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ABSTRACT

Core to integrated navigation systems is the concept of fus-
ing noisy observations from GPS, Inertial Measurement
Units (IMU), and other available sensors. The current in-
dustry standard and most widely used algorithm for this
purpose is the extended Kalman filter (EKF) [6]. The EKF
combines the sensor measurements with predictions com-
ing from a model of vehicle motion (either dynamic or
kinematic), in order to generate an estimate of the current
navigational state (position, velocity, and attitude). This

paper points out the inherent shortcomings in using the
EKF and presents, as an alternative, a family of improved
derivativeless nonlinear Kalman filters called sigma-point
Kalman filters (SPKF). We demonstrate the improved state
estimation performance of the SPKF by applying it to the
problem of loosely coupled GPS/INS integration. A novel
method to account for latency in the GPS updates is also
developed for the SPKF (such latency compensation is typ-
ically inaccurate or not practical with the EKF). A UAV
(rotor-craft) test platform is used to demonstrate the results.
Performance metrics indicate an approximate 30% error re-
duction in both attitude and position estimates relative to
the baseline EKF implementation.

INTRODUCTION

In a typical integrated GPS/INS system, an EKF combines
rate-gyro and accelerometer data (from an IMU) with a
kinematic or dynamic model of a vehicle movement. Other
sensors such as barometric altimeter or magnetic compass
may also be integrated. GPS position and velocity mea-
surements are then used to correct INS errors using the
same EKF. The navigational state of the vehicle to be esti-
mated include position, attitude, velocities, as well as INS
sensor biases. In addition (for loosely coupled implementa-
tions), the GPS receiver may employ its own EKF to solve
position and velocity estimates (and timing) from satellite
pseudorange, phase, and Doppler data. Alternatively, in
a tightly coupled approach, a single EKF may be used to
combine raw satellite signals with the IMU and other sen-
sor measurements to make an optimal estimation of the ve-
hicles navigational state.

A central and vital operation performed in all Kalman
filters is the propagation of a Gaussian random variable
(GRV) through the system dynamics. In the EKF, the sys-
tem state distribution and all relevant noise densities are
approximated by GRVs, which are then propagated ana-
lytically through a first-order linearization of the nonlinear



system. This can introduce large errors in the true poste-
rior mean and covariance of the transformed GRV, which
may lead to sub-optimal performance and sometimes di-
vergence of the filter. The SPKF addresses this problem
by using a deterministic sampling approach. The state dis-
tribution is again approximated by a GRV, but is now rep-
resented using a minimal set of carefully chosen weighted
sample points. These sample points completely capture the
true mean and covariance of the GRV, and when propagated
through the true nonlinear system, captures the posterior
mean and covariance accurately to the 3rd order (Taylor
series expansion) for any nonlinearity. The EKF, in con-
trast, only achieves first-order accuracy. Remarkably, the
computational complexity of the SPKF is the same order
as that of the EKF. Furthermore, implementation of the
SPKF is often substantially easier and requires no analytic
derivation or Jacobians as in the EKF. SPKF methods have
proven to be far superior to standard EKF based estima-
tion approaches in a wide range of applications in the areas
of nonlinear state estimation, parameter estimation (system
identification) as well as dual estimation (machine learn-
ing) [20, 10, 25]. In this paper, we apply the SPKF frame-
work to the problem of nonlinear estimation and sensor fu-
sion for the GPS/INS integration.

In the first part of the paper we review the general state-
estimation framework employed by all Kalman filters, af-
ter which we highlight the basic assumptions and flaws
with using the EKF. We then introduce and review the fun-
damental development of the SPKF family of algorithms.
This presentation is based on the general sigma-point ap-
proach for the calculation of the posterior statistics of a ran-
dom variables that undergoes a nonlinear transformation.
The actual algorithmic specification of different SPKF vari-
ants such as the unscented Kalman filter (UKF) [9], central
difference Kalman filter (CDKF) [14], and numerically ef-
ficient and stable square-root implementations [22, 23] are
deferred to the appendices at the end of this paper.

In the second part of the paper, we then focus on the ap-
plication of the SPKF to the integrated navigation problem.
We specifically detail the development of a loosely coupled
implementation for integrating GPS measurements with an
IMU and altimeter within the context of autonomous UAV
guidance, navigation and control. We report experimental
results generated using both a high-fidelity UAV simula-
tion system (for ground truth comparison) as well as on
real flight data using a fully instrumented XCell-90 RC he-
licopter platform.

THE EKF AND ITS FLAWS

The general Kalman framework involves estimation of the
state of a discrete-time nonlinear dynamic system,

xk+1 = f (xk,vk) (1)

yk = h (xk,nk) (2)

where xk represent the unobserved state of the system and
yk is the only observed signal. The process noise vk drives
the dynamic system, and the observation noise is given by
nk. Note that we are not assuming additivity of the noise
sources. The system dynamic model f(·) and h(·) are as-
sumed known. In state-estimation, the EKF is the stan-
dard method of choice to achieve a recursive (approximate)
maximum-likelihood estimation of the state xk. Given the
noisy observation yk, the recursive estimation for xk can
be expressed in the following form [12]:

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
(3)

Pxk
= P−

xk
− KkPỹk

KT
k (4)

where x̂−
k is the optimal prediction of the state at time k

conditioned on all of the observed information up to and
including time k − 1, and ŷ−

k is the optimal prediction of
the observation at time k. P−

xk
is the covariance of x̂−

k ,
and Pỹk

is the covariance of ỹk = yk − ŷ−
k , termed the

innovation. The optimal terms in this recursion are given
by

x̂−
k = E [f (x̂k−1,vk−1)] (5)

ŷ−
k = E

[
h

(
x̂−

k ,nk

)]
(6)

Kk = Pxkyk
P−1

ỹk
(7)

= E
[
(xk − x̂−

k )(yk − ŷ−
k )T

] ×
E

[
(yk − ŷ−

k )(yk − ŷ−
k )T

]−1
(8)

where the optimal prediction x̂−
k corresponds to the expec-

tation of a nonlinear function of the random variables x̂k−1

and vk−1 (see Eq. (5)). Similar interpretation holds for
the optimal prediction of the observation ŷ−

k in Eq. (6).
The optimal gain term Kk is expressed as a function of
posterior covariance matrices in Eq. (7). Note these terms
also require taking expectations of a nonlinear function of
the prior state estimate RVs. This recursion provides the
optimal minimum mean-squared error (MMSE) linear es-
timator of xk assuming all relevant random variables in
the system can be efficiently and consistently modeled by
maintaining their first and second order moments, i.e., they
can be accurately modeled as Gaussian random variables
(GRVs). We need not assume linearity of the system model
f(·) and h(·).
The Kalman filter calculates the optimal quantities in Eqs.
(5), (6) and (7) exactly in the linear case, and can be viewed
as an efficient method for analytically propagating a GRV
through linear system dynamics. For nonlinear models,
however, the extended Kalman filter (EKF) approximates
the optimal terms as:

x̂−
k ≈ f (x̂k−1, v̄) (9)

ŷ−
k ≈ h

(
x̂−

k , n̄
)

(10)

Kk ≈ P̂lin
xkyk

(
P̂lin

ỹk

)−1

(11)



Figure 1 Weighted sigma-points for a 2 dimensional Gaus-
sian random variable (RV). These sigma-points lie along the
major eigen-axes of the RV’s covariance matrix and com-
plete captures the first and second order statistics of the RV.
The height of each sigma-point indicates its relative weight.

where predictions are approximated as simply the func-
tion of the prior mean value for estimates (no expectation
taken). The noise means are denoted by v̄ and n̄, and are
usually assumed to equal to zero. Furthermore, the co-
variances P̂lin

xkyk
and P̂lin

ỹk
are determined by linearizing the

system model, Eqs. (1) and (2), around the current estimate
of the state and then determining (approximating) the pos-
terior covariance matrices analytically for the linear sys-
tem (see [12] for exact equations). This is equivalent to
applying the linear Kalman filter covariance update equa-
tions to the first-order linearization of the nonlinear system.
As such, the EKF can be viewed as providing “first-order”
approximations to the optimal terms in Eq. (3). As men-
tioned earlier, these approximations used in the EKF can
result in large errors in the estimates and even divergence
of the filter.

THE SIGMA-POINT KALMAN FILTER

The sigma-point Kalman filter address the approximation
issues of the EKF. This is achieved through a fundamen-
tally different approach for calculating the posterior 1st and
2nd order statistics of a random variable that undergoes a
nonlinear transformation. The state distribution is again
represented by a GRV, but is now specified using a mini-
mal set of deterministically chosen weighted sample points
(See Fig. 1). These samples, called sigma-points, com-
pletely capture the true mean and covariance of the prior
random variable, and when propagated through the true
nonlinear system, captures the posterior mean and covari-
ance accurately to the 2nd order (Taylor series expansion)
for any nonlinearity (3rd order accuracy is achieved if the
prior random variable has a symmetric distribution, such
as the exponential family of pdfs.) The basic sigma-point
approach (SPA) can be described as follows [9, 21]:

The Sigma-point Approach (SPA)

1. A set of weighted samples (sigma-points) are deter-
ministically calculated using the mean and square-
root decomposition of the covariance matrix of the

prior random variable. As a minimal requirement the
sigma-point set must completely capture the first and
second order moments of the prior random variable.
Higher order moments can be captured, if so desired,
at the cost of using more sigma-points.

2. The sigma-points are propagated through the true
nonlinear function using functional evaluations alone,
i.e., no analytical derivatives are used, in order to gen-
erate a posterior sigma-point set.

3. The posterior statistics are calculated (approximated)
using tractable functions of the the propagated sigma-
points and weights. Typically these take on the form
of simple weighted sample mean and covariance cal-
culations of the posterior sigma-points.

To be more specific: Consider propagating a random vari-
able x ∈ R

L through an arbitrary nonlinear function y =
g(x). Assume x has mean x̄ and covariance Px. To calcu-
late the statistics of y, we form a set of 2L+1 sigma-points
{X i; i=0,...,2L} where X i ∈ R

L. The sigma-points are cal-
culated using the following general selection scheme:

X 0 = x̄
X i = x̄ + ζ

(√
Px

)
i

i=1,...,L

X i = x̄ − ζ
(√

Px

)
i

i=L+1,...,2L

(12)

where ζ is a scalar scaling factor that determines the spread

of the sigma-points around x̄ and
(√

P
)

i
indicates the ith

column of the matrix square-root of the covariance matrix
P. Once the sigma-points are calculated from the prior
statistics as shown above, they are propagated through the
nonlinear function,

Yi = g (X i) i=0,...,2L (13)

and the mean and covariance of y are approximated using
a weighted sample mean and covariance of the posterior
sigma-points,

ȳ ≈
2L∑
i=0

wm
i Yi (14)

Py ≈
2L∑
i=0

2L∑
j=0

wc
ijYiYT

j (15)

Pxy ≈
2L∑
i=0

2L∑
j=0

wc
ijX iYT

j , (16)

where wm
i and wc

ij are scalar weights. Note, all weights
need not be positive valued. In fact, depending on the spe-
cific sigma-point approach at hand, certain weights on the
cross-terms are set equal to zero, i.e., wij = 0 for certain
{i, j; i �= j}. The specific values of the weights (w) and the
scaling factors (ζ) depend on the type of sigma-point ap-
proach used: These include the unscented transformation
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Figure 2 2D example of sigma-point approach.

[9] and the Stirling-interpolation based central difference
transformation [14] to name but two.

Note that the sigma-point approach differs substantially
from general stochastic sampling techniques such as
Monte-Carlo integration which require orders of magnitude
more sample points in an attempt to propagate an accu-
rate (possibly non-Gaussian) distribution of the state. The
deceptively simple sigma-point approach results in poste-
rior approximations that are accurate to the third order for
Gaussian inputs for all nonlinearities. For non-Gaussian
inputs, approximations are accurate to at least the second-
order, with the accuracy of third and higher order moments
determined by the specific choice of weights and scaling
factors [21]. Furthermore, no analytical Jacobians of the
system equations need to be calculated as is the case for
the EKF. This makes the sigma-point approach very attrac-
tive for use in “black box” systems where analytical expres-
sions of the system dynamics are either not available or not
in a form which allows for easy linearization.

A simple comparative example of the sigma-point ap-
proach is shown in Figure 2 for a 2-dimensional system:
the left plot shows the true mean and covariance propa-
gation using Monte Carlo sampling; the center plots show
the results using a linearization approach as would be done
in the EKF; the right hand plots show the performance of
the sigma-point approach (note, only 5 sigma-points are
needed for the 2D case). The superior performance of the
sigma-point approach is clearly evident.

Implementing the SPKF Algorithm

The sigma-point Kalman filter is a straightforward exten-
sion of the sigma-point approach to the recursive esti-
mation in Eqs. (3)-(8), where the state RV is redefined
as the concatenation of the original state and noise vari-
ables: xa

k = [ xT
k vT

k nT
k ]T . The sigma-point se-

lection scheme (Equation 12) is applied to this new aug-

mented state RV to calculate the corresponding sigma-point
set,

{X a
k,i; i=0,...,2L

}
where X a

k,i ∈ R
Lx+Lv+Ln . The

pseudo-code for the SPKF is given below:

• Initialization:

x̂0 = E[x0] , Px0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

x̂a
0 = E [xa

0 ] =
[

x̂T
0 v̄T

0 n̄T
0

]T

Pa
0 = E

[
(xa

0 − x̂a
0)(xa

0 − x̂a
0)T

]

=

⎡
⎣ Px0 0 0

0 Rv 0
0 0 Rn

⎤
⎦

• For k = 1, . . . ,∞ :

1. Set t = k − 1
2. Calculate sigma-points:

X a
t =

[
x̂a

t x̂a
t + ζ

√
Pa

t x̂a
t − ζ

√
Pa

t

]
3. Time-update equations:

X x
k|t = f (X x

t , X v
t ,ut)

x̂−
k =

2L∑
i=0

wm
i X x

i,k|t

P−
xk

=

2L∑
i=0

2L∑
j=0

wc
ij

(X x
i,k|t

) (X x
j,k|t

)T

4. Measurement-update equations:

Yk|t = h
(X x

k|t, X n
t

)
ŷ−

k =
2L∑
i=0

wm
i Y i,k|t

Pỹk =
2L∑
i=0

2L∑
j=0

wc
ij

(Y i,k|t
) (Y i,k|t

)T

Pxkyk =
2L∑
i=0

2L∑
j=0

wc
ij

(X x
i,k|t

) (Y i,k|t
)T

Kk = PxkykP−1
ỹk

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
Pxk = P−

xk
− KkPỹkKT

k

• Parameters: xa =
[

xT vT nT
]T

, X a =[
(X x)T (X v)T (X n)T

]T
, ζ is scaling parameter

that determines the spread of the sigma-points around the
prior mean, L is the dimension of the augmented state, Rv

is the process-noise covariance, Rn is the observation-noise
covariance, and wm

i and wc
ij are the scalar weights.

The specific type of resulting SPKF is determined by the
choice of sigma-point selection scheme (weights & scal-
ing factors) as well as the specific method by which the
propagated sigma-points are combined in order to calcu-
late the posterior covariance matrices. In Appendix A we



summarize two specific SPKF approaches, the square-root
unscented Kalman filter (SRUKF) [23] and the square-
root central difference Kalman filter (SRCDKF) [14]. The
square-root implementations propagate (and update) di-
rectly the square-root of the state covariance matrix, thus
avoiding the need to perform a direct matrix square-root
operation at each time step. This provides increased com-
putational efficiency as well as robust numerical stability.
Other variations include efficient implementations when
the noise is assumed additive (allowing fewer sigma-points
to be used), or for special state-transition structures (as with
pure parameter estimation) [7, 21]. Note that the overall
computational complexity of the SPKF is the same as that
of the EKF.

SPKF BASED GPS/INS INTEGRATION

We now describe the application of the SPKF to the prob-
lem of loosely coupled GPS/INS integration for guidance,
navigation and control (GNC) of an unmanned aerial ve-
hicle (UAV). Our UAV research platform (software sim-
ulator, hardware-in-the-loop simulator & flight vehicle) is
based on a fully instrumented XCell-90 R/C helicopter (see
Figure 3), originally designed by MIT’s Laboratory for In-
formation and Decision Systems [3]. The avionics pack-
age includes an Inertial Sciences ISIS MEMS based IMU,
an Ashtech G12 10Hz GPS, a barometric altimeter and
a DSP Design TP400 PC104 based flight computer run-
ning QNX-4. Our nonlinear control system (which requires
state-estimates) is based on an efficient state-dependent
Ricatti-equation (SDRE) framework that has proven to be
significantly superior and more robust than standard LQR
methods[2, 1].

The existing GPS/INS navigation filter was based on an
MIT designed high-performance hand-tuned EKF imple-
mentation [4]. Our proposed estimator simply replaced
the EKF in MIT’s system with a SPKF based estimator
(SRCDKF). All our experimental results in later sections
will use the original EKF based navigation filter as a base-
line reference. As a further extension, we also imple-
mented a SPKF based sensor latency compensation tech-
nique. We compared our SPKF based system performance
to the baseline system with specific focus on: 1) Improved
six-degrees-of-freedom (6DOF) state estimation accuracy,
2) SPKF based compensation for GPS latency, 3) Evalua-
tion of improved closed-loop control envelope.

We will next discuss the UAV specific system process and
observation (measurement) models used inside our SPKF
based system.

Process Model

Even though we used a high-fidelity (70 parameters, 43
states) nonlinear dynamic model of UAV movement [2] for

Figure 3 Instrumented X-Cell-90 helicopter in flight.

our UAV simulators and control system design, due to its
high computational complexity it is not ideally suited for
use within the navigation filter loop. For this reason we
opted for the standard IMU driven kinematic process model
formulation that comprises an INS mechanization compo-
nent [16, 17] and a IMU sensor error model component.
Because low cost MEMS based IMUs such as the one used
in our avionics system have large bias and scale factor er-
rors we included these components into our state vector to
be estimated. The estimated values of these error compo-
nents are then used to correct the raw IMU acceleration and
gyro-rate measurements before they are used inside the INS
mechanization equations of the process model. The 16 di-
mensional state vector of our system is given by,

x =
[

pT vT eT aT
b ωT

b

]
(17)

where p = [ x y z ]T and v = [ vx vy vz ]T are
the position and velocity vectors of the vehicle in the navi-
gation frame, e = [ e0 e1 e2 e3 ]T is the unity norm
vehicle attitude quaternion, ab = [ axb

ayb
azb ]T

is the vector of IMU acceleration biases, and ωb =
[ pb qb rb ]T is the IMU gyro rate bias vector. Note
that we could have include a separate scale factor in addi-
tion to the bias term in the state vector. However, in our
experiments, we found it sufficient to model the combined
effect of the bias and scale error terms as a single time-
varying bias term.

The continuous time kinematic navigation equations (INS
mechanization equations and error model) operating on this
state vector and driven by the error corrected IMU measure-



ments are given below:

ṗ = v (18)

v̇ = Cn
b (ā − ar̃imu

) +
[

0 0 1
]T

g (19)

ė = −1
2
Ω̃ω̄e (20)

ȧb = wabk
(21)

ω̇b = wωbk
(22)

Cn
b is the direction cosine matrix (DCM) transforming vec-

tors from the body frame to the navigation frame. The
DCM is a nonlinear function of the current attitude quater-
nion and is given by

Cn
b =

(
Cb

n

)T

= 2

⎡
⎣ 0.5 − e2

2 − e2
3 e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 0.5 − e2
1 − e2

3 e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 0.5 − e2
1 − e2

2

⎤
⎦ .

(23)
The term g is the gravitational acceleration component and
ā and ω̄ are the bias and noise corrected IMU accelerome-
ter and gyro rate measurements, i.e.,

ā = ã − ab − na (24)

ω̄ = ω̃ − ωb − Cb
nωc − nω . (25)

In the above equations ã and ω̃ are the raw measurements
coming from the IMU, na and nω are the IMU acceleration
and gyro-rate measurement noise terms, and ωc is the rota-
tional rate of the earth as measured in the navigation frame
(Coriolis effect). In general, ωc is a function of the location
of the navigational frame relative to the earth frame and
hence is time-varying as the navigation frame moves rela-
tive to the earth frame. However, for our purposes (aggres-
sive autonomous UAV flight within a very small airspace
volume) we assumed the navigation frame does not change
relative to the earth frame resulting in a constant ωc for
a given origin location (lat/long) of our navigation frame.
Ω̃ω̄ is a 4×4 skew-symmetric matrix [19] composed of the
error corrected IMU gyro-rate measurements, i.e.,

Ω̃ω̄ =

⎡
⎢⎢⎣

0 ω̄p ω̄q ω̄r

−ω̄p 0 −ω̄r ω̄q

−ω̄q ω̄r 0 −ω̄p

−ω̄r −ω̄q ω̄p 0

⎤
⎥⎥⎦ . (26)

In Eq. (19), ar̃imu
is the IMU-lever-arm coupling com-

ponent due to the IMU not being located at the center of
gravity of the vehicle. This component can be ignored if
the navigation filter computes the state estimate at the IMU
location. This IMU centric navigation solution can then
simply be transformed to the center of gravity location af-
ter the fact as needed by the vehicle control system.

The final components of the process model, Eqs. (21) and
(22) models the time-varying nature of the IMU sensor bias
error terms. Usually, sensor error in an INS are modelled

as a zero-mean, stationary, first-order Gauss-Markov pro-
cess [13]. Since the biases and scale factors of low cost
MEMS based IMU sensors exhibit non-zero mean and non-
stationary behaviour, the errors are modelled as a random
walk, in order to improve the tracking of these time-varying
errors by the navigation filter. This does however require
that the effect of these errors be observable through the
specific choice of measurement model.

The position and velocity discrete-time updates are calcu-
lated by the following simple first-order Euler update

pk+1 = pk + ṗk · dt (27)

vk+1 = vk + v̇k · dt , (28)

where ṗk and v̇k are calculated using Eqs. (18) and (19)
and dt is the integration time-step of the system (in our sys-
tem this was dictated by the IMU rate, i.e., dt = 10ms).
The quaternion propagation equation can be discretized
with an analytical calculation of the exponent of the skew-
symmetric matrix given by Stevens [19]. The discrete-time
update can be written as

ek+1 = exp
(
−1

2
Ω̃ · dt

)
ek . (29)

If we further denote

∆φ = ω̄p · dt (30)

∆θ = ω̄q · dt (31)

∆ψ = ω̄r · dt , (32)

as effective rotations around the (body frame) roll, pitch
and yaw axes undergone by the vehicle during the time pe-
riod dt, assuming that the angular rates ω̄p, ω̄q and ω̄r re-
mained constant during that interval, we can introduce the
4 × 4 skew-symmetric matrix

Φ∆ = Ω̃ · dt

=

⎡
⎢⎢⎣

0 ∆φ ∆θ ∆ψ
−∆φ 0 −∆ψ ∆θ
−∆θ ∆ψ 0 −∆φ
−∆ψ −∆θ ∆φ 0

⎤
⎥⎥⎦ . (33)

Using the definition of the matrix exponent and the skew
symmetric property of Φ∆, we can write down the follow-
ing closed-form solution:

exp
(
−1

2
Φ∆

)
= I cos(s) − 1

2
Φ∆

sin(s)
s

, (34)

where

s =
1
2

∥∥[
∆φ ∆θ ∆ψ

]∥∥
=

1
2

√
(∆φ)2 + (∆θ)2 + (∆ψ)2 . (35)

See [21] for a proof of this closed-form solution. Eqs.
(29) and (34) ensure (at least theoretically) that the updated



quaternion ek+1 has a unit norm. However, a small La-
grange multiplier term can be added to the first component
of Equation 34 to further maintain numerical stability and
the unity norm of the resulting quaternion. The resulting
final solution for the time-update of the quaternion vector
is given by

ek+1 =
[
I (cos(s) + η · dt · λ) − 1

2
Φ∆

sin(s)
s

]
ek .

(36)

where λ = 1 − ‖ek‖2 is the deviation of the square of the
quaternion norm from unity due to numerical integration
errors, and η is the factor that determines the convergence
speed of the numerical error. These factors serve the role of
the above mentioned Lagrange multiplier that ensures that
the norm of the quaternion remains close to unity [15]. The
constraint on the speed of convergence for stability of the
numerical solution is η · dt < 1 [4].

Finally, the discrete time random-walk process for the IMU
sensor error terms are given by

abk+1 = abk
+ dt · wabk

(37)

ωbk+1 = ωbk
+ dt · wωbk

, (38)

where wabk
and wωbk

are zero-mean Gaussian random
variables.

Note that these navigation equations are considered a direct
formulation, as opposed to the alternative indirect (error)
formulation. This choice was made for consistency with
the MIT EKF implementation. The trade-offs between di-
rect versus indirect formulations with the SPKF are cur-
rently being investigated.

Observation Models

Our system made use of 2 independent avionic sensors to
aid the INS: a 10Hz, 50ms latency GPS (Ashtech G12) and
a barometric altimeter that measures absolute altitude as a
function of ambient air pressure. The observation models
used in our system for these sensors (see below) are highly
nonlinear, making the use of the SPKF framework again
preferable to an EKF solution.

GPS: Since our GPS antenna is not located at the same
location in the body frame as the IMU, it not only observes
the bodies position and velocity in the navigation frame,
but also the body’s attitude relative to the navigation frame
due to the “lever-arm effect”. More specifically, the GPS
observation model is given by:

pGPS
k = pk−N + Cn

b r̃gps + npk
(39)

vGPS
k = vk−N + Cn

b ωk−N × r̃gps + nvk
, (40)

where pk−N and vk−N are the time-delayed (by N sam-
ples due to sensor latency) 3D navigation-frame position
and velocity vectors of the vehicle, r̃gps is the location of

the GPS antenna in the body frame (relative to the IMU lo-
cation), ωk−N are the true rotational rates of the vehicle at
time k − N , and npk

and nvk
are stochastic measurement

noise terms. Here the noise terms are modeled as being
time-dependent. This is due to the fact that the accuracy of
observations vary over time according to the current PDOP
value of the loosely coupled GPS solution. Since the DCM,
Cn

b , in Eqs. (39) and (40) are a function of the attitude
quaternion, the GPS measurements provides information
not only of the vehicles position and velocity, but also of
its attitude. This removes the need for an absolute attitude
sensor such as a magnetic compass or tilt-sensor. However,
this will also result in the non-observability of the IMU sen-
sor errors during prolonged periods of GPS outages, which
in turn can lead to significant INS drift.

The time delay (N samples) in the GPS model equations is
due to the internal GPS processing latency inherent to all
loosely coupled GPS solutions. This implies that the latest
GPS measurement relates to the state of the vehicle as it
was a number of samples in the past. If the specific latency
of the GPS is small, it can (and often is) ignored. However,
if the latency is significant, care must be taken when fusing
this lagged information with the current estimate of the ve-
hicle’s state in the measurement update step of the Kalman
filter.

Barometric altimeter: Ambient air pressure provides an
accurate source of sea-level altitude information. Important
sources of error are sensor quantization and measurement
noise. We used a high-end altimeter with 10−3psi (0.6 me-
ters) resolution. The measurement noise was assumed to
be zero-mean, white and Gaussian. The observation model
that incorporates these effects are:

zalt
k = − 1

ϕ
ln

[
ρq
0 �(ρ0 exp (ϕ · zk) + nza

) /ρq
0�

ρ0

]
(41)

where ρ0 is the nominal air pressure at sea-level, ϕ is
the pressure decay rate with altitude constant (1.16603 ×
10−4psi/m), zk is the current navigation-frame z-axis po-
sition of the vehicle, ρq

0 is the air pressure quantization res-
olution of the altimeter (10−3psi), zalt

k is the altimeter out-
put and �·� is the integer flooring function. This model is
not only a nonlinear function of the state, but the measure-
ment noise also effects the output altitude measurement in
a non-additive fashion. Again, for such a model the use of
the SPKF not only allows for a much simpler implemen-
tation than the EKF (no analytical derivatives need to be
calculated), but will also results in more accurate estima-
tion results.

SPKF Based Sensor Latency Compensation

As mentioned in the previous section, when fusing latency
delayed measurements with the current best prediction of
the vehicle’s state, care must be taken to incorporate this
information in a mathematically correct fashion. Previous



approaches to deal with this problem either store all of the
state estimates and observations during the latency period
and then re-run the complete filter when the latency lagged
observation finally arrives, or apply accumulated correc-
tion terms to the state estimate based on a time-convolved
linearized approximation of the system [11]. The first ap-
proach, although accurate incurs an exceedingly high com-
putational penalty, precluding its use in real-time systems.
The second approach on the other hand can be highly in-
accurate if the system process and measurement equations
are significantly nonlinear.

For our SPKF based navigation filter, we derived a new
approach to deal with the latency issue based on accu-
rately maintaining the relevant cross-covariance matrices
across time. These terms are needed to formulate a modi-
fied Kalman gain matrix, which is used to fuse the current
prediction of the state with an observation related to a prior
(lagged) state of the system. The system process model is
first augmented such that a copy of the prior system state
is maintained across time. The observation model is also
adapted to relate the current GPS observation to this lagged
(but-maintained) state. The correct gain terms are then au-
tomatically calculated inside the SPKF filter. The SPKF
allows for such a simple solution due to the fact that it does
not need to linearize the system equations when calculating
the relevant posterior statistics. For a more detailed expo-
sition of this method, see Appendix B and [21, 24].

EXPERIMENTAL RESULTS

This section presents a number of experimental results
comparing our proposed SPKF based GPS/INS system
with an similar system built around an EKF implementa-
tion. The first set of experiments were all performed in sim-
ulation using the high-fidelity MIT-Draper-XCell-90 model
based UAV simulator platform [4]. All relevant avionic
sensors (IMU, GPS, altimeter, etc.) as well as all actuators
were accurately modeled, including effects such as GPS la-
tency and IMU sensor bias errors and drift. The purpose
of the simulation based experiments were both to compare
the performance of our new proposed SPKF approaches to
that of the existing EKF approach in a controlled (repeat-
able) environment where the ground truth state information
is available. This allows for objective comparison of esti-
mation accuracy.

The second set of experiments were performed on real
flight data using telemetry recordings of actual autonomous
flights performed by the UAV. Although ground truth in-
formation is not available for these experiments to judge
absolute accurate, it still allows for direct qualitative com-
parison between the EKF and SPKF based systems. Spe-
cific performance issues related to real world events such
as GPS outages were investigated.

Figure 4 Simulated UAV trajectory used for state estima-
tion experiments.

Simulation experiments

The first simulated experiment performed was used to pro-
vide quantitative comparisons between the EKF, SPKF, and
latency compensated SPKF. The helicopter was flown (in
simulation) along a complex trajectory that increased in
“aggressiveness” over time. Figure 4 shows a 3D repre-
sentation of this flight-plan trajectory with the helicopter’s
true attitude superimposed at certain intervals. The sim-
ulated flight included complex acrobatic maneuvers such
as rapid-rise-and-hover, figure-eights, split-s, etc. For this
experiment we did not “close the loop” for the flight con-
trol system. In other words, the control system used the
true known states of vehicle for the online calculation of
the control law. The SPKF or EKF estimated state was
not fed back to the control system. This was done to en-
sure that the helicopter flew exactly the same flight profile
when comparing the performance of the different estima-
tors. Again, the repeatability and access to the ground truth
is what makes the high-fidelity simulation environment so
attractive for these initial investigations.

Table 1 compares the average root-mean-square (RMS) es-
timation errors for the three different state estimators. We
also show (in brackets) the relative error reduction percent-
age for each of the two SPKF estimators compared to the
EKF. The normal SPKF is able to reduce the 3D position
and velocity estimation errors by about 10% and the roll
and pitch angle estimation errors by about 20%.

The biggest improvement over the EKF, 55%, is in the esti-
mation of the yaw (heading) angle. The GPS latency com-
pensated SPKF goes even further with a 33% reduction in
position, velocity, roll angle and pitch angle errors. The
yaw angle error reduction is again the highest at 65%. We
repeated this experiment numerous times with different ini-
tializations and realizations of measurement noise as well
as flying different flight trajectories and all of the results
consistently confirmed the same relative performance be-
tween the different estimators as presented in this experi-
ment. Clearly, even though the normal SPKF already out-



Table 1 UAV state estimation results : EKF vs. SPKF (with and without GPS latency compensation). The table reports average
(over complete flight trajectory) root-mean-square (RMS) estimation errors for the EKF, SPKF (without GPS latency compen-
sation) and SPKF (with GPS latency compensation) for the simulated flight shown in Figure 4. The estimation error reduction
percentages are shown for all filters (relative to EKF).

Algorithm Average RMS Error
position velocity Euler angles (degrees)

(m) (m/s) roll pitch yaw

EKF 2.1 0.57 0.25 0.32 2.29
SPKF (without latency compensation) 1.9 (10%) 0.52 (9%) 0.20 (20%) 0.26 (19%) 1.03 (55%)
SPKF (with latency compensation) 1.4 (32%) 0.38 (34%) 0.17 (32%) 0.21 (34%) 0.80 (65%)
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Figure 5 State estimation results - SPKF vs EKF (RMS er-
ror): [top] 3D position (32% error reduction). [2nd from top]
3D velocity (34% error reduction). [middle] pitch (34% er-
ror reduction). [2nd from bottom] roll (32% error reduction).
[bottom] yaw (65% error reduction).

performs the EKF (as expected), correctly accounting for
GPS latency is well worth the extra effort.

In order to clearly illustrate the difference in estimation per-
formance between the EKF and the (latency compensated)
SPKF we present the results of another run of the same
simulation experiment, this time only showing the EKF and
latency-compensated SPKF implementation plots. The po-
sition and velocity estimation errors are shown in the top
two plots of Figure 5 and the Euler angle estimation errors
are shown in the bottom three plots. As before the SPKF
clearly outperforms the EKF with the largest improvement
again evident in the yaw (heading) angle estimation error.
Figure 5 indicates how the EKF has a very large error in
the yaw estimate for the first 80 seconds of the flight. This
is due to a significant initial error in the underlying IMU
bias error estimates. Even though the EKF and SPKF fil-
ters were initialized with exactly the same initial state esti-
mates, the SPKF was able to converge to the true biases in
the IMU measurements much quicker and then track them
more accurately. This result has been corroborated inde-
pendently in [18] (experiments focused on in-flight IMU
alignment). This contributes (among other things) to more
accurate Euler angle estimates. Although the average yaw
estimate error improvement for the SPKF over the whole
trajectory is 65%, this value does not accurately reflect the
expected steady-state (after bias convergence) performance
of the SPKF. Discounting this period, the average error im-
provement after bias convergence (t > 80s) is 43%. The
steady-state error improvement of the SPKF over the EKF
is thus 32%, 34% and 43% respectively for the roll, pitch
and yaw angle estimates.

Another interesting performance characteristic to note from
the Euler angle estimates in Figure 5 are the frequent high
peaks in the EKF’s estimation error plots. These coincide
with the onsets of aggressive maneuvers (banking, turns,
rapid climbs, etc.) that pushes the vehicle into regimes of
increased nonlinear response. The linearization errors of
the EKF will therefore be more severe at these times result-
ing in poor estimation performance and increase estimation
error. In contrast the SPKF is able to deal with these in-
creased nonlinearities quite satisfactorily.



In the second set of simulated experiments we “closed the
loop” in the GNC system by feeding the estimated states
back to the SDRE control system. In other words, the ve-
hicle control commands will now be a function of the esti-
mates generated by either the EKF or SPKF estimator and
not of the “true” vehicle states. This mimics (in simula-
tion) the true interdependency between the estimation and
control system as would occur in the real flight hardware
during a fully autonomous flight. The helicopter is com-
manded to perform an aggressive high speed nose-in turn.
This maneuver requires the helicopter to fly along an imag-
inary circular trajectory while constantly pointing its nose
towards the exact center of the circle. Accurate position,
velocity and especially yaw angle estimates are needed to
follow the desired flight plan with the desired attitude. Fig-
ure 6 shows the results of this experiment for both the EKF
and SPKF. The desired flight trajectory is indicated by the
red curve, the true realized trajectory in blue and the es-
timated trajectory in green. The true attitude of the he-
licopter is indicated by periodic renderings of the vehicle
itself along the flight path. Clearly for the SPKF case the
estimated trajectory is not only close to the true trajectory
(small estimation error), but the true trajectory is close to
the desired trajectory which indicated good control perfor-
mance. The EKF plots clearly shows worse performance
according to both these criteria. Also evident from the plots
is the much improved yaw angle tracking performance of
the SPKF system compared to the EKF system. The heli-
copter renderings for the EKF indicate that the nose is not
consistently pointing at the true center of the desired cir-
cle. The SPKF system, on the other hand, does much better
in estimating and realizing the correct yaw attitude for this
maneuver. EKF.

Real flight data experiments

Figure 7 shows the estimation results of the SPKF com-
pared to the EKF based system on real flight telemetry. The
UAV was flown under pilot guidance to a specified altitude
at which point the system was switched over to fully au-
tonomous flight. The autonomous flight plan was as fol-
lows: First the UAV held steady in hover for a number of
seconds, after which it flew a square trajectory at a constant
altitude of about 55-60 meters. Since no ground truth sig-
nal is available for absolute error comparison, we need to
evaluate the results on more subjective terms. For this pur-
pose, a top-down (2D) projection of the estimation results
is quite insightful (see Figure 8).

Notice the significant number of GPS outages that occurred
during the pilot guided ascent to the hovering altitude (s-
shaped curve). Clearly the SPKF appears to more accu-
rately track the (assumed) true underlying trajectory dur-
ing this outage period. The EKF generated position esti-
mate exhibits an erratic jump just before the GPS measure-
ments becomes available again (see Figure 8 at coordinates

SPKF

EKF

Figure 6 Closed-loop control performance comparison.
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Figure 7 Estimated 3D position of test flight. The UAV
lifted off and flew a complex sweeping S-maneuver until it
reached its hover altitude at about 50m. At this point it hov-
ered for a number of seconds after which it attempted to fly
a horizontal square-profile. After the square was completed
it hovered again for a number of seconds and then landed.
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Figure 8 Estimated 2D position of test flight (top view)

{40,−60}). Figure 9 shows the effect of this on the sepa-
rate north, east and down components of the estimated 3D
position. This error is due to the inherent nature of the
INS solution (derived from integrating the bias compen-
sated IMU gyro and accelerometer data) to drift during pe-
riods of GPS outage. Since the SPKF performs a more ac-
curate time-update during these periods than the EKF, and
possibly also more accurately tracks the underlying IMU
biases, the resulting SPKF estimates appear more robust to
GPS outages in general. We are still investigating these
claims further.

CONCLUSIONS

In this paper we presented a method for integrated naviga-
tion based on the sigma-point Kalman filter. The SPKF
provides superior performance over the current industry
standard, EKF, by better accounting for nonlinearities and
accommodating asynchronous and lagged sensor measure-
ments. The computational complexity of the SPKF is
equivalent to the EKF. While performance comparisons
were based on a specific UAV rotor craft platform, the gen-
eral implementation of the navigation filter and SPKF ap-
proach makes it applicable to general integrated navigation
systems, with performance gains expected independent of
the vehicle or specific sensors used.

We continue to investigate trade-offs between direct and
indirect navigation equations, alternative quaternion repre-
sentations, ability to track scale and bias, as well as ro-
bustness to GPS outages. Additional extensions include a
tightly-coupled integration approach and additional sensor
augmentations. We are also investigating the utility of re-
placing the higher-end IMU in our INS system with a low-
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Figure 9 Estimated position (North, East and Down) during
test flight (EKF vs. SPKF).

cost IMU (<$1000). Such IMUs typically have worse error
performance (higher bias, scale-factor & drift), which can
hopefully be compensated through the enhanced estimation
performance of the SPKF based system.
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APPENDIX A : SPKF VARIANT PSEUDO-CODE

This section provides the algorithmic pseudo-code for two
different numerical robust and efficient square-root SPKF
implementations [22, 23] . The first is based on the un-
scented transformation (a SPA scheme proposed by Julier
& Uhlman[9]) and is called the square-root unscented
Kalman filters (SR-UKF). The second SPKF is based on
the central-difference transformation (a SPA scheme pro-
posed separately by Norgaard et al. [14] and Ito et al.[8])
and is called the square-root central difference Kalman fil-
ters (SR-CDKF).

Square-Root UKF (SRUKF)

• Initialization:

x̂0 = E [x0] , Sx0 =
√

E[(x0 − x̂0)(x0 − x̂0)T ]

x̂a
0 = E [xa] =

[
x̂0 v̄ n̄

]T

Sa
0 =

√
E [(xa

0 − x̂a
0)(xa

0 − x̂a
0)T ]

=

⎡
⎣ Sx0 0 0

0 Sv 0
0 0 Sn

⎤
⎦

• For k = 1, . . . ,∞ :

1. Set t = k − 1

2. Calculate sigma-points:

X a
t =

[
x̂a

t x̂a
t + γSa

xt
x̂a

t − γSa
xt

]
3. Time-update equations:

X x
k|t = f (X a

t , X v
t ,ut)

x̂−
k =

2L∑
i=0

wm
i X x

i,k|t

S−
xk

= qr
{[√

wc
1

(X x
1:2L,k|t − x̂−

k

)]}
S−

xk
= cholupdate

{
S−

xk
, X x

0,k|t − x̂−
k , w

(c)
0

}
Yk|t = h

(X x
i,k|t, X n

t

)
ŷ−

k =

2L∑
i=0

wm
i Y i,k|t

4. Measurement-update equations:

Sỹk = qr
{[√

wc
1

(Y1:2L,k|t − ŷ−
k

)]}
Sỹk = cholupdate

{
Sỹk , Y0,k|t − ŷ−

k , w
(c)
0

}

Pxkyk =
2L∑
i=0

wc
i

(X x
i,k|t − x̂−

k

) (Y i,k|t − ŷ−
k

)T

Kk =
(
Pxkyk/ST

ỹk

)
/Sỹk

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
U = KkSỹk

Sxk = cholupdate
{
S−

xk
,U,−1

}

• Weights & parameters: γ =
√

L + λ, wm
0 = λ/(L + λ),

wc
0 = wm

0 + (1 − α2 + β), wc
i = wm

i = 1/[2(L + λ)] for
i = 1, . . . , 2L. λ = α2(L + κ) − L is a compound scaling
parameter, L is the dimension of the augmented state-vector,
0 < α ≤ 1 is the primary scaling factor determining the ex-
tent of the spread of the sigma-points around the prior mean.
Typical range for α is 1e − 3 < α ≤ 1. β is a secondary
scaling factor used to emphasize the weighting on the zeroth
sigma-point for the posterior covariance calculation. β can
be used to minimize certain higher-order error terms based
on known moments of the prior RV. For Gaussian priors,
β = 2 is optimal. κ is a tertiary scaling factor and is usually
set equal to 0. In general, the optimal values of these scaling
parameters will be problem specific. For more detail on how
to choose them, see [10].

• General notes: The augmented state vector and sigma-point
vector is given byxa =

[
xT vT nT

]T
, X a =[

(X x)T (X v)T (X n)T
]
. Sv =

√
Rv and Sn =√

Rn where Rv and Rn are the process-noise and
observation-noise covariance matrices.

• Linear-algebra operators (See [5, 21] for more detail):
√·:

matrix square-root using lower triangular Cholesky decom-
position. qr(A): lower-triangular part of R matrix result-
ing from economy QR decomposition of data-matrix A.
cholupdate {R,U,±ν}: N consecutive rank-1 Cholesky
up(down)dates of the lower-triangular Cholesky factor R
by the N columns of

√
νU. / : Efficient least-squares

pseudo inverse implemented using triangular QR decompo-
sition with pivoting.

Square-Root CDKF (SRCDKF)

• Initialization:

x̂0 = E [x0] , Sx0 =
√

E[(x0 − x̂0)(x0 − x̂0)T ]

• For k = 1, . . . ,∞ :

1. Set t = k − 1

2. Calculate sigma points for time-update:

x̂av
t =

[
x̂t v̄

]
, Sav

t =

[
Sxt 0
0 Sv

]
X av

t =
[

x̂av
t x̂av

t + hSav
t x̂av

t − hSav
t

]
3. Time-update equations:

X x
k|t = f (X x

t , X v
t ,ut)

x̂−
k =

2L∑
i=0

wm
i X x

i,k|t

S−
xk

= qr
{[√

wc1
1

(X x
1:L,k|t − X x

L+1:2L,k|t
)

√
wc2

1

(X x
1:L,k|t + X x

L+1:2L,k|t − 2X x
0,k|t

)]}



4. Calculate sigma-points for measurement update:

x̂an
k|t =

[
x̂−

k n̄
]

, San
k|t =

[
S−

xk
0

0 Sn

]

X an
k|t =

[
x̂an

k|t x̂an
k|t + hSan

k|t x̂an
k|t − hSan

k|t
]

5. Measurement-update equations:

Yk|t = h
(X x

k|t, X n
k|t

)
ŷ−

k =
2L∑
i=0

wm
i Y i,k|t

Sỹk = qr
{[√

wc1
1

(Y1:L,k|t − YL+1:2L,k|t
)

√
wc2

1

(Y1:L,k|t − YL+1:2L,k|t − 2Y0,k|t
)]}

Pxkyk =
√

wc1
1 S−

xk

[Y1:L,k|t − YL+1:2L,k|t
]T

Kk =
(
Pxkyk/ST

ỹk

)
/Sỹk

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
U = KkSỹk

Sxk = cholupdate
{
S−

xk
,U,−1

}
• Weights: wm

0 = (h2 − L)/h2, wm
i = 1/(2h2), wc1

i =
1/(4h2) and wc2

i = (h2 − 1)/(4h4) for i=1,...,2L where
h ≥ 1 is the scalar central difference interval size which
is optimally set equal to the square-root of the kurtosis of
the prior random variable [14]. For Gaussian prior RVs, the
optimal value is h =

√
3. The scaling factor h in the CDKF

plays the same role of α in the UKF, i.e., it determines the
spread of the sigma-points around the prior mean. L is the
dimension of the augmented state vector.

• Other parameters: Sv =
√

Rv and Sn =
√

Rn where Rv

and Rn are the process-noise and observation-noise covari-
ance matrices.

• General note: Here we again augment the system state with
the process noise and observation noise vectors (vk and nk)
as we did for the UKF. For the CDKF, however, we split this
augmentation between the time-update and measurement-
update, i.e., for the time-update the augmented state vector
and augmented covariance matrix is given by

xav
k =

[
xT

k vT
k

]T
, Pav

k =

[
Pxk 0
0 Rv

]
,

and by

xan
k =

[
xT

k nT
k

]T
, Pan

k =

[
Pxk 0
0 Rn

]
,

for the measurement-update. Accordingly the sigma-point
vectors are given by: X av =

[
(X x)T (X v)T

]T
and

X an =
[

(X x)T (X n)T
]T

. Note: (·)2 is shorthand
for the vector outer product, i.e., a2 .

= aaT .

APPENDIX B: SPKF BASED LATENCY COMPEN-
SATION

In order to accurately fuse a N -sample lagged innovation
vector ỹk−N = yk−N − ŷ−

k−N with the current prediction
of the system state x̂−

k , the Kalman update formulation of
Eq. (3) is re-written as

x̂k = x̂−
k + K̃k,N ỹk−N . (42)

In Eq. (42) the Kalman gain is again expressed in terms of
the correct covariance terms, i.e.,

K̃k,N = Pxkỹk−N
P−1

ỹk−N
, (43)

where Pxkỹk−N
and Pỹk−N

are calculated by propagating
sigma-points drawn from Pxkxk−N

and Pxk−N
(and cor-

responding lagged mean x̂k−N ) through the observation
function h(·) and applying the standard SPKF covariance
calculation formulation of Eqs. (16) and (15). The optimal
lagged observation prediction is given by

ŷ−
k−N = E

[
h

(
x̂−

k−N ,nk−N

)]
(44)

which is also calculated using the standard sigma-point
propagation technique of Eq. (14) after sigma-points were
drawn from {x̂k−N ,Pxk−N

}.

The key insight here is that we need to accurately maintain
the lagged state estimate x̂k−N as well as the correct lagged
covariance and cross-covariance estimates Pxkxk−N

and
Pxk−N

within the SPKF as the system evolves from time
k − N to the current time k. Note that Pxkxk−N

corre-
sponds to the cross-covariance-over-time between the sys-
tem state at time k − N and the current time k, i.e.,
Pxkxk−N

= E
[(

xk − x̂−
k

) (
xk−N − x̂−

k−N

)T
]
. This can

be achieved within the SPKF framework by augmenting
the state vector at time k − N with the lagged state xlag =
xk−N , i.e.,

x(a)
k−N =

[
xk−N

xlag

]
(45)

and then redefining the process models as

x(a)
k−N+1 = f̆

(
x(a)

k−N ,vk−N

)
=

[
f (xk−N ,vk−N )

xlag

]
(46)

=
[

xk−N+1

xlag

]

and the observation model (which is only valid at time k)
by

y∗
k = h̆

(
x(a)

k ,nlag

)
= h (xlag,nlag) (47)

= h (xk−N ,nk−N ) .



Note that y∗
k = yk−N , i.e., an observation of the system

state at time k − N which is received at time k. Using
this redefined state and process model from time k − N
to k within the normal SPKF framework will result in the
following prediction of the state mean and covariance at
time k, just before the lagged measurement is fused:

x̂(a)−
k =

[
x̂−

k

x̂−
lag

]
=

[
x̂−

k

x̂−
k−N

]

P−
x

(a)
k

=
[

P−
xk

P−
xkxlag

P−
xlagxk

P−
xlag

]

=
[

P−
xk

P−
xkxk−N

P−
xk−Nxk

P−
xk−N

]

Sigma-points are now drawn from this prior distribution of
the augmented state and propagated through the redefined
observation model (Eq. (47)) in order to calculate

P
x

(a)
k ỹk−N

=
[

PT
xkỹk−N

PT
xk−N ỹk−N

]T

and Pỹk−N
using the standard SPKF framework of Eqs.

(16) and (15). These terms can then be used to compute the
correct Kalman gain

K̃k,N = P
x

(a)
k ỹk−N

P−1
ỹk−N

=

[
Pxkỹk−N

P−1
ỹk−N

Pxk−N ỹk−N
P−1

ỹk−N

]

needed to fuse the lagged measurement when it is received
at time k.
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