hz) into 16 critical bands, then calculated

a normalized frequency centroid for each critical band

and used the 16 frequency centroids as the fingerprint of

an audio frame. This fingerprint is able to resist moder-

ate time stretching (±4%) and slight linear speed change

(±1%). Malekesmaeili and Ward extracted audio finger-

prints from adaptively scaled patches of the time-chroma

representation, i.e., chromagram of the input audio sig-

nal [14]. The proposed fingerprint shows high robustness

against tempo change and pitch shifting.

In [15], Wang described an audio fingerprinting algo-

rithm whose ideas have been used in the famous Shazam

music matching serviceb. This algorithm first identifies

spectrogram peaks which are considered stable under

noise and distortion. It then forms these peaks into pairs

and uses the parameters of these pairs (frequencies of the

peaks and the time interval between them) to generate

fingerprints. Experiments show that the Wang algorithm

is robust to noise addition and GSM compression, but its

basic principle makes it sensitive to time and frequency

synchronization distortions. In [16], Fenet et al. extended

theWang algorithm by using constant Q transform (CQT)

and a new peak pair encoding mechanism. These modifi-

cations make the algorithm more robust to pitch shifting.

In [17], Dupraz and Richard proposed a similar algorithm

and used an ensemble of time-localized frequency peaks

as the fingerprint for audio identification. By determin-

ing a constant pitch-shifting factor and multiplying all

peak frequencies of the query signal by this factor prior

to fingerprint matching, this method allows for promis-

ing audio identification performance with a +5% speed

change.

AudioPrint [18], proposed by IRCAM, is a music

recognition algorithm based on short-term and long-

term frames (double-nested) short-time Fourier trans-

form (STFT). Ramona and Peeters performed two-round

improvements on this alogrithm in 2011 and 2013. In the

first round, they improve the algorithm by introducing

perceptual scales for amplitude and frequency (Bark

bands) and then synchronizing the stream and database

frames using an onset detection algorithm [19]. In the sec-

ond round, cosine filters are introduced in the short-term

spectral analysis to compensate the effect of pitch shift-

ing. A simple solution is proposed to determine the frame

positions, robust to audio degradations, with nearly no

additional cost [20].

As opposed to the above audio identification algorithms

based on fixed-length framing plus heavy overlap, which

are usually more or less susceptible to time variations,

Bardeli and Kurth proposed in [21] to divide audio sig-

nals into unequal-length disjoint time intervals. The basic

idea is to acquire invariance against cropping and time

scaling by picking out prominent local maxima of spec-

tral features as segmentation boundaries. Experiments

demonstrate that this algorithm allows identification of

audio signals time-scaled up to ±15%, which notably

outperforms most fixed-length framed methods.

Spectral features characterizing local spectral or har-

monic behavior of a signal serve as the basis of most

existing audio fingerprinting methods. However, several

other types of interesting audio features have also been

investigated. For example, Kurth et al. proposed in [3] a set

of time-related features that capture local tempo, rhythm,

and meter characteristics of music signals. By quantizing

estimated tempos into certainmodular tempo classes sim-

ilar to the well-known pitch chroma classes, a so-called

cyclic beat spectrum (CBS) invariant with respect to

tempo doubling is obtained, which endows the designed

algorithm with high-identification rates even under time

scaling from −21% to +26%.

In [22], Lyon proposed a machine-hearing algorithm

structure, which first converts the one-dimensional sound

into a two-dimensional auditory image and then extracts

features from the image to work with a following train-

able classifier or decision module. By using this struc-

ture, a machine-hearing problem can be transformed

into a machine vision problem, and the ideas and tech-

niques from the vision field (e.g., sparse representation,

compression, multi-scale analysis, and keypoint detec-

tion) can be used to solve the machine-hearing prob-

lem. As an illustration, Lyon et al. showed in [23] that

sparse-coded auditory image features degrade less in

interferences than vector-quantized Mel-frequency cep-

stral coefficients (MFCCs). In the literature, there have

been several attempts that apply computer vision tech-

niques for music identification. In [4], Ke et al. designed

an algorithm that automatically learns local descriptors

from the spectrogram via pairwise boosting. In con-

trast, Baluja and Covell [5] first divided the spectrogram

into smaller spectral images and then decomposed these

images using Haar wavelet. Audio fingerprints are finally

obtained by binary quantization of retained significant
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wavelet components. Unfortunately, the algorithm in

[4] is by nature very weak to time-varying distortions

and there are no related experimental results reported,

and the algorithm in [5] shows only certain robust-

ness against ±10% TSM and slight resistance under ±

2% speed change.

3 Robust audio fingerprint extraction
Music signals are often contaminated by various distor-

tions in the real-world environment. Therefore, creating

highly robust feature representation is a prerequisite and

challenging task for music identification. In this paper, we

propose to use a SIFT local feature originating from the

computer vision field for music identification. Although

the link betweenmusic identification and computer vision

has been made in several published algorithms such as

[4] and [5], we argue that a SIFT descriptor calculated in

a spectrogram image is indeed a novel and rather robust

feature. The details of calculating a SIFT-based audio

fingerprint are described as follows.

3.1 Spectrogram image construction

The first step of our algorithm is to construct a spectro-

gram image from the input music signal. This is accom-

plished as follows.

1) Perform STFT on the music signal to obtain the

linear spectrogram, using Hanning-windowed frames of

185.76 ms (8,192 points) with a three-fourth overlap. The

frame length and overlap are selected based on the fol-

lowing considerations. First, a long frame length endues

the spectrogram with a low time resolution, which makes

the representation insensitive to time variations. Second,

under the framework of fixed framing, heavy overlap is

a prerequisite to deal with the lack of synchronization

between the short query music and the long original sig-

nal [24], since excerpts only a few seconds long are used to

identify the whole audio signals. Classical PRH algorithm

[8] uses an overlap up to 31/32; herein, we experimen-

tally adopt three fourths to balance the desynchronization

resistance and searching speed.

2) Quantize the linear spectrogram obtained above into

64 logarithmically spaced frequency sub-bands in terms

of Equation 1 so that frequency multiplication can be

reduced to addition:

fi = fmin × 2
i−1
12 , (1)

where fi is the central frequency of the ith sub-band,

i = 1, . . . , 64 is the sub-band index, and fmin = 318

Hz is the minimum frequency. Therefore, the spectro-

gram adopted ranges from 318 to 12,101 Hz, which covers

the five medium-to-high perceptually important octaves

and is large enough to extract more local image features

described in the next section for robust matching.

3) Convert the logarithmic spectrogram into a gray

image where image features can be extracted. To achieve

this end, the spectrogram is first transformed into a log-

magnitude representation as follows:

S(i, j) = log |X(i, j)|, (2)

where X is the spectrogram and i and j are the fre-

quency sub-band index and the frame index, respec-

tively. Compared with the linear-magnitude version, the

log-magnitude spectrogram reveals more about small-

magnitude components where robust local features can

also be extracted. After obtaining S, the spectrogram

image I is then generated as:

I(i, j) =
S(i, j) − min(S)

max(S) − min(S)
× 255, (3)

where min(S) and max(S) are the minimum and maxi-

mum values of S, respectively.

3.2 Relationships between audio manipulations and

spectrogram image transformations

As mentioned in the introduction, time stretching, pitch

shifting, and time scaling are the threemost arduous audio

distortions for music identification algorithms to resist.

Since time scaling can be roughly deemed as the combi-

nation of time stretching and pitch shifting, in this sub-

section, we only take time stretching and pitch shifting

into consideration and reveal that they can be distinctly

described as corresponding spectrogram image transfor-

mations. Remember that time stretching merely changes

the speed of an audio signal without affecting its pitch.

Therefore, when an audio signal is time-stretched, its

spectrogram image remains stable in the frequency axis

with only the time axis lengthened or shortened, see sub-

figures (a), (b1), and (c1) in Figure 1 for example. By

contrast, pitch shifting just modifies the pitch of an audio

signal with no influence on its duration. When an audio

signal is pitch-shifted, its spectrogram image remains

unchanged in the time axis with only frequency compo-

nents translated upwards or downwards; see sub-figures

(a), (d1), and (e1) in Figure 1 for instance.

To make things clearer, below we give some formalized

explanations on the relations between pitch shifting and

spectrogram image translation. Given a signal component

with frequency f, its energy distributes around the sub-

band with index Y (f ), which is calculated by inverting

Equation 1 as below:

Y ( f ) = Round

(
12 × log2

f

fmin
+ 1

)
, (4)

where Round(x) rounds x to the nearest integer. If the sig-

nal component is pitch-shifted by a factor k, which is neg-

ative when the pitch decreases and positive when the pitch

increases, it will move to a new frequency (1+k)f , with its
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Figure 1 Relationships between audio manipulations and corresponding spectrogram image transformations. (a) is the spectrogram

image of an original 10-s music clip. From the second row, the leftmost column displays spectrogram images of four audio excerpts distorted from

the original clip: (b1) −20% time stretching, (c1) +20% time stretching, (d1) −30% pitch shifting, and (e1) +30% pitch shifting. The middle column

displays corresponding images after spectrogram image (a) is modified with image transformations: (b2) 20% time-axis shortening, (c2) 20%

time-axis lengthening, (d2) six frequency bins downshifting, and (e2) five frequency bins upshifting. The rightmost column (b3, c3, d3, e3)

accordingly illustrates the differences between corresponding sub-figures of the leftmost and the middle columns. Note that warmer colors

represent larger spectral differences while cooler colors represent smaller ones.

energymoved to the vicinity of the Y ((1+k)f )th sub-band.

Note that the frequency-axis hopping is independent of

the absolute frequency f , as shown in Equation 5:

Y ((1 + k)f ) − Y (f ) ≈ Round(12 × log2(1 + k)), (5)

which means that pitch shifting applied to an audio sig-

nal can be approximately modeled as a constant vertical

translation of its spectrogram determined only by coeffi-

cient k.

Figure 1 verifies the above deduction, where we can

see that spectrogram images calculated from differently

time-stretched or pitch-shifted audio signals exhibit high

similarity with correspondingly transformed spectrogram

images. For example, sub-figures (b3) and (c3) in Figure 1

are chiefly composed of cool-color components, mean-

ing that (b1) and (c1), spectrogram images calculated

from−20% and +20% time-stretched audio, possess pretty

low difference with (b2) and (c2), −20% and +20% time-

axis-stretched images of the original spectrogram. For

another example, sub-figures (d3) and (e3) in Figure 1 are

mostly composed of cool-color components, except that

there are some warmer ones in the upper part of (d3) and

the lower part of (e3). As these warmer patches are rather

limited, sub-figures (d1) and (e1) in Figure 1, spectrogram

images calculated from −30% and +30% pitch-shifted

audio, can still be correctly matched to (d2) and (e2),

images translated by −6 and +5 frequency-axis bins from

the original spectrogram in terms of Equation 5. To con-

clude, since time stretching and pitch shifting of an audio

signal can be modeled by the stretch and translation of its

spectrogram image, we argue that image features robust

to stretch and translation should also be able to resist time

stretching and pitch shifting of the original audio signal.

3.3 Robust spectrogram image feature extraction

Inspired by the machine-hearing algorithm structure of

[22], the basic idea of our algorithm is to seek robust spec-

trogram image features for audio fingerprinting. These

features should be discriminative, scalable, and, more

importantly, robust to various image distortions including

stretch and translation.

In order to resist stretch and translation, local spectro-

gram image features following the line of implicit synchro-

nization should be more effective than global features.

During these last years, local image features have received
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much attention because of their efficiency for several

computer vision problems such as image retrieval [25,26]

and object recognition [27,28]. Also, these features have

found their applications in audio analysis tasks. In [29], Yu

and Slotine drew inspiration from the visual classification

method of [30] and proposed to extract spectrogram block

matching-based features for instrument classification. In

[31], Matsui et al. first extracted SIFT keypoints [27] from

the spectrogram and then clustered these keypoints based

on their descriptors to form a musical feature for genre

classification. In [32], Kaliciak et al. first generated a set of

local spectrogram patches by combining a corner detector

[33] with a random points generator and then character-

ized these local patches in the form of a co-occurence

matrix or color moments as was done in [34]. These local

patch descriptors are finally employed for music genre

classification by using the ‘bag-of-visual-words’ approach.

3.3.1 Scale invariant feature transform (SIFT)

Among the proposed local image features, the SIFT-based

features [27] are most invariant to image rotation and

robust to changes in scale, illumination, and other image

deformations. A typical SIFT feature extractor consists of

four major stages briefly summarized as below.

• Scale-space extrema detection : The image is first

convolved with Gaussian filters at different scales,

then the difference of successive Gaussian-blurred

images is taken. Potential keypoints are chosen as

local maxima/minima of the Difference-of-Gaussians

(DoG) that occur at multiple scales.
• Keypoint localization : The above detection produces

too many keypoint candidates, some of which are

unstable. In this step, keypoints that have low contrast

are first discarded due to the sensitivity to noise and

then those poorly located along edges are filtered out.
• Orientation assignment : Each keypoint is assigned

one or more orientations based on local image

gradient directions. By representing the keypoint

descriptor relative to this consistent orientation,

invariance to image rotation is achieved.
• Generation of keypoint descriptor : A set of

orientation histograms are created on 4 × 4 pixel

neighborhoods. Histograms contain eight bins each,

and accordingly, a 128-dimensional (4 × 4 × 8)

descriptor is obtained for each keypoint.

3.3.2 SIFT-based local spectrogram image feature

extraction

In the literature, there have been a lot of different robust

local image features proposed, among which the SIFT-

based features possess the best results compared with

other local features in the context of matching and recog-

nition under various image deformations [35]. Naturally,

we are inspired to employ SIFT feature extracted from the

logarithmic spectrogram image for music identification.

Although SIFT feature is originally designed for object

recognition in natural images, we claim that its use in the

spectrogram image is feasible. According to [29], a typi-

cal music piece usually involves lots of different sounds,

and its spectrogram contains many partial areas with

distinctive local spectral patterns. These patterns in the

spectrogram can be regarded as ‘objects’ in a real image

[31].

The output of the SIFT feature extractor is a set of key-

points represented by their location, scale, orientation,

and 128-dimensional descriptor (see Figure 2). The SIFT

descriptor measures local image gradients and is highly

distinctive between different features and robust against

a corpus of image transformations. Particularly, compari-

son tests carried out in [35] have shown that SIFT-based

descriptors exhibit the highest matching accuracies for

affine transformation such as stretch and translation com-

pared with many other local descriptors. Based on these

facts, we believe that the SIFT feature extracted from a

spectrogram image is a good choice for music identifica-

tion, especially considering that its invariance to image

stretch and translation will endow the identification algo-

rithmwith a strong robustness against time stretching and

pitch shifting.

In our method, we take the 128-dimensional SIFT

descriptors calculated from the spectrogram image as

sub-fingerprints of the underlying music signal. We also

reserve the location of each SIFT keypoint for the esti-

mation of time-stretching and pitch-shifting factor (see

Section 5). The scale and orientation will not be used and

are thus abandoned.

4 Robust matching of audio fingerprints
Following the procedure described in the previous

section, we extract sub-fingerprints for each reference

music signal and store them in the fingerprint database.

When presented with an unlabeled query excerpt, we

extract sub-fingerprints from it and independently match

each of these sub-fingerprints against the fingerprint

Figure 2 Illustration of SIFT local features extracted from the

spectrogram image of a 10-s music excerpt. Each red circle

indicates a SIFT keypoint, represented by a 128-dimensional

descriptor.
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database. The reference music signal which has the most

matched sub-fingerprints with the query excerpt is finally

returned as the identification result.

In this section, the mechanism of sub-fingerprint

matching is described. It consists of two stages, i.e., near-

est sub-fingerprint retrieval and matching determination.

4.1 Preliminaries of locality sensitive hashing

LSH [36] is an approximate nearest neighbor search tech-

nique that works efficiently even in high-dimensional

spaces. Two ‘similar’ points in the original space can

be hashed into a same bucket with high probability,

which makes LSH appropriate to perform indexing in the

retrieval task. It allows one to quickly find similar ele-

ments in large databases and has thus attracted plenty of

attention from the research community. In recent years,

LSH and its extensions have been successfully applied to

a range of applications (e.g., [1,2,25,37,38]) and shown to

significantly outperform conventional tree-based schemes

such as BBF-Kd-Tree by comparison tests [39].

4.2 Nearest sub-fingerprint retrieval based on LSH

The matching of a query sub-fingerprint is performed

by first retrieving its nearest neighbor, i.e., the sub-

fingerprint in the fingerprint database that has minimum

Euclidean distance to the query sub-fingerprint. However,

audio databases in practical applications are usually large,

of which corresponding fingerprint databases may con-

tain millions of (or even more) sub-fingerprints. To find

the nearest neighbor in such a large database using lin-

ear search is, in many cases, unacceptable. Also, owing

to the high-dimensional SIFT-based sub-fingerprint vec-

tors, traditional tree-like data structures succumb to the

curse of dimensionality and perform no better than an

exhaustive linear search.

The LSH-based nearest sub-fingerprint retrieval algo-

rithm contains two phases: indexing and retrieval. In

indexing, all the sub-fingerprints in the fingerprint

database are inserted into L hash tables corresponding

to L randomly selected hash functions {gi, i = 1, . . . , L}.

Given a set of sub-fingerprints {p}, each of the L hash

functions is defined as:

g(p) = (h1(p), . . . , hk(p)), (6)

where k is the width parameter, and {hj, j = 1, . . . k}

are LSH functions satisfying the LSH property, i.e., sub-

fingerprints that are close to each other have a higher

probability to be hashed into the same bucket than sub-

fingerprints that are far apart. Since our SIFT-based sub-

fingerprints lie in the Euclidean space, we directly employ

the LSH functions proposed in [40] as below:

h(p) = ⌊
aT · p + b

r
⌋, (7)

where ⌊x⌋ rounds x to the nearest integer towards nega-

tive infinity, a ∈ R
128 is a random vector with elements

chosen independently from a Gaussian distribution, r is

a constant which is set to 2.8284 in our implementation

following the suggestion of [41], and b is a real number

chosen uniformly from the range of [0, r].

In the retrieval phase of the nearest sub-fingerprint

search algorithm, given a query sub-fingerprint q, the

algorithm iterates over the L hash tables. For each table

considered, it compares q with the sub-fingerprints that

are hashed into the same bucket as q. The resulting near-

est neighbor is identified as the compared sub-fingerprint

which has the smallest Euclidean distance with q over the

L hash tables.

4.3 Matching determination of sub-fingerprint

Using LSH, we first regroup similar elements in the fin-

gerprint database and then, during retrieval, perform a

nearest neighbor search for each of the query excerpt’s

sub-fingerprints within this reorganized database. Con-

ventionally, nearest neighbors found in the database are

returned as matched sub-fingerprints. However, since

music signals are often distorted in a real-world envi-

ronment, it is possible that a query sub-fingerprint does

not have any correct counterparts in the fingerprint

database so that nearest neighbors returned are actually

false matches. Also, LSH is substantially an approximate

similarity search algorithm; consequently, false positives

do exist though very small. Considering these situations,

additional measures apart from the basic LSH method

must be taken to reduce the rate of false matching.

A natural way is to use a global threshold to the dis-

tance between the query sub-fingerprint and its nearest

neighbor returned by LSH, rejecting those matches whose

distances are larger than the threshold. However, due to

the diversity of music signals, determining the thresh-

old is an intractable problem in practical implementation.

In this case, we turn to another more effective matching

measure which is adopted in [27]. Given a query sub-

fingerprint q, we perform a two-nearest neighbor search

using LSH and then compare the distance of the clos-

est neighbor v to that of the second-closest neighbor v′.

Specifically, let D(·, ·) be the Euclidean distance between

two sub-fingerprints and θ be a threshold, if:

D(q, v) < θ × D(q, v′), (8)

sub-fingerprint q and v are judged to be matched.

5 Factor estimation of time stretching and pitch

shifting
In some applications such as content-based audio authen-

tication, it might be useful to know whether and how

seriously an input music excerpt has been time-stretched

or pitch-shifted [42]. In spite of this, to our knowledge,



Zhang et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:6 Page 8 of 15

few related works have been reported in the literature. In

this section, we design a novel estimation method under

the framework of our audio fingerprinting algorithm.

As elaborated in the introduction, time stretching and

pitch shifting applied to an audio can be equivalently

reflected by time-axis stretch and frequency-axis trans-

lation of its logarithmic spectrogram, and it is natural to

estimate factors of the two audio distortions by calculating

factors of corresponding spectrogram image transforma-

tions. Let us take Figure 3 as an example of time-stretching

factor estimation. In this figure, A and A0 are spectro-

gram images of a query music clip and its reference audio,

respectively. a1 is a stable SIFT keypoint in A and a2
is the keypoint with minimum time-axis distance to a1
among all the stable keypoints in A whose time-axis coor-

dinate values are larger than that of a1. Note that stable

keypoints here refer to the SIFT keypoints for which a

matched keypoint can be found in the reference audio.

This matched keypoint has the smallest Euclidean dis-

tance under the constraint of Equation 8 to the stable

keypoint. In Figure 3, a01 and a02 are matched keypoints

of a1 and a2, respectively.

Given the four keypoints a1, a2, a01, and a02, a candidate

of time-axis stretch factor kt between A and A0 can be

estimated in terms of Equation (9):

kt =
dt

dt0
− 1, (9)

where dt is the time-axis distance between a1 and a2,

and dt0 is the time-axis distance between a01 and a02. In

general, dozens of stable SIFT keypoints can be extracted

from spectrogram image A, and consequently, a series of

factor candidates can be computed. The median of all

these candidates, k̃t , is returned as the final estimation

result of the time-axis stretch factor of A and also the

time-stretching factor of the original query excerpt.

Next, as shown in Figure 4, a candidate of the frequency-

axis translation distance between spectrogram images of a

Figure 3 Example of time-stretching factor estimation.

Figure 4 Example of pitch-shifting factor estimation.

query excerpt and its reference audio, B and B0, is simply

calculated in terms of Equation 10:

�yf = yf − yf 0, (10)

where yf and yf 0 are the frequency-axis coordinate val-

ues of a pair of matched stable SIFT keypoints, b and b0,

respectively. Similarly, there exists a series of translation

distance candidates, and the median, �̃yf , is selected as

the final result.

Remember that Equation 5 depicts the non-linear rela-

tion between the pitch-shifting factor (k̃f ) of an audio

signal and the frequency-axis translation distance (�̃yf )

of its logarithmic spectrogram image. Given �̃yf obtained

as above, k̃f can be straightly calculated according to

Equation 11:

k̃f ≈ 2
�̃yf
12 − 1. (11)

6 Experimental results
To thoroughly evaluate the performance of our method,

in this section, we first describe the establishment of a

music database and affiliated fingerprint database, then

experimentally determine several variable parameters,

and finally tabulate and show the robustness and identi-

fication results. The performance of factor estimation for

time stretching and pitch shifting is also presented in this

section.

6.1 Database setup

To assess the proposed algorithm, we first collect a total

of 10,641 music pieces of various genres such as pop,

rock, disco, jazz, country music, classical music, and folk

song. Each music signal is mono, 60 s long, and origi-

nally sampled at 44.1 kHz. These music pieces are then

divided into two audio databases, namely DBtrain contain-

ing 500 music pieces for parameter estimation, and DBtest

containing 10,141 music pieces for robustness and iden-

tification testing. The affiliated fingerprint databases are

called FP-DBtrain and FP-DBtest, respectively, where each
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sub-fingerprint is a 128-dimensional 8-bit integer vector

extracted from the logarithmic spectrogram image using

the SIFT algorithm implemented in VLFeat [43] with

default setting.

Considering the large amount of high-dimensional sub-

fingerprints which are found in FP-DBtrain and FP-DBtest,

we index the two fingerprint databases using the LSH

toolbox published by Shakhnarovich [41] (the E2LSH

scheme in the toolbox is chosen) for more efficient

sub-fingerprint retrieval. The indexed versions of the

two fingerprint databases are denoted as FP-DB′
train and

FP-DB′
test, respectively.

As typical music identification algorithms usually iden-

tify unlabeled and distorted music fragments within the

database, we also construct two query sets, i.e., QStrain
and QStest, for DBtrain and DBtest, respectively. QStrain and

QStest consist of 10-s short excerpts randomly cut from

distinct music pieces inDBtrain andDBtest, respectively. To

simulate real-world environments, all the query fragments

are subjected to different audio signal distortions and syn-

chronization attacks. The applied audio signal distortions

include the following:

• Lossy compression : MPEG-1 layer 3

encoding/decoding at 32 kbps;
• Echo adding : 50% decay and 500-ms delay;
• Equalization : 10-band equalization with the settings

of [8];
• Noise addition : White Gaussian noise with a

signal-to-noise-ratio (SNR) of 18 dB;
• Resampling : Subsequent down and up sampling to

22.05 and 44.1 kHz, respectively;
• Bandpass filtering : Cutoff frequencies of 100 and

6,000 Hz.

The applied synchronization attacks include time

stretching, pitch shifting, and time scaling. Since in the

real world these three distortions mostly occur in the

range of [−10%, +10%], we deform all the query clips with

time stretching/scaling and pitch shifting of ±2%, ±5%,

and ±10%. Meanwhile, to obtain the performance limit of

the proposed algorithm, time stretching/scaling and pitch

shifting out of the above range are also evaluated. To con-

clude, synchronization distortions we apply on the queries

include the following:

• Time stretching : ±2%, ±5%, ±10%, ±20%, ±30%,

+40%, and +50%;
• Pitch shifting : ±2%, ±5%, ±10%, ±20%, ±30%,

±40%, ±50%, +60%, +70%, +80%, +90%, and +100%;
• Time scaling : ±2%, ±5%, ±10%, ±20%, ±30%, and

+40%.

Note that all the 10-s query music excerpts in the query

sets are cut from corresponding original audio pieces

starting at arbitrary offsets; accordingly, all distortions

performed on the queries are indeed mixed with a prece-

dent random cropping.

6.2 Parameter estimation

There are three parameters to be tuned in the algorithm.

In this sub-section, we experimentally investigate their

effect on the system performance and make a suitable

setting for each of them.

The first parameter to be set is the threshold θ that con-

trols the matching determination principle described in

Equation 8. Due to the constraint of θ between the nearest

and the second nearest neighbors, not every query sub-

fingerprint is ensured to get a matching result, no matter

true or false. For a specific sub-fingerprint, bigger θ will

bring about more chance to get a result returned. Accord-

ingly, for all query sub-fingerprints, morematching results

will be returned with the increase of θ ; within the returned

results, true matches and false matches generally increase

synchronously.

In Figure 5, we increase θ from 0.1 to 1 with a step

size of 0.1 and in each step calculate the correct and the

false match rates of all sub-fingerprints extracted from

the original and differently distorted excerpts of QStrain
against FP-DBtrain without using LSH. More specifically,

a correct (false) match rate here refers to the percent-

age of query sub-fingerprints for which we find correct

(false) matches in the fingerprint database. A match is

considered as correct if the query sub-fingerprint and its

matched sub-fingerprint belong to the query excerpt and

the reference audio of a same music signal, respectively.

As can be seen in the figure, both the correct and the

false match rates increase with the increment of θ . When

θ < 0.8, the false match rate increases slowly while the

Figure 5 Correct match rates and false match rates of

sub-fingerprints for different θs.
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correct match rate increases significantly faster; when θ >

0.8, the false match rate becomes more notable and soon

exceeds the correct match rate. Based on these observa-

tions, we set θ = 0.8 in our experiment. In contrast with

the results when θ = 1, this setting eliminates 98.41% of

the false matches at the cost of lowering 23.86% of the

correct matches.

The next two parameters to be set are related to

LSH, i.e., k, the width parameter, and L, the number of

hash tables. They directly affect the distribution of sub-

fingerprints in the fingerprint database and thus affect

the efficiency of nearest sub-fingerprint retrieval. To be

specific, a larger k reduces the chance of hitting sub-

fingerprints that are not nearest neighbors and thus

makes the nearest neighbor retrieval faster. However, this

speedup is at the expense of increasing the probability

of missing true nearest neighbors. In contrast, a larger L

enhances the probability of finding true nearest neighbors,

but it increases the time consumption at the same time.

Therefore, k and L should be comprehensively considered

to balance the trade-off between the retrieval accuracy

and speed. In addition, increasing k and L will both lead

to more memory usage. In the following, we set k = 3

and L = 10, and experiments show that this combination

prevails over other values on our machinec.

As an approximate similarity retrieval technique, LSH is

aimed to accelerate the retrieval speed at the cost of slight

accuracy decrease. Figure 6 compares the performance of

LSH with a linear search, where hit rate indicates the per-

centage of query excerpts in QStrain and all their distorted

versions which are correctly identified within DBtrain. It is

clear that the matching time for a single sub-fingerprint

using LSH is significantly reduced, about 25 times faster

than a linear search in our experiment environment, with

only 4.7% hit rate decreases.

6.3 Robustness tests

Several groups of experiments are performed in this sub-

section to evaluate the robustness of the proposed music

Figure 6 Comparison of accuracy and speed of music

identification using LSH and linear search.

identification algorithm, using audio database DBtest,

query set QStest, and the corresponding indexed finger-

print database FP-DB′
test. The performance of each exper-

iment is measured using the hit rate, which refers to the

percentage of queries that are correctly identified within

the reference database.

For comparison, identification results of the classic

Shazam algorithm and state-of-the-art WavePrint [5] are

also presented. The Shazam algorithm is implemented

by Dan Ellis [44], and implementation of the WavePrint

algorithm is available at [45].

Figure 7 compares the robustness against time stretch-

ing of the WavePrint, Shazam, and our algorithm. When

there is no time stretching, the hit rates of WavePrint,

Shazam, and our algorithm are 100%, 99.35%, and 100%,

respectively. Under slight time stretching of ±2%, the hit

rates of WavePrint and our algorithm remain approxi-

mately 100%, and Shazam drops to around 93%. When

the query is further time stretched under −5% and +5%,

both the WavePrint and our algorithm still maintain hit

rates as high as about 99%, while the Shazam quickly

drops to 60.78% and 67.7%, respectively. The reason is

that the time intervals of key points, which are used

to construct the fingerprint in the Shazam algorithm,

are destroyed at such a level of time stretching. When

queries are stretched at ±10%, both the WavePrint and

our algorithm possess hit rates above 95%. However,

when stretching factor goes up to −20% and +20%, the

WavePrint algorithm begins to be inferior to our algo-

rithm, with hit rates 50% vs. 96% and 80% vs. 98%,

respectively. In more extreme cases where the stretch fac-

tor is bigger than ±30%, WavePrint’s hit rates quickly

drop down to below 35%, while our algorithm’s results

remain surprisingly around 80% or above. In summary,

in terms of time stretching, the Shazam, WavePrint,

and our algorithm exhibit successive increased robust-

ness, from less than ±5%, to less than ±20%, to bigger

than ±30%.

Identification results of differently pitch-shifted queries

are shown in Figure 8. As stated in the introduction, pitch

shifting of an audio signal can be equivalently modeled

as the frequency-axis translation of its logarithmic spec-

trogram image; consequently, the translation-invariant

SIFT image features introduced in the proposed algorithm

bring strong robustness to the audio signal against fre-

quency changes. Figure 8 shows that when query music

fragments are pitch-shifted at different levels even up

to −50% (one octave down) and +100% (one octave up),

all hit rates of the proposed algorithm are still above

80%. Note that for our method, there is no linear rela-

tionship between identification results and pitch-shifting

factors. For example, identification hit rates of −50%

and +100% pitch-shifted queries are larger than those of

nearby less distorted excerpts. In these two special cases,
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Figure 7 Identification hit rates under time stretching.

pitch shifting occurs on integer-multiples (−12 and +12)

of semitone and thus causes more accurate spectrogram

translations. Note that performances of the WavePrint

algorithm and Shazam system are not displayed in the

figure, because these algorithms are by nature very sen-

sitive to frequency misalignments. Even for slight pitch

shifting of −2% and +2%, identification hit rates are only

about 72.2% and 37.3%, respectively, for WavePrint and

about 11.1% and 13.3%, respectively, for Shazam. And

when the distortion becomes more serious, the result gets

even worse and quickly drops to near zero.

As mentioned in the introduction, time scaling can

be approximately modeled as the combination of time

stretching and pitch shifting. Therefore, SIFT features

calculated from an audio logarithmic spectrogram image

should also possess certain robustness against time scal-

ing since they have been demonstrated to be rather stable

under time stretching and pitch shifting. Figure 9 illus-

trates the hit rates with respect to different time-scaling

levels. It shows that when music queries are deformed

with a common time scaling of −10% ∼ +10%, iden-

tification results of our algorithm are pretty good, i.e.,

all above 98%. When the scaling gets even harder, i.e.,

to the factors of ±20 and +30%, our algorithm can still

obtain hit rates of more than 90%, which outperforms

other state-of-the-art algorithms like [3,9,10,17,21] (±6%,

±10%, +5% ±15%, −21% ∼ +26%). Finally, when the

music queries are time-scaled up to −30% and +40%,

Figure 8 Identification hit rates under pitch shifting.
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Figure 9 Identification hit rates under time scaling.

which has been beyond the scaling scope of previous algo-

rithms’ experiments, the hit rates drop to around 70%

and 80%, respectively. Note that similar to the case of

pitch shifting, identification results of theWavePrint algo-

rithm and Shazam algorithm are neither illustrated in

the figure. Due to poor tolerance to pitch distortions,

the WavePrint algorithm only exhibits certain robustness

against a time scaling of +2% (hit rate = 89.5%). The

Shazam algorithm is worse, with only 9.1% and 8.7% hit

rates under time scaling of −2% and +2%, respectively.

And when the distortion becomes a bit more serious, both

of the WavePrint’s and Shazam’s hit rates drop quickly to

zero.

In addition to the above time- and frequency-domain

synchronization distortions, music queries are often con-

taminated by various signal distortions in the real-world

environment. Figure 10 compares the robustness against

audio signal distortions of the WavePrint, Shazam, and

our algorithm. Under the cases of lossy compression,

noise addition, resampling, and bandpass filtering, both

the WavePrint and our algorithm exhibit almost 100%

hit rates. The results of Shazam are also excellent (at

least 95%), only slightly weaker. In terms of equaliza-

tion and echo addition, our algorithm’s hit rates drop to

around 90% and 80%, respectively, inferior to those of the

WavePrint and Shazam. This is as expected, for the two

Figure 10 Identification hit rates under audio signal distortions.
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distortions have greatly affected the energy distributions

on spectrograms of the query excerpts and thus havemore

negative impact on the extraction and matching of SIFT

features than other signal distortions.

In the above experiments, the source codes are written

in Matlab and run on a workstation (3.2-GHz Intel Xeon

CPU and 8-GB memory). The average time of extracting

the SIFT features of a 10-s music query is approximately

0.23 s, which is acceptable for the identification task.

6.4 Factor estimation of time stretching and pitch shifting

In this subsection, we assess the factor estimation

method of time stretching and pitch shifting proposed

in Section 5. The test dataset is composed of 10-s audio

excerpts randomly cut from distinct music signals in

DBtest, and each of them is time-stretched from −30%

to +50% and pitch-shifted from −50% to +100%, in accor-

dance with the above robustness tests. After identifying

the queries within DBtest using the proposed finger-

printing algorithm, the corresponding reference music

signal and query signal are compared to estimate the

factor of time stretching or pitch shifting in light of

Equations (9-11).

Let kest be the estimated factor and kref be the refer-

ence one. The distribution of kest − kref is illustrated in

Figure 11 for time stretching and Figure 12 for pitch shift-

ing. As shown in the figures, our proposed method pro-

vides highly accurate factor estimation results, and more

than 95% of the estimated factors are in the ±0.05 scope

of the reference ones. This phenomenon actually demon-

strates from a distinct aspect that treating time stretching

and pitch shifting of an audio signal as the time-axis

stretch and frequency-axis translation of its logarithmic

spectrogram, respectively, is a reasonable way to go.

Figure 11 Factor estimation result of time stretching.

Figure 12 Factor estimation result of pitch shifting.

7 Conclusions
In this paper, a novel and robust music identification

method is proposed. By combining computer vision tech-

nique, the SIFT descriptor of a spectrogram image to

be exact, with locality sensitive hashing, this algorithm

exhibits good performance in robustness, accuracy, and

speed. What is most attractive is that even when query

audio excerpts are seriously time-stretched from −30%

to +50% or pitch-shifted from −50% to +100%, this

method still exhibits good identification hit rates, which

has been beyond all other existing algorithms, to our

knowledge. Moreover, by comparing the locations of sta-

ble SIFT keypoints, a novel method is developed to

estimate the distortion factor of time-stretched or pitch-

shifted audio signals. In future work, we intend to com-

bine the proposed SIFT-based feature with other spectral

features to further improve the robustness under common

audio signal distortions. To apply this proposed feature to

other audio-related applications is also an interesting way

to go.

Endnotes
aIn this paper, positive (negative) factors of time

stretching/scaling indicate the increase (decrease) of

duration of a music piece. For example, +4% (−4%) time

stretching/scaling lengthens (shortens) an audio signal to

104% (96%) of its original length. Similarly, positive

(negative) factors of pitch shifting mean the increase

(decrease) of pitch.
bhttp://www.shazam.com/.
cExperiments are performed on a workstation with a

3.2-GHz Intel Xeon CPU and 8-GB memory.
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