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Abstract 

Sigma-Point Kalman Filters (SPKFs) are popular estimation techniques for high nonlinear system 
applications. The benefits of using SPKFs include (but not limited to) the following: the easiness of 

linearizing the nonlinear matrices statistically without the need to use the Jacobian matrices, the 

ability to handle more uncertainties than the Extended Kalman Filter (EKF), the ability to handle 
different types of noise, having less computational time than the Particle Filter (PF) and most of 

the adaptive techniques which makes it suitable for online applications, and having acceptable 

performance compared to other nonlinear estimation techniques. Therefore, SPKFs are a strong 
candidate for nonlinear industrial applications, i.e. robotic arm. Controlling a robotic arm is hard 

and challenging due to the system nature, which includes sinusoidal functions, and the dependen-

cy on the sensors’ number, quality, accuracy and functionality. SPKFs provide with a mechanism 
that reduces the latter issue in terms of numbers of required sensors and their sensitivity. More-

over, they could handle the nonlinearity for a certain degree. This could be used to improve the 

controller quality while reducing the cost. In this paper, some SPKF algorithms are applied to 4- 
DOF robotic arm that consists of one prismatic joint and three revolute joints (PRRR). Those in-

clude the Unscented Kalman Filter (UKF), the Cubature Kalman Filter (CKF), and the Central Dif-

ferences Kalman Filter (CDKF). This study gives a study of those filters and their responses, stabil-
ity, robustness, computational time, complexity and convergences in order to obtain the suitable 

filter for an experimental setup.  

 

Keywords 

Sigma Point, Unscented Kalman Filter, Cubature Kalman Filter, Centeral Difference Kalman Filter, 

Filtering, Estimation, Robotic Arm, PRRR  

 
 

1. Introduction 

Robotic applications, especially robotic arm, become widely used in industries due to their simplicity and the 
ability to do multi-task/multi-function with few numbers of settings and/or arrangements. The problem with 
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such applications is the necessary to apply nonlinear control signals to achieve the desired trajectories. The latter 
is not easy to be implemented and has several limitations [1]-[3]. For example, Sliding Mode Control (SMC) [1] 
is one of the robust control approaches. However, it suffers from chattering. Although several researches have 
proposed to eliminate the chattering, the problem is still not fully solved. The limitation of such controllers in-
creases as uncertainties present, i.e. modeling uncertainties and noise. This becomes worse when the number of 
measurement is less than the number of states.  

Filters, especially model based filters [2]-[7], have been used to remove some of those constrains. It is a cheap 
method that could be used to obtain the unmeasured-hidden-states, and/or it could be used to reduce the noise 
effect. The optimal solution for such applications in their linear case is the Kalman Filter (KF) [7]-[12]. When 
the system is nonlinear, the KF is modified to be applicable for such applications. Several researches have been 
developed to overcome this limitation. Those include linearizing the system by Taylor Series Approximation 
(TSA) up to the first order such as the Perturbation Kalman Filter [9] [13] [14], the Extended Kalman filter 
(EKF) [8] [15]-[17], and the Iterated Extended Kalman filter (IEKF) [7] [15] [18]-[20], or up to higher order 
such as the Higher Order Extended Kalman Filter (HOEKF) [15] [21]-[23]. The later shows that in order to in-
crease the accuracy of high nonlinear application, TSA is not a suitable approach as it takes long computation 
time with complicated structure [24]. Therefore, different approaches were developed including the combination 
of KF with intelligent techniques such as [25]-[29], or finding different approaches to approximate the nonli-
nearity such as the Sigma-Point Kalman Filter (SPKF) [2] [4] [5] and the Particle Filter (PF) [30]. The rest of the 
paper will be divided as the following: Section two includes an introduction to the SPKF including the algo-
rithms used in this paper, UKF, CKF and CDKF. The mathematical model of the PRRR robotic arm application 
is showed in Section three. Results, discussion and conclusion are listed and discussed in Sections four and five. 

2. The Sigma-Point Kalman Filter 

The SPKFs linearize the nonlinear models statistically using weighted linear regression method. This is done by 
obtaining a certain number of points, referred to as sigma points, from the state neighborhood using the proba-
bility distribution function as shown in Figure 1. Those points are projected through the system model, and then 
combined together using appropriate weights as shown in Figure 2. This provides with a mechanism that covers  

 

 

Figure 1. Sigma-Points for n = 2 [31].                                    
  

 

Figure 2. (a) The actual system states and their nonlinear measurement; (b) The 
Sigma-Points KF’s estimates [31].                                           



M. Al-Shabi  

 

 
170 

the actual mean and covariance without the need to linearize the model by TSA and calculate the Jacobian ma-
trices. Moreover, it accommodates noise disturbances that are not Gaussian [4] [5] [15] [31]-[34]. 

Several algorithms have been created using the above principle. Although, different approaches were used to 
derive those algorithms, the general outline remain the same as will be proven in the next subsections. The ma-
jor differences between those methods could be summarized to the number of the sigma points, how to choose 
them, and what are the appropriate weights for the combining step. Moreover, they may differ on calculating the 
covariance matrices [35]. Some SPKFs algorithm will be described on the next subsections.  

2.1. The Unscented Kalman Filter 

The Unscented Kalman Filter is a SPKF that has been developed using the unscented transformations. The latter 
has several form including general unscented [15], simplex unscented [35] [36], and spherical unscented [36] 
[37], transformations. The structures of the resulting filters are similar and could be summarized by the pseudo 
code of Table 1, where 1  and 2  are parameters used to select the sigma points for the a priori and a post-
eriori estimates, respectively. Those differ from a filter to another and it result on obtaining different sigma 
points. Consequently, different number of sigma points and different associated weights are obtained. Those are 
illustrated by Table 2. 

 
Table 1. Thepseudocode of the unscented kalman filter [2] [3] [15] [24].                                            

0|0 0|0
ˆ0 Initialize andk = → x P  

Start 1k k= +  

for 0,1, ,i q=   

( )
1| 1 1| 1 1

ˆ ˆ
k ki k k i− − − −= +X x   

Calculate 
i

W  

( )
| 1 1| 1 1

ˆˆ ˆ ,
k k k ki i k

u
− − − −=X f X

 
End 

| 1| 1

0

ˆˆ
k k

q

k k i i

i

W
−−

=

=∑x X  

( )( )
| 1 | 1

T

| 1 | 1 | 1 1

0

ˆ ˆˆ ˆ
k k k k

q

k k i i k k i k k k

i

W
− −− − − −

=

= − − +∑P X x X x Q  

for 0,1, ,i q=   

( )
| 1 | 1 2

ˆ ˆ
k ki k k i− −= +X x   

Calculate 
i

W  

( )
| 1 | 1

ˆ ˆˆ
k k k ki i− −

=Z g X  

End 

| 1| 1

0

ˆˆ
k k

q

k k i i

i

W
−−

=

=∑z Z  

( )( )
| 1 | 1

T

| 1 | 1

0

ˆ ˆˆ ˆ
k k k k

q

zz i i k k i k k k

i

W
− −− −

=

= − − +∑P Z z Z z R  

( )( )
| 1 | 1

T

| 1 | 1

0

ˆ ˆˆ ˆ
k k k k

q

xz i i k k i k k

i

W
− −− −

=

= − −∑P X x Z z  

1

k xz zz

−=K P P  

( )| | 1 | 1
ˆ ˆ ˆ

k k k k k k k k− −= + −x x K z z  

( )T

| | 1k k k k k zz k−= −P P K P K  

Go back to Start 

////Comments 
 
//// q is the number of the sigma point 

//// draw the sigma points and their weights using Table 2 

//// propagate the points through the filter 

//// combining the sigma points to obtain the a priori estimate 

//// calculating the a priori covariance matrix 

 
 
//// Redefine the sigma point and their weight from  
Table 2 to obtain their a priori measurements 

 
//// combining the sigma points’ measurements  
to obtain the a priori measurement 

//// Calculating the output's error covariance matrix 
 
 
 
//// The correction gain 
//// Updating the estimate and its covariance matrix 

 
//// Repeat Stages 



M. Al-Shabi 

 

 
171 

Table 2. The differences between the UKF methods [15].                                                         

Method ( ) , 1, 2; 1, 2, ,
j i

j i q= =   , 1, 2, ,
i

W i q=   q  

UKF 
( ) ( )

( )

T

T

0 0

1

1 2

j ji i

j
i

i

n i n

n n i n


=


= ≤ ≤

− + ≤ ≤

P

P

  

1 1| 1k k− −=P P , 
2 | 1k k−=P P  

0 0

1
0

2

i

i

W
i

n

=
= 

≠

 2 1n +  

Simplex UKF 

( ) n

j j ii
= P ρ , 

1 1| 1k k− −=P P ,
2 | 1k k−=P P  

As n

i
ρ  is obtained recursively as follows: 

1

0
0=ρ  and 1 1

1 2

1

1

2W

−
= =ρ ρ ,  

(the superscript is the recursive index) 
for 2, ,l n=   (number of the states) 

1

1

1 1

1

0

1

0
0

11

2

1

2

l

l

l

l

l

i

l

i

i

i l

W

l i l

W

−

−

+

− ×

+



  =  
 
 = ≤ ≤− 
  
   = +   

ρ

ρ
ρ

0

 

End 

0
W  is chosen as )0

0,1W ∈  

( )
( )

0

1

2 1 1 2

2 2

n

i i n

W i
W

W i

−

−

− ≤ ≤= 
>

 
2n +  

Spherical UKF 

Similar to the simplex UKF except that 

( )

( )

1

1

1

1 1

1

0 0
0

1 1

1

1

1

l

l

l

i

l

i

i

i l

l l W

l i l

l l W

−

−

− ×



  = 
 
 
  −= ≤ ≤ 
 + 
   = +  + 

ρ

ρ
ρ

0

 

0
W  is chosen as  

)0
0,1W ∈  

0
1

1
i

W
W

n

−
=

+
 

2n +  

 
The statistical regression used in unscented filters provides with better approximation that the Jacobian ma-

trices. It has been proven that UKFs approximates up to a third order TSA for Gaussian distributions [15], and 
second order TSA for non-Gaussian distributions [31]. Both, the simplex and the spherical unscented KFs are 
used to reduce the computational time; as they use less sigma points. However, their stability is limited for few 
order of TSA [15] [37]. The general UKF provide with better estimation compared to the previous two. Howev-
er, it has a larger computational time. 

2.2. The Cubature Kalman Filter 

The Cubature Kalman filter (CKF) is derived by using the third-degree cubature rule to numerically approximate 
the Gaussian-weighted integrals defined as [38] [39]:  

( ) ( )d
R

x W x x∫ F                                           (2.1) 
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where W  is the weight function and it is Gaussian with the form ( ); ;x x σ , andx σ  are the Gaussian’s  

mean and standard deviation. Assuming that the states are Gaussian as well, a scheme similar to the UKF could 
be obtained. However, due to the Gaussian Nature, the covariance matrices will differ from those obtained from 
UKF. Those are illustrated by Table 3. 

2.3. The Central Difference Kalman Filter 

The Central Difference Kalman Filter (CDKF), described in [40]-[42], was derived in two major stages. The 
first stage was to linearize the system model using TSA. In the second stage, the derivatives were replaced with 
their numerical Stirling’s polynomial interpolation forms (NSPI) [43], that is defined as the follow [44]: 

 
Table 3. Thepseudocode of the cubature kalman filter [38] [39].                                                   

0|0 0|0
ˆ0 Initialize andk = → x P  

Start 1k k= +  

for 0,1, ,i q=   

( )
( )

1| 1

T

1| 1 1| 1

T

1| 1

0 0

ˆ ˆ 1

1 2

k ki k k k k
i

k k
i

i

n i n

n n i n

− − − − − −

− −


=


= + ≤ ≤


 + ≤ ≤

X x P

P

 

( )
| 1 1| 1 1

ˆˆ ˆ ,
k k k ki i k

u
− − − −=X f X

 

end 

| 1| 1

1

1 ˆˆ
2 k k

q

k k i

in −−
=

= ∑x X  

( )
| 1 | 1

T T

| 1 | 1 | 1 1

1

1 ˆ ˆ ˆ ˆ
2 k k k k

q

k k i i k k k k k

in − −− − − −
=

= − +∑P X X x x Q  

for 0,1, ,i q=   

( )
( )

| 1

T

| 1 | 1

T

| 1

0 0

ˆ ˆ 1

1 2

k ki k k k k
i

k k
i

i

n i n

n n i n

− − −

−


=


= + ≤ ≤


 + ≤ ≤

X x P

P

 

( )
| 1 | 1

ˆ ˆˆ
k k k ki i− −

=Z g X  

end 

| 1| 1

1

1 ˆˆ
2 k k

q

k k i

in −−
=

= ∑z Z  

( )
| 1 | 1

T T

| 1 | 1

1

1 ˆ ˆ ˆ ˆ
2 k k k k

q

zz i i k k k k k

in − − − −
=

= − +∑P Z Z z z R  

( )
| 1 | 1

T T

| 1 | 1

1

1 ˆ ˆ ˆ ˆ
2 k k k k

q

xz i i k k k k

in − − − −
=

= −∑P X Z x z  

1

k xz zz

−=K P P  

( )| | 1 | 1
ˆ ˆ ˆ

k k k k k k k k− −= + −x x K z z  

( )T

| | 1k k k k k zz k−= −P P K P K  

Go back to Start 

//// Comments 

 
//// q is the number of the sigma point 

//// draw the sigma points 

 
 
 

//// propagate the points through the filter 

 
 

//// combining the sigma points to obtain  
the a priori estimate 

//// calculating the a priori covariance matrix 

 

 

//// Redefine the sigma point to obtain  
their a priori measurements 

 
 
 
 
 

//// combining the sigma points’ measurements  
to obtain the a priori measurement 

//// Calculating the output's error covariance matrix 

 
 
 

//// The correction gain 

//// Updating the estimate and its covariance matrix 

 

//// Repeat Stages 
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( ) ( ) ( ) ( )1 11

2 2 2

n n ns sT T
f x f x f x

− −    ∂ = + − −    
    

                           (2.2) 

The previous stages result on a scheme that is similar to the weighted regression of the UKF as shown in 
Table 4. However, it differs from the UKF on how to obtain the sigma points, how to calculate the weights, and 
how to calculate the covariance matrices. The CDKF has been found to have a superior performance among the  
other SPKFs [15] [30] [45]. Moreover, the CDKF uses one control parameter, 

cdT , which derived in [45] to 

have a value of 3  for Gaussian distributions. 

3. PRRR-Mathematical Model 

The algorithms in section two are applied to a four DOF robotic arm that consists of one prismatic joint and 
three revolute joints (PRRR) that is presented by Figure 3 and Figure 4. The model has been derived in [1] and 
[2], and is summarized as follow. 

( ) ( ) ( ),= + +M V G τ θ θ θ θ θ                                  (3.1) 

 

 

Figure 3. Four-DOFPRRR Robotic Arm [1] [2].                                 

 

 

Figure 4. Top view of the PRRR Robotic Arm [1] [2].                          
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Table 4. The pseudocode of sigma-point central difference kalman filter [45].                                        

0|0 0|0
ˆ0 Initialize andk = → x P  

Start 1k k= +  

( )for 0,1, , 2i q n= =  

( )
( )

( )

1| 1 | 1

1| 1

T

1| 1 1| 1

T
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1
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−


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
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
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=

X x P X

P

f X

 

end 
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1
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i
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T
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T
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=
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= 

 = ×  ≠   
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T
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2
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1 ˆ ˆ ˆ ˆ
4
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1
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n

k k i i n i i n

i cd

n
i i n i i n

cd

k
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T
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=
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=
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∑
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end 
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2

2
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0
ˆˆ

1
0

2
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q
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i
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i

T

i
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=
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T

2
1

T

2

4
1
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4

ˆ ˆ ˆ ˆ
1
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n
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k
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T

T
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=
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∑

∑

P Z Z Z Z

Z Z Z Z
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Z Z

 

| 1 | 1

| 1 | 1
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1 1
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1

2
ˆ ˆ
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+
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    
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Z Z
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Z Z
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1

k xz zz
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( )| | 1 | 1
ˆ ˆ ˆ

k k k k k k k k− −= + −x x K z z  

( )T

| | 1k k k k k zz k−= −P P K P K  

Go back to Start 

//// Comments 

 
 

//// draw the sigma points  

 
 
 
 
 

//// propagate the points through the filter 

//// combining the sigma points to obtain  
the a priori estimate 

 
 

//// calculating the a priori covariance matrix 

 
 
 
 
 

//// Redefine the sigma point to obtain  
their a priori measurements 

 
 
 
 
 
 
 

//// combining the sigma points’ measurements 
 to obtain the a priori measurement 

 

//// Calculating the output's error covariance matrix 

 
 
 
 
 
 
 

//// The correction gain 

//// Updating the estimate and its covariance matrix 

//// Repeat Stages 
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1

1 1 4 5 71

2 4 2 6 82

3 5 6 3 3

0 0 0 0

0 0

0 0

0 0 0

z T T
F m gmd

A A A A

A A A A

A A A

τ θ
τ θ
τ θ

  −       
        
        = + +        
        
          






                         (3.2) 

where; 

( )( ) ( )
2

2 2 2 23
1 2 2 3 2 2 3 2 4 5 2 3 2 3 2 2 3 4 5

1
2

4 4
z z z z

a
A m a m a a a c m m a a a a c I I I I

  
= + + + + + + + + + + +  
   

       (3.3) 

( ) ( )2 2
2 3 3 4 5 3 3 4 5

1

4
z z zA m a m m a I I I

 = + + + + +  
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( )( ) ( )
2

23
4 3 2 3 2 4 5 3 2 3 2 3 4 52

2
z z z

a
A m a a c m m a a a c I I I

  
= + + + + + + +  
   

                 (3.6) 

( ) ( ) 2
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                        (3.7) 

( ) ( ) 2
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1 2 3 4 5Tm m m m m m= + + + +                                    (3.9) 

The system is discretized using the following definition 

( )1k k k sx x x T+= −                                       (3.10) 

where sT  is the sampling time and it is equal to 0.001 sec. If the states defined as the following. 
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And knowing that 
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+ +
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Then the overall state space could be defined as 

[ ]T1 1 2 3 4 5 6 7 8k k s k
T f f f f f f f f+ = +X X                         (3. 15) 
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Equations (3.3)-(3.9) have several parameters. Those are summarized by Table 5. 

4. Results 

The system in section 3 was simulated several time -for each filter including UKF, CKF and CDKF-. Four cases 
were obtained as follows: 
1. Assuming all the states were measured. 
2. Assuming that the position and angles were measured while their derivatives were not measured. 
3. Similar to the first case. However, modeling uncertainties were injected; e.g. the masses were multiplied by 

1.5. 
4. Similar to the second case. However, modeling uncertainties were injected; e.g. the masses were multiplied 

by 1.5.  

4.1. Results for System without Uncertainties; Cases 1 and 2 

The results of cases 1 and 2 were summarized by Table 6 and Table 7. The results showed that the filters gave 
similar performance for all the states when no modeling presented, refer to Figure 5 and Figure 6. The perfor-
mance of the filters for measured states were better than those obtained for non-measured states. 

4.2. Results with Uncertainties 

When modeling errors presented, the RMSE increased as shown in Table 8 and Table 9. However, their effect 
became large, and maybe unstable, for the states that were not measured as shown in Figure 7. In such cases, 
the CDKF showed the superior performance; the filter remained stable. However, the UKF and CKF had a poor 
performance. The errors were bounded. However, they were high, refer to Figures 8-10. 

 

 

Figure 5. The performance of the filters for the third angler velocity, cases 1 and 2. 

 
Table 5. Parameters’ Value for the robotic arm.                                                                   

Parameter Value Parameter Value Parameter Value 

1
m  21.5 kg 1

I  21.042 kg m⋅  1
a  0.25 m 

2
m  16 kg 2

I  213 kg m⋅  2
a  1.2 m 

3
m  8.5 kg 3

I  23.12 kg m⋅  3
a  0.8m 

4
m  7.9 kg 4

I  21 kg m⋅  4
a  1.2 

5
m  6.3 kg 5

I  20.84 kg m⋅  g  29.81 m s−  
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Figure 6. The performance of the filters for the fourth angler velocity, 
cases 1 and 2.                                              

 

 

Figure 7. The performance of the filters for the fourth angler velocity, 
case 4.                                                      

 
Table 6. The root mean square error for the filters UKF, CKF and CDKF for case 1.                                   

RMS in UKF 610−×  CKF 610−×  CDKF 610−×  

d  32.7 32.7 32.7 
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2
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Figure 8. The error in estimating the fourth angular velocity using 
UKF for all cases.                                             

 

 

Figure 9. The error in estimating the fourth angular velocity using 
CKF for all cases.                                            

 
Table 7. The root mean square error for the filters UKF, CKF and CDKF for case 2.                                   

RMS in UKF 610−×  CKF 610−×  CDKF 610−×  

d  35.9 35.9 35.9 

d  203.4 203.4 203.4 

1
θ  41.4 41.4 41.3 

1
θ  162.8 162.8 161.6 

2
θ  30.6 30.6 31.9 

2
θ  171.4 171.4 171.1 

3
θ  49.2 49.2 49.1 

3
θ  291.7 291.7 291.4 
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Figure 10. The error in estimating the fourth angular velocity using CDKF for 
all cases.                                                            

 
Table 8. The root mean square error for the filters UKF, CKF and CDKF for case 3.                                   

RMS in UKF 610−×  CKF 610−×  CDKF 610−×  

d  44.6 44.6 44.6 

d  375.8 375.8 375.8 

1
θ  44.5 44.5 44.5 

1
θ  367.4 367.4 367.4 

2
θ  34.9 34.9 34.9 

2
θ  365.1 365.1 365.1 

3
θ  38.9 38.9 38.9 

3
θ  366.5 366.5 366.5 

 
Table 9. The root mean square error for the filters UKF, CKF and CDKF for case 4.                                    

RMS in UKF 610−×  CKF 610−×  CDKF 610−×  

d  146.9 146.9 146.8 

d  4588.5 4588.5 4588.9 

1
θ  111.3 111.3 103.8 

1
θ  2710.8 2710.8 1693.2 

2
θ  120.3 120.3 112.2 

2
θ  5590.7 5590.7 2447.4 

3
θ  133.3 133.3 109.3 

3
θ  4079.6 4079.6 1982.2 
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5. Conclusion 

This work discussed the benefits of using Sigma-Point Kalman Filters in nonlinear application, i.e. PRRR ro-
botic arm. Three types of SPKFs were used, namely Unscented, Cubature, and Central difference Kalman Filters. 
Four cases were used: the first and the second cases involved with system with no modeling errors; the third and 
the fourth cases involved with system injected with uncertainties. The first and the third cases assumed all the 
states were measured which was not the case in the other cases. The results showed that the filters gave good 
performance when all the states were measured. Reducing the number of measurements affected the results a lit-
tle bit. The errors became larger than 10 times of those obtained in case 1 when modeling errors were presented 
and not all the states were measured. However, the CDKF showed stable performance in all cases. The latter 
gave an indication to use the CDKF in such applications. 
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Nomenclature 

1− , T  Inverse, and transpose, respectively. 

( )
i

a  The i row of a . 

1i
a − , 

1i
α − , 

i
d  and 

i
θ  Link-i's length (m), twist (rad), and offset (m), and joint- -i angle (rad), respectively. 

i
c  and 

i
s  ( )cos

i
θ  and ( )sin

i
θ , respectively. 

ij
c  and 

ij
s  ( )cos

i j
θ θ+  and ( )sin

i j
θ θ+ , respectively. 

m
e  The estimation error vectors in m. 

( ).f  The system’s model function. 

z
F  and 

i
τ  Prismatic joint-1 motor force (N) and Revolute joint-i motor torque (N. M), respectively. 

g  Gravity acceleration (m/s2). 

( ).g  The sensor’s model function. 

,i j  Subscripts used to identify elements. 

n n×I  The identity matrix with dimensions of n n× . 

k  Time step value. 

1k k −  The a priori value at time k. 

k k  The a posteriori value at time k. 

X
K  The correction gain of the filter X . 

( )ΘM  Inertia matrix. 

1 2 5
, , ,m m m  Masses of links 1, 2, 3 and 4 respectively (kg). 

,m n  Number of measurements and states, respectively. 

xx
P  The state's error covariance matrix. 

zz
P  The output’s error covariance matrix. 

P  The error covariance matrix. 

q  The number of the sigma points. 

Q  The process noise covariance matrix. 

R  The measurements noise covariance matrix. 

∑  The summation operator. 

s
T  Sampling time, and is equal to 0.001 sec. 

τ  Joints force and torques vector. 

( ),V Θ Θ  Viscous friction vector. 

,v w  The measurement and system noise, respectively. 

i
W  The assigned weight. 

x  The state vector. 

z  The output vector. 

i
X  and 

i
Z : The estimate and its measurement for the th

i  sigma point, respectively. 
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