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Abstract

Motivation: Several large-scale efforts have been made to collect gene expression signatures from

a variety of biological conditions, such as response of cell lines to treatment with drugs, or tumor

samples with different characteristics. These gene signature collections are utilized through bio-

informatics tools for ‘signature matching’, whereby a researcher studying an expression profile

can identify previously cataloged biological conditions most related to their profile. Signature

matching tools typically retrieve from the collection the signature that has highest similarity to the

user-provided profile. Alternatively, classification models may be applied where each biological

condition in the signature collection is a class label; however, such models are trained on the col-

lection of available signatures and may not generalize to the novel cellular context or cell line of the

researcher’s expression profile.

Results: We present an advanced multi-way classification algorithm for signature matching, called

SigMat, that is trained on a large signature collection from a well-studied cellular context, but can

also classify signatures from other cell types by relying on an additional, small collection of signa-

tures representing the target cell type. It uses these ‘tuning data’ to learn two additional parameters

that help adapt its predictions for other cellular contexts. SigMat outperforms other similarity

scores and classification methods in identifying the correct label of a query expression profile from

as many as 244 or 500 candidate classes (drug treatments) cataloged by the LINCS L1000 project.

SigMat retains its high accuracy in cross-cell line applications even when the amount of tuning

data is severely limited.

Availability and implementation: SigMat is available on GitHub at https://github.com/JinfengXiao/

SigMat.

Contact: sinhas@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Matching a gene signature, i.e. expression profile of a sample or set of

dysregulated genes in a sample, to a library of pre-determined signatures

is a common step in studies on drug development as well as disease diag-

nosis and prognosis. Large compendia of gene signatures have been

created by expression-profiling of cell lines treated with specific drugs,

e.g. Connectivity Map (CMAP) (Lamb, 2006) and LINCS L1000

(Subramanian, et al., 2017), or tumor samples of different cancers, e.g.

MSigDB (Liberzon, et al., 2011), and support online queries with user-

provided signatures. Matching of drug treatment signatures is often used

for identifying related drugs and mechanisms of action (Clark, et al.,

2014). Likewise, gene signatures are used in cancer studies for subtyping

of patients and improving prognosis (van de Vijver, et al., 2002).

Signature matching tools provide researchers with two types of

information about their ‘query’ signature. First, certain tools retrieve

individual experiments in the database that are most related to the

query, typically by pairwise signature comparison through a similar-

ity score such as correlation coefficient (Tenenbaum, et al., 2008),

the Kolmogorov-Smirnov statistic (Lamb, 2006), Fisher’s test (Yi,

et al., 2007) and Wilcoxon rank-sum test (Gower, et al., 2011).

Second, there exist tools that identify or rank classes of experimental

conditions in the database that comprise signatures most similar to

the query signature. (A class here refers to a set of experiments per-

formed under common conditions.) This is typically achieved by

aggregating similarity scores computed between the query signature

and each signature in a class (Lamb, 2006). However, for rich

VC The Author(s) 2018. Published by Oxford University Press. i547

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34, 2018, i547–i554

doi: 10.1093/bioinformatics/bty251

ISMB 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/13/i547/5045781 by U
.S. D

epartm
ent of Justice user on 16 August 2022

https://github.com/JinfengXiao/SigMat
https://github.com/JinfengXiao/SigMat
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty251#supplementary-data
https://academic.oup.com/


compendia such as the CMAP and LINCS that include signatures

for large numbers of drugs in many cell lines, the current approach

of matching a query separately to each class may not be optimal.

Rather, it is reasonable to expect that a discriminative approach

trained to perform multi-label classification will improve the accur-

acy of signature matching. This is the premise of the current work,

where we develop a new multi-way classifier that can accurately

match a given gene signature to the most related class of signatures

in a database, thus yielding insights into the query signature.

A key challenge for us was to match signatures across cell lines.

For instance, if the query signature represents a drug D in a less-

studied cell line C1, and the database has signatures for that drug

(as well as other drugs) in a different cell line C2, the classifier

should be able to match the query to its drug class D, despite not

having seen training examples of the (D, C1) drug-cell line combin-

ation. This is a practical problem, since gene signature compendia

such as LINCS L1000 have a stark imbalance in representation of

cell lines, with an overwhelming majority of experiments being done

on a small set of cell lines, and a sparse representation of other cell

lines. When a signature from a less-studied cell line is used as a

query, it is likely to get matched to profiles from the over-

represented cell lines. Addressing this challenge is an important fea-

ture of our new method.

In this work, we propose SigMat, a classification-based ap-

proach for gene signature matching. Our presentation and evalua-

tions are specific to the case where signatures represent drug

treatments (LINCS database), but the approach is generally applic-

able to other domains where gene signatures are used. Given a com-

pendium of gene signatures from a cell line, organized as classes

defined by common conditions (e.g. drug), SigMat can predict the

class that a given (previously unseen) signature belongs to. It can do

so even if the query signature is from a cell line different from the

training cell line. For this, it relies on a ‘tuning’ dataset of signatures

from the cell line of the query, which may be much sparser than the

training data and may or may not include signatures from the same

class as the query. SigMat is a modified kernel support vector ma-

chine algorithm with two-step training: (i) It learns its linear (SVM)

classification parameters from training data representing different

experimental classes (such as drugs) on a well-characterized cell line.

(ii) In a subsequent ‘tuning’ phase it learns a cell line-specific scaling

parameter from sparse training data on less-studied cell lines where

several of the classes may not be represented. The scaling parameter

is used to adjust the trained model for optimal predictive perform-

ance for the cell line of the query.

We evaluate the accuracy of signature matching with SigMat on a

large dataset comprising 12 500 signatures over 9 cell lines, extracted

from the LINCS database (Subramanian, et al., 2017) of drug treat-

ments. We compare the new method to current approaches such as

the connectivity score (Lamb, 2006), as well as several statistical and

machine learning techniques, and find a substantial improvement, es-

pecially in cross-cell line prediction.

We provide SigMat as an open-source software available for

download at https://github.com/JinfengXiao/SigMat.

2 Materials and methods

2.1 Data preparation
The LINCS L1000 database (Subramanian, et al., 2017) provides

measured differential expression levels of 978 genes upon treating a

cell line with a drug, for a combination of 72 cell lines and 20 413

drugs. The LINCS Consortium has deposited this dataset into the

Gene Expression Omnibus (Edgar, et al., 2002) with the ID

GSE92742. We refer to the 978-dimensional LINCS ‘level 4’ plate-

normalized differential expression z-score vectors for each experi-

ment as gene signatures. The combination is unbalanced, in the

sense that there are nine cell lines—MCF7, PC3, A549, HA1E,

A375, HT29, HEPG2, HCC515 and VCAP—on which far more

drug-treatments and experiments were performed than other cell

lines. We based our analysis on gene expression profiles of these

nine well-studied cell lines. In order to evaluate cross-cell line predic-

tions, we further restricted ourselves to drugs for which at least 10

experiments are available in at least two of the nine cell lines. If a

drug D has at least 10 experiments in cell line C1 as well as cell line

C2, we say that C1 and C2 share that drug D. The number of shared

drugs shared between each pair of cell lines is shown in

Supplementary Table S1. For each cell line pair (C1, C2) and for

each drug D shared by them, we randomly sampled 10 experiments

representing drug D from each of C1 and C2. All samples together

form our data pool. We refer to experiments on drug D in cell line C

as (D, C) experiments.

In order to simulate an important use case for gene signature

matching, we divided our data pool to represent the case when the

user submits a query signature from an understudied cell line. First,

we chose HEPG2 as our well-studied cell line, and took all sampled

data in the data pool from HEPG2 as the training data. There are

244 drugs in the training data, naturally defining 244 training

classes with 10 signatures per class. (We will first use models trained

on HEPG2 to demonstrate detailed aspects of SigMat, and then

present in Section 3.6 the results when training is done on other cell

lines with as many as 500 training classes.) Next, we set another cell

line, say C2, as the understudied cell line of the user, which provides

some model tuning and testing data. For each drug D shared

between HEPG2 and the cell line C2, we randomly sampled five of

the ten (D, C2) experiments in our pool into our ‘all-drug tuning

dataset’, and put the other five experiments in the ‘all-drug testing

dataset’. The so-called ‘tuning data’ simulate the existing signatures

in a gene expression database, while the testing data simulate the

query signatures submitted by users. Compositions of the all-drug

tuning dataset and all-drug testing dataset are shown in Table 1. We

refer to this arrangement of the training, tuning and testing data,

which contains all drugs shared with HEPG2, as ‘setting #0’. This

setting allows testing of signature matching across cell lines, but

anticipates that the tuning data includes experiments on the test

drug in the appropriate cell line.

Additional settings were created to represent increasing sparsity

of available data in databases on the user’s query cell line. Rather

than explicitly including in the tuning data experiments for all drugs

shared between HEPG2 and C2, we constructed additional settings

Table 1. Composition of the training, tuning and testing datasets in

‘setting #0’

MCF7 PC3 A549 HA1E A375 HT29 HCC515 VCAP HEPG2

#D 153 152 131 127 131 133 129 50 244

#Train/D 10

#Tune/D 5 5 5 5 5 5 5 5

#Test/D 5 5 5 5 5 5 5 5

Note: #D: Number of drugs (i.e. classes) per cell line. #Train/D: Number of

training signatures per drug per cell line. #Tune/D: Number of tuning signa-

tures per drug per cell line. #Test/D: Number of testing signatures per drug

per cell line. Blanks are zeros. The training, tuning and testing signatures do

not overlap each other.
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where the tuning data encompasses only 75%, 50%, 25% or 5% of

the shared drugs. The testing datasets for these new settings were

then constructed from the experiments corresponding to the shared

drugs that were not included in the tuning data. These settings

(Table 2) allow us to evaluate how well a method performs on a

new cell line that was not available for training and does not have

tuning experiments for many of the training drug classes, especially

the drug class of the test signature.

2.2 SigMat algorithm
Given training data from the cell line C1¼HEPG2, tuning data from

another cell line C2, and testing data from C2, SigMat learns a kernel

SVM from the training data, adjusts its parameters using tuning

data for enhanced performance on signatures from C2, and ranks

the class labels (i.e. drugs) for their match to test signatures. The al-

gorithm is outlined below.

1. Compute the kernel function K(s1, s2) between each pair of sig-

natures s1, s2 in the training data as

K s1; s2ð Þ ¼ ecorr s1 ;s2ð Þ

where corr() represents the Spearman (rank) correlation coeffi-

cient of the two signatures.

2. Train an ensemble of kernel support vector machine (KSVM)

(Cristianini and Shawe-Taylor, 2000) binary classifiers on the

training data, using the drug for each experiment as the training

class label. We train the KSVM ensemble with the R package

kernlab (Karatzoglou, et al., 2004). One binary classifier Bij is

trained for each unordered pair of drugs (Di, Dj). Each Bij has its

own set of support vectors Xij. The number of parameters in Bij

equals the number of its support vectors jXijj plus 1. The param-

eters and support vectors are then used to calculate the score of

a new signature vector snew, by the classifier Bij:

KSVMij snewð Þ ¼
X

1�k�N
sk2Xij

wkij � K snew; skð Þ � bij

where N is the number of examples (signatures) in the training

data, wkij’s are the linear classification parameters for Bij, and bij

is a constant parameter for Bij. If KSVM is applied as it is, each

Bij contributes a vote to Dj if KSVMij snewð Þ > 0, otherwise a vote

to Di. Votes from all binary classifiers are then aggregated (and

normalized to [�1, 1]) to score the match of snew to drug class

Di, denoted by ‘KSVM-score(snew;Di)’.

3. To allow the classifier to adjust its predictions for the test signa-

ture’s cell line C2, we modify the KSVM score (above) by intro-

ducing a positive scaling parameter a, so that the new score

(called ‘KSVM-scaled’) is defined as

KSVM� scaledij snewð Þ ¼ a �
X

1�k�N
sk2Xij

wkij � K snew; skð Þ � bij

where the value of a is chosen to maximize overall prediction ac-

curacy (as defined in Section 2.4) on the tuning set of signatures

from C2. (Note that the scaling parameter a is cell line-specific

but not drug specific.) The KSVM-scaled score is used in a voting

scheme as above to obtain the modified match score ‘KSVM-

scaled-score(snew;Di)’.

4. Our preliminary tests showed that the KSVM score has some de-

gree of complementarity, in its predictive ability, to an alterna-

tive scheme of identifying the training signature st with greatest

similarity (corr(snew; st) ) to the test signature snew, and labeling

the latter with the class of st. To combine the strengths of this

‘nearest-neighbor’ scheme with the KSVM approach, we scored

the match of a test signature snew to a training drug class Di as

an interpolation of the two scores:

SigMat snew;Dið Þ ¼ 1–bð Þ �max–corr snew;Dið Þ þ b � KSVM
�scaled–scoreðsnew;DiÞ

where max–corr snew;Dið Þ is the maximum correlation between

snew and training signatures in class Di, and b is a linear interpol-

ation parameter whose value is chosen within [0, 1] to optimize

the overall prediction accuracy on the tuning set.

5. Finally, drug classes Di are ranked for match to the query signa-

ture snew by the score SigMat snew;Dið Þ.

In short, the kernel SVM score output from a binary classifier model

trained on the training cell line data is scaled by a cell line-specific

constant a, aggregated across all binary classifiers to obtain multi-

way classification score, and interpolated with a nearest-neighbor

scoring scheme using a cell line-specific parameter b, with parame-

ters a and b being trained on tuning data from the appropriate cell

line. If no prior signatures representing the test signature’s cell line

are available, these two parameters may be set to 1.

2.3 Methods for comparison
For comparative study of the performance of SigMat and the effect

of its cell line-specific parameters a and b, we also implemented

other classification algorithms as well as variants of SigMat. Each

method produces a score for each drug class Di in the training data

given a signature s in the testing data, which is used to rank drugs in

the training for match to s.

Spearman correlation. This is the ‘max-corr’ score introduced

above, defined as the maximum Spearman correlation between s

and training signatures in class Di.

Connectivity score (Lamb, 2006). This score, based on the

Kolmogorov-Smirnov (KS) statistic, is used by CMAP to rank ex-

pression profiles. In our tests, we used the maximum connectivity

score between s and training signatures in Di as the connectivity

score between s and Di.

Support Vector Machine (SVM) (Cristianini and Shawe-Taylor,

2000). This is similar to the ‘KSVM-score’ introduced above, except

that the kernel function is the Euclidian distance in the input space.

Random forests (RF) (Liaw and Wiener, 2002). A random forest

is an ensemble of decision trees (Safavian and Landgrebe, 1991) gen-

erated with sample bootstrapping and feature subsampling. This

model has proved powerful in many prediction tasks, including the

classification of microarray data (Diaz-Uriarte and Alvarez de

Andres, 2006), and serves in this manuscript as a representative of

complex non-linear ensemble models. We used the Random Forest

implementation in the R package randomForest (Liaw and Wiener,

Table 2. Different evaluation settings of cross-cell line prediction

Setting # Training Tuning Testing

0 100% 100% 100%

1 100% 75% 25%

2 100% 50% 50%

3 100% 25% 75%

4 100% 5% 95%

Note: The three columns indicate the percentage of drugs ‘shared’ between

the training cell line HEPG2 and the query cell line, that are used in the train-

ing, tuning and testing datasets respectively.
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2002) to perform multi-way classification of drug signatures, and

used the classifier vote counts as the match score between a signa-

ture s and a drug class Di.

SigMat-a. This represents a variant of the SigMat model with its

a parameter fixed to 1. Therefore, SigMat-a is a linear interpolation

model between KSVM-score (Section 2.2) and maximum Spearman

correlation.

SigMat-b. This represents a variant of the SigMat model with its

b parameter fixed to 1. It is identical to the KSVM-scaled-score

(Section 2.2).

SigMat-ab. This represents a variant of our SigMat model with

its a and b both fixed to 1. Therefore, SigMat-ab is equivalent to

KSVM-score.

2.4 Evaluation metric
In our evaluations, each test signature s, representing a drug class

Ds, was scored by the evaluated method for its match to every drug

class Di in the training data, and the classes were ranked by this

score. We defined success for each test signature s as

Success@K ¼
1; if rank Dsð Þ � K

0; otherwise

(

where K is an evaluation parameter. Overall accuracy

‘AvgSuccess@K’ was then defined as the average Success@K over all

signatures in the testing data. In evaluations reported here, we used

K¼10, as users of the tool are likely to pay attention only to a hand-

ful of top-ranked drugs when they submit queries to the database.

We observed similar results with other values of K, and reported

them in Section 3.6.

3 Results

3.1 SigMat significantly improves drug signature

matching across cell lines
We trained and tested SigMat and several other methods using the

experimental settings #1–4 (Table 2), and evaluated AvgSuccess@10

on the testing data for each model (see ‘Materials and methods’ sec-

tion). Recall that every test signature is scored against M¼244 drug

classes in the training data, and the evaluation metric captures how

frequently the true class is found within the top 10 classes ranked by

a method. Results for each setting are shown in Figure 1a–d, organ-

ized by the cell line from which test signatures were drawn. The four

settings represent increasing sparsity of drug (class) representation

in the tuning dataset made available to SigMat; thus its accuracy is

noted to deteriorate for higher numbered settings in some cases (e.g.

cell lines MCF7 and VCAP), though in most cases its performance is

consistent across settings. For instance, even in setting #4, where the

tuning data includes only 5% of the drugs shared between HEPG2

and the test cell line, the average SigMat AvgSuccess@10 across six

cell lines (MCF7 and VCAP excluded) is 0.301, compared to 0.331

in setting #1. As expected, there is some variation across settings

because the size and (randomly selected) membership of testing

data varies.

Importantly, we noted that SigMat consistently outperforms

other methods on all cell lines except HT29, on which its accuracy is

comparable to Spearman correlation. In particular, we would like to

Fig. 1. Comparison of SigMat to baseline methods across cell lines on different testing datasets. In each plot, models are trained on the HEPG2 cell line and tested

on the 8 other cell lines (horizontal axis) independently. Each panel (a–d) shows the Success@10 for a different percentage of the shared drugs from the testing

cell line corresponding to a different setting from Table 2. The SigMat model uses only the shared drugs from the testing cell line that are not in testing set for tun-

ing data. The baseline methods (different colors) are as explained in Section 2.3. Legends are under Panel (a). cor: Spearman correlation. RF: random forest using

500 trees. SVM: support vector machines. KS: KS-based connectivity score with jz-scorej>2 providing up and down regulated genes lists, and random: drug label

for test signatures chosen at random
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highlight Figure 1d, where SigMat only used about 10 tuning drugs

to achieve a superior accuracy in the 244-way classification task.

The Spearman correlation is clearly the second-best. We also eval-

uated SigMat under the case where the tuning and testing datasets

both contained all 244 drugs from the training data (Setting #0,

Table 2), while preserving clear separation of test signatures from

tuning data (see Section 2.1). As shown in Figure 2, the trends are

very similar to Figure 1, with SigMat outperforming all other meth-

ods on all testing cell lines, while on HT29 the difference between

SigMat and the correlation method is modest. It must be noted that

SigMat has access to more data (the tuning set) than other methods,

and its ability to exploit such data, even when it is sparse, is a key

feature of the method. We also note that in settings #1–4, the tuning

data does not include any signature from the same class as a test

signature.

According to Figure 1, methods for matching gene signatures

to drug libraries have relative accuracy roughly described as:

SigMat> Spearman correlation>RF> SVM>KS Connectivity

score> random. The KS-based connectivity score used by CMAP

only shows marginal improvement over a random model in our

tests. We tried replacing the connectivity score by the KS statistic

between the real-valued signatures (not truncated into up and

down gene lists with thresholds, as in CMAP), and observed simi-

lar AvgSuccess@10 values (data not shown). We note that while

the definition of the connectivity score for a pair of signatures

used in our tests was borrowed from CMAP (Lamb., 2006), we

defined the match score between a signature and a class (set of sig-

natures) as the maximum connectivity score between the given

signature and all signatures from that class (Section 2.3), although

it is not clear that this is the scheme that the CMAP tool

implements.

3.2 Examination of cell line-specific parameter tuning
The a parameter values tuned for each cell line are shown in

Table 3. To find the best a value (step 3 of Algorithm, Section 2.2),

we performed grid search, using the tuning data, over a discrete

set of candidate a values 0:2; 0:4; 0:6; 0:8; 1; 1:5; 2;f
2:5; . . . ; 6:5; 7g. We note that the scaling of the KSVM score by a

multiplicative factor of a can be considered as shifting the pairwise

correlations between the test signature s and each support vector

sk 2 Xij by a constant term ln(a):

KSVM� scaledij snewð Þ ¼ a �
X

1�k�N
sk2Xij

wkij � K snew; skð Þ � bij

¼
X

1�k�N
sk2Xij

wkij � a � ecorr snew ;skð Þ � bij

¼
X

1�k�N
sk2Xij

wkij � ecorr snew ;skð Þþln að Þ � bij

The left and right boundaries of the scanning grid for a were chosen

to be e�2 � 0:2 and e2 � 7, so that when we shift the interval [-1, 1]

of possible correlation values by ln(a), the shifted interval can still

intersect with [�1, 1]. In most of our tests, the learned a values are

greater than 1 (Table 3). This suggests that the tuning step uses par-

ameter scaling as a simplistic way to compensate for the general re-

duction in pairwise correlation values (kernel function) between

signatures from different cell lines. We also note that although we

search for a 2 0:2; 7½ �, the a values learned on each cell line turn out

to be stable (or varying within a small range) under most experimen-

tal settings among settings #0-4.

The b parameter values tuned on each cell line are shown in

Table 4. b is the weight of the KSVM-scaled score in the final

SigMat score, relative to the max-corr score (step 4, Section 2.2). As

shown in Table 4, the b values learned from tuning datasets contain-

ing 75%, 50% or 25% of all shared drugs are usually consistent

with each other, although tuning datasets with all shared drugs

(setting #0) or only 5% of shared drugs (setting #4) sometimes yield

more extreme b values. Therefore, the b parameter appears to be

stable over a wide range of x, where x% represents the relative size

of the drug library in the tuning cell line compared to the training

cell line. As long as the percentage x is not too small or close to

perfect, b is unlikely to suffer from overfitting the tuning data.

3.3 Evaluation of drug signature matching within a

cell line
Having established that SigMat improves signature matching accur-

acy across cell lines, across various test cell lines and under varying

test configurations, we sought to assess its performance in the easier

scenario where signatures are matched to their own cell lines. The

performance of SigMat, tuned and tested on HEPG2 (while preserv-

ing separation of tuning and test examples), is shown in Table 5,

along with comparison to other methods. (To train and test SigMat

on HEPG2, we took a standard two-fold cross-validation approach

with all signatures from HEPG2.) Note that SigMat automatically

learns a¼1, which means it recognizes that the distribution of the

kernel function values in testing is close to that in training and thus

leaves the learned KSVM intact. The learned b is 0.5, giving bal-

anced weights to the KSVM score and the correlation score in the

final SigMat score. The relative performance of different methods

follows the trends seen in Figure 1, specifically SigMat has the high-

est overall accuracy, over �1000 test signatures under cross-

validation, and the Spearman correlation method is the second-best,

followed by the Random Forest method.

Fig. 2. Comparison of SigMat to baseline methods across cell lines using all

drugs for tuning and testing. Similar to Figure 1 except data from all shared

drugs are used in tuning and testing each test cell line (Setting #0 in Table 2)

Table 3. Tuned values of the a scaling parameter

Cell line Setting #0 #1 #2 #3 #4

A375 3.0 2.5 2.5 2.0 2.5

A549 1.5 1.5 2.5 2.0 2.0

HA1E 2.0 1.0 2.0 2.0 3.0

HCC515 2.5 3.0 3.0 3.0 3.0

HT29 2.0 2.0 2.0 2.0 3.5

MCF7 1.0 1.5 1.5 1.5 2.5

PC3 3.0 2.5 4.0 2.5 4.0

VCAP 3.0 3.0 3.0 3.0 2.0

Note: Values tuned using percentage of the drug library dictated by each

setting # (column) for each cell line (row).
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3.4 SigMat variants
To illustrate the effects of the scaling parameter a and the interpol-

ation parameter b in SigMat, we performed tests in settings #0-4

(Table 2) with variants of SigMat as described in Section 2.3.

Results are shown in Figures 3 and 4. The performance of the

Spearman correlation method is also included, to represent the best

possible performance from other methods we tested. In most cases,

SigMat performs better than its parameter-constrained variants as

well as the correlation method.

To quantitively compare the model reliability of the four variants

of SigMat (i.e. SigMat, SigMat-a, SigMat-b and SigMat-ab), we

counted the frequency that each model is outperformed by at least

one other variants on the same cell line with the same experimental

setting. Since there are 5 experimental settings (Table 2) and 8 test-

ing cell lines, each SigMat variant is compared against the others for

5 � 8¼40 times. The results are shown in Table 6. Similarly, we

counted the frequency that each SigMat variant is outperformed by

correlation, and list the results in Table 7.

Tables 6 and 7 and Figures 3 and 4 show that SigMat is a better

choice than any of its parameter-constrained variants in our 40

experiments (combinations of 8 testing cell lines and 5 experimental

settings). Therefore, tuning a and b as outlined in Section 2.2 does

help improving the performance of SigMat.

3.5 Tuning data size
It can be observed from Figures 1 and 4 that reducing the number of

drugs (classes) represented in the tuning dataset does not significant-

ly hurt the performance of SigMat, which consistently outperforms

other methods. On the other hand, when we allow SigMat to tune

on only 5% (i.e. about ten) of all shared drugs, for five of the eight

testing cell lines SigMat is outperformed by one of its parameter-

constrained variants. Therefore, when signatures are matched to

those from another cell line and the number of tuning drugs is very

limited, the a and b parameters of SigMat may overfit to the tuning

data and deviate from the optimum values for the query signatures.

Nevertheless, in most cases SigMat gives better Success@10 than

other methods even when the tuning data is very limited (Figure 1d).

3.6 Larger-scale validation
Now that we have established the superior performance of SigMat

(trained on HEPG2 and tested on other cell lines) with Success@K

Table 4. Tuned values of the b interpolation parameter

Cell Line Setting #0 #1 #2 #3 #4

A375 1.0 0.2 0.2 0.2 0.6

A549 0.9 0.4 0.6 0.8 0.4

HA1E 1.0 0.8 1.0 0.6 0.0

HCC515 0.5 0.7 0.7 0.7 0.1

HT29 0.1 0.1 0.3 0.1 1.0

MCF7 0.1 0.1 0.1 0.1 0.1

PC3 0.8 0.5 0.3 0.6 0.5

VCAP 0.9 0.2 0.2 0.2 0.1

Note: Values tuned using percentage of the drug library dictated by each

setting # (column) for each cell line (row).

Table 5. Comparison of SigMat to baseline methods when tested

on training cell line, HEPG2

SigMat cor RF SVM KS random

0.665 0.627 0.587 0.183 0.129 0.04

Note: The average Success@10 is reported for each method (corresponding

to abbreviations in Fig. 1).

Fig. 3. Comparison of SigMat variants and correlation method on non-overlapping tuning and testing sets. Similar to Figure 1 with the panels representing differ-

ent evaluation settings, the horizontal axes the different testing cell lines, and the vertical axes the average Success@10. The methods (different colors) in this fig-

ure correspond to the variants of SigMat as described in Section 2.3, SigMat-a, SigMat-b and SigMat-ab, as well as the full SigMat model and the Spearman

correlation method (cor). Legends are under Panel (a)
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where K¼10, we would like to extend our analysis to cases where

training is performed on other cell lines and evaluation is based on

other K values (1, 5 and 10).

In this section, we performed an additional set of 28 runs to

compare SigMat against other methods under various training, test-

ing and evaluation conditions. Note that those 28 runs are for this

section only. For each run, we trained on one of the seven largest

cell lines (i.e. A375, A549, HA1E, HT29, MCF7, PC3 and VCAP)

and tested on one of the two smaller cell lines HCC515 and HEPG2.

That gives 14 combinations of training and testing cell lines. To

evaluate models trained on different cell lines at a consistent scale,

on each training cell line we trained models with the top 500 drugs

which have the greatest number of L1000 experiments on that cell

line. The number of testing drugs for each combination of training

and testing cell lines is shown in Supplementary Table S2. For each

pair of training and testing cell lines, we ran two experiments, one

allowing SigMat to tune on 50% of the testing drugs and testing on

the rest 50%, while another restricting the tuning of SigMat to 5%

of the testing drugs and testing on the remaining 95%. To summar-

ize, each of the 28 runs in this section was composed of training

500-way classifiers on a training cell line, tuning SigMat with 5% or

50% of shared drugs on a testing cell line, and evaluating

Success@K (K¼1, 5 or 10) on the rest 95% or 50% of shared drugs

on the testing cell line.

The results of the 28 runs (Supplementary Table S3) show that

the comparative performance of SigMat against other methods is in

general consistent with what we observe in Section 3.1. SigMat

outperforms other methods under most (	75%) training, testing

and evaluation conditions (Table 8).

4 Discussion

We have developed the SigMat tool to bring the power of discrim-

inative classification models learned on rich datasets to the import-

ant problem of signature matching. In doing so, we had to address

the difficult problem of learning models that can be applied to the

cellular context of the user’s query signature, potentially a very dif-

ferent cellular context from the training instances of the model. We

did this by learning two additional parameters, a global scaling par-

ameter, a, and a model interpolation parameter, b, from a relatively

small tuning dataset representing the cellular context of the user’s

query. The global scaling parameter is designed to correct for dis-

crepancies between similarity scores observed i) among signatures

within the training set and ii) between signatures from different cell

types. When the discriminative model learned in the training cellular

context is not reliable for prediction in the query cellular context,

the model interpolation parameter compensates by integrating the

trained model’s prediction with that based on a simple nearest

neighbor classifier. We showed that even with limited tuning data-

sets, the SigMat method outperforms other similarity-based and

classification-based signature matching algorithms, especially in the

cross-cell line evaluations.

In our initial application of the SigMat method, we trained our

classification model on LINCS L1000 gene signatures from a single

cell line, HEPG2, with 244 classes representing the response condi-

tions from the administration of different drugs. This classifier typic-

ally had AvgSuccess@10 that was six to nine times better than

random, which is remarkable considering there are nearly 250

classes, only ten training examples per class, and the predictions

were on query signatures from cell lines other than HEPG2. At the

same time, these evaluations are only on a small subset of the avail-

able LINCS L1000 drug response dataset. Additional investigation

is required into how to train the SigMat model on multiple, rather

than a single cell line. Furthermore, it is an open question to how

well the model will scale to the potentially tens of thousands of small

molecule treatment classes available in the L1000 dataset, especially

with the great imbalance in the number of available training exam-

ples of each class and with the inherent structural and functional

similarities between the corresponding molecules.

We then trained SigMat as 500-way classifiers on each of the

seven largest cell lines in the L1000 dataset and tested it on each of

two smaller ones (HCC515 and HEPG2) with 5% or 50% testing

drugs allowed for tuning. We observed that SigMat gave better

Success@K for various K values under more than 75% of the 28 com-

binations of training cell line, testing cell line and percentage of drugs

for tuning. The success of SigMat in such large-scale cross-cell line

testing gives us confidence in the generalizability of SigMat to other

cell lines. We also note that there exist pairs of cell lines, for example

VCAPþHCC515, on which SigMat is not the best performer under

more than one tuning and evaluation settings. It remains an open

Fig. 4. Comparison of SigMat variants and correlation method using all drugs

for tuning and testing. Similar to Figure 3 except data from all shared drugs

are used in tuning and testing each test cell line (Setting #0 in Table 2)

Table 6. Other variants outperforming SigMat variants

SigMat SigMat-a SigMat-b SigMat-ab

17 30 22 36

Note: Number of times out of 40 combinations of testing cell line and ex-

perimental setting that a SigMat variant (column) has a lower Success@10

than any other SigMat variants.

Table 7. Correlation outperforming SigMat variants

SigMat SigMat-a SigMat-b SigMat-ab

2 4 5 21

Note: Number of times out of 40 combinations of testing cell line and ex-

perimental setting that a SigMat variant (column) has a lower Success@10

than the correlation method.

Table 8. SigMat outperforming other methods

K 1 5 10

#Best 21 23 22

Note: Number of times out of 28 combinations (Section 3.6) of training

cell line, testing cell line and percentage of drugs used for tuning that SigMat

has a higher Success@K than any other methods for three different K values.

SigMat: Signature Matching using classification i553

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/13/i547/5045781 by U
.S. D

epartm
ent of Justice user on 16 August 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty251#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty251#supplementary-data


question whether such exceptional cases appear randomly or with

some pattern that can be explained with biomedical insights into

those cell lines.

The evaluation of SigMat presented above was focused on an appli-

cation of mapping a drug response condition to a user’s query gene sig-

nature. However, the method is flexible and could be applied to other

application domains. SigMat could be applied to the shRNA and

CRISPR based signatures in LINCS L1000, allowing users’ query gene

signatures to be mapped to the best matching loss-of-function gene and

thus providing a possible mechanistic insight into the query signature.

SigMat could equally be applied to gene signature collections from can-

cer sample databases such as The Cancer Genome Atlas (Cline, et al.,

2013) or the International Cancer Genomics Consortium (Zhang, et al.,

2011), where if the biological conditions of interest were survival or

treatment outcome, the signature matching task would have prognostic

value. In the TCGA case, the gene expression signatures would not be

the L1000 ‘level 4’ plate-normalized 978 z-scores, but the RNA-seq pro-

files from cancer samples. Additional evaluations would be required to

quantify how well SigMat performs with these different types of expres-

sion measurements and at least 20x greater dimensionality of the model

input features. In any of these potential applications and more, if a re-

searcher is able to provide tuning data from their cellular context that

matches the class labels of large training signature collections, then

SigMat maximizes the benefit of applying a discriminative model to the

task of signature matching.
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