
SIFT Implementation and Optimization for

General-Purpose GPU

S. Heymann
Fraunhofer HHI
Einsteinufer 37

Germany 10587, Berlin

heimie@selective.de

K. Müller
Fraunhofer HHI
Einsteinufer 37

Germany 10587, Berlin

kmueller@hhi.de

A.Smolic
Fraunhofer HHI
Einsteinufer 37

Germany 10587, Berlin

smolic@hhi.de

B. Fröhlich
Bauhaus University Weimar

Fakultät Medien
Germany 99423, Weimar

bernd.froehlich@medien.uni-weimar.de

T. Wiegand
Fraunhofer HHI
Einsteinufer 37

Germany 10587, Berlin

wiegand@hhi.de

ABSTRACT

With the addition of free programmable components to modern graphics hardware, graphics processing units

(GPUs) become increasingly interesting for general purpose computations, especially due to utilizing parallel

buffer processing. In this paper we present methods and techniques that take advantage of modern graphics

hardware for real-time tracking and recognition of feature-points. The focus lies on the generation of feature

vectors from input images in the various stages. For the generation of feature-vectors the Scale Invariant Feature

Transform (SIFT) method [Low04a] is used due to its high stability against rotation, scale and lighting condition

changes of the processed images. We present results of the various stages for feature vector generation of our

GPU implementation and compare it to the CPU version of the SIFT algorithm. The approach works well on

Geforce6 series graphics board and above and takes advantage of new hardware features, e.g. dynamic branching

and multiple render targets (MRT) in the fragment processor [KF05]. With the presented methods feature-

tracking with real time frame rates can be achieved on the GPU and meanwhile the CPU can be used for other

tasks.

Keywords

GPU, SIFT, feature extraction, tracking.

1. INTRODUCTION
With the inclusion of programmable parts in modern

graphics hardware, such as vertex and fragment

processors, developers started using the power of

graphics processing units (GPUs) for general purpose

computations beyond creating beautiful pictures and

creating high-end game engines. The research field

that arose from those efforts is known as GPGPU

(general purpose computations on GPUs). To make

use of the GPU for more general computations it is

necessary to transform the algorithms under

investigation such that it optimally utilizes the

parallel processing model used on modern graphics

hardware. A number of algorithms and applications

have been implemented onto GPGPUs, e.g. kd-tree

search [FS05], sorting algorithm acceleration

[GHLM05] and database search [GLW*04]. An

overview of concepts for algorithm transformation to

GPU architecture is given in [Har05] and [OLG*05].

In this paper we show, how a feature extraction

algorithm can be adapted to make use of modern

graphics hardware and which processing acceleration

can be obtained by optimizing all stages of the

algorithm. Specifically, the SIFT Algorithm

[Low04a] was implemented on a NVIDIA QuadroFX

3400 GPU with 256MB video RAM, taking

advantage of new functionalities, e.g. dynamic

branching and multiple render targets (MRTs) of the

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech

Republic.

fragment and vertex processor. After reviewing the

related work, we give a short overview of the

algorithm, followed by the stage-by-stage GPU

implementation and the obtained overall acceleration

of the algorithm in comparison to standard CPU

implementation.

2. RELATED WORK
One of the main problems of computer vision is the

generation of stable feature-points from natural

images. These feature-points are used for

correspondence matching to find known objects and

gain information about their presence, position, size

or rotation in other images [BL02]. One approach for

feature tracking is given in [Fun05], but the extracted

feature points were not invariant to scale and the

application was focused on the usage of multiple

parallel graphics cards. One method to create highly

stable feature-vectors from images is the Scale

Invariant Feature Transform (SIFT) introduced by

David Lowe [Low04a]. SIFT features are invariant

against rotation, changes in scale and

lighting/contrast and can therefore be well applied to

scene modeling, recognition and tracking [GL04] and

panorama creation.

3. SIFT OVERVIEW
The SIFT method consists of different stages to

obtain relevant feature points. These stages where

analyzed and individually adapted to maximize GPU

parallel processing using only few CPU accesses. The

single SIFT stages are:

1. Search for potential points of interest by creation

of a Difference of Gaussian (DoG) scale-space

pyramid as image representation and filtering for

extreme values

2. Further filtering and reduction of the obtained

points from 1. to select stable points with high

contrast. To each remaining point, its position and

size are assigned.

3. Orientation assignment to each point by finding a

characteristic direction.

4. Feature vector calculation based on the

characteristic direction from 3. to provide rotation

invariance.

5. The whole process is stacked in a way that only a

subset of elements from the beginning of a stage

is passed onto the next stage.

To achieve scale invariance it is necessary to create a

representation of the image frequencies. This is

realized using a scale space pyramid as introduced by

Witkin [Wit83]. Each image within the pyramid

refers to different image frequencies. By searching in

all images of the scale space pyramid, the obtained

feature point candidates become scale invariant. The

scale-space pyramid is constructed by taking a gray-

scaled version of the original image and convolving it

repeatedly with Gaussian convolution kernels of

increasing size. Thus a number of images with

increasing blurriness is constructed as shown in the

stack of four 640x480 images in Figure 1 top-left. In

the next stage, the most blurred image from this stack

is downscaled by a factor of two and afterwards

convolved with the same set of Gaussian kernels as

before to create the next stack of four 320x240

images. The whole process is repeated until a

specified size has been reached, which is 80x60 in the

example in Figure 1 top-right.

Figure 1. Gaussian pyramid (top) and difference

of Gaussian (bottom).

Now the pyramid consists of continuously convolved

versions of the original image with different sizes and

blurriness. To calculate the single frequencies of the

image, adjacent images or stages of the same size of

the pyramid have to be subtracted to create the

Difference of Gaussian (DoG) representation, as

shown in Figure 1 bottom. Finally, the obtained DoG

pyramid is filtered to find the global extreme values.

The filtering is applied pixel wise by comparing the

luminance of the current pixel to its 8 neighbors

within the same image, as well as to its 9 non-shifted

neighbors of both adjacent layers of the same size. If

the luminance valueof the pixel under investigation is

a minimum or maximum among all these neighboring

luminance values, the pixel is considered as feature

point candidate.

In the next step, the obtained candidates are further

filtered to eliminate feature points that are unsuitable

for correspondence detection. Here, mainly two types

of unsuitable points are considered. First, points

erroneously found due to noise in the input image and

second points that lay on edges. The first type is

eliminated by introducing a threshold for luminance

differences between a possible feature point and its

neighbors. Only, if the threshold is exceeded, the

point is further processed and considered as

candidates. Edge points need to be excluded, since

they are unsuitable for tracking and correspondence

matching. For edge point detection, the surface

curvature around the surface D(x,y) of a candidate

point at position (x,y) can be analyzed using the

Hessian Matrix H of second order local derivatives:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

∂

∂

∂∂

∂

∂∂

∂

∂

∂

2

22

2

2

2

),(),(

),(),(

y

yxD

yx

yxD

yx

yxD

x

yxD

H . (1)

As shown by Harris and Stephens [HS88], the

curvature of D(x,y) is proportional to the Eigen

vectors of H. Since we are only interested in a

criterion for edge or non-edge points, only the ratio

between both Eigen values e1 and e2 with e1 ≥ e2 is

important. Let r = e1/e2 be this ratio, then:

() ()

() .det

and1trace

2
221

221

reee

eree

==

+=+=

H

H
 (2)

From this, the criterion for non-edge points is derived

as:

() ()
r

r
22

1

)det(

trace +
<

H

H
. (3)

In Lowe [Low04b], best results for excluding edge

points have been reported for r = 10.

In the third step, the remaining feature points are

assigned with their main orientation to achieve

rotation invariance. Therefore, the gradients within a

certain distance around each feature point are

transformed into polar coordinates:

() () ()

()
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

+=

∂

∂

∂

∂

−

∂

∂

∂

∂

x

yxD

y

yxD

y

yxD

x

yxD

yx

yxm

),(

),(

1

2),(2),(

tan,

,,

θ

. (4)

Then, a histogram is constructed from the phase

values θ(x,y) and weighted with magnitude values

m(x,y), to obtain the main direction of the gradients

around the feature points.

Figure 2. Image gradient transformation into key

point descriptors.

Finally, feature vectors are created from the

gradients. In Figure 2 left, the image gradients are

shown. For each 4x4 region, the main orientation is

used as new local coordinate system, meaning that

also new texture coordinates need to be interpolated

at intermediate positions. The 16 gradients within that

particular region are than obtained within this new

texture coordinate system. The created descriptor

elements are a projection of the 16 gradients onto 8

directions, aligned in the local coordinate system,

defined by the main orientation, as shown in Figure 2,

right. This projection is carried out for all 4x4

regions, thus creating a feature vector of 128 entries.

Finally, the feature vector is normalized to achieve

invariance to contrast changes.

4. GPU-IMPLEMENTATION
For the implementation of the SIFT algorithm on the

GPU, adaptation of the initial CPU algorithms were

required to fit the algorithm well into the graphics

pipeline [Zel05] and take full advantage of the GPUs

parallel processing abilities. Therefore, the main

focus was to restructure the different SIFT stages to

fit the GPU texture format. The experiments where

carried out on a system, using an Intel Xeon 3.2GHz

CPU, 2GB of RAM and a NVIDIA QuadroFX 3400

GPU with 256MB video RAM and PCI Express x16

graphics bus.

4.1. DoG Pyramid Creation
SIFT features are generated from gray level images,

whereas GPU texture buffers are designed for three

color + one alpha channels. GPUs do not only have a

parallel processing ability on a per pixel basis

parallelized by the number of fragment processors on

the GPU, there also is a parallelism on the

computational stages of the GPU calculating the four

color values at once as a vector. Having only gray

images the computations done to convolve an image

would waste 75% of the processing power. To make

full usage of the vector abilities of GPUs the gray-

level input image is modified. Here, we rearranged

the gray image data into a four channel RGBA image,

as shown in Figure 3.

Figure 3. Texture packing to RGBA16 GPU

format.

One color value in the RGBA image represents 2x2

pixel of the gray-level image, thus reducing the image

area by 4. With the RGBA image, the convolution

can be processed without wasting computational

power on the GPU. In the case of a convolution, the

processing on the packed data is straightforward,

since here mostly linear operations, such as pixel-

wise additions or multiplications are applied. In cases

of operations, where pixel processing also depends

on neighboring pixels, the algorithm adaptation for

packed data becomes complicated, since all

neighboring references need to be redirected.

Reorganizing the input image creates some

computational overhead which is comparatively low

since the data remains in this packed format for the

whole process of scale-space and DoG pyramid

creation. The packing is implemented using a simple

fragment shader that takes a block of 2x2 adjacent

pixels and arranges them into one RGBA pixel. The

Gaussian convolution is directly applied onto the

packed RGBA format, as shown in Figure 4 with a

9tap Gaussian kernel. Here, the Gaussian kernel is

split into even and odd values to carry out two

separate semi-convolutions, which are added

afterwards for the final result. Each pixel of the

Gaussian kernel is multiplied with all four color

components in one calculation, thus only requiring

one texture access. The calculations with even and

odd Gaussian kernel pixels are implemented in the

same fragment shader and therefore the same texture

access can be used for both steps.

Figure 4. Gaussian convolution in RGBA16 GPU

format, (a) odd and (b) even samples.

Horizontal and vertical filtering with Gaussian

kernels of different sizes is applied successively and

the differently blurred images are subtracted to create

the DoG pyramid, described above.

Using this technique allows us to convert a color

image into a gray level image and pack the pixels in

the described way in one rendering pass.

4.2. Key Point Filtering and Orientation
For the detection of feature points, as described

before, dynamic branching is used to keep the whole

selection process in the GPU. Therefore, the criteria

for possible feature points where rearranged starting

with the luminance difference threshold, which

excludes 50% of possible feature points. Then the

search for global extreme values first compares a

point with its 8 neighbors within the same buffer,

leaving only 0.6% of possible points followed by

comparison with the 9 pixel of the adjacent buffers

within the DoG stack. Possible feature points are

shown in Figure 5(b). Afterwards, the exclusion of

noise and edge points is carried out, leaving stable

feature points, as shown in Figure 5(c).

Figure 5. Extraction and filtering of features.

After filtering and localization of potential feature

points, the corresponding feature vectors are

calculated. To calculate the gradient direction and

magnitude, MRT functionality is used. For both

values, only the four direct neighboring pixels are

required, which keeps the referencing for calculation

relatively simple. The reqired pixel access and

operations are shown in Figure 6.

Figure 6. Gradient magnitude (top) and direction

(bottom) calculation for red channel.

Here, the central texel “rgba” with its packed 4

original pixels as the four color components is

processed. The magnitude and direction calculation

for the central “r” component are shown in Figure 6,

which require the four neighboring components that

are highlighted as solid colors. Each central

component requires two other components from the

central texel and two from adjacent texels. The

required operations for magnitude and direction

calculation are also shown in Figure 6. Both

calculations require the same input data. Since the

input data is already packed, the use of two color

components for magnitude and direction respectively

is not possible. Instead, the use of MRTs greatly

accelerates the processing, since both calculations

can be carried out at once, writing the results into two

separate rendering targets. Thus, time consuming

OpenGL context switching is avoided and only one

texel access for both operations is required, since

magnitude and direction use the same intermediate

calculation (i.e. horizontal and vertical subtraction).

4.3. Feature Descriptor Creation
Both render targets are now used to create the

weighted histograms of the 4x4 regions around each

feature point, as shown in the theoretical part in

Figure 2. Each region is associated with 8 directions,

adding up to a 128-element output vector. This

operation differs from previously implemented

operations, since for each single input element (or

extreme point) 128 output elements are created. This

operation can not be carried out at once, even with

MRTs. Therefore, each region is processed in one

fragment shader call, as there is no possibility to split

the histogram calculation itself. For this calculation, it

is useful to select a structure, where for each fragment

different data can be accessed. A simple rectangular

area, as used for the other calculations is not

sufficient, since interpolation algorithms would

interpolate the four corner attributes across the area,

whereas here, each point requires independent

attributes. A suitable representation for such

independent attribute purposes is a vertex grid that

can be created from geometry points via glVertex2f()

or a line of multiple segments.

For easier processing, magnitude and direction values

are rearranged from the two rendering targets into

one texture to further process them with the

precalculated texture directions, as shown in

Figure 7.

Figure 7. Gradient map unpacking into one

texture.

Here, the packed values for magnitude and direction

are unpacked and interleaved at the same time, such

that one output value only contains one magnitude

and one associated direction value. In this form, both

values are contained in one texture that can be further

processed without format change.

For the final feature creation, gradient histograms for

the 4x4 areas of each extreme point are created. Each

area has to be processed in one fragment shader call,

since the histogram calculation itself cannot be split

up without expensive calculations. To carry out the

histogram calculation in one shader cycle, 8 output

values have to be calculated simultaneously. This

again can be achieved, using MRTs on advanced

graphics cards. In Figure 8(a) the data structure for

the feature generation is shown. As an example, a

feature vector is shown in Figure 8(b), which consists

of 16 vertices and is mapped into the two render

targets.

Figure 8. Render Targets for Feature Generation.

(a) Frame buffers in both render targets and (b)

feature point position in image and access on pre-

calculated texture coordinates.

Each vertex of a feature vector is associated with

appropriate attributes in the CPU. These attributes

contain relative texture coordinates, magnitude and

direction of gradient areas. The corresponding

calculations can be carried out independently and all

necessary parameters are coded in the feature vectors.

As a result, each render target from Figure 8(a)

contains a complete data set for half the feature

vectors.

These SIFT feature vectors can now be used for

correspondence matching between different images,

e.g. for tracking in an image sequence. For this

purpose, the Euclidean distance D between two

feature vectors V1 and V2 with length N is calculated,

as shown in (5).

()∑
=

−=
N

i

ii VVD

1

2
21 . (5)

In our SIFT implementation, each vector has N = 128

elements. The associated subtractions in (5) can be

well calculated in parallel. In a test, a CPU and GPU

implementation were compared in terms of

processing time. For this test, a number of feature

vectors K were taken, with K varying between 500

and 3000. Each feature vector was compared with

each other, resulting in K
2
 comparisons. While the

processing time for 3000x3000 comparisons was

13sec using the CPU implementation, the GPU

implementation only required 0.5sec.

4.4. Results
After optimizing all SIFT stages for efficient GPU

processing, the entire algorithm was tested and

compared against the original CPU implementation

and a manually SSE (Streaming SIMD Extension)

optimized version. The results are shown in Figure 9.

Here, the manually SSE optimized version requires

0.312sec compared to 0.406sec for the original CPU

implementation. In comparison to that, the SIFT

algorithm could be drastically accelerated by utilizing

massive parallel GPU processing and thus achieving

a processing time of only 0.058sec. Thus, SIFT

feature extraction can be carried out in real time at

approximately 20 frames/sec.

Figure 9. Results for all SIFT operator stages of

the GPU implementation in comparison to

standard CPU processing.

5. CONCLUSION
In this paper we have shown, how the SIFT algorithm

can considerably be accelerated by utilizing GPU

parallel processing. After arranging the luminance

values of the input image into the GPU texture

buffers RGBA format, all follow-up operations have

also been adapted to this texture format and make use

of new GPU technology, namely dynamic branching

for the detection of relevant feature points and MRTs

for parallel gradient direction and magnitude

calculation. As a result, the SIFT algorithm can be

applied to image sequences with 640x480 pixels at

20 frames/sec. Future work will mainly focus on real-

time applications using SIFT features, e.g. calibration

estimation for 3D scene reconstruction for image

sequences.

6. References
[BL03] Brown, M. and Lowe, D. G., “Recognising

Panoramas”, Proc. of the 9th International

Conference on Computer Vision (ICCV2003), pp.

1218-1225, Nice, France, 2003.

[BL02] Brown, M. and Lowe, D., “Invariant Features

from Interest Point Groups”, British Machine

Vision Conference, BMVC 2002, Cardiff, Wales,

2002.

[FS05] Foley, T. and Sugerman, J., ”KD-Tree

Acceleration Structures for a GPU Raytracer”,

Eurographics Report, Graphics Hardware, 2005.

[Fun05] Fung, J., “Computer Vision on the GPU”,

GPU Gems 2, pp. 649-666, Addison-Wesley,

2005.

[GL04] Gordon, I. and Lowe, D.G., “Scene

modeling, recognition and tracking with invariant

image features”, International Symposium on

Mixed and Augmented Reality (ISMAR),

Arlington, USA, 2004.

[GLW*04] Govindaraju, N.K., Lloyd, B., Wang, W.,

Lin, M. and Manocha, D., „Fast Computation of

Database Operations using Graphics Processors”,

Proc. ACM SIGMOD 2004, Paris, France, 2004.

[GHLM05] Govindaraju, N.K., Henson, M., Lin, M.

and Manocha, N., “Interactive Visibility Ordering

of Geometric Primitives in Complex

Environments”, Proc. ACM SIGGRAPH i3d,

Washington DC, USA, 2005.

[HS88] Harris, C., Stephens, M., “A Combined

Corner Edge Detector”, Proc. Alvey Vision

Conference, pp. 189-192, Manchester, 1988.

[Har05] Harris, M., “Mapping Computational

Concepts to GPUs”, GPU Gems 2, pp. 493-508,

Addison-Wesley, 2005.

[KF05] Kilgariff, E., Fernando, R., “The GeForce 6

Series GPU Architecture”, GPU Gems 2, pp. 471-

491, Addison-Wesley, 2005.

[Low04a] Lowe, D.G. 2004, “Object Recognition

from local scale-invariant features”, Proc.

International Conference on Computer Vision,

pp.1150-1157, Corfu, Greece.

[Low04b] Lowe, D.G., “Distinctive Image Features

from Scale-Invariant Keypoints”, International

Journal of Computer Vision, 2004.

[OLG*05] Owens, J.D., Luebke, D., Govindaraju,

N.K., Harris, M., Krüger, J., Lefohn, A.E.,

Purcell, T.J., “A Survey of General-Purpose

Computation on Graphics Hardware”,

Eurographics 2005, State of the Art Reports,

Dublin, Ireland, 2005.

[Wit83] Witkin, A.P., “Scale-space filtering, Proc.

International Joint Conference on Artificial

Intelligence, pp. 1019-1022, Karlsruhe, Germany,

1983.

[Zel05] Zeller, C., “Introduction to the Hardware

Graphics Pipeline”, ACM SIGGRAPH i3d,

Invited Speech, Washington DC, USA, 2005.

