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ABSTRACT

Performance of an advanced, derivativeless, sigma-point Kalman filter (SPKF) data assimilation scheme

in a strongly nonlinear dynamical model is investigated. The SPKF data assimilation scheme is compared

against standard Kalman filters such as the extended Kalman filter (EKF) and ensemble Kalman filter

(EnKF) schemes. Three particular cases—namely, the state, parameter, and joint estimation of states and

parameters from a set of discontinuous noisy observations—are studied. The problems associated with the

use of tangent linear model (TLM) or Jacobian when using standard Kalman filters are eliminated when

using SPKF data assimilation algorithms. Further, the constraints and issues of SPKF data assimilation in

real ocean or atmospheric models are emphasized. A reduced sigma-point subspace model is proposed and

investigated for higher-dimensional systems.

A low-dimensional Lorenz 1963 model and a higher-dimensional Lorenz 1995 model are used as the test

bed for data assimilation experiments. The results of SPKF data assimilation schemes are compared with

those of standard EKF and EnKF, in which a highly nonlinear chaotic case is studied. It is shown that the

SPKF is capable of estimating the model state and parameters with better accuracy than EKF and EnKF.

Numerical experiments showed that in all cases the SPKF can give consistent results with better assimilation

skills than EnKF and EKF and can overcome the drawbacks associated with the use of EKF and EnKF.

1. Introduction

Among sequential data assimilation methods, Kal-

man filters have been widely used in meteorology and

oceanography. The standard Kalman Filter (KF) is a

simplification of Bayesian estimation that provides se-

quential, unbiased, minimum error variance estimates

based on a linear combination of all past measurements

and dynamics (Welch and Bishop 1995). Since the in-

troduction of the extended Kalman filter (EKF), the

nonlinear extension to the standard KF, there have

been many attempts to use the EKF in weather or cli-

mate prediction models. It has been shown that the

EKF can be used in sequential data assimilation in

strongly nonlinear systems (Miller et al. 1994). Unfor-

tunately, the requirement of the Jacobian or tangent

linear model (TLM) for the linearization of nonlinear

functions limits the use of EKF for many real world

problems. Another major drawback of EKF is that it

only uses the first-order terms of the Taylor expansion

of the nonlinear function. It is evident that this approxi-

mation often introduces large errors in the estimation

of covariance matrices in highly nonlinear models

(Miller et al. 1994). In other words, the inaccuracy of

propagated means and covariances resulting from the

linearization of the nonlinear model is one of the major

drawbacks of the EKF data assimilation algorithm.

Another alternative to the standard KF is the en-

semble Kalman filter (EnKF), introduced by Evensen

(Evensen 1992; Houtekamer and Mitchell 1998), in

which the error covariances are estimated approxi-

mately using an ensemble of model forecasts. The main

concept behind the formulation of the EnKF is that if

the dynamical model is expressed as a stochastic differ-

ential equation, the prediction error statistics, which are

described by the Fokker–Plank equation, can be esti-

mated using ensemble integrations (Evensen 1994,

1997); thus, the error covariance matrices can be calcu-

lated by integrating the ensemble of model states. The

EnKF can overcome the EKF drawback that neglects

the contributions from higher-order statistical moments

in calculating the error covariance. The major strengths

of the EnKF include the following: (i) there is no need
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to calculate the tangent linear model or Jacobian of

nonlinear models, which is extremely difficult for ocean

(or atmosphere) general circulation models (GCMs);

(ii) the covariance matrix is propagated in time via fully

nonlinear model equations (no linear approximation as

in the EKF); and (iii) it is well suited to modern parallel

computers (cluster computing) (Keppenne 2000).

The finite ensemble size has major effects on the

performance of the EnKF. A small ensemble size in-

creases the residual errors and gives inaccurate statis-

tical moments, and a large ensemble size is not compu-

tationally feasible in the case of atmospheric or ocean

GCMs. Another disadvantage of the EnKF is that it

assumes a linear measurement operator: if the mea-

surement function is nonlinear, it has to be linearized in

the EnKF. The nonlinear measurement functions ap-

pear in many situations: for example, the parameter

estimation of nonlinear dynamical models, in which the

measurement relationships between observations and

parameters are nonlinear. Another example is satellite

altimetry data assimilation, in which the observation

(sea level height) is often nonlinearly related to the

variable required for assimilation (e.g., temperature).

Thus, the condition of linear measurement limits the

use of the EnKF in some real world problems.

The sigma-point Kalman filters (SPKFs; van der

Merwe et al. 2004) have recently been proposed in an

attempt to address these drawbacks of EKF and EnKF.

The SPKF is a derivativeless sequential optimal estima-

tion method, using a novel deterministic sampling ap-

proach that eliminates the need for the calculation of

TLM or the Jacobian of the model equations as needed

by the standard KF (Julier et al. 1995; Nørgaard et al.

2000b; Ito and Xiong 2000; Lefebvre et al. 2002; Wan

and van der Merwe 2000; Haykin 2001; van der Merwe

2004). It has been found that the expected error due to

linearization is smaller than that of a truncated Taylor

series linearization (Schei 1997; Lefebvre et al. 2002;

van der Merwe and Wan 2001a). The SPKF algorithm

has been successfully implemented in many areas such

as robotics, artificial intelligence, natural language pro-

cessing, and global positioning systems navigation (van

der Merwe and Wan 2001a,b; Haykin 2001; van der

Merwe 2004; van der Merwe et al. 2004; Wan and van

der Merwe 2000). In this paper, we will show that

SPKF, as an ensemble Kalman filter with a specific

ensemble, has a great potential in the assimilation of

nonlinear systems. This paper is meant as a major effort

in exploring the possibility of applying SPKF in atmo-

spheric and oceanic data assimilation.

This paper is structured as follows: Section 2 intro-

duces the sigma-point methodology and section 3 de-

scribes SPKF implementation in the highly nonlinear

Lorenz model. Section 4 describes the experimental de-

tails and gives a detailed comparison of SPKF with

EKF and EnKF. Section 5 describes the SPKF imple-

mentation in higher-dimensional systems. Section 6

summarizes the conclusions.

2. Methodology: Sigma-point Kalman filters

In this section we will interpret the sigma-point con-

cept and SPKF algorithms in detail. The so-called

sigma-point approach is based on deterministic sam-

pling of state distribution to calculate the approximate

covariance matrices for the standard Kalman filter

equations. The family of SPKF algorithms includes the

unscented Kalman filter (UKF; Julier et al. 1995; Wan

and van der Merwe 2000), the central difference Kal-

man filter (CDKF; Nørgaard et al. 2000b; Ito and Xiong

2000), and their square root versions (Haykin 2001; van

der Merwe and Wan 2001a,b). Another interpretation

of the sigma-point approach is that it implicitly per-

forms a statistical linearization (Gelb 1974; Lefebvre et

al. 2002) of the nonlinear model through a weighted

statistical linear regression (WSLR) to calculate the co-

variance matrices (van der Merwe and Wan 2001a,b;

van der Merwe et al. 2004). In SPKF, the model linear-

ization is done through a linear regression between n

number of points (called sigma points) drawn from a

prior distribution of a random variable rather than

through a truncated Taylor series expansion at a sin-

gle point (van der Merwe et al. 2004). It has been

found that this linearization is much more accurate than

a truncated Taylor series linearization (Schei 1997;

Lefebvre et al. 2002; van der Merwe and Wan 2001a).

Consider an L-dimensional dynamical system repre-

sented by a set of discretized state space equations,

uk 5 f ðuk�1; qk�1Þ; ð1Þ

ck 5 hðuk; rkÞ; ð2Þ

where uk represents the system state vector at time k,

f(�) is the nonlinear function of the state, qk is the ran-

dom (white) model errors, ck is the measured state,

h(�) is the measurement function, and rk is the zero-

mean random measurement noise.

To understand how the sigma-point algorithm works,

it is convenient to rewrite the standard Kalman filter

optimal state update equation:

ûk 5 û
�
k 1Kkðck � ĉ

�
k Þ; ð3Þ

where the superscript negative sign represents the prior

or forecast states. Here, Kk is the Kalman gain, which is

optimally chosen such that it minimizes the weighted

scalar sum of the diagonal elements of the error covari-
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ance matrix P
�
uk

(Gelb 1974). The standard expression

for the Kalman gain and the error covariance matrix is

given by

Kk 5P
�
uk
H

TðHP
�
uk
H

T
1RÞ�1

; ð4Þ

P
�
uk
5E½ðuk � û

�
k Þðuk � û

�
k Þ

T�; ð5Þ
where H is the linearized measurement operator,R is the

observation error covariance matrix, and E[�] represents
the mathematical expectation or the expected value. The

error covariance update or the analysis covariance ma-

trix, which represents the change in forecast error co-

variance when a measurement is employed, is given by

Puk 5 ðI� KkHÞP�
uk

; ð6Þ

where I is the identity matrix. For EKF, the formulation

of the forecast error covariance is given by

P
�
uk
5Ak�1Puk�1

A
T
k�1 1 Qk�1; ð7Þ

where Ak21 is the TLM of the nonlinear model (1) and

(2) and Qk21 is the model error covariance matrix. The

TLM often introduces errors in highly nonlinear mod-

els and is extremely difficult to obtain for GCMs. An-

other major drawback of EKF is that it uses the linear-

ized measurement operator H to calculate the Kalman

gain and update error covariance. The linearization of

nonlinear measurement is computationally difficult and

may result in large estimation errors.

On the other hand, the forecast error covariance for

EnKF can be calculated by integrating the ensemble of

model states, and is given by

P
�
uk

ffi ðuk � �ukÞðuk � �ukÞT; ð8Þ

where the overbar denotes the ensemble average. Lim-

ited ensemble size often introduces errors in approxi-

mating the error covariance matrix. The EnKF also

uses the linearized measurement operator H to calcu-

late the Kalman gain. If the model involves nonlinear

measurement functions, linearizing the nonlinear mea-

surement functions might result in large errors.

The SPKF family addresses the above issues of EKF

and EnKF. It uses a different approach in calculating

the Kalman gain and the error covariance matrices. The

technique employed in SPKF is to reinterpret the stan-

dard Kalman gain and covariance update equation in

such a way that it does not need the TLM and the

linearized measurement operator. This interpretation is

explained below.

The first term P
�
uk
H

T in Kalman gain Eq. (4) can be

interpreted as the cross-covariance Puk
~ck between the

state and observation errors, and the remaining expres-

sion can be interpreted as the error covariance P~ck
of

the difference between model and observation (Gelb

1974). Proof of this interpretation can be found in ap-

pendix A.1 Therefore, the optimal gain or Kalman gain

Kk can be rewritten as

Kk 5Puk ~ck
P
�1
~ck

: ð9Þ

Here, ~ck is defined as the error between the noisy ob-

servation ck and its prediction ĉ
�
k given by ~ck 5 ck �

ĉ
�
k : By using relation (9), the covariance update Eq. (6)

can be rewritten as (see appendix B for details)

Puk 5P
�
uk
� KkP~ck

K
T
k : ð10Þ

Unlike the standard KF, the SPKF algorithm makes use

of this new interpretation [Eqs. (9) and (10)], which

avoids the use of the Jacobian while retaining consis-

tency and accuracy.

In the standard KF the state error covariance is cal-

culated during the time update process and is updated

during the measurement update process. Updating the

error covariance matrix is important because it repre-

sents the change in forecast error covariance when a

measurement is performed. The EnKF implementation

does not require the covariance update equation be-

cause it can directly calculate the updated error covari-

ance matrix from a set of ensembles. Evensen (2003)

has derived the analysis covariance equation, which is

consistent with the standard KF error covariance up-

date Eq. (6). But the true representation of the updated

error covariance requires a large ensemble size, which

is often computationally infeasible. The SPKF makes

use of the reformulated error covariance to update Eq.

(10) and chooses the ensembles deterministically in

such a way that they can capture the statistical moments

of the nonlinear model accurately; in other words, the

forecast error covariance Eq. (5) is computed using de-

terministically chosen samples, called sigma points. In a

broad sense, the SPKF algorithm implicitly uses the

prior covariance update equation (or the analysis error

covariance matrix) to calculate the forecast error co-

variance. Thus, SPKF is fully consistent with the time

update and measurement update formulation of the

Kalman filter algorithm. In the next subsection we will

discuss each SPKF algorithm in detail.

a. Sigma-point unscented Kalman filter (SP-UKF)

The sigma-point unscented Kalman filter (SP-UKF)

(Julier et al. 1995; Julier 1998; Wan and van der Merwe

2000) is an SPKF that can capture the statistical prop-

erties of the model state through a method known as

scaled unscented transformation (SUT; Julier 2002).

1 A more detailed statistical derivation and interpretation of

these formulations can be found in Simon (2006).
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Unlike the EKF, the SP-UKF uses the true nonlinear

model and approximates the state distribution using a

set of deterministically chosen states, known as sigma

points, using SUT. In SP-UKF the state error covari-

ance matrix is calculated from a set of particular en-

sembles that are generated by sigma points. Julier et al.

(1995) have shown that for the nonlinear model given

by (1), the number of sigma points needed to compute

precisely the mean and covariance of the model state at

time k, is 2L 1 1: thus, the sigma-point state vector is

given by (Julier et al. 1995; Julier 2002; Wan and van

der Merwe 2000)

xk 5 ½xk;0 x
1

k;i x
�
k;i� i5 1; . . . ;L; ð11Þ

where xk;0; x1

k;i ; and x�
k;i are the sigma-point vectors.

The selection scheme for choosing the sigma points is

based on the scaled unscented transformation that

transforms the model state vector according to the fol-

lowing equations:

xk;0 5 uk is based on w
ðmÞ
0 5

l

ðL1lÞ; ð12Þ

x1

k;i 5 uk 1 ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL1 lÞPuk

p

�i i5 1; . . . ;L is based on

w
ðcÞ
0 5

l

ðL1 lÞ 1 ð1� a2
1bÞ; and ð13Þ

x�
k;i 5 uk 2 ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL1 lÞPuk

p

�i; where

i5 ðL1 1Þ; . . . ; 2L with corresponding weight;

w
ðmÞ
i 5w

ðcÞ
i 5

1

2ðL1lÞ ; where i5 1; . . . ; 2L; ð14Þ

where ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL1 lÞPuk

p

�i is the ith row (or column) of the

weighted matrix square root of the covariance matrix,

Puk : w
ðmÞ
i is the weighting term corresponding to the

mean, w
ðcÞ
i corresponds to the covariance, and l 5 a2

(L 1 k)—L is a scaling parameter. The parameter a is

set to a small positive value (0# a# 1) and determines

the spread of the sigma points around the mean state

uk. Another control parameter is k, which guarantees

the positive semidefiniteness of the covariance matrix

and is usually set to a positive value (k $ 0); b is a

nonnegative weighting term that can be used to incor-

porate any prior knowledge of the nature of the state

distribution.2

The sigma-point vector is then propagated through

the nonlinear model (1) and (2) given by

xu
k 5 f xu

k�1;x
q
k�1

� �
; ð15Þ

Y u
k 5 h xu

k;xr
k�1

� �
; ð16Þ

where xu
k is the forecast sigma-point state vector, xq

k�1

is the sigma-point vector corresponding to the model

error, and xr
k�1 corresponds to the observation error.

The approximated mean, covariance, and cross-covari-

ance for the calculation of Kalman gain are computed

as follows (Julier et al. 1995; Julier 2002; Wan and van

der Merwe 2000, 2001):

û
�
k ’�

2L

i50
w

ðmÞ
i xu

k;i; ð17Þ

ĉ
�
k ’�

2L

i50
w

ðmÞ
i Y u

k;i; ð18Þ

P
�
uk
’�

2L

i50
w

ðcÞ
i ðxu

k;i � û
�
k Þðxu

k;i � û
�
k Þ

T
; ð19Þ

P~ck
’�

2L

i50
w

ðcÞ
i ðY k;i � ĉ

�
k ÞðY k;i � ~c

�
k Þ

T
; and ð20Þ

Puk ~ck
’�

2L

i50
w

ðcÞ
i ðxuk

k;i � û
�
k ÞðY k;i � ĉ

�
k Þ

T
: ð21Þ

The Kalman gain K can be calculated using Eq. (9)

and the state covariance is updated using Eq. (10). A

detailed description and derivation of the UKF algo-

rithm and sigma-point formulation can be found in the

above referenced literature.

b. Sigma-point central difference Kalman filter

(SP-CDKF)

Unlike the SP-UKF, the SP-CDKF is based on Stir-

ling’s interpolation formulas (Ito and Xiong 2000; Nør-

gaard et al. 2000b; Press et al. 1992). In SP-CDKF the

analytical derivatives in EKF are replaced by numeri-

cally evaluated central divided differences. The linear-

ization in SP-CDKF is based on weighted statistical

linear regression (Lefebvre et al. 2002). It has been

shown that the SP-CDKF has superior performance

to SP-UKF and EKF (Ito and Xiong 2000; Nørgaard et

al. 2000b).3 Using Sterling’s polynomial interpolation,
2 The weighting term corresponding to the zeroth sigma point

directly affects the magnitude of errors in higher-order moments

for symmetric distributions (Julier 2002; van der Merwe et al.

2000). The parameter b is thus introduced to minimize the higher-

order errors.

3 However, our numerical experiments show that the SP-CDKF

does not always outperform SP-UKF. See the following discus-

sions.
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the nonlinear model given by Eq. (1) can be approxi-

mated as

f ðukÞ ’ �f ð�ukÞ1 ~Dk 1
1

2!
~D2
k; ð22Þ

where ~f �ukð Þ is the linearized model, and ~Dk and ~D2
k are

the central divided difference operators, which we will

explain in the latter part in this section. Here the lin-

earization of the nonlinear model is achieved by using a

linear transformation that statistically decouples4 the

state vector uk (Schei 1997). It has been shown that this

approximation is always better than using the Jacobian

matrix (Schei 1997). The linear transformation is based

on the square root factorization of the model covari-

ance matrix and is given by

�fk 5 S
�1
uk
�uk; ð23Þ

~f ukð Þ¼: f Sukukð Þ5 f �uk
� �

: ð24Þ

Here �uk is the mean state and Suk is the Cholesky factor

of the updated error covariance matrix (10) that satis-

fies the following condition:

Puk 5SukS
T
uk

: ð25Þ

The terms ~Dk and ~D2
k are the first- and second-order

central divided difference operators and can be written

as (Ito and Xiong 2000; Nørgaard et al. 2000a; van der

Merwe and Wan 2001a; Wan and van der Merwe 2001)

~Dk5

�

�
L

i50
fk � �fk

� �

imid i

�

~f �fk

� �
; ð26Þ

~D
2

k 5 �
L

i50
ðfk � �fkÞ2i d2

i 1�
L

j51
�
L

q50
q 6¼j

ðfk � �fkÞjðfk

2

6
4

� �fkÞqðmjd jÞðmqdqÞ

#

~f ð�fkÞ; ð27Þ

where mi, di, and d2
i are the mean, partial first-order,

and partial second-order central divided difference op-

erators respectively, defined as

mi
~f �fk

� �
5

1

2
½ f ð�uk 1 dsuiÞ1 f ð�uk � dsuiÞ�; ð28Þ

d i
~f �fk

� �
5

1

2d
½ f ð�uk 1 dsuiÞ � f ð�uk � dsuiÞ�; and

ð29Þ

d2
i
~f �fk

� �
5

1

2d2
½ f ð�uk 1 dsuiÞ1 f ð�uk � dsuiÞ � 2f ð�ukÞ�;

ð30Þ
where d is the central difference step size and sui is the

ith column of the Cholesky factor of the covariance

updated error covariance matrix (10)

sui 5 ð
ffiffiffiffiffiffiffi

Puk

p

Þi: ð31Þ

For implementing the SP-CDKF, augmented state

vectors are constructed by concatenating the original

model state, model, and observation error vectors. The

augmented sigma-point state vectors are calculated us-

ing the following selection scheme:

The augmented sigma-point vectors are then propagated

through the approximated nonlinear model (22), and

the approximated mean model state vector can be com-

puted as follows:

û
�
k ’E ~f �fk

� �
1 ~Dk 1

1

2!
~D2
k

� �

; ð33Þ

xk;0 5
�uk is based on w

ðmÞ
0 5

d2 � L

d2
;

x1

k;i 5 uk 1 ð
ffiffiffiffiffiffiffiffiffiffiffiffi

d2Puk

q

Þi; where i5 1; . . . ;L; with corresponding weight; w
ðmÞ
i 5

1

2d2
; where i5 1; . . . ; 2L;

x�
k;i 5 uk � ð

ffiffiffiffiffiffiffiffiffiffiffiffi

d2Puk

q

Þi; where i5 ðL1 1Þ; . . . ; 2L; with corresponding weight; w
ðc1Þ
i 5

1

4d2
;

where i5 1; . . . ; 2L and

w
ðc2Þ
i 5

d2 � 1

4d4
; where i5 1; . . . ; 2L: ð32Þ

4 The linear transformation from the stochastic vector �fk to uk :

uk 5 Sukfk; decouples the fully coupled state vector uk where the

covariance of �fk is equal to the identity matrix. For computational

reasons the square root matrix Suk often remains triangular

(Cholesky decomposition). More details on decoupling and its

advantages in Kalman filters can be found in Ohmuro (1984),

Baheti et al. (1990), and Daum and Fitzgerald (1983)
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’
d2 � L

d2
f ðûk�1Þ1

1

2h2
�
L

i51
½ f ðûk�1 1 dsuiÞ

1 f ðûk�1 1 dsuiÞ�; ð34Þ

’�
2L

i50
w

ðmÞ
i xu

k;i: ð35Þ

Similarly, the measurement state, the forecast covari-

ance, and the cross-covariance for the calculation of the

Kalman gain are given by

ĉ
�
k ’�

2L

i50
w

ðmÞ
i Y u

k;i; ð36Þ

P
�
uk
’�

L

i51
½wðc1Þ

i ðxu
k;i � xu

k;L1iÞ
2
1w

ðc2Þ
i ðxu

k;i 1xu
k;L1i

� 2xu
k;0Þ

2�; ð37Þ

P
�
~ck
’�

L

i51
½wðc1Þ

i ðY u
k;i � Y u

k;L1iÞ
2
1w

ðc2Þ
i ðY u

k;i 1Y u
k;L1i

�2Yu
k;0Þ

2�; ð38Þ

Puk ~ck
’�

L

i50
w

ðmÞ
i ðxuk

k;i � û�k ÞðY k;i � ĉ�
k Þ

T ð39Þ

’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w
ðc1Þ
1 P

�
uk

q

ðY u
k;1:L � Y u

k;L11:2LÞ
T
: ð40Þ

One main advantage of SP-CDKF over SP-UKF is

that it uses only one ‘‘control parameter’’ (d) compared

to three (l, a, and k) in UKF. For exact derivation and

algorithmic details see Ito and Xiong (2000), Nørgaard

et al. (2000a), van der Merwe and Wan (2001a), and

Wan and van der Merwe (2001).

3. SPKF applied to the Lorenz model

In the field of data assimilation, the celebrated

Lorenz (1963) model has served as a test bed for ex-

amining the properties of various data assimilation

methods (Gauthier 1992; Miller et al. 1994; Evensen

1997) because the Lorenz model shares many common

features with the atmospheric circulation and climate

system in terms of variability and predictability (Palmer

1993). By adjusting the model parameters that control

the nonlinearity of the system, the model can be used to

simulate nearly regular oscillations or highly nonlinear

fluctuations.

a. Lorenz 1963 model

The Lorenz (1963) model (hereafter Lorenz 1963)

consists of nonlinear ordinary differential equations of

three components, given by

dx

dt
5sðy� xÞ1 qx; ð41Þ

dy

dt
5 rx� y� xz1 qy; and ð42Þ

dz

dt
5 xy� bz1 qz; ð43Þ

where variables x, y, and z are related to the intensity of

convective motion and to the temperature gradients in

the horizontal and vertical directions, respectively, and

the parameters s, r, and b will be referred to as dy-

namical parameters; qx, qy, and qz represent the un-

known model errors, assumed to be uncorrelated in

time (white noise). Also, we assume that all the mea-

surements or observations are linear functions of the

nonlinear model states. The true data are created by

integrating the model over 4000 time steps using the

fourth-order Runge–Kutta scheme (Press et al. 1992),

with parameters s, r, and b set to 10.0, 28.0, and 8/3,

respectively, and initial conditions set to 1.508870,

21.531271, and 25.46091 (Miller et al. 1994; Evensen

1997). The integration step is set to 0.01. The observa-

tion datasets are simulated by adding normal distribut-

ed noise to the true data. The assimilation process is

completely subject to the model Eqs. (41)–(43) after

the initial guesses are given; at each step of the integra-

tion, the initial conditions are the estimated model state

from the previous step.

b. State estimation

To apply KF, we discretize the nonlinear Lorenz

model (41)–(43) using the fourth-order Runge–Kutta

method and write it in the form of state space equations

given by (1) and (2), where uk represents the system

state vector (a column vector composed of x, y, and z),

f(�) is the nonlinear function of the state, and qk is the

random (white) process noise vector (column vector

composed of qx, qy, and qz). The measured model state

ck required for the application of the KF is a function

of the states according to Eq. (2), where h(�) is the

measurement function and rk is the random measure-

ment noise vector.

To implement the SP-UKF, the state vector is rede-

fined as the concatenation of the model states, model

errors, and measurement errors. The augmented state
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vector Qk and the corresponding covariance matrix are

given by the following equations:

Qk 5

uk
qk
rk

2

4

3

5
; ð44Þ

PQk
5

Puk 0 0

0 Qk 0

0 0 Rk

2

6
4

3

7
5: ð45Þ

Therefore, the augmented state dimension is the sum of

the original state dimension, model error dimension,

and measurement error dimension given by

LQ 5Lu 1Lq 1Lr; ð46Þ

where Lu is the dimension of the state, Lq is the dimen-

sion of the model error vector, and Lr is that of mea-

surement errors. The augmented sigma points are

found using the transformation Eqs. (12)–(14). The di-

mension of the augmented sigma-point vector is 2LQ 1

1. For the Lorenz model discussed here, the augmented

sigma-point vector dimension is 19. In other words the

number of sigma points required to approximate the

error statistics accurately is 19. The augmented sigma-

point vector is then propagated through (15) and (16)

and the optimal terms for the calculation of Kalman

gain are computed according to Eqs. (17)–(21).

On the other hand, for implementing SP-CDKF, we

split the augmentation process between the time update

and measurement update sections. For time update, the

augmented state vector, covariance matrix, and sigma-

point vector are given by

Q̂K�1 5 ûk�1 qk�1

� �
; ð47Þ

PQk�1
5

Puk�1
0

0 Qk�1

" #

; and ð48Þ

xk�1 5 ½Qk�1 Qk�1 1 d
ffiffiffiffi

P
p

Qk�1

Qk�1 � d
ffiffiffiffi

P
p

Qk�1
�; ð49Þ

and for measurement update they are given by

Q̂
k̂
5 û

�
k rk

� �
; ð50Þ

PQk
5

P�
uk

0

0 Rk

" #

; and ð51Þ

xk 5 ½Qk Qk 1 d
ffiffiffiffi

P
p

Qk
Q̂k � d

ffiffiffiffi

P
p

Qk
�: ð52Þ

The optimal terms for the calculation of Kalman gain

are computed using (35)–(40).

c. Parameter estimation from noisy measurements

The model parameter estimation can be regarded as

a special case of general state estimation in which the

parameters are treated as specific states. Parameter es-

timation involves determining a nonlinear mapping

Yk 5N uk;Lð Þ; ð53Þ

where the nonlinear map N (�) may be the dynamical

model f (�) or an empirical model parameterized by the

vector L. The state space representation of the param-

eter estimation problem for the Lorenz model can be

written as

Lk 5Lk�1 1 qLk�1; ð54Þ

ck 5 f uk;Lkð Þ1 rLk ; ð55Þ

where f (�) is the nonlinear measurement model given

by the Lorenz Eqs. (1)–(3); L is the parameter vector

that constitutes the dynamical parameters s, r, and b;

and qLk and rLk represent the model and measurement

error vector respectively. The SPKF (SP-UKF and SP-

CDKF) equations for the parameter estimation prob-

lem are similar to those of the state estimation formu-

lation except that the state (here states are parameters)

time evolution is linear [Eq. (54)] and the measurement

function is nonlinear [Eq. (55)].

d. Joint estimation of parameters and states

The joint estimation approach is required when the

‘‘clean’’ state and parameters are not available. In gen-

eral there are two approaches to estimating the model

state and parameters simultaneously, namely the dual

estimation and joint estimation approaches (Haykin

2001; Nelson 2000; van der Merwe 2004). In the dual

estimation approach, two Kalman filters are running

simultaneously for state and parameter estimation. On

the other hand, in the joint estimation approach, the

system state and parameters are concatenated into a

single higher-dimensional joint state vector and only

one Kalman filter is used to estimate the joint vector.

For example, the joint state vector Jk for the SPKF data

assimilation can be written as

J k 5 uk Lk½ �T: ð56Þ

In the joint estimation process, the SPKF schemes es-

timate the states using parameters that are estimated at

every time step using the prior states. In this study, we

will only present the joint estimation of parameters and

states because it incorporates complete model states

and parameters during assimilation cycles.
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4. Experiments and results

In this section we demonstrate the feasibility of the

SPKF algorithms as an effective data assimilation

method for highly nonlinear models. The SPKF algo-

rithms discussed in the previous sections will now be

examined and compared with standard EKF and EnKF

methods. To compare the SPKF algorithms with stan-

dard EKF and EnKF, all experiments were designed

almost identically to those of Miller et al. (1994) and

Evensen (1997).

a. State estimation

The first set of experiments were carried out with

initial conditions, parameters, and observation noise

levels identical to those in Miller et al. (1994) and

FIG. 1. Case 1—Assimilation solutions for the Lorenz model. The dashed curve is the true model,

1 indicates the noisy observations, and the solid trajectory indicates the assimilated solutions.
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Evensen (1997): the observations and initial conditions

are simulated by adding normally distributed noiseN(0,
ffiffiffi

2
p

Þ: Also the interval of observation is set to 25; that

is, the observed states are assimilated to the nonlinear

model at every 25 time steps.

For all the cases to be discussed, we assume that the

model and observation errors are uncorrelated in both

space and time. Because there is no general way to set

the model error, usually the amount of model error to

use in the KF is often determined experimentally by

trial or by statistical methods such as Monte Carlo,

which is computationally expensive (Miller et al. 1994).

In our experiments, the model errors were intentionally

designed in such a way that the model would not drift

from the true state too much.5 In detail, we set the

model errors by calculating the expected errors in the

state scaled by a decreasing exponential factor that is a

function of the assimilation time; initially, the model

covariance matrix is set to an arbitrary diagonal value

and then anneals toward zero exponentially as the as-

similation proceeds. For simulating model errors in the

ensemble Kalman filter, we follow the method sug-

gested by Evensen (2003). An ensemble of 1000 mem-

bers was used in the EnKF as in Evensen’s experiment

(Evensen 1997).

Figures 1a–d show the state estimate using the EKF,

EnKF, SP-UKF, and SP-CDKF, respectively. As can be

seen, all four methods can generate the model states

similar to true values, indicating good capability of

these methods in estimating model states if the size of

initial perturbation and observed noise are appropriate

as given here. Figures 1a and 1b were also obtained by

Miller et al. (1994) and Evensen (1997). It should be

noted that the EKF and the EnKF can have good state

estimates, but the former needs to construct TLM and

the latter requires a large ensemble size of 1000. In

contrast, the SP-UKF and the SP-CDKF only use 19

‘‘particular’’ ensemble members (sigma points) here,

showing their advantages over EKF and EnKF.

A comparison among the four methods is shown in

Fig. 2: the variation of the error square (ES) with time

step. The ES is defined here as the square of the dif-

ference between estimated state and true model state

scaled by N, where N is a scalar quantity:6

Error5
1

N
uk � uTruek

� �2
: ð57Þ

From Fig. 2, we can see that the SP-UKF and SP-

CDKF assimilations have a smaller ES than EnKF at

most times, although some assimilation steps have an

opposite situation. These ‘‘peak’’ values of ES corre-

spond to either overestimation or underestimation of

model states, which are most probably related to ran-

dom noise in the ‘‘observations’’ and to the chaotic na-

ture of the Lorenz system. The state estimate is prob-

ably poor when a large noise is assimilated and when

the state is a transition from one chaotic regime to the

other (also see the discussions below).

The overall performance of each assimilation is mea-

sured by the root-mean-square error (RMSE) over all

time steps, as shown in Table 1. As shown, SP-UKF and

SP-CDKF have slightly smaller RMSE than others. The

most impressive point in the table is that SPKF meth-

ods use only 19 sigma points (or in general 19 condi-

tional ensembles) to estimate the statistical moments of

the nonlinear model accurately. This turns out to be an

advantage for the data assimilation problems in low-

dimensional systems, but in the case of atmospheric or

ocean GCMs the 2L 1 1 integration is not computa-

tionally feasible. More details on SPKF implementa-

tion, its limitations, and methods to overcome the limi-

tations are described in detail in section 5.

For the sake of completeness, we performed an

EnKF assimilation experiment with 19 ensembles com-

pared to 1000 ensembles. The result of this experiment

is shown in Fig. 3a and the corresponding ES and

RMSE are shown in Fig. 3b and Table 1. These results

show that errors of state estimate from the EnKF with

19 ensemble members are around 5–10 times as much

as from SPKF. Thus, EnKF with only 19 members

could not capture the mean and covariance of a highly

nonlinear Lorenz model appropriately. On the other

hand, with just 19 conditional ensembles (or sigma

points), SPKF is able to capture the statistical moments

of the highly nonlinear Lorenz model.

The assimilation experiments took place on a sym-

metric multiprocessor (SMP) machine with two

AMD Optron 248 CPUs (Advanced Micro Devices

2007) with a clock speed of 2.2 GHz, running on Linux.

MATLAB 7.3.0.298 (R2006) software (available online

from Mathworks, Inc., at http://www.mathworks.com/

products/matlab/index.html) was used to implement

the model and data assimilation algorithm. Table 1 also

compares the computation time required by each as-

similation algorithm discussed above. To compare the

computational efficiency, we use the same program-

ming framework for implementing all the data assimi-

lation methods discussed above. The computational

cost is the least for EKF, followed by two SPKF meth-

ods. The EnKF that requires 1000 members for a good

5 The model is considered to have a relatively large error at the

initial time so the assimilation weighs more observation informa-

tion. As such, the model prediction would not drift from the true

value too much.
6 We choose N to be 4000, which is the total time step.
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estimate (see Fig. 1b) is the most expensive, around

50–80 times as much as SPKF.

The second set of experiments was carried out with a

more realistic situation by increasing the observations’

noise level tenfold: the observations and initial condi-

tions are generated by adding normally distributed

noise N(0,
ffiffiffiffiffi

20
p

Þ: The assimilation results are shown in

Fig. 4 and the corresponding ES is shown in Fig. 5.

From Fig. 4 we can see the superior performance of

SPKF algorithms. Among SPKFs, the SP-CDKF shows

comparatively better assimilation skill than SP-UKF.

The RMSE of the EKF, EnKF, SP-UKF, and SP-

CDKF assimilation results were 5.39, 6.37, 4.25, and

4.56, respectively. From Figs. 4 and 5, it is evident that

FIG. 2. Case 1—Assimilation errors for state estimation (corresponding to Fig. 1): (a) EKF, (b)

EnKF, (c) SP-UKF, and (d) SP-CDKF.

270 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 66



the SPKF assimilation schemes can give better estima-

tion results even if the system is subjected to higher

noise. Also, our numerical experiments showed that an

EnKF assimilation with 1000 ensembles can give results

(not shown here) as accurate as SPKF assimilation.

In the third set of experiments, we increased the ob-

servation noise level as well as the interval between

consecutive observations; the interval between obser-

vations was increased from 25 to 40 and the observa-

tions and initial conditions were generated by adding

normally distributed noise N(0,
ffiffiffiffiffi

20
p

Þ: The assimilation

results and corresponding ES are shown in Figs. 6 and

7 respectively.

Figure 7 shows some divergence in some time steps

of the assimilation track among the four methods. For

example, the errors (ES) vary almost steadily in SP-

UKF whereas SP-CDKF has a relatively significant

variation of ES with time steps. Compared with SPKF,

the variation of ES is more striking in EKF and EnKF.

The significant variation of ES might be related to the

chaotic nature of the Lorenz system and the capability

of individual algorithm in capturing the observation in-

formation. The chaotic Lorenz attractor is known to

have a butterfly shape with two wings. For a good es-

timate of the transition state from one wing to the

other, the assimilation should be able to characterize

the information of both wings of the Lorenz attractor.

Obviously this depends on two issues: the observation

itself and the assimilation algorithm. If the observation

is more frequently assimilated (i.e., the interval be-

tween observations is small), sufficient data allow the

coverage of more information of both chaotic regimes

in assimilation. This is the reason why there are many

more abnormal’’ values of ES in Fig. 7 than in Fig. 2, in

which the observations are more frequent. On the other

hand, if one assimilation algorithm has a better capacity

to mix observation and model information to charac-

terize transitions, it would have better estimates for

transition states. In many cases, it highly depends on

the model and observation error covariances. When the

observation error covariance is usually predescribed,

the model error covariance is updated at each assimi-

lation step in the family of Kalman filters, depending on

the algorithm. Thus, Fig. 7 suggests that SPKF is prob-

ably better than EKF and EnKF in the assimilation of

some transition states using noisy observations.

Again, we repeated the EnKF assimilation (for case

3) with 1000 ensembles and the result is shown in Fig. 8.

The result is not as good as SPKF assimilation and

seems noisier. This is probably because the observation

TABLE 1. RMSE and computation time for case 1

Assimilation method Computation time (s) RMSE

EKF 37.04 1.812

EnKF (with 1000 ensembles) 7143.57 1.987

EnKF (with 19 ensembles) 132.77 6.123

SP-UKF 133.91 1.640

SP-CDKF 90.42 1.592

FIG. 3. (a) EnKF data assimilation solutions for the Lorenz model with 19 ensembles (symbols as in

Fig. 1). (b) Assimilation errors.
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assimilated is noisier and less frequent; thus, an en-

semble size of 1000 is probably not enough to capture

the statistical moments accurately.

b. Parameter estimation

Estimating uncertain dynamical model parameters is

one of the important tasks in data assimilation, where

the measurement function is usually nonlinear. The re-

quirement of the tangent linear measurement operator

H in the optimal gain term given by Eq. (10) makes the

EKF and EnKF assimilation schemes inaccurate and

inappropriate for the parameter estimation in nonlinear

dynamical systems. It has been shown that the EnKF

data assimilation gave poor results in estimating the

dynamical parameter of the Lorenz model (Kivman

2003). The SPKF methods should be better alternatives

FIG. 4. Case 2—Assimilation solutions for the Lorenz model with a tenfold increase in the observation

noise levels (symbols as in Fig. 1). (Here the EnKF simulation is performed with 19 ensembles).

272 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 66



for parameter estimation because they do not need to

linearize the nonlinear measurement function.

The experimental setup is identical to that of the first

case of the state estimation problem discussed in the

above subsection. To simulate a more realistic situa-

tion, the initial guesses of the parameters are generated

by adding normal distributed noise of covariance 100 to

the true parameters. In the first case, we assume that

only one parameter (say b) is uncertain. Thus, our task

is to estimate the correct value of b from infrequent

observations contaminated by noise. Figure 9 shows the

SPKF parameter estimation results. Figures 9a and 9b

FIG. 5. Case 2—Assimilation errors for state estimation (corresponding to Fig. 4): (a) EKF, (b)

EnKF, (c) SP-UKF, and (d) SP-CDKF.
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show the parameter estimation using SP-UKF and SP-

CDKF, respectively.

From these figures it is clear that SPKF assimilation

methods can retrieve dynamical parameters well from

noisy observations. In the above experiment, even

though the initial parameter was far from the true value

(the standard deviation is 10), the SPKF method is still

able to estimate the parameter accurately. In general,

our experiments suggest a faster convergence for SP-

CDKF algorithm. This might be due to the algorithm

tuning problem, because SP-CDKF uses only one con-

trol parameter (d) compared to three (l, a, and k, ) in

SP-UKF.

In the second case we assume that two dynamical

parameters (say r and b) are uncertain. This situation is

more difficult than the first case because inaccuracy in

FIG. 6. Case 3—Assimilation solutions for the Lorenz model with fewer observations and a tenfold

increase in the observation noise levels (symbols as in Fig. 1). Here the EnKF simulation is performed

with 19 ensembles.
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the estimation of one parameter can result in inaccurate

estimation of the other. Initial parameters were gener-

ated using the same method as in the previous case:

adding normal distributed noise of covariance 100 to

the true parameters. Figures 10a and 10b show the re-

sults of the simultaneous estimation of r and b using

SP-UKF and SP-CDKF, respectively. In the case of

single parameter estimation, SPKF assimilation is able

to approximate the true parameter much faster com-

pared to the two-parameter case. This suggests that

more frequent observations might be needed to accu-

rately estimate both parameters.

c. Joint estimation of model states and parameters

Data assimilation problems involving inaccurate

model states and parameters arise in many situations in

FIG. 7. Case 3—Assimilation errors for state estimation (corresponding to Fig. 6): (a) EKF (b) EnKF

(c) SP-UKF and (d) SP-CDKF.
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meteorology and physical oceanography. In this situa-

tion our task is to estimate the model states and param-

eters simultaneously from a set of noisy observations.

In this experiment we used SPKF data assimilation

schemes for the joint estimation of parameters and

states simultaneously. The experimental setup is iden-

tical to that of the state estimation discussed in the

above section where the interval between noisy obser-

vations is set to 25 and the noise covariance is 2. In the

joint estimation approach the model states and param-

eters evolve in time simultaneously; model states are

estimated at each assimilation step using the estimated

parameters, which are estimated from the prior states.

In this simulation we estimated the model state x and

dynamical parameter s simultaneously. Figures 11 and

12 show the joint estimation results and the correspond-

ing error square for SP-UKF assimilation, respectively;

Figs. 13 and 14 do the same for SP-CDKF data assim-

ilation.

Simultaneously estimating both state and parameter

values increases the nonlinearity of the assimilation

problem, thereby increasing the assimilation time

needed to retrieve them. From Figs. 12 and 14, we can

see that the ES of the parameter estimate decreases

with time. One interesting feature in Figs. 11–14 is that

when the estimated parameters are far away the true

values, the model states still have good estimation. This

is because the initial model errors for the states are

much higher than those for the parameter; thus, the

analysis weights the observations much more than the

model simulation associated with inaccurate param-

eters. When the estimated parameter gradually ap-

proaches the true value, the ES of model state estimate

seems not to decrease significantly. This is because as

the model error decreases with assimilation time (i.e.,

as the model becomes more and more accurate), the

model state becomes more sensitive to slight changes in

the estimated parameter.

In summary, all the above experiments—including

state, parameter, and joint estimation with different ob-

servation frequencies and noise levels—show that

sigma-point Kalman filters are efficient and good as-

similation algorithms for a highly nonlinear Lorenz sys-

tem. If the observation density is high and noise level is

FIG. 8. Case 3—EnKF assimilation solutions with 1000 ensembles, for the Lorenz model with fewer

observations and a tenfold increase in the observation noise levels (symbols as in Fig. 1).

FIG. 9. Parameter estimation: (a) SP-UKF assimilation; (b) SP-CDKF assimilation. True b 5 dashed line;

estimated b 5 solid line.
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small, all the data assimilation methods discussed above

would estimate the model state accurately, but at the

cost of additional computational expense and the re-

quirement of TLM for EnKF and EKF. But even if the

noise level is high and the observations are less fre-

quent, SPKF can estimate the model states and param-

eters with good accuracy, without the requirements of

TLM and costly computation.

5. SPKF data assimilation in higher-dimensional

systems

In the preceding sections, we have demonstrated the

power and merits of SPKF, as well as its advantages

over EKF and EnKF, by the low-dimensional Lorenz

model. One of the crucial issues in evaluating a data

assimilation algorithm is its computational expense

when applied to realistic models that have a large di-

mensionality. In this section we will further explore the

SPKF using higher-dimensional Lorenz models.

For an L-dimensional system, the number of sigma

points required to estimate the true mean and covari-

ance is 2L 1 1. As described in the previous sections,

this procedure works well for low-dimensional models

like the Lorenz 1963 model, but 2L 1 1 sigma-point

integration is computationally unfeasible if the dimen-

sion system is of the order of tens of millions, as in

global GCMs. Julier (Julier and Uhlmann 2002; Julier

2003; Julier and Uhlmann 2004) has shown that by us-

FIG. 10. Simultaneous estimation of two parameters: (a) SP-UKF assimilation; (b) SP-CDKF assimilation. True b 5

solid thick line, true r 5 dashed line; estimated b 5 dashed–dotted solid line, estimated r 5 solid thin line.

FIG. 11. SP-UKF assimilation for joint estimation of state and parameter: (a) dashed line 5 true state

x, observations 5 1, solid line 5 estimated x; (b) dashed line 5 true s, solid line 5 estimated s.
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ing simplex unscented transformation the minimum

number of sigma points that gives same estimation ac-

curacy as SP-UKF can be reduced to L 1 1. These

sigma points are called simplex sigma points, but for

higher-dimensional systems this L 1 1 simplex sigma-

point integration is still computationally intractable. A

possible solution to this problem is to reduce the num-

ber of sigma points by selecting a particular subset of

FIG. 12. Assimilation errors for SP-UKF joint estimation: (a) estimation error for x (b) estimation

error for s.

FIG. 13. As in Fig. 11, but for SP-CDKF.
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sigma points from the original sigma-point space, which

can approximate the error statistics of the model. In the

following subsections we will examine this possibility.

a. A subspace approach with sigma points: Design

and implementation

It has been shown that the number of degrees of

freedom necessary to describe most large-scale geo-

physical systems is finite, and their dominant variability

can be described by a limited number of modes or func-

tions (Teman 1991; Lermusiaux and Robinson 1999;

Lermusiaux 1997). These functions evolve in time and

space in accordance with the system. The techniques

commonly used for deriving such functions include dy-

namical normal modes, dynamical singular vectors and

values, empirical orthogonal functions (EOFs; Lorenz

1965; Davis 1977; Weare and Nasstrom 1982; Wallace

et al. 1992; von Storch and Frankignoul 1997), principal

interaction and oscillation patterns (PIPs and POPs,

respectively; Hasselmann 1988; von Storch et al. 1995;

Penland 1989; Schnur et al. 1993), and radial functions

and wavelets (Meyers et al. 1993; Gamage and Blumen

1993). Lermusiaux (Lermusiaux and Robinson 1999;

Lermusiaux 1997) proposed a method to reduce error

space, called error subspace statistical estimation

(ESSE). In the ESSE approach, a reduced rank ap-

proximation P
p
k to the error covariance Pk should be

defined by minimizing the norm of the difference be-

tween Pk and P
p
k; i.e.,

rank P
p
k

� �
5 pminkPk�P

p

k
k:

ð58Þ

According to the minimum criterion (58), the error sub-

space is characterized by the singular vectors and values

of Pk.

We follow an idea similar to ESSE to form a sigma-

point subspace that approximates the mean and error

covariance of system. In our approach, it is assumed

that when the estimate of a system’s full errors requires

all sigma points, its dominant errors can be estimated

using the most important sigma points. Theoretically

these most important sigma points should be chosen

based on (58). However, this will introduce huge com-

plexity and be difficult to implement. For simplicity, as

a good start toward a complete solution to the problem,

we have used principal component analysis (PCA) to

identify the most important sigma points that influence

the evolution of error covariance. The main idea be-

hind using PCA is to represent the multidimensional

sigma-point space by a fewer number of sigma points

while still retaining the main features of the original

sigma-point space; that is, sigma points in the principal

component space are used to calculate the error propa-

gation. The selection of sigma points is based on the

proportion of variances. Specifically, instead of using

the full sigma-point space, we use some leading princi-

pal components, thereby reducing the number of sigma

points required to approximate forecast error covari-

ance. In the following subsections, we will see the po-

FIG. 14. As in Fig. 12, but for SP-CDKF.
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tential of this approach in the assimilation of higher-

dimensional systems.

b. Experiments with the Lorenz 1995 model

The Lorenz 1995 (Lorenz 2006) model is a one-

dimensional atmospheric model introduced by E.

Lorenz in 1995 to explain the dynamics of weather at a

fixed latitude. It has error growth characteristics similar

to those of full NWP models. The model contains K

variables X1, . . . , Xk, which may be thought of as at-

mospheric variables in K sectors of a latitude circle,

governed by

dXk

dt
5 �Xk�1 Xk�2 �Xk11ð Þ �Xk 1F; ð59Þ

where the constant F, called the forcing term, is inde-

pendent of k. By using the cyclic boundary conditions,

the definition of Xk is extended to all values of k; that

is, Xk2K and Xk1K equal Xk. It is assumed that a unit

time Dt 5 1 is associated with 5 days.

The experimental setup is similar to that of Lorenz

(Lorenz 2006), where K 5 36 and the magnitude of the

forcing is set to 8, for which the system is chaotic. The

system is integrated using the fourth-order Runge–

Kutta method, with a time step of Dt 5 0.05 (i.e., 6 h).

The experiments were carried out with random initial

conditions, and the observations were generated by

adding normally distributed noise N 0;

ffiffiffi

2
p� �

to the true

states. Also, the interval of observation is set to 10; i.e.,

the observed states are assimilated to the nonlinear

model at every 10 time steps. A more detailed discus-

sion of the model and its characteristics can be found in

Lorenz (2006, 2005) and Lorenz and Emmanuel (1998).

c. Performance and evaluation

For all the cases to be discussed, we assume that the

model and observation errors are uncorrelated in both

space and time. In the first case we use ‘‘full’’ sigma-

point space for the calculation of error covariance.

Thus we have a total of 217 sigma points, hence 217

ensemble members. Figure 15a shows the state estimate

using the SP-UKF. As can be seen, SP-UKF can esti-

mate the model states similar to true values, indicating

good capability of the original SPKF methods in esti-

mating model states.

In the second case we use the reduced sigma-point

subspace to calculate the error covariance. In this case

we select 40 sigma points, which account for more than

90% of the total variance. The result of this experiment

is shown in Fig. 15b. As can be seen, the model states

can be fairly well estimated by the reduced SPKF, al-

though its estimate accuracy is not as good as the origi-

nal SPKF. This suggests a possible solution to applying

SPKF for high-dimensional systems. For the sake of

completeness, we performed an EnKF assimilation ex-

periment with 40 ensembles. The ensemble is generated

using the same approach as the previous experiment

with the Lorenz 1963 model, in which we used 19 en-

sembles (Fig. 3a). The result of this experiment is

shown in Fig. 15c. Comparing Figs. 15b and 15c reveals

that the reduced SPKF is better than the EnKF for the

state estimate, especially for the magnitude estimate. It

is apparent that the EnKF underestimates the magni-

tude of model states during the transition phase period.

We also performed the SPKF assimilation experi-

ment for the 960-variable Lorenz ’95 model. The ex-

perimental setup is identical to that in the previous

cases except that K 5 960. Two cases are studied with

the model. In the first case we use all sigma points (a

total of 5761 sigma points), and in the second case we

use 200 important sigma points for the calculation of

error covariances. The results of these experiments are

shown in Fig. 16. For comparison, we also performed an

EnKF assimilation experiment with 200 ensembles, and

the result of this experiment is shown in Fig. 16c. Ap-

parently the reduced SPKF leads to a better estimate

than the EnKF in both phase and magnitude simula-

tion. As can be seen in the EnKF, the estimated state is

often out of the phase of ‘‘true’’ trajectory, which is

absent in the reduced SPKF. The correlation between

the estimated trajectory and true trajectory is 0.59 for

the reduced SPKF and 0.10 for the EnKF.

A great deal of additional research is needed for

better design and implementation of these techniques ap-

plied to atmosphere or ocean GCMs for state, param-

eter, and joint estimation problems. However, the

above experimental results are promising, and a variety

of possible extensions to these techniques could be de-

veloped to deal with more complicated situations.

6. Discussion and conclusions

The EKF and EnKF, two important Kalman-type fil-

ters, have been widely applied for atmospheric and oce-

anic data assimilation because of their efficient and

simple algorithms. The major weaknesses of the EKF

and EnKF are that the former needs to calculate the

tangent linear model or Jacobian for linearization of

nonlinear forecast models and that the EnKF perfor-

mance is greatly dependent on ensemble size, which is

often an intractable burden for computation. The EKF

and EnKF cannot deal with the systems directly if ob-

served data are a nonlinear transformation of states.

In this study we introduced and presented two re-

cently proposed derivativeless sigma-point Kalman fil-

ters. The SPKF is a technique for implementing a de-
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rivativeless optimal estimation using a novel determin-

istic sampling approach that ensures a small size of

samples to accurately estimate forecast error statistics.

It is unlike EnKF, in which a random sampling strategy

is used. The technique employed in SPKF is that it

reinterprets the standard Kalman gain and covariance

update equation in such a way that it does not need

linearization of the nonlinear prediction model and

nonlinear measurement operator, and it can capture

the statistical moments of the nonlinear model accu-

rately using deterministic sampling technique. Thus, in

SPKF the forecast error covariance equation is com-

puted using deterministically chosen samples, called

sigma points. In a broad sense, the SPKF algorithm can

be considered as a particular case of the ensemble Kal-

man filter with a specific sample selection scheme. In

other words, the forecast sigma points in SPKF algo-

rithms are actually specific ensembles conditioned on

the specific selection schemes, which can represent the

error statistics accurately. Also, the ensemble forecast

step in SPKF can be parallelized by running each en-

semble member on a separate processor of a parallel

computer (or cluster), resulting in huge computational

savings.

FIG. 15. The 36-variable Lorenz 1995 model assimilation solutions for X1: (a) case 1, (b) case 2, and

(c) EnKF with 40 ensembles. The dashed curve is the true model, 1 indicates the noisy observations, and

the solid trajectory indicates the assimilated solutions.
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Using the highly nonlinear low-dimensional Lorenz

1963 model and a higher-dimensional Lorenz ’1995

model, we investigated the capability and performance

of SPKF over standard KF-based data assimilation

methods for three different classes of problems, namely

state estimation, parameter estimation, and joint esti-

mation. The results demonstrated that the SPKF has

better estimate accuracy than EKF and EnKF for all

experiments. SPKF experiments with a higher-dimen-

sional model suggest that it is possible to reduce the

number of sigma points, thereby reducing the compu-

tation time, by using a reduced sigma-point space ap-

proach. The results in this study are encouraging and

suggest that the SPKF could become an effective

method to assimilate observations into realistic models

such as atmospheric or oceanic GCMs. The SPKF also

has the advantage that it does not need tangent linear

or Jacobian operators of the original models.

The SP-UKF and SP-CDKF data assimilation in-

volves the calculation of the matrix square root of the

state covariance matrix, which is a computationally in-

tensive process. It has been shown that square root

formulation of SP-UKF and SP-CDKF is numerically

efficient and stable and has equal estimation accuracy

FIG. 16. The 960-variable Lorenz 1995 model assimilation solutions for X1: (a) case 1, (b) case 2, and

(c) EnKF with 200 ensembles. Colors and symbols as in Fig. 15.
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when compared to original SP-UKF and SP-CDKF

(van der Merwe and Wan 2001a,b). Because the state

space dimension of the model that we used in this study

is relatively small, it is practically irrelevant to compare

the numerical stability of the square root formulation

with original SP-UKF and SP-CDKF implementation.

Therefore, this issue is left for future study in GCMs.

In this study, we explored the SPKF using highly

simplified nonlinear models. One might be concerned

by the performance and efficiency of SPKF when a

realistic GCM is used. Additional research is needed

for better implementation of these techniques applied

to data assimilation problems in atmospheric or ocean

GCMs. Nonetheless, the present study represents a step

in pursuing advanced data assimilation algorithms by

using a simple nonlinear model, which shares some

common features with complicated atmospheric and

oceanic models. Future work will also study the paral-

lelization of SPKF data assimilation in GCMs similar to

EnKF parallelization because the propagation of each

sigma point through the nonlinear model is indepen-

dent. We are currently working on an implementation

of the SPKF for a realistic ocean GCM that will inves-

tigate the estimation accuracy, numerical stability, and

consistency, as well as the computational difficulties.

These studies will be described in future work.
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APPENDIX A

Reinterpretation of the Standard Kalman Gain

The optimal state update equation in the Kalman

filter algorithm can be written as

ûk 5 û�k 1K
k
ðck � ĉ�

k Þ; ðA1Þ
where the superscript negative sign represents the prior

states given by the following equations:

û
�
k 5E f uk�1; qk�1ð Þ½ � and ðA2Þ

ĉ
�
k 5E½hðu�k ; rkÞ�; ðA3Þ

5E ck½ �5Hû
�
k ; ðA4Þ

Here, H is the measurement operator and E[�] repre-
sents the mathematical expectation or the expected

value. Thus, the state and covariance update equations

can be rewritten as

ûk 5 û
�
k 1Kkðck � Hû

�
k Þ and ðA5Þ

Puk 5 I�KkHð ÞP�
uk

: ðA6Þ

Now the ‘‘standard’’ Kalman gain equation is given by

Kk 5 P
�
uk
H

T

|fflfflffl{zfflfflffl}
ðHP�

uk
H

T
1RÞ�1

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
; ðA7Þ

where P
�
uk

is the forecast error covariance matrix. The

first underbracketed expression in the Kalman gain

term can be interpreted as the cross-covariance be-

tween the state and observation errors (Gelb 1974; Si-

mon 2006):

Puk ~ck
5E½ðuk � û

�
k Þðck � c�

k Þ
T�; ðA8Þ

5E½ðuk � û�k ÞðHuk 1 rk � Hu�k Þ
T�; ðA9Þ

5E½ðuk � û
�
k Þðuk � û

�
k Þ

T�HT

1E½ukrTk � � E½ûkrTk �; ðA10Þ

5P
�
uk
H

T
: ðA11Þ

Similarly, the second underbracketed expression in

Eq. (A7) can be interpreted as the error covariance of

the difference between model and observation (Gelb

1974):

P~ck
5E½ðck � ĉ�

k Þðck � ĉ
�
k Þ

T�; ðA12Þ

5E½ðHuk 1 rk � Hû
�
k ÞðHuk 1 rk � Hû

�
k Þ

T�; ðA13Þ

5HE½ðuk � û
�
k Þðuk � û

�
k Þ

T�HT
1E rkr

T
k

� �
; ðA14Þ

1HE½ðuk � û
�
k ÞrTk �1E½rkðuk � û

�
k Þ

T�HT
; ðA15Þ

5HP
�
uk
H

T
1R: ðA16Þ

Therefore the Kalman gain can be rewritten as

Kk 5Puk ~ck
P
�1
~ck

: ðA17Þ

The main advantage of using this form of Kalman gain

is that we can avoid the use of a measurement operator,

especially when the measurement operator is a nonlin-

ear function of the state. A complete statistical deriva-

tion of the above formulation can be found in Simon

(2006).
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APPENDIX B

An Alternate Formula for Updating the State Error

Covariance Matrix

The estimation error is defined as

~uk 5 uk � ûk: ðB1Þ

Similarly, the error between the noisy observation ck

and its prediction ĉ
�
k is given by

~ck 5ck � ĉ
�
k : ðB2Þ

Substituting (B1) into the state-update Eq. (A1), we can

rewrite the estimation error as

~uk 5 uk � u�k � Kk ck � ĉ
�
k

� �

5 ~u
�
k � Kk

~ck: ðB3Þ

Here we made use of the fact that the estimator is

unbiased:

E ~ck

� �
5 0: ðB4Þ

Now, the state error covariance Puk and the cross co-

variance Puk
~ck between the state and observation error

given by Eqs. (A8) and (A12) can be rewritten in terms

of Eqs. (B1) and (B2) and are given by

Puk 5E½~uk~u
T

k � and ðB5Þ

Puk ~ck
5E½~u�k ~cT

k �: ðB6Þ

Taking the outer products and expectation of (B3) pro-

duces

E½~uk~u
T

k �5E½ð~u�k � Kk
~ckÞð~u�k � Kk

~ckÞT�
5E½~u�k ~uTk� � � E½~u�k ~cT

k � K
T
k � � E½Kk

~ck
~uTk� �

1E½Kk
~ck

~cT
kK

T
k �: ðB7Þ

Using Eqs. (B5) and (B6), Eq. (B7) can be rewritten as

Puk 5P
�
uk
� Puk ~ck

K
T
k � KkP~ckuk

1KkP~ck
K

T
k : ðB8Þ

Substituting the expression for Kalman gain, given by

Eq. (A17), back into the above expression, the covari-

ance update equation is given by

Puk 5P
�
uk
� KkP~ck

K
T
k : ðB9Þ

A more detailed interpretation and derivation of the

above expression can be found in Simon (2006).
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