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ABSTRACT 

With the addition of free programmable components to modern graphics hardware, graphics processing units 

(GPUs) become increasingly interesting for general purpose computations, especially due to utilizing parallel 

buffer processing. In this paper we present methods and techniques that take advantage of modern graphics 

hardware for real-time tracking and recognition of feature-points. The focus lies on the generation of feature 

vectors from input images in the various stages. For the generation of feature-vectors the Scale Invariant Feature 

Transform (SIFT) method [Low04a] is used due to its high stability against rotation, scale and lighting condition 

changes of the processed images. We present results of the various stages for feature vector generation of our 

GPU implementation and compare it to the CPU version of the SIFT algorithm. The approach works well on 

Geforce6 series graphics board and above and takes advantage of new hardware features, e.g. dynamic branching 

and multiple render targets (MRT) in the fragment processor [KF05]. With the presented methods feature-

tracking with real time frame rates can be achieved on the GPU and meanwhile the CPU can be used for other 

tasks. 
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1. INTRODUCTION 
With the inclusion of programmable parts in modern 

graphics hardware, such as vertex and fragment 

processors, developers started using the power of 

graphics processing units (GPUs) for general purpose 

computations beyond creating beautiful pictures and 

creating high-end game engines. The research field 

that arose from those efforts is known as GPGPU 

(general purpose computations on GPUs). To make 

use of the GPU for more general computations it is 

necessary to transform the algorithms under 

investigation such that it optimally utilizes the 

parallel processing model used on modern graphics 

hardware. A number of algorithms and applications 

have been implemented onto GPGPUs, e.g. kd-tree 

search [FS05], sorting algorithm acceleration 

[GHLM05] and database search [GLW*04]. An 

overview of concepts for algorithm transformation to 

GPU architecture is given in [Har05] and [OLG*05].  

In this paper we show, how a feature extraction 

algorithm can be adapted to make use of modern 

graphics hardware and which processing acceleration 

can be obtained by optimizing all stages of the 

algorithm. Specifically, the SIFT Algorithm 

[Low04a] was implemented on a NVIDIA QuadroFX 

3400 GPU with 256MB video RAM, taking 

advantage of new functionalities, e.g. dynamic 

branching and multiple render targets (MRTs) of the 
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fragment and vertex processor. After reviewing the 

related work, we give a short overview of the 

algorithm, followed by the stage-by-stage GPU 

implementation and the obtained overall acceleration 

of the algorithm in comparison to standard CPU 

implementation. 

2. RELATED WORK 
One of the main problems of computer vision is the 

generation of stable feature-points from natural 

images. These feature-points are used for 

correspondence matching to find known objects and 

gain information about their presence, position, size 

or rotation in other images [BL02]. One approach for 

feature tracking is given in [Fun05], but the extracted 

feature points were not invariant to scale and the 

application was focused on the usage of multiple 

parallel graphics cards. One method to create highly 

stable feature-vectors from images is the Scale 

Invariant Feature Transform (SIFT) introduced by 

David Lowe [Low04a]. SIFT features are invariant 

against rotation, changes in scale and 

lighting/contrast and can therefore be well applied to 

scene modeling, recognition and tracking [GL04] and 

panorama creation.  

3. SIFT OVERVIEW 
The SIFT method consists of different stages to 

obtain relevant feature points. These stages where 

analyzed and individually adapted to maximize GPU 

parallel processing using only few CPU accesses. The 

single SIFT stages are: 

1. Search for potential points of interest by creation 

of a Difference of Gaussian (DoG) scale-space 

pyramid as image representation and filtering for 

extreme values 

2. Further filtering and reduction of the obtained 

points from 1. to select stable points with high 

contrast. To each remaining point, its position and 

size are assigned. 

3. Orientation assignment to each point by finding a 

characteristic direction.  

4. Feature vector calculation based on the 

characteristic direction from 3. to provide rotation 

invariance. 

5. The whole process is stacked in a way that only a 

subset of elements from the beginning of a stage 

is passed onto the next stage. 

To achieve scale invariance it is necessary to create a 

representation of the image frequencies. This is 

realized using a scale space pyramid as introduced by 

Witkin [Wit83]. Each image within the pyramid 

refers to different image frequencies. By searching in 

all images of the scale space pyramid, the obtained 

feature point candidates become scale invariant. The 

scale-space pyramid is constructed by taking a gray-

scaled version of the original image and convolving it 

repeatedly with Gaussian convolution kernels of 

increasing size. Thus a number of images with 

increasing blurriness is constructed as shown in the 

stack of four 640x480 images in Figure 1 top-left. In 

the next stage, the most blurred image from this stack 

is downscaled by a factor of two and afterwards 

convolved with the same set of Gaussian kernels as 

before to create the next stack of four 320x240 

images. The whole process is repeated until a 

specified size has been reached, which is 80x60 in the 

example in Figure 1 top-right. 

 

Figure 1. Gaussian pyramid (top) and difference 

of Gaussian (bottom). 

Now the pyramid consists of continuously convolved 

versions of the original image with different sizes and 

blurriness. To calculate the single frequencies of the 

image, adjacent images or stages of the same size of 

the pyramid have to be subtracted to create the 

Difference of Gaussian (DoG) representation, as 

shown in Figure 1 bottom. Finally, the obtained DoG 

pyramid is filtered to find the global extreme values. 

The filtering is applied pixel wise by comparing the 

luminance of the current pixel to its 8 neighbors 

within the same image, as well as to its 9 non-shifted 

neighbors of both adjacent layers of the same size. If 

the luminance valueof the pixel under investigation is 

a minimum or maximum among all these neighboring 

luminance values, the pixel is considered as feature 

point candidate. 

In the next step, the obtained candidates are further 

filtered to eliminate feature points that are unsuitable 

for correspondence detection. Here, mainly two types 

of unsuitable points are considered. First, points 

erroneously found due to noise in the input image and 

second points that lay on edges. The first type is 

eliminated by introducing a threshold for luminance 

differences between a possible feature point and its 

neighbors. Only, if the threshold is exceeded, the 



point is further processed and considered as 

candidates. Edge points need to be excluded, since 

they are unsuitable for tracking and correspondence 

matching. For edge point detection, the surface 

curvature around the surface D(x,y) of a candidate 

point at position (x,y) can be analyzed using the 

Hessian Matrix H of second order local derivatives: 
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As shown by Harris and Stephens [HS88], the 

curvature of D(x,y) is proportional to the Eigen 

vectors of H. Since we are only interested in a 

criterion for edge or non-edge points, only the ratio 

between both Eigen values e1 and e2 with e1 ≥ e2 is 

important. Let r = e1/e2 be this ratio, then: 
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From this, the criterion for non-edge points is derived 

as: 
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In Lowe [Low04b], best results for excluding edge 

points have been reported for r = 10. 

In the third step, the remaining feature points are 

assigned with their main orientation to achieve 

rotation invariance. Therefore, the gradients within a 

certain distance around each feature point are 

transformed into polar coordinates: 
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Then, a histogram is constructed from the phase 

values θ(x,y) and weighted with magnitude values 

m(x,y), to obtain the main direction of the gradients 

around the feature points. 

 

Figure 2. Image gradient transformation into key 

point descriptors. 

Finally, feature vectors are created from the 

gradients. In Figure 2 left, the image gradients are 

shown. For each 4x4 region, the main orientation is 

used as new local coordinate system, meaning that 

also new texture coordinates need to be interpolated 

at intermediate positions. The 16 gradients within that 

particular region are than obtained within this new 

texture coordinate system. The created descriptor 

elements are a projection of the 16 gradients onto 8 

directions, aligned in the local coordinate system, 

defined by the main orientation, as shown in Figure 2, 

right. This projection is carried out for all 4x4 

regions, thus creating a feature vector of 128 entries. 

Finally, the feature vector is normalized to achieve 

invariance to contrast changes. 

4. GPU-IMPLEMENTATION 
For the implementation of the SIFT algorithm on the 

GPU, adaptation of the initial CPU algorithms were 

required to fit the algorithm well into the graphics 

pipeline [Zel05] and take full advantage of the GPUs 

parallel processing abilities. Therefore, the main 

focus was to restructure the different SIFT stages to 

fit the GPU texture format. The experiments where 

carried out on a system, using an Intel Xeon 3.2GHz 

CPU, 2GB of RAM and a NVIDIA QuadroFX 3400 

GPU with 256MB video RAM and PCI Express x16 

graphics bus. 

4.1. DoG Pyramid Creation 
SIFT features are generated from gray level images, 

whereas GPU texture buffers are designed for three 

color + one alpha channels. GPUs do not only have a 

parallel processing ability on a per pixel basis 

parallelized by the number of fragment processors on 

the GPU, there also is a parallelism on the 

computational stages of the GPU calculating the four 

color values at once as a vector. Having only gray 

images the computations done to convolve an image 

would waste 75% of the processing power. To make 

full usage of the vector abilities of GPUs the gray-

level input image is modified. Here, we rearranged 

the gray image data into a four channel RGBA image, 

as shown in Figure 3. 

 

Figure 3. Texture packing to RGBA16 GPU 

format. 

One color value in the RGBA image represents 2x2 

pixel of the gray-level image, thus reducing the image 

area by 4. With the RGBA image, the convolution 



can be processed without wasting computational 

power on the GPU. In the case of a convolution, the 

processing on the packed data is straightforward, 

since here mostly linear operations, such as pixel- 

wise additions or multiplications are applied. In cases 

of operations, where pixel processing also depends 

on neighboring pixels, the algorithm adaptation for 

packed data becomes complicated, since all 

neighboring references need to be redirected. 

Reorganizing the input image creates some 

computational overhead which is comparatively low 

since the data remains in this packed format for the 

whole process of scale-space and DoG pyramid 

creation. The packing is implemented using a simple 

fragment shader that takes a block of 2x2 adjacent 

pixels and arranges them into one RGBA pixel. The 

Gaussian convolution is directly applied onto the 

packed RGBA format, as shown in Figure 4 with a 

9tap Gaussian kernel. Here, the Gaussian kernel is 

split into even and odd values to carry out two 

separate semi-convolutions, which are added 

afterwards for the final result. Each pixel of the 

Gaussian kernel is multiplied with all four color 

components in one calculation, thus only requiring 

one texture access. The calculations with even and 

odd Gaussian kernel pixels are implemented in the 

same fragment shader and therefore the same texture 

access can be used for both steps. 

 

Figure 4. Gaussian convolution in RGBA16 GPU 

format, (a) odd and (b) even samples. 

Horizontal and vertical filtering with Gaussian 

kernels of different sizes is applied successively and 

the differently blurred images are subtracted to create 

the DoG pyramid, described above. 

Using this technique allows us to convert a color 

image into a gray level image and pack the pixels in 

the described way in one rendering pass. 

4.2. Key Point Filtering and Orientation 
For the detection of feature points, as described 

before, dynamic branching is used to keep the whole 

selection process in the GPU. Therefore, the criteria 

for possible feature points where rearranged starting 

with the luminance difference threshold, which 

excludes 50% of possible feature points. Then the 

search for global extreme values first compares a 

point with its 8 neighbors within the same buffer, 

leaving only 0.6% of possible points followed by 

comparison with the 9 pixel of the adjacent buffers 

within the DoG stack. Possible feature points are 

shown in Figure 5(b). Afterwards, the exclusion of 

noise and edge points is carried out, leaving stable 

feature points, as shown in Figure 5(c). 

 

Figure 5. Extraction and filtering of features. 

After filtering and localization of potential feature 

points, the corresponding feature vectors are 

calculated. To calculate the gradient direction and 

magnitude, MRT functionality is used. For both 

values, only the four direct neighboring pixels are 

required, which keeps the referencing for calculation 

relatively simple. The reqired pixel access and 

operations are shown in Figure 6. 

 

Figure 6. Gradient magnitude (top) and direction 

(bottom) calculation for red channel. 

Here, the central texel “rgba” with its packed 4 

original pixels as the four color components is 

processed. The magnitude and direction calculation 

for the central “r” component are shown in Figure 6, 

which require the four neighboring components that 

are highlighted as solid colors. Each central 

component requires two other components from the 

central texel and two from adjacent texels. The 

required operations for magnitude and direction 

calculation are also shown in Figure 6. Both 

calculations require the same input data. Since the 

input data is already packed, the use of two color 

components for magnitude and direction respectively 

is not possible. Instead, the use of MRTs greatly 

accelerates the processing, since both calculations 

can be carried out at once, writing the results into two 

separate rendering targets. Thus, time consuming 

OpenGL context switching is avoided and only one 

texel access for both operations is required, since 



magnitude and direction use the same intermediate 

calculation (i.e. horizontal and vertical subtraction).  

4.3. Feature Descriptor Creation 
Both render targets are now used to create the 

weighted histograms of the 4x4 regions around each 

feature point, as shown in the theoretical part in 

Figure 2. Each region is associated with 8 directions, 

adding up to a 128-element output vector. This 

operation differs from previously implemented 

operations, since for each single input element (or 

extreme point) 128 output elements are created. This 

operation can not be carried out at once, even with 

MRTs. Therefore, each region is processed in one 

fragment shader call, as there is no possibility to split 

the histogram calculation itself. For this calculation, it 

is useful to select a structure, where for each fragment 

different data can be accessed. A simple rectangular 

area, as used for the other calculations is not 

sufficient, since interpolation algorithms would 

interpolate the four corner attributes across the area, 

whereas here, each point requires independent 

attributes. A suitable representation for such 

independent attribute purposes is a vertex grid that 

can be created from geometry points via glVertex2f() 

or a line of multiple segments. 

For easier processing, magnitude and direction values 

are rearranged from the two rendering targets into 

one texture to further process them with the 

precalculated texture directions, as shown in 

Figure 7. 

 

Figure 7. Gradient map unpacking into one 

texture. 

Here, the packed values for magnitude and direction 

are unpacked and interleaved at the same time, such 

that one output value only contains one magnitude 

and one associated direction value. In this form, both 

values are contained in one texture that can be further 

processed without format change. 

For the final feature creation, gradient histograms for 

the 4x4 areas of each extreme point are created. Each 

area has to be processed in one fragment shader call, 

since the histogram calculation itself cannot be split 

up without expensive calculations. To carry out the 

histogram calculation in one shader cycle, 8 output 

values have to be calculated simultaneously. This 

again can be achieved, using MRTs on advanced 

graphics cards. In Figure 8(a) the data structure for 

the feature generation is shown. As an example, a 

feature vector is shown in Figure 8(b), which consists 

of 16 vertices and is mapped into the two render 

targets.  

 

Figure 8. Render Targets for Feature Generation. 

(a) Frame buffers in both render targets and (b) 

feature point position in image and access on pre-

calculated texture coordinates. 

Each vertex of a feature vector is associated with 

appropriate attributes in the CPU. These attributes 

contain relative texture coordinates, magnitude and 

direction of gradient areas. The corresponding 

calculations can be carried out independently and all 

necessary parameters are coded in the feature vectors. 

As a result, each render target from Figure 8(a) 

contains a complete data set for half the feature 

vectors.  

These SIFT feature vectors can now be used for 

correspondence matching between different images, 

e.g. for tracking in an image sequence. For this 

purpose, the Euclidean distance D between two 

feature vectors V1 and V2 with length N is calculated, 

as shown in (5). 
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In our SIFT implementation, each vector has N = 128 

elements. The associated subtractions in (5) can be 

well calculated in parallel. In a test, a CPU and GPU 

implementation were compared in terms of 

processing time. For this test, a number of feature 

vectors K were taken, with K varying between 500 

and 3000. Each feature vector was compared with 

each other, resulting in K
2
 comparisons. While the 

processing time for 3000x3000 comparisons was 

13sec using the CPU implementation, the GPU 

implementation only required 0.5sec. 

 

4.4. Results 
After optimizing all SIFT stages for efficient GPU 

processing, the entire algorithm was tested and 

compared against the original CPU implementation 



and a manually SSE (Streaming SIMD Extension) 

optimized version. The results are shown in Figure 9. 

Here, the manually SSE optimized version requires 

0.312sec compared to 0.406sec for the original CPU 

implementation. In comparison to that, the SIFT 

algorithm could be drastically accelerated by utilizing 

massive parallel GPU processing and thus achieving 

a processing time of only 0.058sec. Thus, SIFT 

feature extraction can be carried out in real time at 

approximately 20 frames/sec. 

 

 

Figure 9. Results for all SIFT operator stages of 

the GPU implementation in comparison to 

standard CPU processing. 

5. CONCLUSION 
In this paper we have shown, how the SIFT algorithm 

can considerably be accelerated by utilizing GPU 

parallel processing. After arranging the luminance 

values of the input image into the GPU texture 

buffers RGBA format, all follow-up operations have 

also been adapted to this texture format and make use 

of new GPU technology, namely dynamic branching 

for the detection of relevant feature points and MRTs 

for parallel gradient direction and magnitude 

calculation. As a result, the SIFT algorithm can be 

applied to image sequences with 640x480 pixels at 

20 frames/sec. Future work will mainly focus on real-

time applications using SIFT features, e.g. calibration 

estimation for 3D scene reconstruction for image 

sequences. 
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