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Emmanuelle Bouzigon1,2 and Florence Demenais1,2

1INSERM, Genetic Variation and Human Diseases Unit, UMR-946, Paris, France, 2Institut Universitaire d’Hématologie,
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Abstract

Motivation: Apart from single marker-based tests classically used in genome-wide association

studies (GWAS), network-assisted analysis has become a promising approach to identify a set of

genes associated with disease. To date, most network-assisted methods aim at finding genes con-

nected in a background network, whatever the density or strength of their connections. This can

hamper the findings as sparse connections are non-robust against noise from either the GWAS re-

sults or the network resource.

Results: We present SigMod, a novel and efficient method integrating GWAS results and gene net-

work to identify a strongly interconnected gene module enriched in high association signals. Our

method is formulated as a binary quadratic optimization problem, which can be solved exactly

through graph min-cut algorithms. Compared to existing methods, SigMod has several desirable

properties: (i) edge weights quantifying confidence of connections between genes are taken into

account, (ii) the selection path can be computed rapidly, (iii) the identified gene module is strongly

interconnected, hence includes genes of high functional relevance, and (iv) the method is robust

against noise from either the GWAS results or the network resource. We applied SigMod to both

simulated and real data. It was found to outperform state-of-the-art network-assisted methods in

identifying disease-associated genes. When SigMod was applied to childhood-onset asthma

GWAS results, it successfully identified a gene module enriched in consistently high association

signals and made of functionally related genes that are biologically relevant for asthma.

Availability and implementation: An R package SigMod is available at: https://github.com/

YuanlongLiu/SigMod

Contact: yuanlong.liu@inserm.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have achieved consider-

able success in genetic analysis of complex traits. Thousands of

single nucleotide polymorphisms (SNPs) associated with human

traits and diseases have been identified since the first GWA study

was published (Klein et al., 2005) (http://www.genome.gov/gwastu
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dies/). However, the single marker analysis commonly used in

GWAS has limitations. Under the very conservative genome-wide

significant level of P ¼ 5� 10�8, only a few of the most significant

signals are reported, while many polymorphisms with small mar-

ginal effects are missed. The reported SNPs often explain a limited

part of the genetic component of a disease or trait (Eichler et al.,

2010; Maher, 2008).

To overcome these limitations, a variety of knowledge-based

methods have been proposed for integrative and joint analysis of

multiple genes. Examples include, but are not limited to the gene set

enrichment analysis (GSEA) methods that identify biological path-

ways enriched in association signals (Subramanian et al., 2005);

text-mining methods that build links between genes from scientific

literature (Raychaudhuri et al., 2009), etc. Among these approaches

stands the network-assisted analyses that overlay gene-level P-values

onto a gene network (GeneNet) to search for connected genes (also

known as gene module) enriched in association signals. The ration-

ale behind this is the principle of ‘guilt-by-association’, which states

that genes (or gene products) connected in a network are usually

participating in the same, or related, cellular functions (Li et al.,

2015; Oliver, 2000; Wolfe et al., 2005). Although a number of

methods have been developed for this purpose (Cabusora et al.

2005; Ideker et al., 2002; Jia et al., 2011), they often search modules

using heuristic or greedy algorithms, hence cannot guarantee to

identify the module enriched in highest signals, and are prone to in-

clude biologically irrelevant genes by chance. Also, many of them

have the limitation that edge weights are not taken into account dur-

ing the module searching process, although edge weights represent

the confidence or strength of connections between genes and can

contain useful information.

Azencott et al. (2013) have proposed a module searching method

that overcomes some of these limitations. Their method, named

SConES, was originally developed for identifying a set of SNPs that

are maximally associated with a phenotype and tend to be connected

in an underlying network. SConES formulates the module searching

task as a binary optimization problem that can be solved exactly

and efficiently via graph min-cut algorithms. It also allows incorporat-

ing edge weights, making it more robust to false connections.

Nevertheless, SConES sets its tuning parameters via a cross-validation

strategy that requires using raw genotype data, and therefore cannot

be applied to studies in which only summary-level statistics are avail-

able, as it is often the case in large genetic consortiums. Also, as indi-

cated in their paper, SConES may select several disconnected

subnetworks along with multiple isolated nodes, which may lead to

an overall low interconnection among selected nodes. These discon-

nected subnetworks and especially the isolated nodes, are likely to be

less functionally related to the other nodes and the selected module

may be less associated with disease as compared to a module whose

nodes are strongly connected.

In this article, we propose a novel method SigMod that has the

ability to select a Strongly Interconnected Gene MODule maximally

associated with the disease. We formulate this module selection task

as an optimization problem similar to SConES, but we incorporate a

modification in the objective function to explicitly encourage the

overall strong interconnection among selected genes. We believe

that a set of strongly interconnected genes are more functionally

related and biologically relevant. We show that our method has the

same advantage as SConES in terms of allowing incorporation of

edge weights, and can also be solved exactly and efficiently via

graph min-cut algorithms. In addition, we propose an algorithm to

compute the module selection path, which provides the ability to

trace the selection change and to select a desirable amount of genes.

We also develop a parameter setting strategy to identify the optimal

selection. Our strategy does not require using raw genotype data,

hence can be applied to a broader range of studies than SConES. We

evaluated SigMod using both simulated and real data, and made

comparisons with SConES and another popular network-based

method dmGWAS (Jia et al., 2011). The results showed our method

is more powerful in identifying a module made of functionally rele-

vant genes and enriched in consistent association signals.

2 Methods

SigMod aims to identify a disease-associated gene module using two

types of input data: a list of gene-level P-values obtained from GWAS

SNP-level P-values, and a GeneNet. To get gene-level P-values, SNPs

need to be first assigned to genes using dbSNP and RefSeq genes with

genomic coordinates in the corresponding genome build, but methods

vary according to the choice of gene boundaries that can be strictly

limited to the start and stop positions of the genes, or extended be-

yond these positions up to 500 kb. This SNP to gene assignment issue

has been previously debated in Jia and Zhao (2014) and will be fur-

ther discussed in Section 5. Once SNPs have been assigned to genes,

gene-level P-values, which represent the significance of gene–disease

associations, are computed from GWAS SNP-level P-values using any

gene-based method that has been previously proposed (e.g., Liu et al.,

2010; Lamparter et al., 2016; Li et al., 2011). One of the most popu-

lar gene-based methods consists of using the best SNP P-value as-

signed to a gene but this P-value needs to be corrected for variation in

gene length (as explained in Section 4.2). The GeneNet represents the

biological knowledge of gene-gene relationships, such as physical

interactions between gene products (proteins), gene co-expression or

co-occurrence of gene-related terms in the literature. Each connection

can have a weight that measures the confidence or strength of the con-

nection. This type of information can be derived from experiments

like co-expression analysis or retrieved from databases such as

STRING (Szklarczyk et al., 2014).

In the following sections, we will first introduce the formulation

of SigMod, and then provide an efficient and exact algorithm to

solve the optimization problem. Afterwards we will present a tuning

parameter setting strategy to find the parameters leading to an opti-

mal gene module selection. A flowchart summarizing these steps is

shown in Figure 1.

2.1 Formulation of the SigMod method
We first transform gene-level P-values into scores by

z ¼ U�1ð1� PÞ, where U�1ð�Þ is the inverse normal distribution

function. These gene scores are overlaid onto the GeneNet to build a

scored GeneNet, denoted as G ¼ ðV ;AÞ, where V are nodes repre-

senting genes, and A is the weighted adjacency matrix representing

connections among genes. We define u as a vector of binary vari-

ables indicating whether a gene Vp is selected (up ¼ 1) or not

(up ¼ 0). We formulate this selection task as an optimization prob-

lem that maximizes the following objective function:

f ðuÞ ¼ zTuþ kuTAu� gjjujj0: (1)

The first component zTu defines the joint effect of the gene module

on the phenotype (disease) by summing up the scores of its gene

members. The second component uTAu quantifies its connection

strength as the summed edge weights in the module, since

uTAu ¼
P

p;qApqupuq. The third component is the sparsity regular-

izer controlling the size of the gene module, where the module

size is represented by jjujj0, i.e., the number of non-zero elements in
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u. k and g are positive tuning parameters specifying the importance

of the corresponding components. Therefore, we are able to select a

strongly interconnected gene module enriched in high association

signals, by choosing proper parameters and solving the optimization

problem:

arg maxu f ðuÞ: (2)

Note that our formulation differs from the formulation of SConES

(Azencott et al., 2013). SConES selects genes by maximizing the ob-

jective function defined as gðuÞ ¼ zTu� kuTLu� gjjujj0, where L is

the Laplacian matrix defined as L ¼ D� A, and D is the diagonal

matrix of weighted node degrees, i.e. Dpp ¼ dp :¼
P

qApq. The differ-

ence between the two objective functions f ðuÞ and gðuÞ
is in the second component, which leads to different behaviors

of each method. Specifically, SConES incorporates the Laplacian

matrix to encourage adjacent nodes to be selected together. However,

this does not guarantee the overall strong interconnection among se-

lected nodes. Contrariwise, the SigMod formulation incorporates the

adjacency matrix to explicitly encourage selection of strongly inter-

connected nodes. More specifically, since A ¼ D� L, it has

f ðuÞ ¼ zTuþ kuTðD� LÞu� gjjujj0
¼ ðzþ kdÞTu� kuTLu� gjjujj0:

¼ gðuÞ þ kdTu

Therefore for each given k, additional scores kd are added to the

nodes in SigMod compared to SConES. Nodes with higher degrees

are thereby given more preferences. Additional differences between

these two methods will be presented in the following sections.

2.2 Optimization algorithm
We show that the optimization of Equation (2) can be solved exactly

using a similar graph min-cut approach as presented in Azencott

et al. (2013). To achieve this, we construct an augmented network

of G (denoted as Gst), by first adding two artificial nodes s and t to

G, then redefining its adjacency matrix as B:

Bpq ¼ kApq

Bsp ¼ ðzp þ kdp � gÞ � Iðzp þ kdp � gÞ for 1 � p; q � n:

Btp ¼ ðg� zp � kdpÞ � Iðzp þ kdp < gÞ

8>><
>>:

(3)

Definition 1. Given a network G ¼ ðV ;AÞ, for any s; t 2 V , a s-t

cut C ¼ fX; �Xg is defined as a node partition of V such that:

(1)X [ �X ¼ V ; (2) s 2 X and t 2 �X :

Definition 2. A s-t cut is called a s-t min-cut if jðCÞ is minimized,

where jðCÞ is the capacity of a s-t cut C, defined as

jðCÞ ¼
P

Vp2X ;Vq2 �X Apq.

Therefore according to Proposition (1) in Azencott et al. (2013),

if C� ¼ ðX�;X� Þ is a s-t min-cut of Gst, then u� is the solution of the

optimization problem of Equation (2), where u�p ¼ 1 if Vp 2 X�, and

u�p ¼ 0 otherwise. Hence solving the optimization problem is equiva-

lent to finding a s-t min-cut on the augmented network Gst . Thus

any s-t min-cut algorithm can be applied to find the solution.

2.3 Determination of the tuning parameters g and k

The SigMod objective function Equation (1) includes two tuning par-

ameters, g and k, that need to be determined. To find the parameter val-

ues leading to an optimal gene module selection, we first propose a path

algorithm that allows computing all distinct selections at a given k while

varying g over a range of values. Based on this algorithm, we provide a

procedure to find the tuning parameters that can lead to the optimal

gene module selection. These different steps are described as follows.

2.3.1 Computing the selection path at any given k value

For a given value of k, the module selection by solving Equation (2)

has the nesting property that Sðg1Þ � Sðg0Þ if g1 > g0, where SðgÞ
represents the module selected by setting the sparsity parameter as g
(see Supplementary Materials for proof). Therefore increasing g re-

sults in removing genes from a previously selected module. To con-

veniently trace this selection change, we develop the path algorithm

that allows computing the sequence of distinct modules selected by

increasing g from gmin to gmaxð0 � gmin < gmaxÞ. We denote this se-

quence as P ¼ hSðgminÞ; . . . ; SðgmaxÞi and call it as the selection path

over ½gmin; gmax	. Note that these modules are nested according to

the nesting property, i.e., SðgminÞ 
 � � � 
 SðgmaxÞ. An example of se-

lection path is given in Supplementary Figure S1.

Fig. 1. Workflow of SigMod. SigMod takes a list of gene-level P-values computed

from genome-wide association studies (GWAS) and a gene network (GeneNet) as

input. The gene-level P-values are converted into scores and overlaid onto the

GeneNet to build a scored network. SigMod identifies a module that is strongly

interconnected and enriched in high association signals from this network using a

3-step procedure, as outlined in this figure and detailed in the text (Section 2.3.2).

The k in this figure is the connectivity parameter that controls the balance be-

tween module score and module connectivity. The selection path in the figure

represents the sequence of distinct modules selected by increasing the sparsity

parameter g from a starting value toþ1, as described in Section 2.3.2
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Our path algorithm aims to compute P efficiently. It is de-

veloped by exploring the property of s-t min-cut on the augmented

graph Gst, since computing SðgÞ is equivalent to finding the s-t min-

cut as stated in Section 2.2. We define the capacity function j�ðgÞ as

the capacity of the s-t min-cut on Gst, where the capacity of a cut is

defined in Definition 2 (Section 2.2). It is apparent that j�ðgÞ is a

continuous and piecewise linear function of g. Its slope changes at

either a break-point or a change-point, where a value of g is a break-

point if it leads to the change of selection, and is a change-point if it

causes the rewiring of an edge of Gst from s to t according to

Equation (3). Thus, computing the selection path is equivalent to

finding all break-points of j�ðgÞ, which can be achieved by correct-

ing j�ðgÞ at each change-point to transform it to a concave function,

then applying the iterative contraction algorithm described in Gallo

et al. (1989). Once all break-points are obtained, the selection path

can be computed by setting g at each of the break-points and solving

the problem defined by Equation (2). A detailed description of this

algorithm is presented in Supplementary Materials.

We also notice that the module selection by solving Equation (2)

has the memoryless property, that if a gene is not selected by setting

g at some value (e.g., g ¼ gmin), then it can be removed from the

GeneNet when computing the selection at a g value greater than

gmin. The mathematical description of this property and its proof is

given in Supplementary Materials (Proposition 1). This property can

be utilized to speed up the computation of selection path over

½gmin; gmax	, using the following two-step procedure:

� Step 1: compute SðgminÞ on the complete network G;

� Step 2: compute selection path over ½gmin; gmax	 on the subnet-

work Gsub induced by the genes in SðgminÞ.

This speed-up strategy makes the computation of selection path

more efficient, especially when the size of SðgminÞ is far less than the

total amount of genes in the whole network. It is the case for many

studies in which only a small portion of genes are intended to be se-

lected while the majority of genes are left out at the first stage of the

selection process.

2.3.2 Hierarchical procedure to find the tuning parameters

leading to an optimal gene module selection

As mentioned above, the module selection in SigMod depends on

two parameters g and k. The selection as a function of g can be

tracked through the selection path at any given value of k. The par-

ameter k, which allows a balance between the module score and

module connectivity, needs to be chosen carefully. On one hand, if k
is too small, the selection mainly focuses on gene scores while it ig-

nores the connections among genes. This results in the top scored

genes scattered in the network to be selected, whichever their con-

nections. On the other hand, if k is too big, the network topology

dominates the selection, while the gene scores do not influence the

module selection. This leads to a set of most strongly interconnected

genes to be selected, whichever their association scores. Since the

goal of our method is to find a gene module that is strongly intercon-

nected and is enriched in high association signals, we propose the

following procedure to set the parameters properly:

� Step 1: do an exhaustive search for k equally spaced k values in

½kmin; kmax	. Compute for each k the selection path PðkÞ to col-

lect all modules with module size less than max select;

� Step 2: compute the size difference between consecutive mod-

ules in each path PðkÞ, i.e. Dsi ¼ jSij � jSiþ1j, where Si is the ith

module in the path. Then choose Si� within each path, where

i� ¼ maxfijDsi � sg;

� Step 3: remove genes not connected to others in each Si� .

Choose from all resulting Si� the one with highest standardized

score as final selection, denoted as S�:

In Step 1, we explore the module selection for k different k val-

ues. For each value, we calculate its selection path PðkÞ to collect all

distinct modules whose number of genes is less than max select

(specified by the user). This can be achieved by starting at a trial

value g ¼ g0 and computing the path over the sparsity range ½g0;1	.
If jSðg0Þj < max select, decrease g and compute the path in the ex-

tended range, until the size of the largest selected module surpasses

max select. The range ½kmin; kmax	 should be broad enough, so that

an optimal selection is contained in these paths. Though exhaustive

search is potentially expensive, the incorporation of our speed-up

path algorithm can largely reduce the computational burden.

In Steps 2, the goal is to find a local optimum module within

each path, where by local optimum we mean the selected module is

strongly interconnected and enriched in high scores relative to that

path. We identify this local optimum by examining the size differ-

ence between consecutive modules in P, i.e., jS1j � jS2j; jS2j � jS3j,
etc. This is because, by our formulation, if the connectivity regular-

izer does not have an effect, the genes will be removed one by one

from the module; while if the regularizer has an effect, some strongly

interconnected genes are non-separable and are removed together,

which corresponds to a large size jump (s) between consecutive se-

lections in the selection path, as shown in Supplementary Figure S2.

We select the smallest module in the path that contains such non-

separable genes (by choosing i� ¼ maxfijDsi � sg). We set s ¼ 5 by

default, but it can be adjusted based on actual situation.

In the final step, we first remove the genes that are not connected

to any other gene in each local optimum module. Then we choose

from these local optima the one with highest standardized score,

where the standardized score of a module S is defined as

z�ðSÞ ¼ zðSÞ � jSj � blffiffiffiffiffi
jSj

p br :

Here zðSÞ ¼
P

s2S zs: bl and br are the sample mean and standard de-

viation of all gene scores in GeneNet.

A summary of this procedure is shown in Figure 1. Through this

hierarchical procedure we increase the possibility to find the true

disease-associated gene module.

3 Implementation

We implemented our method in an R package SigMod (available at

https://github.com/YuanlongLiu/SigMod). SigMod takes a list of

gene-level P-values and a GeneNet as input. Each connection in the

GeneNet can be assigned a weight to quantify the confidence or

strength of the connection. When the weight of a connection is un-

available, it can be specified as 1 or 0 to indicate presence or absence

of the connection.

The SigMod package consists of the main function select_subnet

to solve the optimization problem of Equation (2); the selection_path

function to calculate the selection path as described in Section 2.3.1;

and additional functions to help identify the optimal module selection.

We use the graph.maxflow function in R package igraph 0.7.1

(Csardi and Nepusz, 2006) to find the s-t min-cut. It implements the

Goldberg-Tarjan Push-Relabel algorithm (Goldberg and Tarjan,

1988), and has the smallest known time complexity of

Oðn1n2 log ðn2
1=n2ÞÞ, where n1 is the number of genes in GeneNet and

n2 is the number of connections.
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4 Results

We evaluated the performance of SigMod using both simulated and

real datasets. We downloaded a comprehensive human GeneNet

from the STRING database version 10 (Szklarczyk et al., 2014),

which contains information on various types of connections among

genes. This GeneNet includes 19 247 genes and 4 274 001 edges.

Each edge represents a known or predicted interaction between

genes or gene products (proteins), including direct (physical) and in-

direct (functional) associations derived from four sources including

systematic genome comparisons, high-throughput experiments, co-

expression and previous knowledge from literature. Each edge in the

STRING GeneNet is assigned a weight varying from 0 to 1, which

represents the combined confidence of the connection between two

genes derived from different sources of information.

4.1 Results of the simulated data
We first conducted simulations using the STRING GeneNet. We

chose five strongly interconnected gene modules identified by

CFinder (Adamcsek et al., 2006) as candidate causal modules

(Supplementary Fig. S3). The sizes of these modules ranged from 47

to 87.

In each simulation, a single module was set as the causal module.

We followed the proposal of Rajagopalan and Agarwal (2005) to

set P-values of the genes belonging to the causal module to be uni-

formly distributed between 0 and 10�3. P-values of other genes were

uniformly distributed between 0 and 1. We set ½kmin; kmax	 ¼ ½0:005;

0:05	 and computed selection paths for k ¼ 100 values of k in this

range. Other parameters were set as s ¼ 5 and max select ¼ 1000.

We compared our method with two state-of-the-art module

search methods dmGWAS (Jia et al., 2011) and SConES (Azencott

et al., 2013). The dmGWAS method identifies gene modules by

starting from each gene in the GeneNet and repeatedly adding

neighboring genes that generate the maximum increment of the

module score (zðSÞ ¼
P

s2S zs). Module growth terminates if adding

neighboring genes does not yield more than r% (r¼10 by default)

increment of the score. As in dmGWAS the number of genes to be

selected is determined by the user, we selected approximately the

same number of genes as that of the causal module under study. To

do so, we first set parameters to their default values to generate raw

modules. Then we ordered the raw modules according to their mod-

ule scores. Top modules were selected sequentially until the cumula-

tive size of these modules exceeded that of the causal module. The

SConES method, as described in Section 2.1, selects genes by maxi-

mizing the objective function gðuÞ. It should be noticed that its ori-

ginal implementation uses a cross-validation approach to set tuning

parameters, which does not apply to our study as raw genotype

data are not used. Nonetheless, according to the relationship be-

tween f ðuÞ and gðuÞ described in Section 2.1, it is straightforward

that our path algorithm can also be applied to SConES. Thereby, we

computed its selection paths using the same ks as for SigMod. In

each path, we chose the first module selection whose size exceeded

that of the causal module. Among these selections we chose the one

with largest standardized score.

We ran 20 repetitions for each of the five candidate gene mod-

ules (hence 20� 5 experiments for each method). We computed the

power (fraction of causal module genes selected) and false discovery

rate (FDR, fraction of selected genes that are not causal) of each ex-

periment. SigMod has systematically higher power and lower FDR

over all experiments, as presented in Figure 2 (results are aggregated

for all experiments; see Supplementary Fig. S4 for individual re-

sults). SConES has lower power and higher FDR than SigMod while

dmGWAS performs worst in these simulations. We further com-

pared the standardized connection strength of the selected modules,

defined as q ¼ 2x=mðm� 1Þ, where m is the module size; x is the

sum of pairwise edge weights in the module. As shown in Figure 3

and Supplementary Figure S5, the connection strengths of gene mod-

ules selected by SigMod are much higher than the other two

methods.

The performance of these methods against noise was also eval-

uated. Two sources of noise were considered simultaneously. The

first one is standard Gaussian noise added to the scores of the causal

module genes. The second noise is added to the topology of

GeneNet by randomly rewiring 5% of the edges, where at a rewire

step, two edges V1 � V2; V3 � V4 becomes V1 � V4; V3 � V2.

This rewire process keeps the distribution of node degree un-

changed. We observed that SigMod still has the best performance

among the three methods, with an average power of 0.83 and FDR

of 0.18 (Fig. 2 and Supplementary Fig. S4). Interestingly, dmGWAS

has an improved performance when noise is added (higher power

and lower FDR). This is because it selects genes with highest scores.

Fig. 2. False discovery rate (FDR) versus power of three network analysis

methods applied to simulated data. The results of 20 replicates of five causal

modules are aggregated. Five-number statistics (minimum, first quartile, me-

dian, third quartile, and maximum) of each quantity are shown by ellipse plot

(Tomizono, 2013). Plot (a) shows the results without adding noise to the

GWAS data or GeneNet. Plot (b) shows the results with noise added to both

GWAS data and GeneNet
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By adding Gaussian noise to the scores, genes with increased score

are more likely to be selected.

4.2 Identification of a gene module associated with

childhood-onset asthma
We applied SigMod to the meta-analysis results of 18 childhood-

onset asthma GWASs, which were part of the European GABRIEL

asthma consortium (Moffatt et al., 2010). The data are described in

detail elsewhere (Moffatt et al., 2010). In order to check the consist-

ency of results of SigMod, we used a discovery-evaluation scheme.

Therefore, the 18 childhood-onset asthma GWASs were randomly

split into two groups of nine GWASs while preserving a similar sam-

ple size for the two groups: 3031 cases/2893 controls in the first

group for discovery and 2679 cases/3364 controls in the second

group for evaluation. In each group, a meta-analysis was applied to

2 370 689 single SNP association statistics (Hapmap2-imputed

SNPs after quality control), using a random-effects model im-

plemented in STATA V12 (distributed by Stata Corporation,

College Station, Texas, USA). The results of these two meta-

analyses (SNP-level P-values) were respectively named META1 and

META2.

To aggregate SNP-level results into genes, SNPs were mapped to

genes (between the start site and 3’-untranslated region of each

gene) using dbSNP Build 132 and human Genome Build 37.1, mak-

ing a total of 24 120 genes with at least one SNP mapped. Each

gene-level P-value was taken as the best SNP P-value among all

SNPs mapped to the gene, and was further corrected for gene length

using permutations. We applied the circular genomic permutation

(CGP) approach that can preserve linkage disequilibrium (LD)

among SNPs when permuting SNP-level statistics (Cabrera et al.,

2012). It was shown to have similar performance to the highly time-

consuming gold standard of phenotype permutation (Brossard et al.,

2013). These corrected gene-level P-values were converted to scores

by inverse normal transformation. The scores were mapped to the

STRING-based GeneNet to build a scored network, which consisted

of 15 724 genes and 3 055 850 edges.

We applied SigMod to the META1 discovery set. We used the

same parameter settings as described in simulations, i.e.

kmin ¼ 0:005, kmax ¼ 0:05, k ¼ 100, s ¼ 5 and max select ¼ 1000.

We identified a strongly interconnected gene module of 190 genes

and 1295 connections (Supplementary Fig. S6).

4.2.1 Enrichment of the identified gene module in high association

signals

The selected gene module has a standardized score of 36.09, which

is significantly higher than the scores of 100,000 random modules

(each has the same number of genes as in the identified module)

sampled from the scored GeneNet (P < 10�5; Supplementary Fig.

S7). All module genes have significant P-values (P�0.05), ranging

from 5:48� 10�6 to 1:88� 10�2
. These P-values are ranked at the

top of the whole gene list, with highest rank of 1 and lowest rank of

581 (Supplementary Table S1).

We then evaluated whether the selected gene module was en-

riched in consistent association signals, by computing its score using

META2 dataset. The gene module had a standardized score of 5.85,

which was again significantly higher than scores of 100 000 ran-

domly generated modules (P < 10�5; Supplementary Fig. S7). This

shows the ability of SigMod to select a module displaying consistent

association signals.

4.2.2 Association of the identified gene module with asthma

The association of the identified module with childhood-onset

asthma was evaluated through CGP permutation of SNP P-values

that can preserve the genomic structure, using META1 and META2

respectively. For each evaluation, a total of 100 000 CGP samples

were generated and scores of the identified gene module were

recomputed using these samples. The observed score of the identi-

fied module was significantly higher than those obtained from the

permutation samples (P < 10�5 evaluated using either META1 or

META2) (Supplementary Fig. S8). This shows the gene module is

significantly associated with childhood-onset asthma.

4.2.3 Functional clustering and annotations of genes belonging to

the identified gene module

Our method is based on the ‘guilt by association’ principle. To ex-

plore the functional relatedness of genes belonging to the selected

module, we used the gene functional classification tool of the

DAVID Bioinformatics Resource (Huang et al., 2009). This tool

generates a gene-to-gene similarity matrix based on shared func-

tional annotation profiles using over 75 000 terms from 14 annota-

tion sources and classifies highly related genes into functionally

related groups. We identified nine functional gene clusters of which

seven included genes having strong connections within our selected

module (Fig. 4 for these seven groups and Supplementary Figure S9

for the additional two groups). Altogether the nine functionally

related groups included 68 out of the 190 module genes (36%). The

function of each gene cluster was annotated by the most representa-

tive gene ontology (GO) category shared by all genes within a cluster

and with highest (or close to highest) enrichment in these genes. For

the seven clusters with strong gene–gene connections, these GO cate-

gories corresponded to the MHC protein complex, known to be

associated with many immune-related diseases including asthma,

and potentially novel mechanisms such as nucleosome assembly,

regulation of ubiquitin-protein ligase activity, protein catabolic pro-

cess, zinc ion binding, as well as regulation of transcription (clusters

6 and 7) which plays a key role in autoimmune diseases (Farh et al.,

2015) that share susceptibility loci with asthma (Welter et al.,

2014).

Finally, we performed KEGG pathway enrichment analysis to

further annotate the module genes. We used the enrichKEGG func-

tion of the R package clusterProfiler (Yu et al., 2012), which interro-

gates KEGG on the fly to get the latest pathway information. We

found 15 pathways (Table S2) significantly enriched in genes from

Fig. 3. Box plots of the standardized connection strength (q) of gene modules

identified by three network analysis methods (SigMod, SConES and

dmGWAS). The results of 20 replicates of five causal modules were

aggregated
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the identified module (FDR<0.05). Of particular interest is that

five KEGG pathways are related to virus infection, which supports

previous findings of the modulating effect of genetic variants associ-

ated with asthma at the 17q21 locus on the association of asthma

with viral infections (Çalışkan et al., 2013; Smit et al., 2010).

Moreover, the antigen presentation pathway was already identified

by DAVID as the MHC complex GO, and the Inflammatory Bowel

Disease and Type 1 Diabetes pathways represent two auto-immune

diseases that share susceptibility loci with asthma (Welter et al.,

2014). All of this adds further evidence that the selected gene mod-

ule includes genes of functional relevance for asthma.

4.2.4 Comparison of results using SigMod, dmGWAS and SConES

For purpose of comparison, we also applied dmGWAS and SConES

to the META1 dataset to identify modules. We used the same strat-

egy as described in the simulation study to select approximately the

same number of genes as selected by SigMod. We compared the

identified modules for their enrichment of association signals (quan-

tified by the module score z�), and evaluated the replicability of

these signals in the independent META2 dataset.

As shown in Table 1, the module identified by SConES has a

slightly lower score than the module selected by SigMod. All genes

of SigMod and SConES modules have a significant P-value

(P�0.05), hence are likely to be bona fide genes. Comparatively,

the module identified by dmGWAS has a score that is twice as small

as the SigMod module score. Also only half of its module genes have

a significant P-value. This shows dmGWAS has a lower ability to

identify genes having strong association signals. This is likely be-

cause: dmGWAS uses a heuristic search algorithm that does not

guarantee the maximization of the module score; while SigMod and

SConES use exact algorithms to ensure the maximization.

When these modules were evaluated for replication of results

using the independent META2 dataset, the module identified by

SigMod again had the highest score (see Table 1). Specifically, 30

genes out of the 190 genes were significant when evaluated from

META2 (Supplementary Table S1), hence were significant in both

META1 and META2 and are thus of biological interest. These mod-

ule genes account for almost half of the 70 genes in the GeneNet

that are significant in both datasets, demonstrating the ability of

SigMod to identify genes displaying consistently high association

signals. Comparatively, the signals in the module identified by

dmGWAS or by SConES were less replicated, as indicated in Table 1

by the module score and the number of significant genes evaluated

using META2. Specifically, 18 out of 190 genes identified by

Fig. 4. Seven strongly interconnected functional gene clusters identified by DAVID in the selected gene module associated with childhood-onset asthma. The

main function of each cluster is represented by the gene ontology (GO) category that has highest enrichment in the cluster genes. The P-values correspond to the

significance of enrichment of the shown GO term in the corresponding gene cluster

Table 1. Comparison of the performance of SigMod with dmGWAS

and SConES in identifying a gene module associated with child-

hood-onset asthma

META1 META2

#Genes #Edges q z� #sig z� #sig

SigMod 190 1295 0.022 36.08 190 5.85 30

SConES 190 232 0.004 35.52 190 4.14 18

dmGWAS 191 679 0.011 17.18 92 3.65 25

Various features of the identified gene module were compared, including

the number of genes and edges, the connection strength (q), the standardized

module score (z�), and the number of nominally significant genes (#sig) in the

module. META1 and META2 are the two datasets consisting of SNP-level

P-values obtained from meta-analyses of childhood-asthma GWAS.
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SConES from META1 remained significant in META2. This lower

replication rate (60% of the SigMod replication rate) may be due to

the lower overall interconnection among genes selected by SConES.

As shown in Table 1, the number and strength of connections be-

tween genes in the SConES module are both 18% of the values

observed in the SigMod module. These genes with lower overall

connection strength are likely to be less functionally relevant, and to

have a less consistent joint effect on disease.

As for computational efficiency, all three methods (with SConES

using our tuning parameter setting strategy) have comparable run

time of �3 h on a server (2.66 GHz IntelV
R

XeonVR Processor X5650

and 160 GB of RAM).

5 Discussion and conclusion

Network-assisted analysis of GWAS data to identify gene modules

enriched in high association signals has received increasing attention

over the last decade. In this article, we proposed a novel method

SigMod, tailored for such purpose. SigMod takes a gene network

and a list of gene-level P-values as input. The gene network can be

retrieved from databases or derived from experiments that are best

suitable to the study. In our application to the asthma data, we

chose the STRING network that has the advantage of integrating

connection information from various sources. The gene-level P-val-

ues, which represent the significance of gene–disease association,

can be computed from GWAS SNP-level P-values using any proper

gene-based methods (e.g., Lamparter et al., 2016; Liu et al., 2010).

In our study, gene-level P-values were chosen as the best SNP

P-value in a gene and were corrected for gene length using Circular

Genomic Permutation that can preserve the LD pattern between

SNPs. One challenge in network-assisted analysis is the assignment

of SNPs to genes, as discussed in Jia and Zhao’s review (Jia and

Zhao, 2014). In our study, we used a stringent definition of gene

boundaries, which were represented by the start site and 3’-untrans-

lated region of each gene to reduce false positives. Although gene

boundaries can be extended to a few kilobases both upstream and

downstream of a gene, it was shown that a change of boundaries

from 0 to 250 kb did not significantly affect the power of the related

network analysis (Lee et al, 2011), although this needs to be further

confirmed. Moreover, extension of boundaries to flanking regions

of a gene may increase the degree of overlap of nearby genes and

thus the number of wrong SNP-to-gene assignments. More sophisti-

cated SNP to gene annotation strategies that take into account func-

tional information, such as gene expression through expression

quantitative trait loci (eQTLs), or that define a regulatory domain

for each gene (McLean et al, 2010), may be considered. However,

the performance of such annotation strategies with respect to the

classical ones need to be further assessed.

SigMod selects a strongly interconnected gene module enriched

in association signals by optimizing a binary quadratic objective

function. We showed the optimization problem can be solved

exactly through graph min-cut algorithms. We also designed a path

algorithm that allows computing the selection path at any given k
value. This provides the flexibility to select an appropriate number

of genes. In combination with the path algorithm, we proposed a

strategy that enables choosing proper parameters to keep a balance

between module score and module connectivity. This strategy does

not require using raw genotype data. We believe that a proper par-

ameter setting strategy is as important as the formulation of the ob-

jective function, as inappropriate parameters can lead to unwanted

results, especially for network-assisted analysis where numerous

gene modules can be selected. Comparatively, in the original

SConES method the parameters are determined using a cross-

validation approach, which cannot be applied to situations where

raw genotype data are unavailable, as often encountered.

In comparison to previous approaches that only require the se-

lected genes being connected in a network, SigMod encourages se-

lecting genes having overall strong interconnection. This emphasis is

well grounded as the identified module is more robust against noise.

In particular, genes that have some false connections in the selected

module may still be kept in the module after removing such connec-

tions, whereas for a loosely interconnected module, removal of false

connections may destroy the module structure. Also, a strong inter-

connection among genes can reflect close functional relationships, as

implied by the ‘guilt by association’ principle and demonstrated by

our application to the asthma dataset.

SigMod has a different focus compared with SConES.

Specifically, SConES focuses on co-selection of adjacent nodes ra-

ther than the overall strong interconnection among selected nodes.

The node preference between SigMod and SConES is also different.

SConES favors low degree nodes while SigMod rewards nodes of

higher degrees, as indicated in Section 2.1. We believe that reward-

ing high degree nodes is particularly suitable for some applications.

It has been widely observed that many disease-causing genes have

high degrees in a gene network, especially those playing a central

role in complex diseases (Lee et al. 2013; Xiong et al., 2014). These

genes can even show higher connectivity in an integrated gene net-

work (e.g. STRING) that aggregates connection information from

various sources. Although SigMod rewards genes of higher degree,

the scale of rewarding is controlled by a tuning parameter k. This

parameter keeps the balance between the module score and the con-

nectivity, which can be chosen properly using our parameter setting

strategy. The validity of this strategy was verified in the simulation

study and in the application to asthma GWAS data, where all se-

lected genes were nominally significant (after correction for gene

length) and were ranked at the top of the gene list in the whole net-

work (Supplementary Table S1). We did not observe any gene was

selected just because it is a hub gene even when it had a very low

score.

In our simulations, we found SigMod outperforms SConES and

another state-of-the-art method dmGWAS. It has the best power

and lowest false discovery rate. This high performance was pre-

served in presence of noise from both GWAS results and network in-

formation, demonstrating its robustness. Further application of

SigMod to childhood-onset asthma GWAS results successfully iden-

tified a gene module significantly associated with disease. The ana-

lyses of functional relationships among genes highlighted known

asthma-related gene functions and novel ones which allow generat-

ing new hypotheses regarding the mechanisms underlying asthma

pathogenesis. Though the module identified by SConES was also en-

riched in high association signals in the META1 discovery dataset,

these signals were less well replicated in the independent META2

dataset. A possible explanation is that the genes in the SConES mod-

ule are less connected than those identified by SigMod, as reflected

by the overall connection measure (q). They are thus likely to be less

functionally related and may have a less consistent joint effect on

disease. This emphasizes again the importance of favouring strong

interconnection as achieved by SigMod.

To our knowledge, our method is one of the very few methods in

related work that both take edge weights into account and can be

solved using exact algorithms. As there are emerging approaches to

define connections among genes (e.g., physical or functional, experi-

ment verified or computational based interaction), edge weights are
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an important indicator of the confidence or strength of the connec-

tion. For those methods that do not incorporate edge weight, an ar-

bitrary hard cutoff has to be given to define the presence or absence

of a connection, which can lose useful information.

Our current formulation of SigMod did not take into account

the LD pattern that may exist among SNPs belonging to adjacent

genes or gene clusters in a chromosomal region that may share simi-

lar functions. This may cause over selection of genes belonging to

such clusters. However, when many genes possess high scores but

are in the same LD interval, the algorithm picks automatically those

having stronger connections with other genes located in different

chromosomal regions. This matches the concept of Taşan et al.

(2015) that genes with more connections are of higher importance.

Nonetheless, SigMod is different from their approach, in that the al-

gorithm decides itself the optimal number of genes to be selected in

a LD interval, instead of given a ‘prix fixe’ constraint to select only

one gene from it. We believe this is more rational as it is generally

unsure whether there is only one causal gene in a LD interval.

In conclusion, we proposed an exact and efficient method

SigMod for integrative analysis of GWAS data with network-based

knowledge. Our method enables to find a functionally relevant gene

module enriched with high association signals. It is robust against

noise from either the GWAS results or the background network.

Though our method is especially designed for identifying a gene

module associated with disease (or trait), it can be applied to any

other network-assisted feature selection problem of the same

concept.
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