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1. The theory ofplane curves was applied to the graphical methods used in enzyme kinetics
and a mathematical analysis of the possible graph shapes is given. 2. The belief that allo-
sterism can be inferred from steady-state data alone is subjected to criticism and the
mathematical significance of sigmoid curves and non-linear double-reciprocal plots is
explored. 3. It is suggested that the usual methods of interpreting steady-state kinetic
data are often based on over-restrictive assumptions which prevent maximum utilization
of the available data. 4. Methods for obtaining the degree of the rate equation from graph
shapes obtained directly from initial-rate measurements and from replots of asymptotic
behaviour as x -* 0 and x -X o are discussed. 5. Detailed proofs of the theorems given
in the text have been deposited as Supplementary Publication SUP 50049 (10 pages) at
the British Library (Lending Division), Boston Spa, West Yorkshire LS23 7BQ, U.K.,
from whom copies can be obtained on the terms indicated in Biochem. J. (1975), 145, 5.

Steady-state data are usually obtained in the form
of initial-rate measurements with all variables con-

stant except one of the substrate concentrations at a
time. Since the steady-state velocity v is a function of
the substrate concentrations (A, B, C etc.) and pro-

duct concentrations (P, Q, R etc.) according to

v=f1(A, B,C-----P, Q, R----)

at constant pH, ionic strength, temperature etc., the
velocity will be a function of any one substrate con-

centration (A) with all the other substrate concentra-
tions constant. This function must be of the form
v=OwhenA=0, i.e. v=Af2(A).
Now steady-state velocity equations are ratios of

polynomials of the following type

a,AA+ a2A2+----_ aA"
V

flo+fliA+f/2A2 ----fmAm)
0

where the coefficients are necessarily positive func-
tions of the other variables (Cleland, 1963a,b,c;
Wong & Hanes, 1962; Childs & Bardsley, 1975b). In
the present paper we explore the possible informa-
tion given by the graphical analysis of steady-state
data for high-degree mechanisms.

General Properties of Polynomial Functions

(1) We shall, for convenience, consider y as a func-
tion ofx only, and primes will always refer to differen-
tiation with respect to x.
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Consider the function
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Subtraction of the quantity f(O) will lead to a new

function which will always go through the origin
according to

N-aD
f(x)-f(o) O

D

-(al~-~flo) X+ (a2-l2 2)X2_ +

fio+l1x+fi2x2+----

but the numerator coefficients are of the form

( flo)

and not necessarily finite or positive. The graphical
interpretation ofthis procedure will be clear from Fig.
1, but, for our purposes, it is sufficient to realize that
all the functions likely to be encountered can be
reduced to the form

n

I atgXi
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m

1+Exi
1
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Xo XI X1 X3 X4 X5 X-..

Fig. 1. Typicalgraph ofa rationalpolynomial
The general features of a polynomial function of the type
discussed in the text.

Ii Im
y(x) = ca Xl/ E ,Lxl

0 0

y'=0, indicated by 0 at x2 and x4 (turning point);
y' = 0, indicated by m at xl, x3 and x5 (inflexion). These
symbols will be used in all subsequent Figures. --,
Horizontal asymptote as x -* o; -. -., shift of co-ordi-
nate axes. Shift from (xo,0) to (xo,yo) is easily achieved by
plotting (y-yo) against x. This would give a function of
the type

n Im

y = oa, xli 2 ti Xi
1 10

which passes through the origin and is ofthe form in which
steady-state data are obtained. In some circumstances,
this could result in (y-yo) taking on negative values, as
shown by the dotted line. Shift of origin to the minimum
at (x4,y4) would give a straightforward sigmoid type of
curve and this information could be replotted as (l/y)/(l/x)
or some other transformed plot. Shift oforigin to the maxi-
mum at (x2,y2) and inversion of the ordinate would give a
partial-substrate-inhibition type of curve. This approach
may be a valuable analytical technique but does not seem
to have been used by enzyme kineticists.

by subtraction ofy(O) where necessary, division by ,6o

and redefinition of the coefficients.
We shall be concerned with polynomial functions

with positive coefficients, which are zero at the origin,
and which are defined and non-negative in the interval
of concern to us, namely the first quadrant with
0 <x < o, which is the region accessible experiment-
ally.

Usually, n = m unless dead-end complexes are

formed when m>n (dead-end substrate inhibition).
The physical situation dictates that we can never have
n > m, and most of the following discussion will be
for the case n = m. For an n: n function lim y = a./fin

but when m > n lim y = 0. As will be shown, however,

an n:m function can have more inflexions than the
corresponding n: n function.

(2) It is often the case that rate equations result from
the algebraic addition of two or more independent
rate equations, as in the case of mixtures of iso-
enzymes.
Now it is readily shown from consideration of

1 aiX+-----+nX 1
+ ylx+----+mxm

1+fi1X+___+p6,Xn 1+35lX+____+6mXm

that the condition for a sigmoid inflexion in y/x is

(LY2- 1P)+ (Y2-YI 1) >°
(Childs & Bardsley, 1975b)

Thus, if we add any two rational polynomial func-
tions which are separately sigmoid (i.e. cc2- al l >0;
Y2-Yi 61 >0), we find that the sum is necessarily
sigmoid.

Similarly, the condition for a maximum in y/x is

ln2(Ymr5na-1 - Yn-Iam)+3am (an Planr1-lOcIfin) <0
whereas for each separately we require y.mam-ym-_
am<0; aA-fin1-flan-1 <0.
(3) Common factors can arise in both the numerator
and denominator of rational polynomial functions,
cancellation then givinga function of lowered degree.

al x+ c2X2+_-_-+ O: Xn
e.g. iny -

I+l x+----+ X

if (x+rl) is to be a factor of the numerator (r1 >0),

cc"(-r1)"+ cc"..1(-r1)"~1+----+ cc1(-r1) = 0 (2)

Similarly, if the same (x+rl) is to be a factor of the
denominator,

.8l (-ri)n+ I+(-r)+ 1= 0 (3)

Thus eqns. (2) and (3) must hold simultaneously if a
factor (x+r1) is to cancel top and bottom and so
decrease the degree by 1.
For a quadratic factor to cancel, having positive

coefficients but not necessarily real roots, we would
take r1 and r2 as complex conjugates.
An obvious example of this decrease in degree is

the case of a saturation function describing ligand
binding to n distinct sites, which reduces in this way
from n: n to 1: 1 eventually as the sites become iden-
tical and independent (Weber & Anderson, 1965;
Monod et al., 1965; Koshland et al., 1966).

The Graphical Methods used in Enzyme Kinetics

(I) The mathematical basis of the transformations

They/x data are frequently transformed by plotting
derived functions and the following graphs have been
widely employed:

y/x; logy/logx; -/x; !/; y/.; 7/x; log y/x;

and y/logx
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SIGMOID CURVES AND NON-LINEAR DOUBLE-RECIPROCAL PLOTS

To appreciate what is happening in these transforma-
tions, suppose that y(x) is transformed into the two
derived functions F(x,y) and G(x,y), whiCh are
then plotted as FIG. Since y = y(x), we have

F(x, y) = 0(x)
G(x,y)(x)

dF dO
dG u

against any function ofx and y. Also, a turning point
will occur in any function of x and y plotted against
any other function of x and y when

provided that

yt+ aF a0F-1= o

axG ayG\ -

dO (dr-
dxkdxJ

Also,
d2F d20
dG2 dw2

d20dy/ d2y/ d0\ (dy,-3
dx2dx dx2dx/ dx/

Eqns. (4) and (5) allow us to easily calculate deri
tives for any F and G, but to choose a point of re
ence we will use the graph of y/x. This graph is
one which is intuitively easiest to interpret and rel
sents the form in which rate equations are usu,
calculated and steady-state data obtained. We r
relate the behaviour ofy/x to FIG in order to exp]
what is happening in the 'mapping' operations u
in enzyme kinetics.
We have

aF aF

dF +ay
d-G faG aG,

+ I

(ax +ayG'
and so a turning point iny/x (y' = 0, 0 <x < c)) imp
a turning point in any function of y only, plot

(4) To relate infiexions in y/x to FIG we require
d2F/dG2 in terms of y' and y".

d2F

dG2

( 8G a2F aFa2G\ [aG a2F_ aF a
(5) axaXzaax )X2) +L aaxa)

bifvea--+aG2Fi FaXG] +(ax axay ax axayaGa2F aFa G,2 G~F aFaG
iva- + - - y

tfer- aG a2F aFa2Gl , aG a2F aFa2G,
the

~i
'2 + i- 13

re- ~axay2 aX ay2 j -yay y)~pre- Vxa AA J \y Ay ayJ
ally + aFaG aFaG ,,y
low +ay ax axay/ )
la'in =--,- 7.

sed

(6)

lies
tted

(7)

From eqn. (7) we see that any function of y only
plotted against any function of x and y will have a
horizontal inflexion when y/x has a horizontal in-
flexion (y = y = 0; 0<x< ao). An inflexion of posi-
tive or negative slope (y'= 0; I y'l >0) in y/x will not
in general give an inflexion in FIG.

Table 1 gives the relationship between y, y' and yf
and the first and second derivatives of the usual plots,

Table 1. Relationship between y(x)/x and F(x,y)/G(x,y) for graphical methods used in enzyme kinetics

First and second derivatives are given in terms of y, y', y' for the co-ordinate systems indicated.

Second derivative

y

1 /

;I (2y 2yyt)

x3
y3[2y (xy-~y)-xyyv]

(xy'-y)3 [2y'(xy'-y)-xyy"]13

x(3[y'+xy") y"I
[2y'(xy'-y)-xyy']

y3
X(y'+ xy")

y2 [y,(xy, _Y)-xyy ]

- (yyff_y/2)

Graph
y/x

iI
xI 11

yl x

y/logx

log y/logx

logy/x
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First derivative
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and we note that a turning point in y/x implies a
turning point in all the other graphs except for
(x/y)/x. An inflexion of positive or negative slope in
y/x will not give an inflexion in any other plot, but a
horizontal inflexion in y/x implies a horizontal in-
flexion in all the derived plots. The consequences of
(xy'-y) = 0 should be noted. (xy'-y) = 0 is true at
the origin and at discrete points for 0 <x < X where
y'o0 for higher-degree functions. This produces a
y/(y/x) plot which will 'double back on itself' at each
point where y' = y/x, giving an infinite gradient and
also a (x/y)/x plot with a turning point.
The graphs of y/x and (1/y)/(1/x) will now receive

further attention. Some authors recommend the
plot of y/(y/x), which gives a better spread of experi-
mental data and which may show greater curvature
making it easier to spot complex mechanisms (Walter,
1974; Frieden, 1967). However, the plot of (1/y)/(1/x)
is still the most widely used and has the advantage
that the function can always be written explicitly, and
asymptotic equations can be easily calculated.

(2) Replots ofasymptotic behaviourfor multisubstrate
enzymes

One example of a complex two-substrate enzyme
mechanism studied by the authors is that of horse-
radish peroxidase (EC 1.11.1.7) (Childs & Bardsley,
1975a). Some interesting and useful features were
found to follow from the rate equation and are dis-
cussed here together with suggestions for possible
generalizations.
The rate equation for peroxidase was found to be

4:4 in one substrate (A) and 3:3 in the other (B),
and may be written:

AB(alc + al2B+ a13B2+ X21A+ a22AB
+ a23AB2+ a3lA2+ c32A2B+ a4lA3)Eo

(fioo+f+l BB+fio2B2+103B3+ lhoA+P16 AB
+ /12AB2+ f13AB3+fl2oA2+ fi21 A2B
+ 122A2B2+fl23A2B3+1330A3+fi3jA3B
+. f32A3B2+fi40A4+fl41A4B)

As A -+ oo,

oo+41B()
v(A,B) I lBEo (9)

and similarly, as B -c,

v(A, B) -(E3A+23A2)E (l0)

Thus, although the rate equation is 3:3 in B, the
horizontal asymptote approached as A -* o is 1 :1 in

B (eqn. 9), considerably decreased in degree and easily
tested by a double-reciprocal plot. Similarly, the
behaviour with respect to A is of decreased degree
(eqn. 10) and so of diagnostic significance also.

Analysis of the above rate eqn. (8) shows that the
straight-line asymptote for [1/v(A,B)]/(1/A) will have
both slope and intercept with the 1/v axis dependent
on the second substrate B as follows:

Slope = Poo+f/oB+fO2B2+ flo3B3
alB+ al2B2+ a13B3

[(fi,o+ fl, B+ ,B12B2+ B13 B3)(al1 B
+ al2B2+ a13B3)-(fioo+fl0B+fio2B2

Intercept = +f03B3)(C21B+ a22B2+ a23 B3)]
(all B+ 012B2+ a13 B3)2

It is obvious that the intercept replot is of higher
degree than the initial rate equation and hence of
little or no use in discriminating between possible
mechanisms, whereas the slope replot is of some use
for those mechanisms which are 3:3 or less in sub-
strate concentration.

Similar analysis applies to slope and intercept re-
plots as functions ofA, and is easily extended to other
multisubstrate cases, e.g. the random Bi Bi has hori-
zontal asymptotes which are 1:1 in the second sub-
strate.
Now the success of this method for determining

the degree of a rate equation with respect to several
substrates depends on the fact that, though we might
have a rate equation of the form v =f(An,Bm), i.e.
n: n inA and m:m in B, nevertheless the rate equation
will not include terms of the form AnBm.

(3) Graphical methods ofvalue when m>n

(a) The plot ofxly/x. A process ofsome use is one
for determining the difference in degree (mi-n) for an
n:m function when m>n.

Since y -+ 0 as x -+ c, then a plot of x-ly against
x will still approach zero as long as A<(m-n). If
A = (m-n), the graph x-y against x will approach a
finite positive value anlfIm, and for A> (mi-n) the plot
will rise at the end x -÷ o and approach a straight
line, parabola etc. depending on the value of
A-(m-n)-
Hence it is theoretically possible to determine

(m-n) by finding that value of A which gives either a
finite positive horizontal asymptote as x -a: or
gives a straight line of positive slope as x -- x,

whichever is most easily distinguished in the plot of
xly against x.

Experimentally obtained y(x) data as x -X oo are
then systematically replotted as xAy against x for
A = 0, 1, 2 etc. until eventually a constant, line, para-
bola etc. results when (m-n) is determined.

(b) Symmetry of y/logx functions. To discover
whether there is some value (or values) of u = logx
about which the function y(logx) is symmetrical, we
suppose the function is symmetrical about the line
u = logx. Then y(u+ e) = y(u-E) for all E and
detailed analysis shows that this is always true
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SIGMOID CURVES AND NON-LINEAR DOUBLE-RECIPROCAL PLOTS

for the 1:2 function. (Detailed proofs of theorems
have been deposited as Supplementary Publication
SUP50049 under the headings 'Section A. The
graph of y against logx' and 'Section B. Doubly-
sigmoid y/logx curves'.) Higher-degree functions
may be symmetrical but not the 2: 3 because common
factors cancel between numerator and denominator
to give a function that is decreased in degree to 1: 2.
Thus when dead-end substrate inhibition is suspected,
a plot of v/logA should be inspected, and if this is
perfectly symmetrical about the maximum at
+log(180/,82) then the rate equation is 1:2. Any devia-
tion from symmetry implies a higher-degree rate
equation, since these are usually unsymmetrical.

(c) The slope of logy/logx. This graph has a slope
that is always less than n (Endrenyi et al., 1971), but it
is also of interest in that the limiting gradient as
x-+0o is (n-m).

(d) The case m = n+ 1. Here the graph of (x/y)/x is
asymptotic to a parabola, but the graph of (1/y)/x is
asymptotic to the line

.8n+l (X+ (. fin °S-.-1 fln+I

an a,2

and this line is approached from below for

(t-cc,42 0(n-I,_Al cn,, f1,+1
(a)n+1- ,n (-) +1n-1 <

(4) Doubly sigmoid y(logx) curves

Doubly sigmoid log plots (with three inflexions)
have been reported (Koshland et al., 1966; Dixon &
Tipton, 1973), but the mathematical significance of
this feature has never been given.
The 2:2 function

alx+ a2x2

1 +fl,x+fl2x2
can be written in a form dependent on just two para-
meters a and p. a2= cralcfi; fl2=pofl12; t=f1,X;
a) = flly/al giving:

Co = (t+ at2)/(I +t+pt 2).

To be doubly sigmoid requires three real values of
log t for which d2o/d(logt)2 is zero, i.e. three positive
roots t1, t2, t3 > 0 of the quartic

1 +(4a-1)t-3a(2p- I)t2-_r(4ap+p- 1)t3
+p 2(p- I)t4 = 0

From this, a necessary set of conditions for doubly
sigmoid co (logt) is

/P'<

Ca<j

j<p<1

or

ax< p),

The application of Sturm's Theorem to the quartic
shows these two conditions to be sufficient. Hence
doubly sigmoid curves are possible under these con-
ditions. We note also that either a maximum or a
sigmoid inflexion in the co(t) function precludes a
doubly sigmoid co(logt) function in the 2: 2 case.

TheLocal Behaviourofthe Graphs ofy/xand(1/y)/(1/x)

(1) Whenx->.0

From eqn. (1) with fib = 1, we have y'(0) = ac, and
the function y/x can have a continuously decreasing
gradient if a2-al ,81 <0, or a continuously increasing
gradient, implying a sigmoid inflexion, if ac2-alc2>20
for all n, m (Childs & Bardsley, 1975b). Also, the
function when a, = 0 has zero gradient at the origin
and must therefore have a sigmoid inflexion.
The graph (see Fig. 2) of (1/y)/(1/x) as x -+0 will

become asymptotic to a straight line of slope 1/acc
and intercept alcc1 -a2. When a sigmoid inflexion
occurs in y/x, this will always be associated with a
negative intercept for the asymptote of (1/y)/(1/x)
and this feature will be much easier to spot experi-
mentally than a sigmoid inflexion. An exception to
thisruleisthecasewhen a1 = 0, forthen the(1/y)/(1/x)
asymptote will be parabolic rather than linear and this
provides a useful diagnostic feature. When ac > 0, the
function (1/y)/(1/x) can approach the asymptote
from above or below depending on whether

0c2\212 ( f2 cc3
_I __ +--->oalci Pib alc I1o cc1

cc3
or <-

al

respectively.

(2) Whenx-o

Case (a): m > n, lim y = 0, and so y/x approaches

zero, but (1/y)/(1/x) is undefined at the origin (dead-
end substrate inhibition).
Case (b): m = n, lim y = cc/1,6, but this asymptote

X-coo
will be approached from above if c,1_1<acc,, ,

implying at least one maximum in the y/x curve
(partial substrate inhibition), whereas if ac,&-_>
cc,,-, 19 then the asymptote is approached from below
and this is an ambiguous case as regards maxima.
Note that accfin-l <acI 19,, implies

di

d()

cc, an-l = cc 19,, implies

d ( _
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and a,6fln,1 > n-lfin implies a positive gradient at the
origin of (1/y)/(1/x). The condition for the curve to be
concave up or down at the 1ly intercept is found from

and

( ) [(n-1 (-a n )1\nand~~ ~~~~~~~~a
2 fln X-1~~~l

(3) Intermediate values ofx

A maximum in y/x results in a minimum in (1 /y)/
(1 Ix) and vice versa. Also, the number of maxima in
y/x must exceed by one the number of minima or be
equal to it, since it is impossible to have more minima
than maxima. The converse holds for (1/y)/(1/x). A
horizontal inflexion in y/x will produce a horizontal
inflexion in (1/y)/(1/x). Setting y =yo in eqn. (1)
generates a straightforward mth degree polynomial
in standard form. Hence a horizontal line in y/x can
intersect the curve a maximum ofm times correspond-
ing to m roots. A similar horizontal intersection rule
applies to (1/y)/(1/x).

Some Representative n:m Polynomial Functions

The 1: 1 and 1: 2 functions are trivial and have been
analysed many times. Credit for first applying the
principles of calculus to the analysis of enzyme-
kinetic graphs must go to Botts (1958), who gave an
analysis of the 2:2 function by application of Des-
cartes' rule of signs to the numerator of the first and
second derivatives, the denominator being finite and
positive in the first quadrant. Her findings have been
used several times by other workers (Walter, 1974;
Endrenyi et al., 1971; Ainsworth, 1968; Ferdinand,
1966; Henderson, 1968; Pettersson, 1969; Ricard et
al., 1974) and we have shown how this type of analysis
can be extended to some aspects of higher-degree
functions where the derivatives rapidly become of
high degree (Childs & Bardsley, 1975b). The beha-
viour of asymptotes from non-linear double-recipro-
cal plots has been treated for the 2:2 case (Ainslie
et al., 1972; Pettersson, 1970; Neal, 1972; Moraal,
1972) and we have extended this treatment to 4:4
functions (Childs & Bardsley, 1975a). However, for
completeness, it seems appropriate now to gather
together all the information that is available about
functions likely to be encountered experimentally.
The analysis is extended as far as 4:4 functions, which
should cover most cases, but subsequently general
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fonrulae winc be given to facilitate analysis of higher-
degree functions should the need arise.

Definitions

We define

bir = LXa Pr--of,fit
0 = CX2-c1 1P

n Im

0 10
as an n:m function. Other authors define functions
on the double-reciprocal form of the rate equation
(Plowman, 1972). This seems confusing, since initial-
rate data are obtained in y/x form, rate equations are
calculated in y/x form and many workers do not use
double-reciprocal plots but prefer the more discrimi-
natory y/(y/x) plot.

The 1:1 function (Fig. 3)

acl x
11+f1+x

y l(1 + c1X)-2

y -2alfi(l +flx)-3
I 11 +fl1
y a1 x al

d2

d_

The 2:2 function

a.,x+ a2x2
Y1 +lX+fl2x2

_a2+ 012X-a2 1

P2 fl2(1 +IAX+P2X2)J
y'= (al, +2a2X-012x2)(1+ P,1x+/J2x2)-2
y" 2(0-3 alf82X-3 a2 fl2 X2+ fl2 012X3)(1 + l1 X

+ 2 X2)-3

1 (X(+!) +c22

I± (I~) +(0 f2l2+ LX2 0)

= 2(CC22+ 012) [rl (X) + C2]

(d 2

When

fl2 ( -1 (- + 1 =0
a2/

then cancellation produces the 1: 1 function

al12x
y' x2+alc2X

a2-a,fl, >0 implies a sigmoid inflexion in y/x and
negative intercept in (1/x)/(lfy), but it also leads to
(xy'-y) = Oat one discrete point in the first quadrant
other than the origin. Consequently, y/(y/x) will
have a point with infinite gradient and (x/y)/x will
have just one turning point.
The features of this function have been fully dis-

cussed (Childs & Bardsley, 1975b) and the possible
graph shapes are given in Fig. 4.

The 3:3 function

04 x+ cc2x2+ c03x3
1 +f1x+fl2X2+fA3X3
a+3[ 023X2+ 13X-aC3
83 fl3(1 + iX+fl2x2+3X3)

y'= [a1+ 2oc2x+(3Of3-012)X2-2013 X3
-023X4](1 +/X+ f2X2+ fl3x3)-2

Althoughthereare threepossible sign changes, further
analysis shows that there can be only two turning

lV

- ,-l/ pi

x

-.1 l/x

Fig. 3. The 1:1 function

y= (a, x)
(1+Ax)

Dashed line indicates asymptotes.
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points for x >0. y' is a VI-degree polynomial with a
maximum of six positive roots.

1 ( 1)2+ )+i3

y
CCl (-) +C2 Q) +C3

The 4:4 function

IXlX+ CC2X2+ aC3X3+ CC4X4
Z' 1+fhx+fi2x2+fi3x3+fi4x4

C4 r 034X3+024X2+ 014X-a4 1

f [fi4(1+P1X+f2x22+f3X3+fl4X4)j
y'= [al +2C2 x+ (30C3- 012)X2 + (4a4- 2013)X3

!(9h ..± 1 _-(3q014+ 023)x4-2q024X)- 034X6 (1 +f1X

a,i x/ C12 +fl2x2+ 3X3 + 4x4)-2

1 22+X22 X3) (X)+ a12fp3+3 y" is IX degree and can have a maximum ofnine posi-
I+VI 1

tive roots.

(XI2Cj) +CC2Q+(3+ J
X
+Q)4+ )+({2)+(f) &)

[d2(1/y)]/[d(l/x)2] is of degree III and can have a
maximum of three positive roots.
The graph can have any of the shapes given by the

2:2 function but, in addition, y/x can have one maxi-
mum and a minimum or any of the shapes inter-
mediate between these extremes. (1/y)/(lfx) can only
have three inflexions.

Setting a3 = 0 generates a 2:3 function which is the
lowest-degree rate equation which can have multiple
inflexions in y/x or any inflexion at all in (1/y)/(1/x).
The extra shapes possible are illustrated in Fig. 5.

y ~(1)3+ Q1)2+ (C3 +C4

1 I1i 0

al~~~~~~2 Vxi
1

2l
(cx1 012+ C2 C-C C3) (X)

+ (l 013+C2 C3-LX aC4) (X) + a12 4 + a4 0
+ Q3 (1) (x) ]

y

(a) (I)" -- .-.1

/ /11

/

1-*
id

l/x

y

(b)

\
a

1-1
"I

"I

x

"-I

I 1-11A

I~~~I

l/x
Fig. 5. The 3:3 function

CCt1 X+ CC2 X2+ CC3
1+=ax+12x2+ fhX31 +fl, X+RflX2+f3X33

(a) CCl, CC2, CC3, /h, f2, 83 >0. (i) The simplest case indistinguishable from the 2:2 case iny/x form. (ii) Stair-step curve frequently
encountered in enzyme studies. (iii) All the shapes in Fig. 4(a) for the 2:2 function are possible, but the most complex curve
possible has two turning points and a maximum of six inflexions (three illustrated). (iv) The maximum complexity possible
in (I/y)/(l/x) form has three inflexions (two illustrated) and two turning points. (b) Oa,, CC2, I1, fl3 >0, but C3 = 0. (i) The
simplest shape is indistinguishable in y/x form from the 1:2 function. (ii) A maximum of two inflexions is possible but a
horizontal inflexion is not possible. (iii) The 2:3 function is common in enzyme kinetics and is important as the lowest-degree
function having an inflected double-reciprocal curve. Symbols are defined in the legend to Fig. 1.
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x

l/x

Fig. 6. The 4:4 function

y _a X+ a2 X2+ 3 X3+ a4 X4

1+I 1 x+B2hX2+fl3X3+j4%X4
All the shapes shown in Fig. 5 for the 3:3 function are

possible and, in addition, the extremely complex curve

(ii) with a sigmoid inflexion and three further iflexions
together with two maxima and one minimum is an ex-

ample of the shapes possible. (iii) illustrates the degree of
complexity possible in double-reciprocal form, e.g. with
three turning points and three inflexions. Symbols are

defined in the legend to Fig. 1.

d2(1/y)/d(1/x)2 is of degree VI with a maximum of
six possible positive roots. All the shapes possible for
3: 3 are also possible, but some ofthe additional com-
plexities are indicated in Fig. 6.

It could be argued that such complex curves as Figs.
5 and 6 are not often encountered in enzyme studies.
However, the fact that some examples are known
(Engel & Dalziel, 1969; Tanner, 1974; Lee et al.,
1973; Ziegler, 1974) suggests that many more await
discovery. In fact, since realistic allosteric steady-state
equations are of extremely high degree, we would
agree with Teipel & Koshland (1969) that experi-

mental workers would have previously dismissed
such bumpy curves assuming them to be due to experi-
mental error. Also Atkinson (1966) noted that, until
1956, all enzymes had been found to follow 1:1 func-
tions, whereas, subsequently, sigmoid curves had
become common and suggested that reinvestigation
would reveal many more deviations from hyperbolas
than had been suspected. Extension of this argument
to even more complex curves is obvious. Hopefully,
future studies will be enriched by paying particular
attention to inflexions and turning points and thus
gaining greater insight into the catalytic mechanism
rather than unintentionally suppressing valuable
experimental evidence.
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Allosteric Fuctions

The Adair-Koshland-Nemethy-Filmer (AKNF)
(Koshland et al., 1966) and Monod-Wyman-
Changeux (MWC) (Monod et al., 1965) allosteric
models are actually extreme treatments of a more
general scheme which takes into account all possible
combinations of site occupancy, subunit symmetry
and co-operativity. These particular models which,
being saturation functions, must have j(0) = 0 and
y(oo) = 1 with no intervening turning points. If it is
presumed that the initial velocity is merely propor-
tional to the number of occupied sites, then this forces
considerable restrictions on the velocity profile pos-
sible.Now realistic steady-state models can, especially
with random mechanisms, give v/A curves with
maxima (partial substrate inhibition) or with lim v =0

A->oD

(dead-end substrate inhibition) and so these com-
monly encountered features of experimental enzyme
kinetics are not possible with the MWC or AKNF
models. This criticism applies in addition to the
usual one about the assumption that ligand-induced
transitions have to be much more rapid than the
catalytic event in order to use a ligand-binding
model instead of a steady-state one.

Some properties of the Monod-Wyman-Changeux
modelfor allosterism

Here
- LCa(l + Ca)'- + a(l + a)"n-

L(1 + Ca) + (1 + ,)n

with n>1, L,C>0, ac=FIKR, TO/Ro=L and
C= KRIKT.
(a) j(o) can have no final maximum, since this would
require

(LCn+ l)(LC"-1 + 1) <O

(b) Such curves 9(ac) are sigmoid if

n> (+ I) (LC2+ 1)

or L(n-L-1)- C2-2nLC+(nL-L-1) >O

[See Fig. 7(a).]

(c) In the non-sigmoid case, the linear asymptote of
the double-reciprocal form will intersect the l/j axis
at some positive value and hence there is the possibi-
lity of so-called positive or negative co-operativity.
The minimum 'valid' experimental criterion for
negative co-operativity is that

d() ), =o 15a
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n

p

C
1.0

C

1/a

(c)

4- AL

Ny! 1.0

C

Fig. 7. Graphical behaviour oftheMWC saturationfunction y(a)

(a) The graph of j(a) is sigmoid in regions for n, C, L lying above the curve, i.e. for

> (L+ 1) (LC2+1)

n(C) is plotted for L = Lo. (b) The graph of (1/y)/(1f/a) with a positive intercept at P, i.e. for a non-sigmoid y(a) curve. The
slope at the origin is always concave up for 1/a =0 and in cases (i) and (ii) less than the limiting gradient as 1/a -* 0, but the
curve can be concave upward (i), i.e. 'positive co-operativity', despite y(a) being non-sigmoid, or (ii) have one or more
inflexions. There can be no maxima or minima and a concave-downward curve (iii), i.e. 'negative co-operativity', is not
possible. (See the Discussion section in the text.) (c) The asymptotic slope in (I/Y)/(l/a) is reached from below for C giving
negativef(C) as indicated by the shaded section. Approach from below will occur for n>2 when n(n-1)L2f(C)<0 where

f(C) = (C-1)2 [C2+ (2-n)(L+ 1)C+ ]

Only one of several possible shapes of this quartic are shown and it is also possible to have a negative region for C> 1 or no
negative region at all. Symbols are defined in the legend to Fig. 1.

i.e. a 'concave downward' double-reciprocal plot with

LCn-l1+I\{L -L(C- 1)(Cn-I-1)>
LC+1+1LC+11 (LC+1)(LC"+1)>

for negative co-operativity.

Thus there can never be 'negative co-operativity'
in the Monod-Wyman-Changeux model for any
combination of n, C and L. Also (1/y)/(1/a) is seen
to be always concave up for 1/a = 0, since

(1)2) = 2(n- I)LC"-2 (C- 1)2(1 +LCn)-2
(2)

The condition for approach to the asymptote from
below requires

-(n1)(LC2+ 1)]2 (n-1)(n-2)(LC3+ 1)
<-

LC+1 J 2(LC+1)

+n(n-1)(LC2+ 1)
2(L+ 1)

which leads to:

L(n- 1){(nLC4+ [(2- 3n)L+2- n]C3
+(3n-4)(L+ 1)C2+ [(2-n)L+2-3n]C+n)}<0

We conclude that for n =2, a 2:2 MWC function
cannot approach its double-reciprocal asymptote
from below, otherwise for n >2 approach from below
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will occur, as indicated in Figs. 7(b) and 7(c), giving
at least one inflexion.
The preceding analysis shows that the MWC

model can give a family of sigmoid and a family of
non-sigmoid j(a) curves. In double-reciprocal form,
all the curves are concave up at the origin and have a
gradient at the origin which is less than the limiting
slope as 1/a -- oo, but some will approach this
asymptote from above and some from below.
(1/)1(1/a) curves with inflexions are thus possible
and the difference between the sigmoid and non-
sigmoid curves in (1/j)/(1/a) form is that a sigmoid
9(ac) curve has an asymptotic line in double-reciprocal
form which has a negative 1/j intercept and vice
versa. Also, a straightforward concave-downward
double-reciprocal form is not possible.

It should now be clear that the reason for the wide-
spread confusion over the operational definition
(Conway& Koshland, 1968) as opposed to the graphi-
cal tests (Hammes & Wu, 1974) for positive or nega-
tive co-operativity is due to a complete misunder-
standing of the relationship between the y/x and
(1/y)/(1/x) graphs. In fact, there is a mistaken belief
that there are basically two types ofcurves in addition
to the 1:1 type, i.e. a family of curves moved to the
right of a rectangular hyperbola (positive co-opera-
tivity with y/x sigmoid and (1/y)/(1/x) concave up-
ward) and a family of curves moved to the left of a
rectangular hyperbola (negative co-operativity with
y/x non-sigmoid and (1/y)/(1/x) concave downward).
We have demonstrated that realistic allosteric mecha-
nisms have an enormous range of possible curve
shapes owing to the high degree ofthe rate equations.

Finally, we would like to comment on the degree of
sigmoidicity of any y/x curve. Laidler & Bunting
(1973), following Monod et al. (1965), state that in-
crease in the allosteric constant leads to more marked
co-operativity and that C = 1 or L -+0 reduces
yc(a) to a hyperbola. Also, Atkinson (1966) states that
the MWC model predicts sigmoid relationships only
when C is small. Actually, we have now replaced this
qualitative discussion by stating the quantitative
relationships between n, CandL that must be satisfied
for sigmoidicity to appear. This requires C< 1 as
L o and C<1 and appropriate n as L- 0 for
sigmoidicity. Also, we contest the statement that co-
operativity is more marked when L is large (Monod
et al., 1965). Actually increasing L merely pulls the
curve over to the right without displacement of the
horizontal asymptote and although this may have
some mechanistic significance at the molecular level,
it has nothing to do with sigmoidicity. Sigmoidicity
is not related to the slope at the inflexion (Koshland
et al., 1966), nor is it related to the curvature
y" (1 +y'2) =0 at the inflexion and, in fact, a curve
is either sigmoid or not and, where a sigmoid inflexion
is a feature of a curve, there is so far no acceptable
mathematical definition of sigrnoidicity.
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Probably the best quantitative measure of 'sig-
moidicity' is the magnitude of the curvature ofy/x for
x =0 [i.e. K(O)], which gives an estimate of how con-
caveupwards the plot is at the origin. This is calculated
from y'(O) = ac/18o and y(O) = 2(a2o-acc fll)/flo2 to
be K(O) = 2(a2f6o- acc fl?)fo/(ac12+fi02)+. Alternatively,
the l/y intercept when 1/x =0 could be used, and this
is

1=0= (a,fli_l-c2 fiO)/cl2

General Formulae

(1) The functions

A number of general results concerning rational
polynomials are of use in the work discussed in this
paper and are collected here and used to obtain the
results in Table 2.
The general n: n polynomial is:

n In

y Oftccix'/ i3xi

which may be written

XXi+=i I Ifl xi
anAfin =O f=0

where 0ibn is as previously defined.
The double-reciprocal form of y/x is

Y a] (X) + Ij(cclfc2po

E [fir cc12- fO al a,+c+ + cr(ac2 fiO-lcflM)]
r=2 (X)

which if we let 1 Ix -* c) becomes:

I
k

fo l+ I (a.Al -a2flO)
y acl ol21

+3(cc,2fl2- ccl c3 fO+ ca22l0-cac, c2 fl)X

From this approximation we see that the curve
(1/y)/(1/x) will approach the asymptotic line

flO
+3 (alafll-flO a2)

cc1 cc12

from above or below depending on

fl2cc2+fl0 a22-_flo ac a3-f al a2 > 0

or <0 respectively,
i.e. as

c2 2 fluc +cl2fl cc3

al flo cJ fi ac1

325



W. 0. fBARDSLEY AND R. E. CHILDS

Table 2. Degree ofthe numeratorfor y', y' and [d2(1/y)]/[d(1/x)2] and the maximum possible nurmber ofpositive roots

Note that Descartes' rule of signs gives a necessary, but not sufficient condition for positive roots ofpolynomials and further
analysis shows that in most cases high degree functions will have fewer inflexions and turning points than those allowed by
the sign rule, e.g. a 3:3 function can have only two turning points in y/x despite the 3 allowed, and a 2: 3 function can
have only two inflexions.

1:1 1:2 2:2 2:3 3:3 3:4 4:4 4:5

y' or ( degree
d(x)

Maximum positive roots ...

y' degree ...

Maximum positive roots ...

d2(!)

d()
Maximum positive roots ...

5:5 n:m

O II II IV IV VI VI VIII VIII 2m-2

0 1 1 1 3 3 5 5 7 2n-3
m,n>2

O III III VI VI IX IX XII XII 3m-3
O 1 2 4 6 8 9 11 12 2m+n-3

n,m> 3

O III 0 III III VI VI IX IX 3m-6

O 0 0 1 3 4 6 7 9 2n+m-6
n,mks 3

Note that this contains the quadratic inequality of the
2:2 case (a3 = 0) previously discussed.

(2) The derivatives

We find that:

- iMaixl + I [ E (i-r)oi,x ])/-I (E fiXt)
1 r=l i-r+l O

(11)

as alternate forms of y' where:

fk+1

2(k+1-2s)fia,ck+1S; k<n

s-kC+l-n

and

r r =-I = atXL8r Cr/I1

In the case where the degree of the numerator is less
than, or equal to, that of the denominator, we can

proceed as follows:
Let

a,---- a, be finite positive
and

ap+1----(n be zero for 2tAp <n.

Then /6ir may be zero (I> r >p), negative (-r,,B,;
i>pAr) or positive or negative (p>i>r).
The number of possible changes of sign in the

numerator and hence the maximum number of pos-
sible turning points for a p: n function is just one if
p = 1, and 2p-3 otherwise.

(3) The second derivatives

y
n 2n-2 n 2n-1 /n 3

= flix :E gkxk-2E iajx'' !ISkk / fl x
o o 1 o l

(12)
wheref is as before and

k+1

f > (k+I)(k+2-2r)P,rck-r+2; k<n-1
r-O

gk = n

; (k+ 1)(k+2-2r)fl ak+2-r; k>n-I
r=k+ -n

Also, from

d(!)

and

d(Q =3[2y'(xy'-y)-xyyy]

it is possible to derive general formulae as in eqn. (12)
for these derivatives also.

1975

326



SIGMOID CURVES AND NON-LINEAR DOUBLE-RECIPROCAL PLOTS

Conclusion

We have attempted to present a definitive mathe-
matical analysis ofsigmoid and other non-hyperbolic
curves and non-linear double-reciprocal plots, and
to argue that steady-state data alone can never give
unambiguous evidence for allosterism. However,
allosterism undoubtedly seems to exist and where
independent evidence indicates co-operative pheno-
mena, then steady-state data may still be of some

limited value in deciding between possible models.
Also, we would like to suggest that very few en-

zymes actually follow Michaelis-Menten kinetics. If
experimental workers would extend the concentration
ranges used, it would, in all probability, be discovered
that most mechanisms are actually random or at

least of degree greater than 1. Most of the enzymes

studied so far that have been found to obey 1:1

functions only do so because one pathway is favoured
rather than obligatory. Obviously, the same criticism
could be made of isotope-exchange studies and par-

tial reactions at the molecular level, and in any given
case it may be extremely difficult to decide between
random and compulsory order or preferred as op-

posed to exclusive mechanism. In defence of this
statement, we would point out that many enzymes

have been thought to be ordered until closer study
has revealed this random character.

Finally, the following set of rules and procedures
should prove useful in the interpretation of complex
curves of the type

al X+ 2X2+-- _anXn

fiO+f81 X+ f,2X2----,fmXm

(1) If y/x reaches zero asymptotically (m> n), plot
y/logx which is symmetrical only for the 1:2 function.
Otherwise, plot xly/x for A= 1, 2, 3 etc. and discover
(m-n). The graph logy/logx also reaches a limiting
slope of (n-m) and where m=n+l, (l/y)/x or

(x/y)/x may be valuable, as discussed in the text.
(2) If there are insufficient data to decide whether a

zero or horizontal non-zero asymptote is reached as

->
oo, plot (I/y)/x and an inflexion will rule out the

1: 2 function.
(3) If y/x reaches a horizontal non-zero asymptote
(m = n), plot the horizontal asymptotes against
second substrate (B) and asymptote-' against B-1.
A rectangular hyperbola and line respectively imply
the degree ofB to be 2: 2 or 3: 3. Higher-degree curves
imply 4:4 or higher degree in B and can be analysed
by the methods described in this paper. Now repeat

for v against B and discover the degree with respect
to A, etc.
(4) y/x has a sigmoid inflexion implying minimum
degree 2:2 and a2 fio > alr ,1. The graph of y/(y/x) has
a positive gradient at y = 0, giving a doubled-back
type of curve, and (x/y)/x has a negative gradient at
x =0 implying a minimum. Note that a sigmoid
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curve usually implies a double-reciprocal plot
characterized by an asymptotic line giving a negative
apparent Vmax. and apparent Km when extrapolated.
Also a y/x curve with no turning points or inflexions
giving a doubly sigmoid y/logx curve implies mini-
mum degree 2:2, but a doubly sigmoid yllogx curve
resulting from y/x with a sigmoid inflexion or
maximum implies degree >2:2. When 2f0= alfil
the next term, 3f0 -alf2, must be considered for
sigrnoidicity.
(5) Non-linear double-reciprocal plots imply mini-
mum degree 2:2 and are either parabolic concave
upward (a =0) or else approach asymptotically
the line

0 (1\ + lf1-a2 flO\

This line is approached from above (concave upwards)
for

() 2 I2

-lo -f (16 +fi2 > (- 0fib

(6) A single maximum in y/x implies minimum
degree 2:2 and requires An-l fin> c,, fi,-. It is impor-
tant to note that there is a certain ambiguity with
higher-degree functions in the inequalities dictating
curve shape. For instance, in the unlikely event that
arn-, fin = an fin-,, then it will be necessary to consider
the next lower degree term acn2fn-anfin-2. A final
maximum in any y/x plot usually requires an-1fin
> anfl_-l and this gives a double-reciprocal plot
which has negative gradient for 1/x =0. However,
the (I /y)/(1/x) curve will be concave up at 1/x = 0 for

( 41Afin-fin-1 ( +Ann ( n>

(7) A minimum in y/x implies minimum degree 3:3
and requires rn-, fin < anfin-i for approach to the
horizontal asymptote from below.
(8) Multiple inflexions in y/x and any inflexion at all
in (I/y)/(1/x) require minimum degree 2:3.
(9) y/x with a horizontal non-zero asymptote and a
horizontal plateau implies minimum degree 3:3.
(10) y/x with one maximum and oneminimum implies
minimum degree 3:3, whereas two maxima and one
minimum imply minimum degree 4:4. It is, however,
possible for high-degree functions to give y/x curves
with no inflexions or turning points. In general, a
minimum estimate of the degree of the rate equation
can be obtained from the number of times a hori-
zontal line cuts y/x curves, from the maximum posi-
tive slope of logy/logx or from counting inflexions
and turning points and referring to Table 2. Some-
times other graphical methods are useful, e.g. y/(y/x)
curves with any inflexion at all require degree >2:2,
since the 2:2 function gives conic sections in this plot,
as it does in (l/y)/(1/x) and (xfy)/x.
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