
Sifting informative examples from a random source.

Yoav Preund

AT&T Bell Labs,

600 Mountain Ave.
Murray Hill, N J, 07974

Abstract
We discuss two types of algorithms for selecting
relevant examples that have been developed in the
context of computation learning theory. The ex-
amples are selected out of a stream of examples
that are generated independently at random. The
first two algorithms are the so-called "boosting"
algorithms of Sehapire [Schapire, 1990] and Fre-
und [Freund, 1990], and the Query-by-Committee
algorithm of Seung [Seung et al., 1992]. We de-
scribe the algorithms and some of their proven
properties, point to some of their commonalities,
and suggest some possible future implications.

Introduction
One of the most studied frameworks for machine learn-
ing is that of learning concepts from random examples.
A concept c is a mapping from some instance space X
to a binary label. For example, an instance can be
the results of some medical tests, and the label can be
whether or not the diagnosed patient has some particu-
lar disease. The concept is a mapping from test results
to diagnosis, as provided by a medical expert. The
goal of concept learning is to find an approximation of
the concept, given a set of labeled instances and some
prior knowledge about properties of the concept. The
learning algorithm observes a set of labeled instances,
also called the training set and generates a hypothesis,
which is an approximation of the concept.

In the PAC1 framework,[Vapnik, 1982; Valiant,
1984] the instances are assumed to be drawn indepen-
dently at random according to some fixed distribution
7) over the instance space. These instances are then la-
beled according to a concept c selected from a concept
class C. We assume that the labeled instances, which
are also called examples, are presented to the learner,
one by one, and an updated hypothesis is output by
the learning algorithm after each new example. The
error of a hypothesis h is defined as

err(h) = Pr (c(x) # h(x)) 
xET~

1Probably Approximately Correct

which is the probability that the hypothesis and the
concept disagree on the label of an instance randomly
drawn according to the distribution 7).

One of the goals of studies in computational learn-
ing theory is to characterize the number of examples
that are required for generating a hypothesis with small
error when learning a given concept class. It has
been shown in various contexts [Blumer et al., 1989;
Ehrenfeucht et al., 1989] that at least d/e examples
are needed for generating a hypothesis whose error is
smaller than c, where d is a parameter (such as the
VC dimension) that characterizes the complexity of
the concept class. In other words, if m0 examples
are needed to generate a hypothesis h0 whose error
is 10%, then an additional set of m0 examples is typi-
cally needed for generating a hypothesis hi whose error
is 5%. On the other hand, notice that the hypothesis
h0 can predict correctly the labels of 90% of the addi-
tional examples. In other words, later examples are less
informative to the learning process than earlier ones.
This observation opens up the possibility that not all
of the later examples are as essential to the learning
algorithm as the earlier ones. One can hope to find se-
lection methods for sifting through the additional m0
examples and filtering out a small set of relevant exam-
ples that contain the essential information. In this way
we might reduce the amount of memory and computa-
tion time that is needed by the learning algorithm.

In this paper we present two types of filtering meth-
ods for which some rigorous mathematical analysis has
been done. This analysis shows that the methods are
guaranteed to work in some well defined scenarios. The
formal definition of these scenarios is beyond the scope
of this paper and can be found in the referenced papers.
In this short abstract we describe the example selection
rules used in the different algorithms, discussing the in-
tuitions behind them, and summarizing their analysis.

The first method is based on the concept for boost-
ing, which was invented by Schapire [Sehapire, 1990].
An improved boosting algorithm was later given by the
author [Freund, 1990; Freund, 1992]. Using boosting
one can guarantee that in the PAC learning framework
any learning algorithm can be used to select a small

79

From: AAAI Technical Report FS-94-02. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



subset of the training set which contains all of the in-
formation relevant for learning the concept. We give
a sketch of the two boosting methods known today in
Section .

The second method is "Query by Committee"
(QBC) invented by Seung et al. [Seung et al., 1992].
The goal here is to select the relevant instances before
knowing their label. This is important, for example,
when the price of labeling is high. In Section we de-
scribe the QBC algorithm and sketch its main proper-
ties.

In Section we highlight the properties that are com-
mon to the two methods and suggest some possible
applications.

Boosting
Suppose that we are provided with a learning algo-
rithm that generates hypotheses whose error is guar-
anteed to be smaller than 1/2-3’ for some fixed 3" > 0
and for any distribution D over the instance space.
This type of learning algorithm is called a weak PAC
learning algorithm because the error of its hypoth-
esis is only slightly smaller than that of a random
guess. We denote a generic weak learning algorithm
by WeakLearn and call the hypotheses that it gener-
ates weak hypotheses.

The concept of a boostin~ algorithm was introduced
by Schapire [Schapire, 1990] in order to prove that any
weak PAC learning algorithm can be transformed into
a "strong" PAC learning algorithm, i.e., one which can
generate a hypothesis of arbitrary accuracy.

A boosting algorithm is a learning algorithm
which uses WeakLearn as a subroutine. It calls
WeakLearn several times, each time presenting it
with a different distribution of examples. It then com-
bines the resulting hypotheses into a single accurate
hypothesis which is its output. The boosting algorithm
generates the different distributions of examples by se-
lecting them from a stream of random examples using
selection rules that are based on the correct label of the
instance and on the labels assigned to it by previously
generated hypotheses. It is these selection rules which
interest us in the context of this paper.

Schapire’s boosting algorithm is based on a method
for combining three weak hypotheses. The outcome
of the weak hypotheses is combined using a majority
vote. This combined rule is guaranteed to have error
significantly smaller than the error of the combined
weak hypotheses. In order to reach an arbitrary ac-
curacy, this scheme is repeated recursively. The three
hypotheses are generated in order by WeakLearn. In
order to generate each one, WeakLearn is presented
with examples that are selected out of a stream of ran-
dom independent instances using the rules described
below. Let us denote by x a random instance, by c(x)
the label assigned to x by the concept c and by h(x)
the label assigned to x by the hypothesis h. The three
weak hypotheses hz, h~, h3 are generated one by one as

follows.

The rules for choosing the examples:

1. In order to generate hi, no selection is
performed, i.e., the original distribution
of examples is used.

2. In order to generate h2, the following ran-
domized rule is used:
with probability 1/2, an example x such
that hi(x)= c(x) is selected, and with
probability 1/2 an example such that
hi(z) # c(m) is selected.

3. In order to generate h2, all examples such
that hz(m) # h2(m) are selected.

Intuitively, this method for filtering examples em-
phasizes the examples on which the weak hypotheses
are wrong.2 Step 2 concentrates on the mistakes of hz
exactly to the point that hi loses all of its edge over a
random guess. Step 3 concentrates on those examples
on which the weak hypotheses disagree, which implies
that one of them is incorrect.

A different boosting algorithm was given by the au-
thor [Freund, 1990]. This boosting algorithm does not
employ a recursive construction, but rather combines k
weak hypotheses by a single majority vote rule. Similar
to Schapire’s method, the centerpiece of the algorithm
is a rule for selecting examples. At a typical step during
the boosting algorithm the hypotheses hi, ¯ ¯., hi have
already been generated and the boosting algorithm se-
lects the examples that it provides to WeakLearn in
order to generate the hypothesis hi+z. The filtering
rule is defined as follows: for each example it counts
the number r of hypotheses in hi,..., hi that produce
the correct label of the example. It then accepts the
example with probability that is a function of i and r,
which is defined as follows:

k thenif i-~<r<_ y
[k-i-l~/1 _~_ ~~L-~J-rtl- 3,)r~]-i-l-Fr

otherwise 0
(1)

As defined above, 3’ > 0 is a small constant such that
WeakLearn is guaranteed to generate a hypothesis
whose error is smaller than 1/2 - 3’ for any instance

against r fordistribution T). In Figure 1 we graph o~
a typical value of i.

It can be seen from Figure 1 that the examples that
have the highest probability of being accepted by the
selection rule are those on which the number of (weak)
hypotheses that vote for each of the two labels is ap-
proximately equal but the incorrect label has a slightly
larger number of votes. Examples that have all the

2One might be tempted to select only the examples
on which hi(x) # c(x). However, note that in this case
WeakLearn can output h2 = -~hl as a hypothesis which
has no error, but this clearly does not provide the boosting
algorithm with a useful new hypothesis.

8O



50
01r

0.1

I I J~ r
0 10 20 30 ~

Figure 1: A figure of the value of a~, the probability
of accepting a random example, as a function of r, the
number of correct hypotheses, for i = 50. The other
parameters are fixed as k = 100, and 7 = 0.1. The
horizontal axis is placed at r = 25 which corresponds
to the case in which the number of correct hypotheses
is equal to the number of incorrect hypotheses.

weak hypotheses in agreement have very small prob-
ability of acceptance whether or not the agreed label
is the correct one. The intuition behind this choice is
as follows. If all the hypotheses agree and are all cor-
rect, then the label of the instance has been securely
identified, and so it is a waste to spend more resources
on labeling it. On the other hand, if all the hypothe-
ses agree and they are all incorrect then the example
is an atypical example which is very hard to classify
correctly. It is thus better for the overall accuracy to
treat it as noise and "give up" on labeling it correctly.

Both of these boosting algorithms have been proved
to have the capability of transforming any weak learn-
ing algorithm to a strong learning algorithm. More-
over, the analysis of the algorithms shows that the
number of times that WeakLearn is called during
the boosting process is very small. Specifically, if
e > 0 is the desired error of the final strong hy-
pothesis, then WeakLearn is called O(log l/e) times.
Thus, if the number of examples that are required by
WeakLearn does not depend on the distribution of
the instances, the total number of examples selected is
also O(log i/e). On the other hand, the number of ex-
amples that the learning algorithm has to test in order

to select the required number of examples3 is 4 0(l/e).
It thus seems that boosting is a promising method

for selecting relevant examples out of a random source.
More experiments on using boosting methods for real
world problems are needed in order test this poten-
tial. Some encouraging results have been reached
in experiments by Drucker [Drucker et al., 1993;
Drucker et al., ], however, these experiments tested
the potential of boosting as a method for improving
the performance of a learning algorithm and not as a
method for reducing the size of the training set.

One assumption that is probably not completely re-
alistic is that the performance of the learning algo-
rithm WeakLearn does not depend on the distribu-
tion of the instances. Potentially, the learning algo-
rithm might require more (selected) examples in order
to reach the desired performance with respect to the
filtered distributions. Experiments are needed to know
the degree of this effect.

Query by Committee
Boosting provides some promising methods for select-
ing relevant examples. However, these methods are
based on selection rules which depend on the labels of
the examples. In some situations, obtaining the correct
label of instances is expensive. For example, consider
a voice recognition scenario: while it is usually easy to
record speech, labeling the sound wave with its exact
meaning (in terms of phonemes, for example) is a labor
intensive task. In such situations, we would like to se-
lect the relevant instances before knowing their correct
label. We would then find the label associated with
each selected instance by making a so-called "query" to
a teacher and add the example to the training set. The
goal here is to minimize the number of queries made
to the teacher. This framework has also been studied
by Cohn [Cohn et al., 1990] and is related to the prob-
lem of sequential experimental design [Lindley, 1956;
Fedorov, 1972; Atkinson and Donev, 1992].

Seung et al. [Seung et al., 1992] suggest a gen-
eral instance selection method, which they call "Query
by Committee" (QBC). Their method can be applied
when there exists a distribution measure over the con-
cept class. This learning framework is usually referred
to as the Bayes learning framework [Haussler et al.,
1994].

In this Bayes prediction framework we assume that
the concept to be learned is chosen according to a
known distribution over the concept class, usually re-
ferred to as the "prior" distribution. We assume that
this distribution is known to the learner in the sense

3It is know from other work that the dependence of the
sample size (which is the total number of examples ob-
served) on e is f~(1/e). [Blumer et al., 1989; Ehrenfeucht et
al., 1989]

4The notation 0(.) denotes the fact that we are ignoring
log factors.

81



that the learner can generate a random concept from
the prior distribution at will. While it is often unrea-
sonable to assume knowledge of the exact prior distri-
bution, the results described here hold even if a rough
approximation of the prior distribution is used.

A simple version of the QBC algorithm, which was
analyzed by Freund et al. [Freund el al., 1992] can be
described as follows. We say that a concept is "consis-
tent" with a training set if it labels all of the examples
in the set correctly. The final hypothesis generated
by the QBC algorithm is a random consistent concept,
chosen according to the prior distribution restricted to
the consistent concepts. The selection of relevant in-
stances is done as follows.

Given a random instance z,

1. Select two consistent hypotheses, hi and
h2, independently at random according to
the prior distribution over the concept
class.

2. Accept x as a relevant instance if hi(x)
h2(~).

Notice the similarity of this rule to the selection rules
used in the boosting algorithms. Mainly, all of these
rules tend to select examples on which different hy-
potheses that are based on past experience predict dif-
ferent labels. While the frameworks in which these al-
gorithms are used and analyzed are very different, this
commonality seems clear and appealing on an intuitive
level.

The analysis of this algorithm by Freund et al. shows
that, in some natural cases, this selection rule has simi-
lar properties to that of the boosting algorithm. Specif-
ically, if the desired expected error of the final hypoth-
esis is e > 0, then the number of instances that have
to be tested is 0(l/e), and the number of them that
are accepted and presented as queries to the teacher is
O(log l/e).

Applying QBC to real-world problems is a promising
research direction. While in most cases it is not easy
to generate a random consistent hypothesis, the fol-
lowing approximation can sometimes be used.5 Many
learning algorithms, such as the Back-Propagation al-
gorithm in neural networks, have a single hypothesis
stored in memory, and continually change this hypoth-
esis to improve its fit to the data. There are various
random effects on this hypothesis, which include the
choice of the initial hypothesis and random choices that

Sin some special cases efficient algorithms for selecting
a random consistent hypothesis are known. For example, if
the hypothesis class is the set of linear separators, then se-
lecting a random consistent hypothesis amounts to select-
ing a random point from a convex polytope. Polynomial
time algorithms for this problem have been found by Dyer,
Frieze and Kannan [Dyer et al., 1991] and had a series of
improvements, last of which was given by Lovasz and Si-
monovits [Lovasz and Simonovits, 1993].

are made during the learning process. It is a compar-
atively simple matter to duplicate the learning algo-
rithm and maintain two hypotheses which have small
random differences. Selecting instances according to
the difference between these two hypotheses will tend
to concentrate on those instances whose label cannot
be determined by generalizing from the other exam-
ples. While the exact analysis of this algorithm is be-
yond the reach of current theory, experiments might
shed light on their behavior.

Summary and some possible
applications

We have briefly presented two learning algorithms that
suggest methods for selecting the relevant examples
out of a stream of random examples. The boosting al-
gorithms have been designed towards a different goal
than the QBC algorithm, and their rigorous mathe-
matical analysis is performed in different frameworks.
However, there are two properties shared by all three
algorithms:

1. All algorithms select examples on which previous hy-
potheses tend to disagree.

2. Under the proper assumptions, the dependence of
the number of selected examples on the desired ac-
curacy e > 0 is O(log l/e), while the number of ex-
amples that have to be sifted is O(1/e).

The main goal of boosting algorithms is to improve
the performance of a weak learning algorithm, and the
main goal of Query selection algorithms is to reduce the
number of queries. We end our summary by suggesting
a few new applications for this type of algorithms.

¯ Reducing memory storage Memory based learn-
ing algorithms, such as nearest neighbor classifiers,
require a lot of memory. The methods suggested
might be applied to save large amounts of space
while causing only minimal degradation in classifi-
cation.

¯ Selective Labeling: Today there is a lot of ef-
fort put into projects for labeling large amounts of
random data, such as the NIST character database,
and the TIMIT speech database. Selective choice
of queries can improve the utilization of the great
amounts of human effort put into these projects.

¯ Parallel learning: All of the algorithms for select-
ing examples have efficient parallel versions. Most
of the computation time of these algorithms is spent
on selecting the relevant examples, because (after
some amount of training) most of the examples are
judged to be irrelevant and filtered out. As the se-
lection criteria depends only on a single example, it
can be applied, in parallel, to many examples. If a
sufficient number of parallel processors is available,
the dependence of the running time on the desired
accuracy e > 0 is (ignoring log factors) 0(log l/e).

82



¯ Information Sharing: One interesting case of par-
allel processing in learning is when several copies
of a learning algorithm are run in different sites,
and on different data. Suppose, for example, that
a learning algorithm receives some initial training in
a central development center, and then many clones
of this algorithm are placed in different but similar
environments to perform their work. Assume that
these initial copies are good enough to perform use-
ful work, but that additional, "on site" training can
further improve their performance. Moreover, shar-
ing the experience of such a network of algorithms
can be used to increase the accuracy of all of them.
Communicating examples that are judged to be rel-
evant is a very simple and self-explanatory way of
sharing experience. Moreover, as our algorithms se-
lect only very few examples as relevant, we expect
this method of cooperation to require relatively little
communication.

Acknowledgments

The author would like to thank Rob Schapire, Nick
Littlestone and Avrim Blum for their helpful sugges-
tions.

References

Atkinson, A. C. and Donev, A. N. 1992. Optimum
Experimental Designs. Oxford science publications.

Blumer, Anselm; Ehrenfeucht, Andrzej; Haussler,
David; and Warmuth, Manfred K. 1989. Learnability
and the Vapnik-Chervonenkis dimension. Journal of
the Association for Computing Machinery 36(4):929-
965.

Cohn, David; Atlas, Les; and Ladner, Richard 1990.
Training connectionist networks with queries and se-
lective sampling. In Touretzky, D., editor 1990, Ad-
vances in Neural Information Processing Systems 2,
San Mateo, CA. Morgan Kaufmann.

Drucker, Harris; Schapire, Robert; and Simard,
Patrice up. Boosting performance in neural networks.
International Journal of Pattern Recognition and Ar-
tificial Intelligence 7(4):705-719.

Drucker, Harris; Schapire, Robert; and Simard,
Patrice 1993. Improving performance in neural net-
works using a boosting algorithm. In Advances in
Neural Informations Processing Systems 5, San Ma-
teo, CA. Morgan Kaufmann. 42-49.

Dyer, M.; Frieze, A.; and Kannan, R. 1991. A random
polynomial time algorithm for approximating the vol-
ume of convex bodies. Journal of the ACM, JACM
38(1):1-17.
Ehrenfeucht, Andrzej; Haussler, David; Kearns,
Michael; and Valiant, Leslie 1989. A general lower
bound on the number of examples needed for learn-
ing. Information and Computation 82:247-261.

Fedorov, V. V. 1972. Theory of Optimal Experimentsl
Academic Press, New York.
Freund, Y.; Seung, H.S.; Shamir, E.; and Tishby, N.
1992. Information, prediction, and query by commit-
tee. In Advances in Neural Informations Processing
Systems 5, San Mateo, CA. Morgan Kaufmann. 483-
490.

Freund, Y. 1990. Boosting a weak learning algorithm
by majority. In Proceedings of the Third Workshop
on Computational Learning Theory, San Mateo, CA.
Morgan Kaufmann. 202-216.

Freund, Y. 1992. An improved boosting algorithm
and its implications on learning complexity. In Pro-
ceedings of the Fifth Workshop on Computational
Learning Theory, San Mateo, CA. Morgan Kauf-
mann. 391-398.
Haussler, David; Kearns, Michael; and Schapire,
Robert 1994. Bounds on the sample complexity of
Bayesian learning using information theory and the
VC dimension. Machine Learning 14(1):83-113.
Lindley, D. V. 1956. On a measure of the informa-
tion provided by an experiment. Ann. Math. Statist.
27:986-1005.

Lovasz, and Simonovits, 1993. Random walks in
a convex body and an improved volume algorithm.
Random Structures 8J Algorithms 4.

Schapire, Robert E. 1990. The strength of weak learn-
ability. Machine Learning 5(2):197-226.

Seung, H.S; Opper, M.; and Sompolinsky, H. 1992.
Query by committee. In Proceedings of the Fifth
Workshop on Computational Learning Theory, San
Mateo, CA. Morgan Kaufmann. 287-294.

Valiant, L. G. 1984. A theory of the learnable. Comm.
ACM 27:1134-1142.

Vapnik, V. N. 1982. Estimation of Dependences Based
on Empirical Data. Springer-Verlag, New York.

83


