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Sigmoid functions for the smooth approximation to the
absolute value function
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Abstract. We present smooth approximations to the absolute value function |x| using sigmoid functions. In

particular, x erf(x/µ) is proved to be a better smooth approximation for |x| than x tanh(x/µ) and
√

x2 + µ
with respect to accuracy. To accomplish our goal we also provide sharp hyperbolic bounds for the error
function.
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1. Introduction

An S-shaped function which usually monotonically increases on R (the set of all real num-
bers) and has finite limits as x → ±∞ is known as a sigmoid function. Rigorously, a sig-
moid function is bounded and differentiable real function that is defined for all real input
values and has a non-negative derivative at each point[4]. It has bell-shaped first derivative.
A sigmoid function is constrained by two parallel and horizontal asymptotes. Some exam-
ples of sigmoid functions include half-logistic function, i.e. (1 − e−x)/(1 + e−x) = 2[1/(1 +
e−x) − 1/2], tanh(x), tan−1 x, Gudermannian function, i.e. gd(x), error function, i.e. erf(x),
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x(1 + x2)−1/2 etc. Sigmoid functions have many applications including the one in artificial
neural networks. The one-sided Hausdorff distance [10] between sign(x) and half-logistic
function with ”polynomial variable transfer” is considered in [6, 7]. We describe below some
of these sigmoid functions.

The Gudermannian function is defined as follows:

gd(x) =
∫ x

0

1

cosh(t)
dt.

Alternatively,

gd(x) = sin−1(tanh(x)) = tan−1(sinh(x)).

The error function or Gaussian error function is defined as follows:

erf(x) =
2√
π

∫ x

0
e−t2

dt.

The Gudermannian and error functions are special functions and they have many applica-
tions in mathematics and applied sciences. All the above mentioned sigmoid functions are
differentiable and their limits as x → ±∞ are listed below:

lim
x→−∞

2

[

1

1 + e−x
− 1

2

]

= −1, lim
x→+∞

2

[

1

1 + e−x
− 1

2

]

= 1,

lim
x→−∞

tanh(x) = −1, lim
x→+∞

tanh(x) = 1,

lim
x→−∞

tan−1(x) = −π

2
, lim

x→+∞

tan−1(x) =
π

2
,

lim
x→−∞

gd(x) = −π

2
, lim

x→+∞

gd(x) =
π

2
,

lim
x→−∞

erf(x) = −1, lim
x→+∞

erf(x) = 1,

lim
x→−∞

x√
1 + x2

= −1, lim
x→+∞

x√
1 + x2

= 1.

Due to these properties, it is easy to see that the functions 2x
[

1/(1 + e−x/µ)− 1/2
]

,

x tanh(x/µ), (2/π)x tan−1(x/µ), (2/π)x gd(x/µ), x erf(x/µ) and x2(x2 + µ2)−1/2 as µ → 0

can be used as smooth approximations for the absolute function |x|. In [8],
√

x2 + µ is proved
to be a computationally efficient smooth approximation of |x| since it involves less number
of algebraic operations. In spite of being this, as far as accuracy is concerned some of the
above-mentioned functions are better transcendental approximations to |x|. In [2], x tanh(x/µ)
was proposed by first author and it is recently proved [3] that this approximation is better than
√

x2 + µ in terms of accuracy by first author and B. K. Khairnar. One of the users of Math-
ematics Stack Exchange [9] suggested x erf(x/µ) as a smooth approximation to |x|. However,
that user did not give the logical proof or did not compare this approximation with existing

ones. In fact, it is better than
√

x2 + µ or
√

x2 + µ2 in terms of accuracy; but it is not proved
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at [9]. To prove this fact is the main goal of this paper. We shall prove this thing by showing
x erf(x/µ) to be better than x tanh(x/µ). We avoid logical proofs for other approximations
presented above since they are not as good as x tanh(x/µ) or x erf(x/µ) for accuracy which
can be seen in the figures given at the end of this article.

The rest of the paper is organized in the following manner. Section 2 presents the main
results, with proofs. Two tight approximations are then compared numerically and graphically
in Section 3. A conclusion is given in Section 4.

2. Main Results with Proofs

We need the following lemmas to prove our main result.

Lemma 2.1. (l’Hôpital’s Rule of Monotonicity [1]): Let f , g : [c, d] → R be two continuous functions
which are differentiable on (c, d) and g′ 6= 0 in (c, d). If f ′(x)/g′(x) is increasing (or decreasing)
on (c, d), then the functions ( f (x)− f (c))/(g(x)− g(c)) and ( f (x)− f (d))/(g(x)− g(d)) are also
increasing (or decreasing) on (c, d). If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the
conclusion is also strict.

Lemma 2.2. For x ∈ R, the following inequality holds:

x2 e−x2
6

1

e
.

Proof: Suppose that

h(x) = x2 e−x2
.

By differentiation we get

h′(x) = 2x e−x2
(1 − x2).

This implies x = 0, ±1 are the critical points for h(x). Again differentiation gives

h′′(x) = 2e−x2
(1 − x2)− 4x2 e−x2

(2 − x2)

Hence,

h′′(0) = 2, h′′(−1) = −4

e
, h′′(1) = −4

e
.

By second derivative test, h(x) has minima at x = 0 and maxima at x = ±1. Therefore 0 is the
minimum value and 1/e is the maximum value of h(x), ending the proof of Lemma 2.2.

Lemma 2.3. For x ∈ R − {0}, one has

|erf(x)|+ α

|x| > 1, (2.1)

with α = 2/(e
√

π) ≈ 0.4151075.

Proof: We consider two cases depending on the sign of x as follows:
Case(1): For x > 0, let us consider the function

f (x) = erf(x) +
α

x
− 1
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which on differentiation gives

f ′(x) =
2√
π

e−x2 − α

x2
=

2√
π

[

e−x2 − 1

ex2

]

.

By Lemma 2.2, f ′(x) 6 0 and hence f (x) is decreasing on (0,+∞). So, for any x > 0, f (x) >
f (+∞

−), i.e.

erf(x) +
α

x
> 1.

Case(2): For x < 0 let us consider the function g(x) = erf(x) + α/x + 1. As in Case(1),
g′(x) 6 0 and is decreasing in (−∞, 0). Hence, for any x < 0, g(x) < g(−∞

+). So we get

erf(x) +
α

x
< −1,

which completes the proof of Lemma 2.3.

Proposition 2.1. Let µ > 0 and α = 2/(e
√

π) ≈ 0.4151075. For x ∈ R, the approximation
F(x) = x erf(x/µ) to |x| satisfies

F′(x) =
2x√
π µ

e
− x2

µ2 +
1

x
F(x)

and

||x| − F(x)| < αµ. (2.2)

Proof: We have

F′(x) =
2x√
π µ

e
− x2

µ2 + erf

(

x

µ

)

=
2x√
π µ

e
− x2

µ2 +
1

x
F(x).

For x = 0 the inequality (2.2) is obvious. For x 6= 0, it follows from Lemma 2.3 that

||x| − F(x)| =
∣

∣

∣

∣

|x| −
∣

∣

∣

∣

x erf

(

x

µ

)∣

∣

∣

∣

∣

∣

∣

∣

= |x|
∣

∣

∣

∣

1 −
∣

∣

∣

∣

erf

(

x

µ

)∣

∣

∣

∣

∣

∣

∣

∣

= |x|
[

1 −
∣

∣

∣

∣

erf

(

x

µ

)∣

∣

∣

∣

]

< |x| α
∣

∣

∣

µ

x

∣

∣

∣
= αµ.

The proof of Proposition 2.1 is completed.

In the following Proposition, we give sharp bounds for error function erf(x) implying that
the present approximation to |x| is better than x tanh(x/µ).

Proposition 2.2. For x > 0, it is true that

tanh(x) < erf(x) <
2√
π

tanh(x). (2.3)



16 Y. J. BAGUL AND C. CHESNEAU

Proof: Consider the function

G(x) =
erf(x)

tanh(x)
=

G1(x)

G2(x)
,

where G1(x) = erf(x) and G2(x) = tanh(x) with G1(0) = G2(0) = 0. On differentiating we get

G′
1(x)

G′
2(x)

=
2√
π

e−x2
cosh2(x) =

2√
π

λ(x),

where λ(x) = e−x2
cosh2(x), derivative of which is given by

λ′(x) = 2e−x2
cosh(x) [sinh(x)− x cosh(x)] .

Since sinh(x)/x < cosh(x) (see, for instance, [5]), we have λ′(x) < 0 and hence λ(x) is de-
creasing in (0,+∞). By Lemma 2.1, G(x) is also decreasing in (0,+∞). So, for x > 0,

G(0+) > G(x) > G(+∞
−).

It is easy to evaluate G(0+) = 2/
√

π by l’Hospital’s rule and G(+∞
−) = 1. This ends the

proof of Proposition 2.2.

3. Comparison between two approximations

By virtue of Proposition 2.2, for all x ∈ R and µ > 0, we get the following chain of inequali-
ties:

x tanh

(

x

µ

)

< x erf

(

x

µ

)

< |x| <
√

x2 + µ. (3.1)

Again in [3], it is proved that x tanh(x/µ) is better than
√

x2 + µ or
√

x2 + µ2 with respect

to accuracy. Consequently, x erf(x/µ) is better than
√

x2 + µ or
√

x2 + µ2 in the same regard.
Numerical and graphical studies support the theory.

In Table 1, we compare numerically some of these approximations by investigating global
L2 error which is given by

e( f ) =
∫ +∞

−∞

[|x| − f (x)]2 dx,

where f (x) denotes an approximation to |x|. With this criterion, a lower e( f ) value indicates
a better approximation. Table 1 indicates that x erf(x/µ) is the best of the considered approx-
imations (for µ = 0.1 and µ = 0.01, but other values can be considered for µ, with the same
conclusion).
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Table 1. Global L2 errors e( f ) for the functions f (x).

µ = 0.1

f (x) 2x

[

1

1 + e−x/µ
− 1

2

]

2

π
x gd

(

x

µ

)

x tanh

(

x

µ

)

x erf

(

x

µ

)

e( f ) ≈ 0.00126521 ≈ 0.000754617 ≈ 0.000158151 ≈ 0.000087349

µ = 0.01

f (x) 2x

[

1

1 + e−x/µ
− 1

2

]

2

π
x gd

(

x

µ

)

x tanh

(

x

µ

)

x erf

(

x

µ

)

e( f ) ≈ 1.26521 × 10−6 ≈ 7.54617 × 10−7 ≈ 1.58151 × 10−7 ≈ 8.7349 × 10−8

By considering the setting of Table 1, Figures 1 and 2 also support our theoretical findings.
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Figure 1. Graphs of the functions in Table 1 with µ = 0.1 for x ∈ (−0.2, 0.2).
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Figure 2. Graphs of the functions in Table 1 with µ = 0.01 for x ∈ (−0.04, 0.04).

4. Conclusion

Sigmoid functions can be used for smooth approximations of |x|. In particular, x erf(x/µ) is
proved to be a better smooth approximation for |x| with respect to accuracy. Our main results
can be used successfully in other areas of scientific knowledge.
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