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 ��

Main points:  ��

1.� Siglec
H is expressed by microglia including during developmental stages in mice. 	�

2.� Siglec
H expression is largely absent from other types of myeloid cells in the CNS, such as 
�

CNS
associated macrophages and CNS
infiltrating monocytes. ���

 ���

Key words: ���

allodynia, choroid plexus, inflammation, meninges, myeloid cells, pain, perivascular spaces ���
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Abstract ��

 Several types of myeloid cell are resident in the CNS. In the steady state, microglia ��

are present in the CNS parenchyma, whereas macrophages reside in boundary regions of the ��

CNS, such as perivascular spaces, the meninges and choroid plexus. In addition, monocytes ��

infiltrate into the CNS parenchyma from circulation upon blood–brain barrier breakdown after ��

CNS injury and inflammation. Although several markers, such as CD11b and ionized ��

calcium
binding adapter molecule 1 (Iba1), are frequently used as microglial markers, they are ��

also expressed by other types of myeloid cell and microglia
specific markers were not defined 	�

until recently. Previous transcriptome analyses of isolated microglia identified a transmembrane 
�

lectin, sialic acid
binding immunoglobulin
like lectin H (Siglec
H), as a molecular signature for ���

microglia; however, this was not confirmed by histological studies in the nervous system and ���

the reliability of Siglec
H as a microglial marker remained unclear. Here, we demonstrate that ���

Siglec
H is an authentic marker for microglia in mice by immunohistochemistry using a ���

Siglec
H
specific antibody. Siglec
H was expressed by parenchymal microglia from ���

developmental stages to adulthood, and the expression was maintained in activated microglia ���

under injury or inflammatory condition. However, Siglec
H expression was absent from ���

CNS
associated macrophages and CNS
infiltrating monocytes, except for a minor subset of ���

cells. We also show that the Siglech gene locus is a feasible site for specific targeting of �	�

microglia in the nervous system. In conclusion, Siglec
H is a reliable marker for microglia that �
�

will allow histological identification of microglia and microglia
specific gene manipulation in ���

the nervous system. ���

  ���
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� �

Introduction ��

 Microglia are mononuclear phagocytes in the CNS parenchyma. They originate from ��

erythromyeloid precursors in the yolk sac and then migrate to the CNS during the embryonic ��

stage to reside in the parenchyma (Ginhoux et al., 2010; Gomez Perdiguero et al., 2015; Hoeffel ��

et al., 2015; Kierdorf et al., 2013; Schulz et al., 2012). Microglia play roles in various events, ��

such as formation of neuronal circuits (Paolicelli et al., 2011; Schafer et al., 2012) and neuronal ��

degeneration/regeneration after neuronal injury (Gamo et al., 2008; Kobayashi, Konishi, Takai, ��

& Kiyama, 2015; Konishi, Namikawa, & Kiyama, 2006; Kroner et al., 2014). Although 	�

microglia are a well
known type of CNS myeloid cell, other types of myeloid cell also reside at 
�

the boundaries of the CNS (Galea et al., 2005; Goldmann et al., 2016; Prinz, Erny, & ���

Hagemeyer, 2017; Prinz & Priller, 2014), including perivascular macrophages (MΦ, pvMΦ) in ���

the perivascular space around medium
 or large
sized vessels, meningeal MΦ (mMΦ) in the ���

meninges, and choroid plexus MΦ (cpMΦ) in the choroid plexus. In addition to these ���

“CNS
associated MΦ”, monocytes infiltrate into the CNS parenchyma from the blood ���

circulation upon blood–brain barrier breakdown under injury or inflammatory conditions (King, ���

Dickendesher, & Segal, 2009; Mildner et al., 2009; Saederup et al., 2010; Varvel et al., 2016). ���

 Several molecules including CD11b and ionized calcium
binding adapter molecule 1 ���

(Iba1) were established as microglial markers, and antibodies against CD11b and Iba1 were �	�

frequently used for immunohistochemical identification of microglia (Ito et al., 1998; Robinson, �
�

White, & Mason, 1986). However, CD11b and Iba1 are widely expressed by myeloid cell types ���

(Ajami et al., 2011; Greter, Lelios, & Croxford, 2015; Prinz & Priller, 2014; Prinz, Priller, ���

Sisodia, & Ransohoff, 2011), meaning that the antibodies cannot discriminate microglia from ���

CNS
associated MΦ and CNS
infiltrating monocytes by immunohistochemistry. For gene ���

targeting of microglia, gene loci or promoter/enhancer regions of integrin subunit alpha M ���

(Itgam) (encoding CD11b), colony�stimulating factor 1 receptor (Csf1r) and C�X3�C motif ���

chemokine receptor 1 (Cx3cr1) were utilized (Boillee et al., 2006; Jung et al., 2000; Pfrieger & ���

Slezak, 2012; Sasmono et al., 2003). However, microglia
specific targeting was not achieved ���

because these genes are also expressed by other myeloid populations (Goldmann et al., 2016; �	�

Wieghofer, Knobeloch, & Prinz, 2015). Therefore identification of microglia
specific molecules, �
�

which are not expressed by other myeloid species, has been pursued. ���

 Several studies have used transcriptome analysis to determine the molecular ���

signature of microglia, resulting in the identification of molecules that are highly expressed by ���

microglia but not by other myeloid cells (Bedard, Tremblay, Chernomoretz, & Vallieres, 2007; ���

Butovsky et al., 2014; Chiu et al., 2013; Gautier et al., 2012; Hickman et al., 2013; Wes et al., ���

2016). Among the molecules identified, the expression of transmembrane protein 119 ���

(TMEM119) (Bennett et al., 2016), Sall1 (Buttgereit et al., 2016) and P2Y12 (Mildner et al., ���
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2017) histologically discriminated microglia from CNS
associated MΦ or CNS
infiltrating ��

monocytes. Although expression of these molecules is restricted to microglia in the CNS, these ��

markers are not fully specific. For example, TMEM119 expression is absent in immature ��

microglia (Bennett et al., 2016), Sall1 is abundantly expressed in neuronal/glial progenitor cells ��

during development (Buttgereit et al., 2016; Harrison, Nishinakamura, Jones, & Monaghan, ��

2012), and P2Y12 shows decreased/diminished expression in activated microglia (Amadio et al., ��

2014; Haynes et al., 2006; Mildner et al., 2017). ��

In this study, we focused on a transmembrane lectin, sialic acid
binding 	�

immunoglobulin
like lectin H (Siglec
H), which is known as a marker for plasmacytoid 
�

dendritic cells (pDCs) in the immune system (Blasius et al., 2006; Zhang et al., 2006). Previous ���

transcriptome and flow cytometric studies on isolated cells suggested Siglec
H as a ���

microglia
specific molecule that was not expressed by peripheral myeloid cells, such as ���

circulating monocytes and peripheral MΦ (Bedard, Tremblay, Chernomoretz, & Vallieres, 2007; ���

Butovsky et al., 2014; Chiu et al., 2013; Gautier et al., 2012; Hickman et al., 2013). However, ���

no immunohistochemical studies of the nervous system were performed, and marker specificity ���

of Siglec
H, for instance, for CNS
associated MΦ and CNS
infiltrating monocytes, remained ���

unexplored. Here we demonstrated microglia
specific expression of Siglec
H, including during ���

developmental stages and under injury conditions. �	�

�
�
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Materials and Methods ��

Animals ��

 C57BL/6J wild
type (WT) mice were purchased from Charles River Laboratories ��

Japan. Siglech
dtr/dtr

 mice on a C57BL/6J background are described in our previous study ��

(B6.Cg
Siglech<tm1.1Ksat> mice; deposited in RIKEN BioResource Center [accession number: ��

RBRC05658]) (Takagi et al., 2011). Although an internal ribosome entry site (Ires)
diphtheria ��

toxin (DT) receptor (Dtr)
enhanced green fluorescent protein (Egfp) cassette was inserted into ��

the 3′ untranslated region of the Siglech gene in Siglechdtr/dtr mice, EGFP was not expressed in 	�

microglia in any CNS region due to unknown mechanisms (data not shown). This is consistent 
�

with the lack of EGFP expression in pDCs described in our previous study (Takagi et al., 2011). ���

C�C chemokine receptor type 2 (Ccr2)
RFP/RFP

 knock
in mice on a C57BL/6J background were ���

obtained from The Jackson Laboratory (stock number: 017586) (Saederup et al., 2010). ���

Embryonic day (E)17, and male postnatal day (P)0, 7, 14, 28, and 8
12
week
old (W) (adult) ���

mice were used. This study was approved by the local animal ethics committee of Nagoya ���

University (approval numbers: 25107, 26181, 27204 and 28303). All experimental procedures ���

were conducted in accordance with standard guidelines for animal experiments from the ���

Nagoya University Graduate School of Medicine, the Animal Protection and Management Law ���

of Japan (No. 105), and the Ethical Issues of the International Association for the Study of Pain �	�

(Zimmermann, 1983). All efforts were made to minimize the number of animals used and their �
�

suffering. ���

 ���

Injury models ���

Adult mice were anesthetized with isoflurane or pentobarbital for surgery. The optic ���

nerve of Ccr2RFP/+ mice was crushed at ~1 mm from the optic disc for 5 seconds using fine ���

forceps, and analyzed by immunohistochemistry 7 days after injury. Experimental autoimmune ���

encephalomyelitis (EAE) was induced by immunizing Ccr2
RFP/+

 mice with MOG35–55 peptide ���

followed by injection of pertussis toxin as previously described (Bando et al., 2015). After the ���

appearance of hindlimb paralysis, the ventral white matter of the L4 spinal cord was analyzed �	�

by immunohistochemistry. The sciatic nerve was unilaterally transected using scissors and, 7 �
�

days after surgery, the sciatic nerve and spinal dorsal horn were analyzed by ���

immunohistochemistry and quantitative real
time PCR (qPCR). For a neuropathic pain model, ���

the spinal L4 nerve of WT and Siglechdtr/dtr mice was unilaterally transected using scissors ���

according to our method described previously (Kobayashi et al., 2016), and pain testing, ���

immunohistochemistry and qRT
PCR were performed 1, 3, 7 and 14 days after surgery. ���

 ���

Ablation of microglia ���
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DT (50 µg/kg) (Sigma Aldrich) was intraperitoneally administrated to P7 or adult ��

Siglech
dtr/dtr

 mice. For the nerve
injury model, the sciatic nerve of adult Siglech
dtr/dtr

 mice was ��

unilaterally transected 7 days before DT administration. Brains, spinal cords and sciatic nerves ��

were processed for immunohistochemistry 2 days after DT administration. ��

 ��

Immunohistochemistry ��

Immunohistochemistry was performed according to our previously described method ��

with slight modification (Konishi et al., 2007). Mice were perfused with Zamboni’s fixative (0.1 	�

M phosphate buffer containing 2% paraformaldehyde and 0.2% picric acid), and then brains, the 
�

L4 level of spinal cords, optic and sciatic nerves were dissected. Post
fixation was avoided in ���

this study because over
fixation significantly decreased the immunoreactivity of Siglec
H. The ���

brains of E17 mice and spinal cords of adult EAE model mice were fixed by immersion in ���

Zamboni’s fixative for 4–6 h at 4°C. Tissues were dehydrated in 25% sucrose in 0.1 M ���

phosphate buffer overnight at 4°C and then frozen in dry ice. Floating or slide
mounted sections ���

were cut on a microtome at 16 or 30 µm, washed in 0.01 M phosphate buffered saline (PBS), ���

and then reacted with primary antibodies diluted in a blocking solution (0.01 M PBS containing ���

1% bovine serum albumin, 0.1% Triton X100 and 0.1% NaN3). The following primary ���

antibodies were used: rabbit polyclonal anti
Iba1 (WAKO #019
19741, RRID: AB_839504), �	�

goat polyclonal anti
Iba1 (Abcam #ab5076, RRID: AB_2224402), rat monoclonal anti
CD206 �
�

(Bio
rad #MCA2235GA, RRID: AB_322613), goat polyclonal anti
CD206 (R&D systems ���

#AF2535, RRID: AB_2063012), rabbit polyclonal anti
laminin (Abcam #ab11575, RRID: ���

AB_298179), and rabbit polyclonal anti
protein kinase C gamma (PKCγ) (Santa Cruz ���

Biotechnology #sc
211, RRID: AB_632234). Characterization of the polyclonal anti
Siglec
H ���

antibody used in the present study was described in our previous study (Zhang et al., 2006). ���

Briefly, a sheep was immunized with the extracellular domain of mouse Siglec
H fused with Fc ���

region of human IgG (Fc) (Siglec
H
Fc), and anti
Siglec
H antibody was purified by affinity ���

chromatography using Siglec
H
Fc
coupled column. For antigen absorption tests, anti
Siglec
H ���

antibody was reacted with 1.0 µM of the Fc, Siglec
H
Fc or Siglec
E
Fc (Biolegend) in 0.01M �	�

PBS overnight at 4°C. The reaction mixture was centrifuged at 10,000g for 20 min at 4°C, and �
�

then the supernatant was used as the primary antibody solution. After reaction with primary ���

antibodies, sections were washed in 0.01 M PBS, and reacted with secondary antibodies ���

conjugated with Alexa Fluor 488, 594 or 647 (Thermo Fisher Scientific). After washing in 0.01 ���

M PBS, sections were mounted with FluorSave reagent (Merck Millipore). Images were taken ���

using an FV10i confocal microscope (Olympus). ���

 ���

Quantitative histological analysis ���
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� 	

Rate of Siglec
H
+
 microglia in the cerebral cortex: In adult mice, we defined ��

parenchymal Iba1
+
 cells with ramified morphology as microglia, and quantified the rate of ��

Siglec
H
+
 microglia in the cerebral cortex, corpus callosum, hippocampal CA1 area, ventral ��

posterolateral/posteromedial thalamic nucleus, cerebellar cortex, spinal trigeminal nucleus of ��

the medulla, and the dorsal horn of the spinal cord in Iba1 stained sections. In contrast to adult ��

mice, microglia were not fully ramified in embryonic and early postnatal mice, and could not be ��

clearly distinguished from pvMΦ by Iba1 immunostaining. We therefore calculated the ��

Siglec
H+ rate against all Iba1+ cells in the cerebral cortex under the meninges in E17, P0 and 	�

P7 mice. A total of 36 images (3 fields/section, 3 sections/animal, 4 animals) were analyzed. 
�

Rate of Siglec
H
+
 pvMΦ or mMΦ in the cerebral cortex: We calculated the Siglec
H

+
 ���

rate of CD206
+
 pvMΦ or mMΦ in the cerebral cortex of adult mice. A total of 36 images (3 ���

fields/section, 3 sections/animal, 4 animals) were analyzed. ���

Rate of Siglec
H+ microglia and circumventricular organ MΦ (cvoMΦ) in the area ���

postrema: We calculated the Siglec
H+ rate of Iba1+/CD206– microglia or cvoMΦ in the area ���

postrema of adult mice. A total of 12 images (1 field/section, 3 sections/animal, 4 animals) were ���

analyzed. ���

Percentage of three different populations of Iba1
+
 cells in the choroid plexus: We ���

calculated the percentage of Siglec
H
+
/CD206

–
, Siglec
H

–
/CD206

+
 and Siglec
H

+
/CD206

+
 cells �	�

against total Iba1
+
 cells in the choroid plexus of lateral ventricle of adult mice. A total of 12 �
�

images (1 field/section, 3 sections/animal, 4 animals) were analyzed. ���

 Rate of Siglec
H+ monocytes in the EAE model: The ventral white matter of the L4 ���

spinal cord in Ccr2RFP/+ mice with EAE was analyzed. Sections were stained with anti
Siglec
H ���

antibody, and the Siglec
H+ rate in RFP+ infiltrating monocytes was calculated. A total of 45 ���

images (3 fields/section, 3 sections/animal, 5 animals) were analyzed. ���

 Rate of microglia and MΦ ablation: Sections were prepared form the cerebral cortex ���

and medulla (for the area postrema) of non
injured adult Siglech
dtr/dtr

 mice 2 days after DT ���

administration, and double
stained with anti
Iba1 and anti
CD206 antibodies. We defined ���

Iba1
+
/CD206

–
 and Iba1

+
/CD206

+
 cells as microglia and MΦ, respectively, and counted cell �	�

numbers in 12 images (1 field/section, 4 sections/animal, 3 animals). For the nerve injury model, �
�

sections of L4 spinal cord dorsal horn and sciatic nerve were prepared from sciatic ���

nerve
injured adult Siglechdtr/dtr mice 2 days after DT administration. Spinal sections were ���

immunoreacted with anti
Iba1 and anti
PKCγ antibodies to stain microglia and the inner lamina ���

II of the dorsal horn�(Malmberg, Chen, Tonegawa, & Basbaum, 1997), respectively. The number ���

of Iba1
+
 cells in lamina I and outer lamina II (I/IIo) was counted and is shown as microglial ���

numbers because pvMΦ were rare and their numbers were negligible in the dorsal horn. The ���

sciatic nerve was stained with anti
Iba1 antibody to identify monocytes/MΦ. Images taken by a ���
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confocal microscope were acquired using the same laser power and sensitivity, and Iba1
+
 areas ��

were measured using Image J software version 10.2 (NIH, RRID: SCR_003070). A total of 12 ��

images (1 field/section, 4 sections/animal, 3 animals) were analyzed. For developmental stages, ��

DT was administrated to P7 Siglech
dtr/dtr

 mice. Sections of the cerebral cortex were prepared ��

after 2 days, and were stained with anti
Iba1 antibody. CD206 immunostaining was not ��

performed because pvMΦ and mMΦ could not be distinguished from microglia by CD206 ��

immunoreactivity. We counted the number of Iba1+ cells in the cerebral cortex beneath the ��

meninges in a total of 12 images (1 field/section, 4 sections/animal, 3 animals). 	�

 Number of microglia in the dorsal horn of the neuropathic pain model: Adult WT and 
�

Siglech
dtr/dtr

 L4 spinal cord sections were prepared 7 days after L4 nerve transection. Sections ���

were stained with anti
Iba1 and anti
PKCγ antibodies, and the number of Iba1
+
 cells in the ���

lamina I/IIo of the dorsal horn was counted. A total of 16 images (1 field/section, 4 ���

sections/animal, 4 animals) were analyzed. ���

 ���

qPCR ���

 Cerebral cortex was collected from E17, P0, P7, P14, P28 and 8W WT, and 8W ���

Siglech
dtr/dtr

 mice (n = 3). L4 spinal dorsal horn and sciatic nerve were taken from WT mice 7 ���

days after sciatic nerve transection (n = 3). L4 spinal dorsal horn was dissected from WT and �	�

Siglech
dtr/dtr

 mice, 0 (naive), 1, 3, 7 and 14 days after L4 nerve transection (n = 3). mRNA was �
�

purified from tissues using the acid guanidine iso
thiocyanate/phenol/chloroform extraction ���

method, and converted to cDNA by SuperScript III (Thermo Fisher Scientific). qPCR was ���

performed using StepOnePlus (Applied Biosystems) with Fast SYBR Green Master Mix ���

(Applied Biosystems): 1 cycle of 95°C for 20 s, 40 cycles of 95°C for 3 s, and 60°C for 30 s. ���

Primers were as follows; glyceraldehyde�3�phosphate dehydrogenase (Gapdh) (sense ���

5′
TGACGTGCCGCCTGGAGAAA
3′, antisense ���

5′
AGTGTAGCCCAAGATGCCCTTCAG
3′), Siglech (sense ���

5′
TGGTACAGGTAGCCATGGGA
3′, antisense 5′
TGTGTTGCTGGTCTCTCCAC
3′), ���

allograft inflammatory factor 1 (Aif1) (gene encoding Iba1) (sense �	�

5′
GGATCTGCCGTCCAAAC
3′, antisense 5′
GCATTCGCTTCAAGGACA
3′), tumor �
�

necrosis factor (TNF)�α (Tnfa) (sense 5′
GTGGAACTGGCAGAAGAGGC
3′, antisense ���

5′
AGACAGAAGAGCGTGGTGGC
3′), interleukin (IL)�1β (Il1b) (sense ���

5′
CTGTGTCTTTCCCGTGGACC
3′, antisense 5′
CAGCTCATATGGGTCCGACA
3′), Il10 ���

(sense 5′
GGTTGCCAAGCCTTATCGGA
3′, antisense 5′
ACCTGCTCCACTGCCTTGCT
3′), ���

and transforming growth factor (TGF)
β1 (Tgfb1) (sense ���

5′
CCGCAACAACGCCATCTATG
3′, antisense 5′
TGCCGTACAACTCCAGTGAC
3′). ���

Amplified PCR samples were subjected to melting analysis to confirm amplicon specificity. ���
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Results were normalized to Gapdh and analyzed using the 2−^Ct method. ��

 ��

Behavioral analysis of neuropathic pain ��

WT and Siglech
dtr/dtr

 mice, 0, 3, 7 and 14 days post L4 spinal nerve transection were ��

analyzed (n = 4). Mice were individually placed in an opaque chamber with a wire mesh floor. ��

After habituation at least for 30 min, the tip of an Electronic von Frey Anesthesiometer (IITC ��

Life Science) was applied to the plantar surfaces of their hindpaws and the paw withdrawal ��

threshold (PWT) was measured. 	�

 
�

Statistical analysis����

 All values are expressed as the mean ± S.E.M. Changes in gene expression and cell ���

numbers were analyzed with the unpaired Student’s t
test. PWT data was analyzed by two
way ���

ANOVA with a post hoc Bonferroni test. p < 0.05 was considered statistically significant. ���

  ���
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Results ��

Siglec�H is specifically expressed by microglia in the steady state CNS of adult mice, ��

except for in the choroid plexus ��

We stained sections of cerebral cortex prepared from adult mice with a polyclonal ��

antibody against Siglec
H (Figure 1) (Zhang et al., 2006). Clear signals were observed in Iba1+ ��

microglia with ramified morphologies in the parenchyma (Figure 1a–c). The signals ��

disappeared after absorption of the antibody with antigen (Siglec
H
Fc) (Figure 1d–f), ��

suggesting the antibody
antigen specificity. Because Siglec
E was also shown as a microglial 	�

signature gene among Siglec family members in mice (Bennett et al., 2016; Claude et al., 2013; 
�

Hickman et al., 2013), we confirmed that the Siglec
H antibody did not cross
react with ���

Siglec
E (Figure 1g–i). The antibody
antigen specificity was further confirmed using Siglech ���

knock
down mice. In Siglech
dtr/dtr

 mice, an Ires and the gene encoding the DT receptor were ���

knocked into the 3′ untranslated region of the Siglech gene (Takagi et al., 2016; Takagi et al., ���

2011). This genetic modification was not expected to affect the expression of Siglech; however, ���

our previous study found that Siglec
H expression was knocked
down in pDCs in the immune ���

system of Siglechdtr/dtr mice. qPCR showed that levels of Siglech mRNA were knocked
down in ���

the cerebral cortex of Siglech
dtr/dtr

 mice (75.1% decrease compared with WT by qPCR, n = 3, p < ���

5.0 × 10

6

). In line with the downregulation of mRNA, microglial Siglec
H immunoreactivity �	�

was significantly lower in Siglech
dtr/dtr

 mice compared with WT (Figure 1j–o), demonstrating �
�

antibody
antigen specificity of the Siglec
H antibody in immunohistochemistry. ���

In cortical sections, CD206+ pvMΦ were found along medium
 or large
sized vessels ���

but not along capillaries (single arrowheads in Figure 2b), and CD206+ mMΦ were found in the ���

meninges (double arrowheads in Figure 2b) (Galea et al., 2005; Goldmann et al., 2016). These ���

two types of macrophages had spindle or round shapes with fewer processes compared with ���

parenchymal microglia (Figure 2b) and were almost negative for Siglec
H (Figure 2a; Siglec
H
+
 ���

pvMΦ: 1.7 ± 0.6%; Siglec
H
+
 mMΦ: 0.3 ± 0.3%), whereas parenchymal ramified microglia ���

were positive in the same sections (arrows in Figure 2a). In contrast to the microglia
specific ���

expression of Siglec
H, Iba1 was expressed by all myeloid cells in cortical sections (Siglec
H
+
 �	�

microglia, CD206+ pvMΦ and CD206+ mMΦ) (Figure 2e–h). Circumventricular organs are �
�

brain areas lacking the blood–brain barrier (Kaur & Ling, 2017; Morita & Miyata, 2012). ���

Sensory circumventricular organs, such as the ‘area postrema’ in the dorsal medulla, contain a ���

large number of MΦ around capillaries (Goehler, Erisir, & Gaykema, 2006; Murabe, Nishida, & ���

Sano, 1981; Willis, Garwood, & Ray, 2007). We defined MΦ within circumventricular organs as ���

circumventricular organ MΦ (cvoMΦ) in this study because cvoMΦ are different from pvMΦ in ���

that cvoMΦ contact capillaries and are assumed to play specific roles, such as forming a ���

size
selective diffusion barrier around capillaries in circumventricular organs (Goehler, Erisir, & ���
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Gaykema, 2006; Murabe, Nishida, & Sano, 1981; Willis, Garwood, & Ray, 2007). In the area ��

postrema, Siglec
H was not detected in Iba1
+
/CD206

+
 cvoMΦ with few processes (arrowheads ��

in the inset of Figure 2i–l); however, Siglec
H was expressed by putative Iba1
+
/CD206

–
 ��

microglia with ramified shapes (an arrow in the inset of Figure 2i–l; Siglec
H
+
 rate of ��

Iba1+/CD206– cells: 96.4 ± 0.9%), except for a minor Iba1+ population that expressed both ��

Siglec
H and CD206 (an asterisk in Figure 2i–l; 3.6 ± 0.9% of Iba1+/Siglec
H+ cells; 3.2 ± 0.7% ��

of Iba1+/CD206+ cvoMΦ). We obtained the same results in another sensory circumventricular ��

organ, the ‘subfornical organ’ at the roof of the third ventricle (data not shown). In contrast to 	�

the cerebral cortex and sensory circumventricular organs, results were different in the choroid 
�

plexus (Figure 2m–p), which is known to contain cpMΦ with a higher turnover rate compared ���

with mMΦ and pvMΦ (Goldmann et al., 2016). In addition to Siglec
H
+
/CD206

–
 (an arrow in ���

Figure 2m–p; 17.5 ± 3.0% of total Iba1
+
 cells) and Siglec
H

–
/CD206

+
 cells (arrowheads in ���

Figure 2m–p; 60.3 ± 4.5% of total Iba1+ cells), Siglec
H+/CD206+ cells were also frequently ���

observed (asterisks in Figure 2m–p; 11.5 ± 2.0% of total Iba1+ cells; 40.0 ± 6.3% of ���

Iba1+/Siglec
H+ cells; 16.2 ± 2.7% of Iba1+/CD206+ cells). ���

Microglia
specific Siglec
H expression was also examined in the parenchyma of ���

representative CNS regions, including hippocampal CA1 (Supporting Information Figure S1a–���

c) and the white matter (corpus callosum) (Supporting Information Figure S1d–f). The rate of �	�

Siglec
H
+
 microglia with respect to Iba1

+
 cells with ramified morphologies in the parenchyma �
�

was almost 100% in all regions examined (cerebral cortex: 100.0%; corpus callosum: 100.0%; ���

hippocampus: 99.7 ± 0.3%; thalamus: 100.0%; cerebellum: 99.8 ± 0.2%; medulla: 100.0%; ���

spinal cord: 100.0%) (Supporting Information Figure S1g), and all Siglec
H+ cells were Iba1+. ���

These results demonstrated that Siglec
H expression was confined to microglia in the steady ���

state CNS except for in the choroid plexus. ���

 ���

Siglec�H is specifically expressed by microglia in the developing CNS ���

 The recently identified microglia
specific markers, TMEM119 and Sall1, are not ���

specific during mouse development (Bennett et al., 2016; Buttgereit et al., 2016; Harrison, �	�

Nishinakamura, Jones, & Monaghan, 2012); therefore, we tested whether Siglec
H is specific �
�

for microglia during development (Figure 3). Even though microglial numbers in the cerebral ���

cortex were small at E17 (Swinnen et al., 2013), Siglech mRNA was clearly detected by qPCR ���

at a similar level to Aif1 mRNA (encoding Iba1) (Figure 3a). Because microglia express Iba1 ���

from an early developmental stage (Hirasawa et al., 2005), we expected that Siglec
H ���

immunoreactivity could be detected in embryonic microglia by immunohistochemistry. In ���

embryonic mice, it was difficult to immunohistochemically distinguish microglia from mMΦ or ���

pvMΦ, because immature microglia also expressed CD206 (data not shown) and were not fully ���
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ramified. Although microglia could not be defined clearly by morphology at E17, Siglec
H ��

expression was observed in putative Iba1
+
 microglia in parenchyma, but not in some Iba1

+
 cells ��

in the meninges, which might correspond to mMΦ (Figure 3b–d). At P7, microglial ramification ��

proceeded and microglia were distinguishable from mMΦ and pvMΦ by their morphologies ��

(Figure 3f). Siglec
H was detected in ramified microglia in parenchyma whereas putative mMΦ, ��

which had large cell bodies with few processes, were negative for Siglec
H (Figure 3e–g). A ��

quantitative study showed that Siglec
H was expressed by most Iba1+ cells during development ��

(E17: 96.4 ± 0.6%; P0: 95.5 ± 0.7%; P7: 98.5 ± 1.0%; relative to all Iba1+ cells in the cerebral 	�

cortex beneath the meninges) (Figure 3h). 
�

 ���

Siglec�H is not expressed by monocytes infiltrating an injured or inflamed nervous system ���

 Circulating CCR2
+
 monocytes can enter the nervous system upon neuronal injury or ���

inflammation, and play distinct roles from those of microglia (King, Dickendesher, & Segal, ���

2009; Mildner et al., 2009; Varvel et al., 2016; Yamasaki et al., 2014). We hypothesized that ���

Siglec
H expression could discriminate resident microglia from infiltrating monocytes, and ���

examined the possibility using an optic nerve injury model (Figure 4a–h). We used Ccr2RFP/+ ���

mice, in which monocytes infiltrating the CNS are labeled with red fluorescent protein (RFP) ���

(Saederup et al., 2010). Siglec
H expression was observed in Iba1
+
 microglia with elongated �	�

morphology along the axons of the control optic nerve, and no RFP
+
 monocytes were found �
�

(Figure 4a–d). In contrast, a significant number of RFP
+
 monocytes with a round or spindle ���

shape had invaded the injured optic nerve 7 days after crush injury (Figure 4f), and these RFP+ ���

monocytes were negative for Siglec
H (Figure 4e–h). We could not perform a quantitative study ���

of Siglec
H+ monocytes because the monocyte density was high and counting monocyte ���

numbers was difficult (Figure 4f). ���

We also tested an inflammatory model of the CNS (Figure 4i–p). We immunized ���

Ccr2
RFP/+

 mice with MOG peptide to induce EAE. After hindlimb paralysis appeared, the spinal ���

cord was dissected and processed for immunohistochemistry. In contrast to control mice (Figure ���

4j), RFP
+
 monocytes with round or spindle shapes were infiltrated into the white matter of mice �	�

with EAE (Figure 4n). While activated Iba1+ microglia with hypertrophic morphology �
�

expressed Siglec
H, infiltrating monocytes were negative for Siglec
H (Figure 4m–p), except ���

for a minor population that markedly expressed Siglec
H compared with resident microglia (an ���

asterisk in Figure 4m–p; 1.8 ± 0.3% of total RFP+ cells). ���

In addition to the CNS, we examined the PNS. Peripheral nerve injury causes ���

accumulation of MΦ in the distal part of the injured nerve, which is necessary for Wallerian ���

degeneration (Chen, Piao, & Bonaldo, 2015). Although resident MΦ in peripheral nerves ���

proliferate and contribute to the pool, the main source of accumulated MΦ is monocytes ���
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recruited from the circulation (Beuche & Friede, 1984). Thus we examined whether monocytes ��

infiltrating the injured peripheral nerve express Siglec
H (Figure 5). The nerve injury caused ��

accumulation of microglia and monocytes/MΦ in the ipsilateral spinal cord (Figure 5b,e) and ��

injured nerve (Figure 5h), respectively, 7 days after sciatic nerve transection. Although Siglec
H ��

was expressed by Iba1+
activated microglia in the dorsal horn (Figure 5a–f), Siglec
H ��

expression was not detected in Iba1+ monocytes/MΦ in the injured sciatic nerve (Figure 5g–i). ��

These histological data were confirmed by qPCR (Figure 5j,k). Siglec
H expression was ��

increased concomitantly with Iba1 induction in the dorsal horn after injury (Figure 5j). In 	�

contrast, Siglec
H expression was not induced in the injured nerve although Iba1 expression 
�

was markedly increased (Figure 5k). ���

 Collectively, Siglec
H can be used as a histological marker that distinguishes resident ���

microglia from infiltrating monocytes both in the CNS and PNS, except for a minor population. ���

 ���

The ������� locus is suitable for microglia�specific gene targeting ���

Our histological analyses indicated Siglec
H to be a microglia
specific marker in the ���

nervous system, which prompted us to explore the suitability of the Siglech locus for ���

microglia
specific gene targeting in mice (Figure 6). To this end, we used Siglech
dtr/dtr

 mice, in ���

which Siglec
H
+
 cells express the DT receptor and can be ablated by systemic DT �	�

administration (Takagi et al., 2011). After peritoneal injection of DT into adult Siglech
dtr/dtr

 mice, �
�

a significant number of microglia in the cerebral cortex was ablated within 2 days (Figure 6a,b). ���

The number of Iba1+/CD206– microglia decreased to 20.6% (Figure 6c), while those of CD206+ ���

pvMΦ and mMΦ were unchanged (Figure 6d,e). We also demonstrated in the area postrema that ���

DT was ineffective at ablating CD206+ cvoMΦ in contrast to Iba1+/CD206– microglia (85.8% ���

decrease in DT
administrated group) (Figure 6f–i).  ���

We also demonstrated that Siglech locus
mediated gene targeting had no effects on ���

infiltrating monocytes. We prepared adult Siglech
dtr/dtr

 mice with sciatic nerve injury and 7 days ���

after surgery DT was administered to the mice and cell ablation rates calculated (Figure 6j–o). ���

For microglia in the dorsal horn, we counted the number of parenchymal Iba1
+
 cells without �	�

CD206 staining because pvMΦ were rare and their number was negligible in the dorsal horn. In �
�

lamina I and outer II (I/IIo) of the dorsal horn, which was defined by visualizing inner lamina II ���

by PKCγ immunostaining (Malmberg, Chen, Tonegawa, & Basbaum, 1997), microglial ���

numbers were significantly reduced both in the contralateral and ipsilateral side, 2 days after DT ���

administration (contralateral side: 76.6% decrease in DT
administrated group; ipsilateral side: ���

78.9% decrease in DT
administrated group) (Fig. 6j–l). By contrast, the number of ���

monocytes/MΦ in the sciatic nerve was unchanged (Figure 6m–o). Taken together, these results ���

indicate that the Siglech locus is suitable for microglia
specific gene targeting in adult mice ���
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without affecting the behavior of CNS
associated MΦ, such as pvMΦ, mMΦ and cvoMΦ, and ��

infiltrating monocytes in the nervous system. ��

 A hallmark of Siglec
H was its expression in immature microglia (Figure 3); ��

therefore, we administrated DT to P7 Siglech
dtr/dtr

 mice and analyzed the cerebral cortex at P9 ��

(Figure 6p–r). Similar to E17 (Figure 3b–d) and P7 (Figure 3e–g) mice, pvMΦ and mMΦ could ��

not be distinguished from microglia by CD206 immunoreactivity at P9 (data not shown). Thus ��

we stained laminin to visualize vessels and meninges (Figure 6p,q). Most Iba1+ ramified ��

microglia were ablated within 2 days of DT administration. In contrast, Iba1+ cells with large 	�

cell bodies and few processes, located in the perivascular region (putative pvMΦ indicated by 
�

single arrowheads in Figure 6p,q) and meninges (putative mMΦ indicated by double ���

arrowheads in Figure 6p,q), were unaffected. Statistical analysis showed a 91.9% decrease of ���

Iba1
+
 cells in the cerebral cortex beneath the meninges in the DT
administrated group (Figure ���

6r). It should be noted that most of the remaining Iba1+ cells (8.1%) were putative pvMΦ along ���

the vessels, and that almost all the microglia were ablated in the parenchyma. ���

 ���

Siglec�H suppressed inflammatory responses of activated microglia ���

Finally we addressed Siglec
H function using a mouse neuropathic pain model. In ���

this model, transection of the L4 spinal nerve induces microglial activation in the L4 dorsal horn, �	�

and the resulting inflammatory responses of activated microglia develop and prolong �
�

neuropathic pain (Tsuda, 2016). In the ipsilateral dorsal horn of the model mice, expression of ���

Siglech mRNA increased after injury with a peak at 3 days (Figure 7a), when the microglial ���

numbers also reached a peak (Kobayashi et al., 2016). Siglech mRNA was significantly ���

decreased in the ipsilateral dorsal horn of Siglechdtr/dtr mice compared with WT (Figure 7a). ���

Immunohistochemistry demonstrated that Siglec
H protein was expressed in activated Iba1+ ���

microglia in the ipsilateral dorsal horn of WT mice (Figure 7b–g). However, Siglec
H ���

immunoreactivity was very low in Siglech
dtr/dtr

 mice (Figure 7h–j). Thus we assumed that ���

Siglec
H could be functionally impaired in Siglech
dtr/dtr

 mice, and we analyzed the functional ���

consequences of Siglech impairment in the pain model. qPCR showed that the nerve injury �	�

induced the expression of representative pro
inflammatory cytokines, Tnfa and Il1b, in the �
�

ipsilateral dorsal horn (Figure 7k) (Tsuda, 2016). Siglech knock
down increased the expression ���

of Tnfa and Il1b but did not affect expression of anti
inflammatory cytokines, such as Il10 and ���

Tgfb1. Because the ipsilateral dorsal horn of WT and Siglechdtr/dtr mice contained almost equal ���

numbers of microglia (1.03
fold increase in Siglech
dtr/dtr

 compared with WT mice at 7 days) ���

(Figure 7l–n), the increase in Tnfa and Il1b mRNA observed in Siglech
dtr/dtr

 mice was likely the ���

result of upregulation of gene expression in microglia. Lastly, we evaluated mechanical ���

allodynia in Siglech
dtr/dtr

 mice using the von Frey test (Figure 7o,p). Although PWT of the ���
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contralateral side was comparable between WT and Siglech
dtr/dtr

 mice (Figure 7o), that of the ��

ipsilateral side was lower in Siglech
dtr/dtr

 mice after nerve injury with significant differences at ��

day 3 (Figure 7p), demonstrating that mechanical allodynia was exacerbated in Siglech
dtr/dtr

 mice. ��

These results suggest that Siglec
H suppresses the pro
inflammatory response of microglia, ��

reducing neuropathic pain. ��

��
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Discussion ��

 In this study, we explored the feasibility of Siglec
H as a specific marker for ��

microglia in the nervous system. We revealed that almost all microglia in the CNS parenchyma ��

expressed Siglec
H, from developmental to mature stages (Figures 1–3; Supporting Information ��

Figure S1), and the expression was maintained in activated microglia after CNS (Figure 4) and ��

PNS injuries (Figures 5 and 7a–g). In contrast, Siglec
H expression was largely absent from ��

other myeloid cells in the nervous system: CNS
associated MΦ (pvMΦ, mMΦ and cvoMΦ; ��

Figure 2), and monocytes infiltrating into the CNS (Figure 4) and PNS (Figure 5). On the basis 	�

of the Siglec
H expression profile, we further demonstrated the use of the Siglech locus for 
�

microglia
specific gene manipulation in both mature and developing mice (Figure 6). ���

Collectively, we conclude that Siglec
H is a specific marker that will be highly useful for ���

microglial studies. ���

 Siglec
H is a single
pass transmembrane protein belonging to the CD33
related ���

Siglec family (Macauley, Crocker, & Paulson, 2014). Although there are no clear orthologs in ���

human, Siglec
L2 is ~42% homologous and is assumed to be a potential ortholog (Zhang et al., ���

2006). Siglec
H is known as a marker for pDCs in the immune system (Blasius et al., 2006; ���

Takagi et al., 2011; Zhang et al., 2006). Several previous studies employing transcriptome or ���

flow cytometric analyses using isolated cells suggested that Siglec
H was abundantly expressed �	�

in microglia compared with peripheral myeloid cells, such as circulating monocytes and �
�

peripheral MΦ (Bedard, Tremblay, Chernomoretz, & Vallieres, 2007; Butovsky et al., 2014; ���

Chiu et al., 2013; Gautier et al., 2012; Hickman et al., 2013). However, no ���

immunohistochemical studies were performed in the nervous system, and it remained unknown ���

whether Siglec
H was expressed by CNS
associated MΦ as well as monocytes infiltrating in the ���

nervous system. In this study, we demonstrated that Siglec
H expression was largely confined to ���

microglia (Figures 1–5; Supporting Information Figure S1) by using a Siglec
H
specific ���

antibody (Zhang et al., 2006), whose antigen
specificity was confirmed by an absorption test ���

(Figure 1d–i) and by the use of Siglech knock
down mice (Figures 1m–o and 7h–j). Several ���

marker antibodies such as Iba1 and CD11b are frequently used for immunohistochemical �	�

detection of microglia; however, these molecules are also expressed by CNS
associated MΦ in �
�

the steady state (Figure 2) as well as by infiltrating monocytes in the injured nervous system ���

(Figure 4e–h and 5g–i) (Greter, Lelios, & Croxford, 2015; Prinz & Priller, 2014; Prinz, Priller, ���

Sisodia, & Ransohoff, 2011). This broader expression makes it difficult to discriminate ���

microglia from other myeloid cells by immunohistochemistry. In addition to these classical ���

markers, Bennette et al. (Bennett et al., 2016) recently reported a transmembrane protein, ���

TMEM119, as a microglia
specific marker, for which mMΦ, pvMΦ and cpMΦ, and ���

CNS
infiltrating monocytes were negative. Although the authors demonstrated specificity of ���
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� �	�

TMEM119 expression in microglia, the expression was very low or absent in immature ��

microglia in embryonic and early postnatal mice. Sall1 has also recently been shown to be a ��

microglia
specific transcription factor using Sall1
GFP

 and Sall1
CreER

 knock
in mice (Buttgereit et ��

al., 2016; Koso et al., 2016). Sall1 expression was highly restricted to microglia in the CNS of ��

adult mice; however, Sall1 expression was abundantly observed in neuronal/glial progenitor ��

cells in embryonic mice (Buttgereit et al., 2016; Harrison, Nishinakamura, Jones, & Monaghan, ��

2012). This is in contrast to Siglec
H because Siglec
H expression was observed in microglia in ��

embryonic and early postnatal mice (Figure 3). More recently, Mildner et al. (Mildner et al., 	�

2017) reported that a purinoceptor, P2Y12, is detected in microglia but not in pvMΦ and mMΦ 
�

in the developing human brain. Additionally, previous reports showed that P2Y12 expression ���

was detected in microglia but not in splenic MΦ or CNS
infiltrating monocytes by ���

immunohistochemistry in mice (Butovsky et al., 2014; Haynes et al., 2006). However, P2Y12 ���

expression is significantly decreased or diminished in activated microglia (Amadio et al., 2014; ���

Haynes et al., 2006; Mildner et al., 2017), whereas Siglec
H expression was maintained in ���

microglia activated by CNS (Figure 4) and PNS injuries (Figures 5 and 7b–g). ���

 In addition to microglia, Siglec
H was detected in Iba1+ cells in the choroid plexus ���

(Figure 2m–p). Iba1
+
 cells in the choroid plexus can be divided into three subsets: ���

Siglec
H
+
/CD206

–
 (an arrow in Figure 2m–p), Siglec
H

–
/CD206

+
 (arrowheads) and �	�

Siglec
H
+
/CD206

+
 (asterisks) cells. This suggests that cpMΦ consists of heterogeneous �
�

populations in contrast to pvMΦ, mMΦ and cvoMΦ. A recent paper revealed the heterogeneity ���

of cpMΦ (Goldmann et al., 2016). The authors showed that cpMΦ, pvMΦ and mMΦ were all ���

derived from precursors in the yolk sac and/or the fetal liver. However, cpMΦ have a shorter life ���

span and are gradually replenished by circulating myeloid cells, while pvMΦ and mMΦ persist ���

throughout life. Subpopulation(s) of cpMΦ can express some microglial signature genes, which ���

is supported by the presence of P2Y12
+
 myeloid populations in the choroid plexus of the fetal ���

human brain (Mildner et al., 2017). ���

 In addition to the immunohistochemical reliability of Siglec
H, we addressed the ���

feasibility of using the Siglech locus for microglia
specific gene manipulation using Siglech
dtr/dtr

 �	�

knock
in mice (Figure 6). Genetic targeting of microglia in mice was performed using the gene �
�

loci or promoter/enhancer regions of Itgam (encoding CD11b), Csf1r and Cx3cr1 (Boillee et al., ���

2006; Jung et al., 2000; Pfrieger & Slezak, 2012; Sasmono et al., 2003). However, given that ���

these molecules are expressed by a variety of myeloid cells, the effect of the genetic ���

modification will not necessarily be restricted to microglia (Goldmann et al., 2016; Wieghofer, ���

Knobeloch, & Prinz, 2015). To circumvent this problem, a new system was established based on ���

the longevity of microglia (Goldmann et al., 2013; Parkhurst et al., 2013). When Cx3cr1
CreER/+

 ���

mice are crossed to mice harboring a floxed allele, both microglia and peripheral Cx3CR1
+
 cells, ���
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� �
�

including monocytes, undergo recombination upon tamoxifen administration. After an interval ��

of several weeks, microglial recombination persists whereas peripheral Cx3CR1
+
 cells are ��

replaced by bone marrow
derived progenitors without recombination. Even with this technique, ��

recombination of mMΦ and pvMΦ can be maintained for a long period together with microglia ��

because mMΦ and pvMΦ are long
lived cells (Goldmann et al., 2016). Thus finding a ��

microglia
specific gene locus is considered important. Results from the present cell ablation ��

study suggest the usefulness of the Siglech locus for microglia
specific targeting in the CNS ��

(Figure 6a–l and p–r). Another advantage of using the Siglech locus is a lack of recombination 	�

in PNS
infiltrating monocytes (Figure 6j–o). The present results suggest that a Siglech
Cre

 mouse 
�

would be a beneficial tool for future microglial studies. ���

 A previous study using cultured microglia suggested that Siglec
H was a phagocytic ���

receptor for glioma cells (Kopatz et al., 2013). This is the only report addressing the role of ���

Siglec
H in microglia, and Siglec
H functions in the nervous system, especially in vivo, remain ���

elusive. In the immune system, an anti
inflammatory role of Siglec
H in pDCs has been ���

proposed (Blasius et al., 2006; Puttur et al., 2013; Takagi et al., 2016; Takagi et al., 2011). ���

Therefore, we tested the possibility that Siglec
H also suppressed pro
inflammatory responses ���

of microglia using a mouse neuropathic pain model (Tsuda, 2016). We found that Siglech ���

knock
down promoted induction of representative pro
inflammatory cytokines in spinal �	�

microglia (Figure 7k) without affecting microglial proliferation (Figure 7l–n). We further �
�

revealed that pain behavior was exacerbated in Siglech knock
down mice (Figure 7o,p). Taken ���

together, Siglec
H
mediated signals appeared to act as a suppressor of pro
inflammatory ���

responses in activated microglia. Siglec
H is proposed to be a cell surface receptor, although ���

ligand(s) remain unidentified (Blasius et al., 2006; Kopatz et al., 2013; Zhang et al., 2006). The ���

intracellular domain of Siglec
H is very short and Siglec
H is known to form a complex with a ���

transmembrane adaptor protein, DNAX
activating protein of 12 kDa (DAP12), to induce ���

intracellular signals (Blasius et al., 2006). In parallel with Siglec
H, other transmembrane ���

receptors with short intracellular domains, such as triggering receptor expressed on myeloid ���

cells 2 (TREM2), also bind to DAP12 for signal
transduction (Bouchon, Hernandez
Munain, �	�

Cella, & Colonna, 2001). We recently revealed that TREM2
mediated signals promoted �
�

pro
inflammatory responses of microglia via DAP12 in the ipsilateral dorsal horn and ���

exacerbated neuropathic pain (Kobayashi et al., 2016). Both Siglec
H and TREM2 are able to ���

make complexes with DAP12 on microglial surfaces. However, TREM2 promotes inflammation ���

whereas Siglec
H suppresses inflammation. This controversy is also reported in the immune ���

system (Blasius & Colonna, 2006; Linnartz
Gerlach, Kopatz, & Neumann, 2014; Turnbull & ���

Colonna, 2007). Siglec
H and TREM2 are likely to work as an opposing switch for microglial ���

activation via DAP12. Besides neuropathic pain, TREM2/DAP12
mediated microglial ���
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� ���

activation is also pivotal for pathogenesis of Alzheimer’s disease both in humans and in mouse ��

models of the disease (Guerreiro et al., 2013; Jonsson et al., 2013; Paloneva et al., 2000; ��

Paloneva et al., 2002; Wang et al., 2015; Zhang et al., 2013). Therefore, further studies, such as ��

identification of Siglec
H ligand(s), are needed to reveal the precise molecular mechanisms ��

regulating microglial activity via DAP12. ��

 In conclusion, Siglec
H, together with TMEM119, Sall1 and P2Y12, will be useful as ��

“contemporary” markers of mouse microglia throughout developmental, adult and aging stages, ��

in both healthy and injury conditions. 	�

  
�
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Figure legends ��

FIGURE 1. Immunohistochemical specificity of Siglec�H antibody in mice. ��

(a–i) Antigen absorption test using recombinant Fc protein (a–c), Siglec
H
Fc (d–f) and ��

Siglec
E
Fc (g–i). Immunoreactivity for Siglec
H (a,d,g, green) and Iba1 (b,e,h, red) in the ��

cerebral cortex and the merged images (c,f,i) are shown. Images were acquired using the same ��

laser power and sensitivity, and image processing were the same for Fc
, Siglec
H
Fc
 and ��

Siglec
E
Fc
reacted samples (a–c vs. d–f vs. g–i). (j–o) Immunoreactivity for Siglec
H in the ��

cerebral cortex of WT (j–l) and Siglechdtr/dtr (m–o) mice. Immunoreactivity for Siglec
H (j,m, 	�

green) and Iba1 (k,n, red) in the cerebral cortex and the merged images (l,o) are shown. Images 
�

were acquired using the same laser power and sensitivity, and image processing were the same ���

for WT and Siglech
dtr/dtr

 samples (j–l vs. m–o). Scale bar:  50 µm. ���

 ���

FIGURE 2. Siglec�H is expressed by microglia but not by CNS�associated MΦ in adult ���

mice, except for in the choroid plexus. ���

(a–d) Siglec
H expression in the surface region of the cerebral cortex. Immunoreactivity for ���

Siglec
H (a, green) and CD206 (b, red), and the merged image of Siglec
H and CD206 (c) are ���

shown. Meninges and vessels are visualized by laminin immunostaining (d, cyan). Microglia ���

(arrows), pvMΦ (single arrowheads) and mMΦ (double arrowheads) are indicated. (e–h) �	�

Siglec
H expression in the surface region of the cerebral cortex. Immunoreactivity for Siglec
H �
�

(e, green) and CD206 (f, red), and the merged image of Siglec
H and CD206 (g) are shown. ���

Iba1 immunostaining visualizes all myeloid cells (h, cyan). Microglia (arrows), pvMΦ (single ���

arrowheads) and mMΦ (double arrowheads) are indicated. (i–l) Siglec
H expression in the area ���

postrema of the medulla. Immunoreactivity for Siglec
H (i, green), CD206 (j, red) and Iba1 (l, ���

cyan), and the merged image of Siglec
H and CD206 (k) are shown. Insets show higher ���

magnification images of microglia (arrows) and cvoMΦ (arrowheads). An asterisk indicates a ���

minor population that simultaneously expresses Siglec
H and CD206. (m–p) Siglec
H ���

expression in the choroid plexus. Immunoreactivity for Siglec
H (m, green), CD206 (n, red) and ���

Iba1 (p, cyan), and the merged image of Siglec
H and CD206 (o) are shown. Siglec
H
+
/CD206

–
 �	�

(arrows), Siglec
H–/CD206+ (arrowheads) and Siglec
H+/CD206+ (asterisks) cells are indicated. �
�

Scale bar:  50 µm, 15 µm (insets). ���

 ���

FIGURE 3. Siglec�H is expressed by microglia in the developing CNS of mice. ���

�, Developmental expression profile of mRNAs encoding Siglec
H and Iba1. mRNA levels in ���

the cerebral cortex were analyzed by qPCR at each time point (n = 3 for each time point). ���

Results are normalized to Gapdh, and shown as ratios to 8W mice. Values show the mean ± ���

S.E.M. (b–g) Siglec
H expression in the developing cerebral cortex at E17 (b–d) and P7 (e–g). ���
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Immunoreactivity for Siglec
H (b,e, green) and Iba1 (c,f, red), and the merged images (d,g) are ��

shown. Scale bar:  50 µm. (h) Siglec
H
+
 rate (%) of Iba1

+
 cells in the cerebral cortex beneath the ��

meninges at E17, P0 and P7 (n = 4; nine images per animal). Values show the mean ± S.E.M. ��

 ��

FIGURE 4. Siglec�H expression is absent from most infiltrating monocytes in the injured ��

or inflamed CNS of mice. ��

(a–h) Siglec
H expression in the optic nerve of Ccr2RFP/+ mice 7 days after crush injury. ��

Siglec
H immunoreactivity (a,e, green) and RFP signal (b,f, red), the merged images of 	�

Siglec
H and RFP (c,g), and Iba1 immunoreactivity (d,h, cyan) of control (a–d) and injured (e–
�

h) nerves are shown. Insets show higher magnification images of the injury site. Images were ���

acquired using the same laser power and sensitivity, and image processing were the same for ���

control and injured nerves (a–d vs. e–h). (i–p) Siglec
H expression in the ventral white matter of ���

the spinal cord of Ccr2RFP/+ mice with EAE. Siglec
H immunoreactivity (i,m, green), RFP signal ���

(j,n, red), the merged images of Siglec
H and RFP (k,o), and Iba1 immunoreactivity (l,p, cyan) ���

of control (naive: i–l) and EAE (m–p) mice are shown. Insets show higher magnification images. ���

An asterisk indicates a minor population that simultaneously expresses Siglec
H and RFP. ���

Images were acquired using the same laser power and sensitivity, and image processing were ���

the same for naive and EAE mice (i–l vs. m–p). Scale bar:  50 µm, 10 µm (insets). �	�

 �
�

FIGURE 5. Siglec�H expression is absent from infiltrating monocytes in the injured PNS ���

of mice. ���

(a–i) Siglec
H expression in the spinal cord (a–f) and in the distal part of the injured nerve (g–i) ���

7 days after sciatic nerve transection. Areas indicated by white squares in low magnification ���

images (a–c) are shown as higher magnification images (d–f). Immunoreactivity for Siglec
H ���

(a,d,g, green) and Iba1 (b,e,h, red), and the merged images (c,f,i) are shown. Images were ���

acquired using the same laser power and sensitivity, and image processing were the same for ���

dorsal horn and sciatic nerve samples (d–f vs. g–i). (j) Expression changes of mRNAs encoding ���

Siglec
H and Iba1 in the dorsal horn 7 days after sciatic nerve transection (n = 3). The �	�

contralateral (contra) and ipsilateral (ipsi) dorsal horns were subjected to qPCR. Results are �
�

normalized to Gapdh, and shown as ratios to the contralateral side. Values show the mean ± ���

S.E.M. (k) Expression changes of mRNAs encoding Siglec
H and Iba1 in the sciatic nerve 7 ���

days after transection (n = 3). The contralateral (contra) and ipsilateral (ipsi) sciatic nerves were ���

subjected to qPCR. Results are normalized to Gapdh, and shown as ratios to the contralateral ���

side. Values show the mean ± S.E.M. *p < 0.005 and **p < 5.0 × 10

4

 for upregulation, 
#
p < ���

0.05 for downregulation; unpaired Student’s t
test. ���

 ���
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FIGURE 6. DT administration specifically ablates microglia in �������
dtr/dtr

 mice. ��

(a–i) DT induces microglial ablation in the cerebral cortex (a–e) and the area postrema (area ��

surrounded by dotted line, f–i) of non
injured adult Siglech
dtr/dtr

 mice 2 days after administration. ��

Merged images of Iba1 (green) and CD206 (red) immunostaining of PBS
 (a,f) and DT
 (b,g) ��

treated mice are shown. The numbers of Iba1+/CD206– microglia (c,h), CD206+ pvMΦ (d), ��

CD206+ mMΦ (e) and CD206+ cvoMΦ (i) are quantified (n = 3; four images per animal). (j–l) ��

DT induces microglial ablation in the dorsal horn of sciatic nerve
injured adult Siglechdtr/dtr mice ��

2 days after administration. Merged images of Iba1 (green) and PKCγ (red) immunostaining of 	�

PBS
 (j) and DT
 (k) treated mice are shown. Lamina I/IIo is surrounded by a dotted line. Iba1
+
 
�

microglial numbers in lamina I/IIo of contralateral (contra) and ipsilateral (ipsi) dorsal horn are ���

quantified (l) (n = 3; four images per animal). (m–o) DT does not affect the number of ���

monocytes/MΦ accumulated in injured sciatic nerve of adult Siglech
dtr/dtr

 mice 2 days after ���

administration. Monocytes/MΦ are stained with anti
Iba1 antibody (green) in the ipsilateral ���

sciatic nerve of PBS
 (m) and DT
 (n) treated Siglechdtr/dtr mice. Iba1+ areas of contralateral ���

(contra) and ipsilateral (ipsi) sciatic nerve were quantified from images taken with the same ���

laser power and microscope sensitivity (o) (n = 3; four images per animal). Values are ���

normalized to the whole area, and are shown as ratios to the contralateral nerve of the ���

PBS
administrated group. (p–r) DT induces microglial ablation in the cerebral cortex of P7 �	�

Siglech
dtr/dtr

 mice 2 days after administration. Merged images of Iba1 (green) and laminin (red) �
�

immunostaining of PBS
 (p) and DT
 (q) treated mice are shown. Putative pvMΦ (single ���

arrowheads) and mMΦ (double arrowheads) are indicated. The number of Iba1+ cells in the ���

cerebral cortex beneath the meninges is quantified (r) (n = 3; four images per animal). Scale ���

bar:  200 µm (a,b,f,g,j,k,m,n), 50 µm (p,q). *p < 0.001, **p < 1.0 × 10
4; unpaired Student’s ���

t
test. ���

 ���

FIGURE 7. Siglec�H suppresses pro�inflammatory responses of microglia in a mouse ���

neuropathic pain model. ���

(a) Expression profile of mRNA encoding Siglec
H in the dorsal horn. Ipsilateral dorsal horn �	�

was obtained from WT and Siglechdtr/dtr mice at each time point after L4 nerve transection, and �
�

mRNA expression was analyzed by qPCR (n = 3 for each time point). Results are normalized to ���

Gapdh, and are shown as ratios to the non
operated (naive) value of WT mice. Values show the ���

mean ± S.E.M. *p < 0.05, **p < 0.005; unpaired Student’s t
test. (b–j) Expression of Siglec
H ���

protein in the ipsilateral dorsal horn 3 days after L4 nerve injury. Immunoreactivity for Siglec
H ���

(b,e,h, green) and Iba1 (c,f,i, red), and the merged images (d,g,j) of WT (b–g) and Siglech
dtr/dtr

 ���

(h–j) mice are shown. Higher magnification images of WT mice (e–g, high mag.) demonstrate ���

Siglec
H expression in microglia. Note that faint signals for Siglec
H are predominantly ���
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observed in the endoplasmic reticulum/Golgi apparatus of microglia in Siglech
dtr/dtr

 mice (arrows ��

in h–j, high mag.). Images were acquired using the same laser power and sensitivity, and image ��

processing were the same for WT and Siglech
dtr/dtr

 mice (e–g vs. h–j). Scale bar:  200 µm (b–d), ��

10 µm (e–j). (k) Expression of mRNA encoding pro
inflammatory cytokines (TNF
α and IL
1β) ��

but not anti
inflammatory cytokines (IL
10 and TGF
β1) was upregulated in the ipsilateral ��

dorsal horn of Siglechdtr/dtr mice. Ipsilateral L4 dorsal horn was obtained from WT and ��

Siglechdtr/dtr mice at each time point after L4 nerve transection (n = 3 for each time point), and ��

mRNA expression was analyzed by qPCR. Results are normalized to Gapdh, and are shown as 	�

ratios to the non
operated (naive) value of WT mice. Values show the mean ± S.E.M. *p < 0.05, 
�

**p < 5.0 × 10

4

; unpaired Student’s t
test. (l–n) Microglial numbers in lamina I/IIo were ���

unchanged between WT and Siglech
dtr/dtr

 mice 7 days after injury. Merged images of Iba1 ���

(green) and PKCγ (red) immunostaining of WT (l) and Siglech
dtr/dtr

 (m) mice are shown. The ���

lamina I/IIo is surrounded by dotted lines. Scale bar:  200 µm. Microglial numbers in lamina ���

I/IIo of contralateral (contra) and ipsilateral (ipsi) L4 dorsal horn were counted at 7d (n) (n = 4; ���

four images per animal). (o,p) Nerve injury
induced mechanical allodynia is exacerbated in ���

Siglechdtr/dtr mice. The PWT of the contralateral (o) and ipsilateral (p) side was measured in WT ���

and Siglech
dtr/dtr

 mice (n = 4). *p < 0.05; two
way ANOVA with post hoc Bonferroni test. ���
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(a–c) Siglec�H expression in the CA1 region of the hippocampus. Immunoreactivity for 

Siglec�H (a, green) and Iba1 (b, red), and the merged image (c) are shown. (d–f) Siglec�H 

expression in the corpus callosum. Immunoreactivity for Siglec�H (d, green) and Iba1 (e, red), 

and the merged image (f) are shown. Scale bar: 50 µm.� (g) Siglec�H+ rate (%) of Iba1+ 

parenchymal microglia in indicated regions of the CNS (� = 4; nine images per animal). Values 

show the mean ± S.E.M.�
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