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Abstract: Human beings usually rely on communication to express their feeling and ideas and to solve
disputes among themselves. A major component required for effective communication is language.
Language can occur in different forms, including written symbols, gestures, and vocalizations. It is
usually essential for all of the communicating parties to be fully conversant with a common language.
However, to date this has not been the case between speech-impaired people who use sign language
and people who use spoken languages. A number of different studies have pointed out a significant
gaps between these two groups which can limit the ease of communication. Therefore, this study
aims to develop an efficient deep learning model that can be used to predict British sign language in
an attempt to narrow this communication gap between speech-impaired and non-speech-impaired
people in the community. Two models were developed in this research, CNN and LSTM, and their
performance was evaluated using a multi-class confusion matrix. The CNN model emerged with the
highest performance, attaining training and testing accuracies of 98.8% and 97.4%, respectively. In
addition, the model achieved average weighted precession and recall of 97% and 96%, respectively.
On the other hand, the LSTM model’s performance was quite poor, with the maximum training
and testing performance accuracies achieved being 49.4% and 48.7%, respectively. Our research
concluded that the CNN model was the best for recognizing and determining British sign language.

Keywords: CNN; LSTM; confusion matrix; british sign language; precision; recall

1. Introduction
1.1. Background

Human beings have long found it necessary to solve issues that threaten their survival
or well-being. As a result, there has always been a need for them to communicate. A
significant component required for successful communication is language. Language has
been used for a very long time in the expression of ideas, feelings, and emotions [1]. This
can be accomplished using written symbols, gestures, or vocalizations. Although the use
of language for communication has helped solve problems, it often faces challenges as
well. For instance, effective communication generally requires that all involved parties
understand and respond to at least one common language [2]. This is not always the case;
in specific instances, communicating parties may rely on different written symbolic, sign,
or vocal languages. Alternatively, people may have limitations in terms of not being able to
read or understand written symbols or vocals, and can be taught to communicate using
these methods.

In other cases, human beings may be born with or develop a disability that may limit
them from sharing certain forms of language. For instance, people with hearing impairment
and people who cannot physically speak due solely to certain disabilities may be limited
to the use of gestures and sign language. However, it should be noted that the use of
specific gestures or sign languages is not universal, and varies from one region to another
and among different ethnic communities worldwide [3]. In addition, learning multiple
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sign languages is complex and may not be possible for a majority of the public [4]. It is
impossible for people with speech impairment to learn spoken language; this means that it
is a problem for hearing-impaired people both to communicate with other people who are
not conversant with sign language and to communicate among themselves.

Human beings have adopted various methods to solve this challenge. For instance,
human sign language translators are commonly used in public places and TV channels
to communicate spoken messages in a form that people living with these disabilities can
understand [5]. However, in certain cases human sign language translators may not be
available, or may not be efficient and reliable. In such cases there is a need to adopt more
reliable means of translating sign language into a written or spoken language.

The rapid increase in the use of computers and artificial intelligence [6–8] has made
it easier to solve cognitive problems [9], including those involved in sign languages and
their limitations [10]. This is mainly thanks to the use of digital recognition models that can
detect and convert different sign languages and convert them to a form that the public can
understand [3]. The application of deep learning to train computer systems to recognize,
interpret and, translate signs into written language is one of the most significant trending
issues in artificial intelligence [11]. Therefore, this dissertation will consider the application
of LSTM and CNN models in sign language and human action detection using deep
learning to close the language gap between the deaf and the public. Much progress has
been witnessed in Human Object Interaction, which is used to recognise the verbs in which
the model is trained on entities of humans and Objects for each, such as <Human, eat,
apple>. A cascaded model, a collection of Relation-Ranking and Relation-Classification
models, has been developed to collect human semantics and facial patterns and to rank
them using a Relation-Ranking Model (RRM). Top ranks from the RRM model are fed to the
RCM model to predict the verbs, which can be the trained labels [12]. Another approach to
tackling human semantics, an instance human-aware model, has been developed to parse
the human semantics and jointly estimate human poses [13].

1.2. Problem Statement

Scientists, researchers, and scholars are responsible for propelling humanity by solving
problems, eliminating barriers to problem-solving, and promoting cohesion and devel-
opment in society. A significant problem or barrier to problem-solving lies in ineffective
communication and high communication barriers. This problem exists between speech im-
paired people, who can only use sign language, and other community members who cannot
understand sign language. The same issue exists with respect to hearing-impaired people
from different regions in the world which use foreign sign languages. This communication
barrier problem commonly occurs in public institutions when speech-impaired people
seek services from a public service worker unfamiliar with a particular sign language. It
limits speech impaired people from working in different places to communicating with sign
language interpreters who are not conversant. This limits speech-impaired people from
accessing or offering public services and from working in various industrial sectors. While
efforts have been made to solve this challenge, for example, the use of human translators,
they are not very efficient. The advancement of technology has made it possible to use more
advanced systems such as machine learning. This includes the use of special algorithms
that facilitate sign language translation into written text that is universally understandable.
However, research remains in progress, and it has not been established which model can
best solve the problem.

Therefore, there is a need to develop and compare the performance of different ma-
chine learning models in the recognition and translation of sign language and human
actions for effective communication. This is important because it can enhance the effective-
ness of communication between speech-impaired people, regular community members,
and those who use different sign languages. It can enable speech-impaired people to enjoy
equal opportunities for work in public institutions and various industrial sectors with other
people without this disability.
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1.3. Motivation of the Study

Effective communication is a significant component that we as human beings require
to avoid and solve problems. In most cases, inability to communicate properly is due to
lack of common language between the communicating parties, which is an essential tool
in effective communication [2]. This problem has existed for many years, especially with
respect to the need for people from the active speech-impaired (dumb and deaf) community
to communicate with other members of society. Although people can use gestures to
solve this problem, it is often not practical and a lot of time is wasted conveying a simple
message [14]. This happens in many cases and in many different fields, inconveniencing
people from the active speech-impaired community. For instance, people may be unable
to communicate messages to the authorities [15]. In other cases, they may be hindered
from participating in various economic activities such as agriculture despite having all
of the necessary skills and abilities due to their inability to communicate effectively with
others [15].

A shared sign language (as opposed to communicating through gestures) could be the
best way to solve this problem, as it is one of the most common tools used to this end. How-
ever, over 120 sign languages are used worldwide, and it is not straightforward for society
at large to learn these languages and communicate effectively using them [4]. Researchers
and engineers have tried to develop sign language recognition systems to narrow this gap,
for example, a conduct-based system known as a glove sensor [16]; however, these systems
require hardware setups that are complex and relatively expensive, and therefore they are
not preferred [15]. Researchers and engineers have started applying vision-based systems,
which are relatively cheaper as they only use cameras [17]. Although many researchers
have been venturing into this field, a complete solution to this problem has not yet been
achieved [16]. Therefore, this research seeks to develop an efficient deep learning model
able to detect and understand British sign language as well as to determine which learning
model among different alternatives can best perform sign language prediction.

1.4. Scope of the Study

The main goal of this research is to develop an efficient deep learning model that can
be used to detect, understand, and translate British sign language to written text. Two
models were developed, an LSTM [18] model and a CNN model [19]. Their performance
was evaluated and the results compared to determine the best model. Two approaches
were applied in developing the models, differing based on the type of data used. The
first approach involved importing pre-processed data from Kaggle, a platform where
experiment datasets are freely available to the public [20]. The second approach involved
collecting data from a computer webcam using a computer vision algorithm and extracting
key points, including hands, face, and pose. As a sequence, these key points can then be
passed along to detect and decode actions and sign language. To achieve this, the model’s
artifact provides an “h5” weight file for a model that is then applied in deploying and
testing the model using images of different sign languages and producing a text output on
a webcam. To evaluate the objects of this research, we applied multi-labelled classification.
This supervised learning prototype involves assigning each data instance several labels
from a predefined set of tags. This trending approach is used where the available dataset is
too complex for each instance to have a specific class.

2. Literature Review

This section contains information obtained from the literature about previous research
related to applying deep learning models in the context of sign language and human action
recognition. The chapter is divided into section dealing with an overview of sign language
and human recognition, the need for sign language and human action recognition, related
works, research gaps, and the conceptual framework. The related works section contains
existing information about the available alternate models used for sign language and
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human action recognition as well as a critical analysis of their applications and limitations
and recommendations as to possible future studies.

2.1. Overview of Sign Language and Human Recognition

Sign language recognition, referred to as SLR, can be defined as the detection and
systematic conversion of various sign language gestures to a language that the general
public can understand, such as words, symbols, or speech [15]. These sign language
gestures consist of hand movements, facial expressions, and even the movement of the
entire body. Movements are structured in different forms with different meanings to
achieve all of the same goals achieved by standard active spoken language. These goals are
the expression of personal feelings, desires, opinions, and ideas [21]. On the other hand,
human action recognition involves applying data sensors in order to predict a person’s
movements as well as processing certain important inferences [22]. Integrating these actions
and different sign language gestures with human–computer interface models contributes to
the research around human action recognition. The human–computer interface approaches
used in sign language recognition generally consist of either conduct-based or vision-
based systems. In the former, the person performing the sign language gesture is usually
physically using a human–computer interface device that captures their actions and sends
them to the other hardware setups. Using a special algorithm housed in the setup, the
received signals are then converted into the desired output. An excellent example of
conduct-based sign language recognition is the sensor glove [17]. In vision-based systems,
on the other hand, the person performing the sign language recognition is not in physical
contact with the human–computer interface data capture device. Instead, their actions
are captured using a pre-programmed camera, for instance, a computer’s webcam. These
data are then processed using a special algorithm to obtain the desired output form and
the results are projected by the respective output device. A good example of the above
approach is the application of deep learning, which makes human action recognition more
suitable and appealing [17]. It should be noted that while sign language recognition is a
relatively complex subdiscipline of data science, there are numerous studies have been
successful in achieving more efficient sign language recognition prototypes.

2.2. Need for Human Action and Sign Language Recognition

Human actions and sign language recognition are among the trending issues in data
science and artificial intelligence, and have many applications [23]. The initial and most
prioritized goal [15] for the development of human action recognition is to narrow the
communication gap between the active speech-impaired community and the general
public [24]. Action recognition is to narrow the communication gap between the active
speech impaired community and the regular public members [25]. This will enable different
community members to live in harmony thanks to the greater ease of sharing feelings and
personal expression. The narrowing of this gap will be very useful in helping more people to
better share their ideas and knowledge, aiding different production sectors such as industry
and agriculture [15]. The application of sign language and human action recognition has
found many applications in different areas over time. For instance, the technology can now
be applied in public places such as airports, churches, and hotels. Educational institutions
can use this technology to facilitate learning activities and interactions between hearing-
impaired and visually impaired students [26]. In addition, sign language and human action
recognition have been applied in computer and mobile phones, gaming interfaces, machine
control, robotics, and televisions [27]. Sign language and human action recognition can be
applied for easy interaction between children and computers, development of recognizable
forensic identification, and video conferencing communication [28]. This shows the need
for the continuation of research to advance human action and sign language recognition.
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2.3. Related Works

Several scholars, scientists, and engineers have conducted various kinds of research
regarding human action and sign language recognition. Although few have examined
conduct-based models, the vision-based approach has been considered by many researchers
due to its efficiency and cost. In this section, several pieces of research related to sign lan-
guage and human action recognition are reviewed and a critical analysis conducted of the
proposed or tested models in the aforementioned studies. This will help to develop and
explain the specific research gap on which the present research is focused. In the effort to
narrow the communication gap between the deaf community and the hearing community,
different solutions such as hearing aids have long been the primary consideration [21].
Over time, two main approaches have been applied to the development of sign language
and human action recognition models, namely, the conduct-based and the vision-based
model [16]. In the conduct-based model, human actions and sign language gestures are
captured using hardware devices or sensors that are in contact with the person communi-
cating. The capture signals are sent to a computer or complex of computer hardware setups
and then decoded using a special predefined algorithm. An excellent example of these
models is the glove-based device developed over three decades ago [16]. This device has a
number of drawbacks. For instance, the translation accuracy is very low, as the sensor gives
incorrect predictions over time. The wearable devices were not personalized for specific
users; rather, they detected gestures and converted to text for specific predefined settings.
They did not have a mechanism for storing sensor values for future use in extended data
analysis [16]. Using similar principles and applying arterial neural networks, an improved
conduct-based sign language prediction model was developed that translated the captured
gestures to speech [16]. This model used flex sensors attached to a special glove that
detected the wearer’s gestures. The flex sensors were set to adjust several resistance values
using the angles produced by specific flex actions, altering the voltage. Through several
mechanisms, different values were displayed [16]. This improved model was found to be
susceptible to various errors. The model seems too complex to develop, as different flex
angle for the same action may vary from person to person and even for one person due
to various factors. It has been noted by different scholars, scientists, and engineers that
conduct-based models usually apply relatively expensive and complex hardware setups.
According to many scholars, vision-based models seem to be a more reliable, relatively
inexpensive, and efficient approach that best fits sign language recognition [17]. In this
approach, sign language gestures are captured using a camera mounted on a computer,
such as a webcam, then decoded using machine learning principles. Different scholars,
scientists, and engineers have explored several vision-based models to establish the most
reliable and efficient model. A vision-based real-time sign language recognition system
was proposed for translating southern Indian sign language. This device has a couple of
drawbacks. For instance, the translation accuracy is very low as the sensor gives wrong
predictions with time. The wearable devices were not personalized for specific users but
rather detected gestures and converted to text for specific predefined settings. The dives
also did not have a mechanism for storing sensor values that could be used for extended
data analysis [24]. Using similar principles and applying arterial neural networks, an
improved conduct-based sign language prediction that translated the captured gestures
to speech [24]. This model used some flex sensors attached to a special glove that was
to be worn by the person communicating to detect the gestures. The flex sensors were
set to adjust some resistance values by the angles produced for specific flex actions, al-
tering the voltage.Through some mechanisms, different values were displayed [24]. This
improved model was also found to be susceptible to various errors. The model also seems
too complex to develop as the different flex angle for the same action may vary from person
to person and for one person due to some factors. It has also been noted by different
scholars, scientists, and engineers that the conduct-based models usually apply relatively
expensive and too complex hardware setups. According to many scholars, vision-based
models seem to be a more reliable, relatively inexpensive, and efficient approach that best
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fits sign language recognition [17,29]. In this approach, sign language gestures are captured
using a camera mounted on a computer, such as a webcam, then decoded using machine
learning principles. Different scholars, scientists, and engineers have explored several
vision-based models to establish the most reliable and efficient model. A vision-based
real-time sign language recognition system was proposed for translating southern Indian
sign language [30], while a finger spelling method was developed in [19]. The authors
in [30] applied 32 signs representing finger positions defined Using “UP” and “DOWN”
binary representation. Using fingertip positions, the sign language captured through the
images was converted into text. A single user was used in both the development and testing
of the model. The proposed model attained a 98.125 accuracy with 50% of the 320 images
used in training being tested. The authors suggested that more accurate measurement of
angular movements of different gestures could be applied to improve the accuracy of their
system. Another hand gesture sign language recognition study used a hidden Markov
model in context-sensitive research [31]. The Hidden Markov is a machine learning model
used for speech recognition and task classification which offers solutions to problems
involving evaluation of data, decoding, and learning by determining the most appropriate
classifications. From their research, the authors concluded that the hidden Markov model
had better performance than the previous models due to their higher statistical accuracy
and the ease of performing further modification. The authors’ hidden Markov model
easily accommodated new posture classes and removed existing classes while retaining the
required ones. The model was able to apply Self-Organizing Feature Maps (SOFM) and a
Single Recurrent Network (SNR). The SOFM was used as feature extraction for continuous
HM to transform input signals into low-dimensional representation for easy modelling.
The SNR was then used for segmentation of constant SLR to inform the transformation of
the presented SOFM. Their model attained an 82.9%-word recognition rate and an 86.63%
continuous signer-independent sign language recognition rate. The authors recommended
further research on the effective extraction of features from different signers, general model
compact training sentences, extraction and minimum definition of units in sign language
recognition, use of statistical sign language models, and utilization of automatic sign lan-
guage parameters. Another vision-based sign language recognition system was developed
for automatic translation of Arabic sign language from signs to text. The system consisted
of four main stages: segmentation of the hand by use of a dynamic skin detector, tracking,
extraction of features, and classification of data. The results obtained from the experiment
showed a 97% signer-independent recognition rate and outperformed the pre-existing
models by the accurate specification of the hand and heads positions, respectively. Deep
learning CNN has nowadays gained much popularity in data science research, including
the application of vision-based hand gesture recognition for sign language interpretation
using deep learning [27]. In one study, a Deep learning-based CNN that was specifically
designed for sign language recognition was used. VGG-11 and VGG-16 were trained and
tested in the research for the evaluation of model performance. The authors used a sizeable
Indian sign language collection with 2150 images obtained using an RGB camera and an
ASL data set. The Indian sign language model obtained 99.96% accuracy, while the ASL
model obtained 100% accuracy. Other efficiency tests apart from accuracy were conducted
on the model to compare the models with the most advanced approaches. The findings
from the tests showed that the study model performed better than the existing models and
showed more significant potential for improvement than the rest. However, they= authors
acknowledged the existence of several errors and the possibility of failure with different
regional sign languages. Therefore, they proposed that future research focus on optimizing
hand gesture recognition as well as on additional comparisons and improvements to the
architecture intended to minimize errors.

Sign language recognition research was conducted by [32] to eliminate the communi-
cation barrier between the deaf community and the hearing community. Microsoft Kinect
CNN models using GPU acceleration were applied in this research. Feature construction
was automated using CNN models [32]. Using the model, 20 different Italian sign language
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gestures were recognized with high accuracy. Cross-validation accuracy for the predic-
tive model was 91.7% based on general user surrounding that did not occur during the
training. The model achieved a score of 0.789 on the Jaccard index during the Chalearn
spotting competition in 2014, which involved the detection of people’s gestures. The study
concluded that CNN could perform accurately when using indifferent sign language recog-
nition that has some users and surroundings uninvolved in training. The authors therefore
recommended the use of CNN models for automatic sign language recognition. Similarly,
a CNN was used in the development of Bhutanese sign language digits [4]. This model
used about 20,000 sign images for Bhutanese sign language recognition of ten static digits
obtained voluntarily from a different participant. The research involved a comparison of
other sign languages with the proposed CNN model. From the comparison, their proposed
model attained a training accuracy of 97.62% for testing and 99.94 for training accuracy.
The authors evaluated the model’s precision, Fl-score, and recall and concluded that the
misclassification and testing accuracies depended on the number of images in a data set.
It was possible to further modify the accuracy using transfer learnings such as ResNet,
MobileNet, and VGG16. The authors’ recommendation for future research was that the dy-
namic gestures and alphabets of the Bhutanese sign language be studied further. Likewise,
Ref. [27] developed a sign language recognition model using CNN to translate Indian sign
Language to text. This research was termed the first comprehensive analysis of Indian sign
language. The study proposed using a three-layer CNN Model which was trained from an
absolute initial machine learning state and attained a recognition accuracy of 99.8% on the
Indian sign language numerals and 97.8% on the alphabet. The recommendations from
the research were that further studies focus on using comparative analysis for the selection
of suitable sign language recognition models. Finally, an Arabic sign language classifi-
cation system was proposed by [25]; their proposed model consisted of a Convolutional
Neural Network integrated with an attention mechanism for retrieving spatial features
and bio-inspired deep learning with Long Short-Term Memory (BI-LSTM). The BI-LSTM
was used for temporal feature extraction. The testing of this model involved using highly
variable characteristics such as variable lighting conditions, different clothing, and different
distances from the camera. The model that emerged consumed less processing time than the
alternatives thanks to the processing of fewer deep learning layers and fewer parameters.
Future research recommendations from the authors included testing other domains such as
EEG and image classification using their proposed models.The low thermal image dataset,
collected from multiple authors with 32 × 32 resolution, has been updated to correspond
to 0–9 sign language digits using a high thermal image captured using a light-independent
thermal camera that produces an array of 19,200 pixels with 160 × 20 resolution [33]. The
employment of CNNs and thermal infrared images for hand 340 gesture recognition is
tackled in [34].

2.4. Research Gap

One of the main points gathered from the above research is that conduct-based sign
language recognition approaches are not preferable. This is because they require relatively
complex hardware setups which are rather expensive [17]. This explains why the majority of
researchers have been inclined towards vision-based models. Although many studies have
been conducted in this field, it is evident that the development of sign language recognition
models remains a complex field of research. The most challenging element is developing a
suitable model for solving continuous sign problems that are signer-independent [35,36].
There is considerable variation in duration, speed, and background from one signer to
another, which poses a challenge to the development of a model with high accuracy and
that is continuous from one model to another [25]. Different researchers have provided
various recommendations for further research into CNN-related models. However, an-
other challenging aspect lies in determining the best model to adopt and improve, as the
interdependence of different models with respect to the optimization of tuning parameters
must be considered [27]. From the above literature review, it is evident that most of the
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CNN models to date have been developed for Indian, Arabic, and Chinese sign languages,
among others. However, there has not been much research on British sign language recog-
nition development using the CNN and LSTM models. There are no studies comparing
the performance of LSTM and CNN models for British Sign language recognition. This
shows a need for study on ways to increase the accuracy of future models by controlling the
affecting parameters as well as on developing a reliable evaluation method for determining
the most effective model. Therefore, this research focuses on developing a system for
British sign language recognition that applies CNN and LSTM while optimizing accuracy
via control of the affecting parameters. The study then compares the performance of the
two models using the appropriate mechanism.

2.5. Conceptual Framework

This section provides an overview of the approaches applied in this research to solve
the problem of sign language recognition. In addition, the variables considered in this
research are identified and their expected relationships are established.

2.5.1. Overview of The Approaches

The two main approaches considered in this research include the use of the CNN and
LSTM models [37,38]. The CNN model is a significant part of the Neural network used to
recognize and classify images during the detection and recognition of signs and faces [9].
CNN models are made up of neurons that have learnable weights as well as biases. Specific
neurons receive input data and weighted sums are taken over, activating certain functions
and generating certain outputs in response to actions. CNN models are commonly applied
in multi-channelled images. These models mix the red, blue, and green colours of an image
and generate a simple colour spectrum perceivable by the human eye. The CNN has three
main layers to accomplish this operation, namely, the convolutional, action, and pooling
layers. The convolutional layer applies kernels to capture the characteristic product of
filters in the images and sums the values for every action slide. It usually detects useful
features such as corners, edges, and intensity lines [39]. The action layer then applies
a Rectified Linear Unit to enhance the non-linearity from the initial step. The pooling
layer is then applied to the down sample feature and disapplied in all the 3D volumes. A
conceptual framework showing the most representative layers of Convolutional Neural
Networks is presented in Figure 1.

Input

Convolution Layer

Pooling Layer

Convolution Layer

Pooling Layer

Convolution Layer

Pooling Layer

Fully Connected 
Layer

Output

Figure 1. CNN conceptual model (Retrieved from [40]).
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Unlike a CNN, an LSTM is a recurrent neural network used to process and predict
particular data sequences. The main difference between an LSTM and a CNN is that
the latter is applied to evaluate the spatial correlation of the data. The LSTM consists of
neurons that feed themselves without a predeceasing stage being in place as the input for
the following procedure in the same sequence [39]. Another distinguishable feature of an
LSTM model is that it possesses a forget gate that enables it to accommodate new user data
and forget unwanted data while retaining any required data.

2.5.2. Variables

The leading independent variables in this research were the LSTM models and CNN
models used for sign language and human action recognition. The different models were
trained and tested to recognize different sign language and human action gestures, and the
results were compared between the two. The dependent variables under comparison were
the speed and accuracy of the different sign language and human detection models. The
relationship between the variables is shown below in Figure 2.

Figure 2. Conceptual Framework.

3. Research Methods and Planning

This section provides a more detailed discussion and analysis of the CNN and LSTM
models’ respective architectures, experiment designs, and required data. Further discussion
of the method of implementation and evaluation of the two models is provided as well for
comparative purposes.

3.1. Methodology

The proposed research experiment was aimed at developing a more efficient deep
learning model for accurate detection, decoding, and translation of British sign language
into a text message format. The proposed model uses a specially coded computer vision
algorithm to detect sign language gestures from a suitable source. The collected data Key
points are then processed in sequence for action detection and decoding of British sign
language. Two models were be developed, namely, a CNN and an LSTM sign recognition
model. The two models were then evaluated using a multi-labelled classification model, a
supervised learning prototype in which data are assigned various labels from a predefined
set of labels.

3.2. Architecture of the Proposed Models
3.2.1. CNN Architecture

A CNN deep learning model is designed to process image inputs specifically. There-
fore, they have a specific architecture that is composed of two major blocks. The first block
mainly serves as a feature extractor; therefore, it is considered the distinctive feature of the
CNN [41]. The extraction of the image features is achieved by matching templates using a
convolutional filtering process. The image is filtered by the first CNN layer using several
convolution filters, and the return feature is resized or normalized using the activation
function. This procedure can be repeated. The obtained feature maps can be filtered with
Kernels to produce new feature maps for normalization and resizing, and the process is
repeated several times. The values of the final feature maps are sequenced into a vector
which defines the output of the first block. This output of the first block is the input of the



J. Imaging 2022, 8, 192 10 of 34

second. Figure 3 below shows a diagrammatic representation of this, with the first CNN
architecture block designated by the circled section on the left side.

224 x 224 x 3 224 x 224 x 64

112 x 112 x 128

56 x 56 x 256

28 x 28 x 512
14 x 14 x 512 1 x 1 x 4096 1 x 1 x 1000

Softmax

Fully connected+ReLU

Max pooling

Convolution+ReLU

7 x 7 x 512

Figure 3. Above a graphical depiction of Convolutional Layer + ReLU and Max Pooling is given
(Retrieved from [42]).

The second block bock appears at the end of the CNN model, as in all classification
neural networks. Using several activation functions and linear combinations, the values of
the input vectors are transformed to a new vector as the output. The last vector is made
up of multiple elements such as classes. All the elements range from 0–1 (where element
“i” is a probable representation that the images lie under class “i”), and their total sum
is 1. The probabilities are calculated based on the final layer of this block using a logistic
function or SoftMax functions, which are binary and multi-class classifications, respectively.
A back-propagation gradient is used to determine the layer’s parameters, and cross-entropy
is reduced during the training stage. Figure 4 below shows a diagrammatic representation
of the second CNN architecture block, designated by the circled section on the right side.

224 x 224 x 3 224 x 224 x 64

112 x 112 x 128

56 x 56 x 256

28 x 28 x 512
14 x 14 x 512 1 x 1 x 4096 1 x 1 x 1000

Softmax

Fully connected+ReLU

Max pooling

Convolution+ReLU

7 x 7 x 512

Figure 4. In this picture, the latest four layers of the CNN are shown, respectively, fully con-
nected+ReLU layers and Softmax Activation Function. (Retrieved from [42]).

In addition to the architectural blocks, the CNN has three layers, namely, the con-
volutional, pooling, and the ReLu (Rectified Linear Units) layers. The purpose of the
convolutional layer, which is the first layer, is to detect the sets’ features present in the
input images. This is achieved through filtering, which involves dragging a window that
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represents images’ features and calculating the convolutional products between them. At
this stage, the feature are termed as filters, as the two are now seen to be equal. Several
images are received by the convolutional layer and their convolutions are calculated using
each filter that correspond to the required features in the images. Feature maps (image,
filter) are then obtained; these represent the location of the features in a particular image.
It should be noted that high coordinate values indicate a high degree of resemblance of
image and features. Figure 5 below is a representation of the convolutional layer.

The pooling layer is the second layer in the CNN model; its function is to receive
various feature maps of images and reduce their sizes while maintaining valuable charac-
teristics. This is achieved by cutting the images into smaller regular cells to minimize infor-
mation losses while retaining the maximum values within each cell; 3 × 3 and 2 × 2 cells
are the most common type that either overlap or do not overlap. The obtained output
is usually the same number as that of the input feature maps except with smaller sizes.
The main purpose of pooling is to improve network efficiency and avoid overlearning by
reducing the number of parameters and calculations present. Finally, the ReLu correction
layer is an activation function that replaces negative values in input feature maps with
zeros. It is a nonlinear function obtained by ReLu (x) = max(0,x) and diagrammatically
represented as:

Convolution

Center element of the kernel is 
placed over the source pixel.
The source pixel is then 
replaced with a weighted sum 
of itself and nearby pixels.

0 1 2 0 1

1 0 1 0 0

0 1 0 2 1

0 2 0 1 2

1 1 2 0 1

1 1 1

1 0 1

1 1 1

Convolution Kernel

7

Source Pixel

New Pixel Value

Figure 5. Above, the so-called convolutional layer is broken down into its elementary components.

CNN models have another layer, known as the fully connected layer; although not a
CNN characteristic, this layer produces input vectors using appropriate linear combinations
and activation functions. This layer is known for the classification of input images into the
network. It calculates probabilities by multiplying elements by specific weights to make
sums. An activation function defined as (logistic if N = 2, Soft-Max if N > 2) is then applied.
This is similar to the multiplication of the input vector by the weight matrix. The way
that the CNN learns, convolutional layer filter via back-propagation gradient, is similar to
learning weight values. This concept can be applied in the evaluation of the model.

The curve for the Re-Lu activation function is shown in Figure 6.
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f(u) = max(0,u)

1

-1

u

Figure 6. Re-Lu layer.

3.2.2. LSTM Architecture

Long short-term memory, commonly known as LSTM, is a type of RNN architecture
that is capable of remembering values at arbitrary intervals. They are developed for the
classification, processing, and prediction of time series of particular time lags with durations
that are unknown. Unlike other sequence learning models such as hidden Markov models
or other RNNs, LSTMs have relative intensity gaps, which provide an advantage over the
alternatives [43].

A zoom-in on an LSTM cell is depicted in Figure 7.

Input 
Gate

Output 
Gate

Forget 
Gate

LSTM

Input 
Modulation 
Gate

Cell

ht-1

ht= zt

Xt

Figure 7. LSTM cell.
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The LSTM is referred to as the cell state and has a looping arrow that signifies its
recursive nature. As a result, the information from the previous interval is stored within
the cell state. A remember vector located below the cell state modifies it, while the input
modification gates adjust it. This remembers vector is usually referred to as the forget gate.

A zoom-in on an LSTM cell is depicted in Figure 8.

Cell

Cell State

Cell State Equation

Ct = ft o ct-1 + it o

Forget Gate

Forget
Gate

ft = σ(Wf [ht-1, xt] + bt)

Forget Gate Equation

Figure 8. LSTM Cell State and Forget Gate.

From the Cell state equation, the information is forgotten through multiplication with
the forget gate, and new information is added via the input gates’ output. The information
to be forgotten by the cell state is determined by the forget gate through multiplication of a
required matrix position by 0. On the other hand, if the value of the output at the forget
gate is I, then the information is retained in the cell state. A sigmoid function from the
algorithm is then applied to input along with weight and previously hidden state. A save
vector, commonly known as an input gate, is usually responsible for the determination of
the information that should enter the LSTM. This is a sigmoid function and has a range
of (0, 1). This only adds memory and does not forget, as the equation of the cell state is a
sum of the previous cell states. The focus vector is referred to as the output gate, while the
working memory is known as the hidden state.

A zoom-in on an LSTM cell is depicted. Sigmoid functions are highlighted here in
Figure 9.
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Ct-1

ht-1

xt ht

ht

ct

LSTM

sigmoid sigmoid sigmoidtanh

ctft o ct-1

ft it ot

it o ct

ct

ot o tanh(ct)

✕

✕ ✕

+
tanh

Figure 9. LSTM Cell.

In the above diagram, the first sigmoid on the left-hand side is the forget gate and
defines the information that the (Ct-1) cell state should forget. The input gate is defined by
the tanh activation function and the second sigmoid and determines the information that is
to be saved or forgotten in the LSTM. The output gate is defined by the last sigmoid and
determines the information that is to proceed to the next hidden state.

3.3. Experiment Design
Data Description

In this experiment, the required data were about 30 signs used in British sign language
and common human action to signify emotions. The signs were based on three categories,
namely, hand gesture signs, pose signs, and facial expressions, or on a combination of facial
expressions with either hand gestures or pose signs. The experiment applied nineteen
British sign language hand gestures for numerals 0–19, nine pose signs for simple common
messages, and two facial expressions combined with a pose or hand gesture.

Numeric signals in British sign language are shown in Figure 10.

Numbers in British Sign Language 0-9

0 1 2 3 4

5 6 7 8 9

Figure 10. British Sign Language Hand Gestures.

Here are some British Sign Language Pose Signs in Figure 11.
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Figure 11. British Sign Language Pose Signs (credits of the picture goes to [44]).

3.4. LSTM Model Methodology Design

The main goal of this experiment was to develop an LSTM model to predict British
sign language using multiple frames and to predict the action being demonstrated in
real-time. The first step was to collect and save data from different key points, that is, the
hands, face, and body. The next step was to train the deep learning model using an LSTM
layer and using this to predict temporal components, enabling prediction of actions from a
certain number of frames. The final step was to use the open CV and predict actions in real
time using a computer webcam. To achieve these three main goals, the first requirement
was the installation and exportation of dependencies in the python code, followed by the
extraction of key points using MediaPipe holistic. This was followed by determining how
the extraction of key point values (for instance, joints with the hands or body) would be
carried out to represent a different frame at a point in time for the LSTM model. The
Keypoint values were then collected for testing and training. These data were prepossessed
and sequences created through the creation of labels and features.

3.4.1. Building and Training of LSTM Neural Networks

The first step was the importation of key dependencies, namely, the sequential models,
LSTM layer, and dense layer. This was followed directly by the creation of a log and setting
up of a Tensor Board callback for monitoring neural network training. The models were
then compiled and fitted by specifying the preferred optimizer to be used and the loss
functions (categorical crossentropy) for the multiclass classification model. The metrics
were specified to trace accuracy during the training process. After this, the model was
ready to be fit and trained. This was achieved by defining the X-train and Y-train data
and specifying the number of epochs and callbacks. The training of the model was then
initiated and the raining accuracy was monitored using the Tensor board. The training was
able to be run until the specified number of epochs were completed or stopped when the
desired training accuracy was achieved. After predetermination of the probability for each
predicted action, the predictions made were evaluated and the weights were saved using
the ”h5” model.

3.4.2. Justification for the Used Tools

The main reason for using the MediaPipe holistic combined with the LSTM model was
because fewer data were required to produce a hyperaccurate model, fewer parameters
were required to enhance the speed, and a simpler model was required for easy detection
of actions in real time. According to Amin et al. [45], the LSTM model can produce that.
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3.5. CNN Model Methodology Design

As with the LSTM, the main goal of developing the CNN model was to develop a
more accurate and efficient British sign language and human action detection system. This
process consisted of three main stages, namely, data input and extraction, implementation
and training, and evaluation. Data extraction involved the use of a computer webcam to
extract holistic key points from the key points, that is, the face, hands, and body. Facial
landmark detection was applied to obtain holistic key points from the face by localizing
different parts of the face, including the lips, nose, and eyes. Hand gestures were recognized
using two steps, hand detection and classification. For detection, color filters were applied
using thresholds derived from face pixels, providing high accuracy and speed. Ensemble
learning was then applied for the classification of steps. Face detection and landmark
extraction and orientation of landmarks with an approximation of horizontal and vertical
axis were the processes applied for pose actions.

3.5.1. Implementation and Training

The CNN model was trained for the recognition of gestures and their classification
output was ensembled using a bagging approach. An open source object detection library
known as Dlib (trained over a large set of HoG and SVM) was applied for the extraction
of facial landmarks. In general, the training involved four independent deep CNNs using
tensor flow and ensembled via a transfer learning process. The final prediction confidence
was obtained using the bagging ensembled technique.

3.5.2. Justification for the Used Tools

This method applied ensemble learning because it boosts classification performance
and reduces the chance of overfitting by the model during training. Ensemble learning
mitigates biases and variance, which negatively impact the classification performance
of new data sequences [42]. The hand gesture recognition methodology applied in this
research has previously produced high accuracy and speed [42]. In addition to this, training
the Dlib over a larger set of HoG and SVM makes it lightweight and adds negligible
latency during the processing of input frames, which makes it highly compatible with
real-time detection.

3.6. Evaluation and Comparison

This research project evaluated both the CNN and the LTSM models using the multi-
labelled classification confusion matrix paradigm. In this case, the confusion matrix pro-
vides comprehensive intuition into the performance of the multi-class confusion matrix
problem classifier. In addition to the computation of precision and recall, this paradigm is a
magnifier that offers deeper intuitions into internal classification of classifier operations. In
addition, using confusion matrix inspection and its derivatives provides strong clues for the
analysis of relationships between labels and classes, which represent semantic meanings
and concepts that have been assigned to data instances. The results obtained from the two
models, including accuracy, precision, and speed for both cases, were compared. From
this, the best-performing model was identified, allowing the necessary recommendations
to be given.

4. Results

This chapter provides information on the results obtained during the development,
training, and testing of the deep learning models. The section covers the extensive illustra-
tion, presentation, and interpretation of the data on the production, training, and testing
of the CNN and LSTM. The results are classified into two main categories based on the
type of data used, that is, numerical sign language detection and simple standard messages
(facial expressions combined with pose signs).
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4.1. Deep Learning Models for Numeric Sign Language Detection

This section covers the results for the deep learning models used to detect ten numeri-
cal signs, from 0–9. The data under this section were developed taking pre-processed data
sets into consideration. This means that the images’ pixel values had already been obtained
and coveted into the form required by the model for integration into the experiment. These
pre-processed datasets were obtained from Kaggle [46]. Kaggle is a platform where experi-
mental datasets are freely available to the public [20]. The data were collected by importing
the NumPy array from Kaggle.com, where the datasets had already been processed [46].
After all the necessary libraries had been imported, the different images resulting from the
NumPy array were then mapped to define their shapes. The dimensions of the selected
images were (2062, 64, 64), which means that the length and width of an image’s fame
were 64 × 64, respectively, in 2062 rows. These data were usable for both the LSTM and
CNN models, as the images had the same length and width dimensions. Using a unique
function, the data values were retrieved and applied to understand the problem statement.
This was because the algorithm for the data depends on multiple class problems or binary
classification problems. The balance between the values was found by factoring out the
unit values. Equally-divided classes were generated, showing the dataset to be balanced,
an essential factor that can significantly affect the results of both the CNN and the LSTM
deep learning models. At this point, the dataset contained nine classes ordered from zero
to nine, as shown below.

In Figure 12, all data samples are distributed across ten different classes, corresponding
to ten numerical signs in the range [0, 9].

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9

Sa
m
pl
es

Classes

Samples and Classes

Figure 12. Classes from 0–9.

During cross-validation, the dataset was divided into four main divisions. Two
divisions were used to train the system, one for testing the design, and the other for
validation. The dataset was thus a 70/30 Spector type, in which 70% of the data is used
for training and 30% for testing. As convolutional neural networks (CNN) use the full
dimensions of the data, that is, the length, width, height, and colour, the data needed to be
reshaped. Therefore, the dataset was further processed and reshaped into CNN-compatible
data and scaled to convert all the bales into intervals of (0,1).
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4.1.1. Building and Training of the CNN Deep Learning Model Using the Pre-Processed
Data Set

With the dataset ready for developing, training, and testing the deep learning model,
the Convolutional Neural Network was created by fitting the input data above using the
appropriate algorithm in python. Using an Adam optimizer and a learning rate of 0.001,
the results were compiled and fitted into the CNN model. The training and testing of the
model were carried out over the course of 100 iterations.

4.1.2. Evaluation of the CNN Model

Typically, the training accuracy of a deep learning model is expected to be better
than the testing accuracy; the difference between the two is not likely to be below 5%
in a standard setting. Both the training and the testing accuracy may behave differently
throughout the training and testing process. The accuracy may either increase or decrease at
different stages of the training or testing process, depending on the nature and performance
of the developed model. In this experiment, the training and testing of the CNN model
were left to run and recorded for all 100 epochs. The training accuracy was relatively low at
the initial point, at 11% in the first and 10% in the fifth epoch. The testing accuracy at this
point was around 8.0% for the first five epochs, and the loss was around 2.3. The difference
between the training and testing at this point was within the allowable range of 5%. The
CNN model showed good performance as the training progressed, with a steep increase in
both training and testing accuracy between the 10th and 25th epochs. The improvement
then became more gentle, remaining at a recommendable range of above 90% for both
training and testing, while the loss continued to decrease. Towards the end of the training
and testing, the convolutional neural network was seen to have attained a stable accuracy
lying within the range of 97% to 98%. On the other hand, the testing accuracy ranged
between 95% and 96% as the training approached the end. The lowest training accuracy in
the model was 7.9%, while the highest training accuracy was 98.8%, for a range of 90.9%.
On the other hand, the lowest testing accuracy was 8.0%, while the highest testing accuracy
was 97.4%, providing a range of 89.4%. The figure below illustrates the behaviour of the
testing accuracy in both the training and testing of the convolutional neural network during
this experiment. The accuracy is plotted on the Y-axis in the graph (ranging from 0–100%,
where 1.0 represents 100%). In contrast, the number of epochs is plotted on the X-axis
from the first to the 100th epoch. The blue curve represents the training accuracy, while the
orange curve represents the testing accuracy.

From the graph Figure 13, it can be seen that the accuracy for both the cases starts at
a very low percentage at the beginning of the testing and then rapidly increases around
the tenth epoch at a rate of about 30%, after which it stabilizes and maintains a range of
almost 100% as it approaches the end of training and testing. The loss of both the training
and testing is illustrated in the figure below. The loss is plotted on the Y-axis, while the
epochs are plotted on the X-axis. The blue curve represents the loss in training, while the
orange curve represents that in testing.
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Figure 13. Graph of CNN model training and testing accuracy against the number of epochs.

From this graph Figure 14, it can be seen that the loss in both cases is 2.0. The loss then
decreases at a high rate from about the tenth to around the thirtieth epoch. The loss then
begins to stabilize gradually, almost approaching zero toward the end of the training and
testing.

Figure 14. Graph of loss against the number of epochs in training and testing of the CNN model.

Further analysis of these results was carried out using a confusion matrix for multi-
class datasets, as shown below. In the confusion matrix, the rows represent the actual
values in the dataset, while the columns represent the predicted values. The diagonal of the
confusion matrix represents the value of the correct datasets which were rightly expected.
In contrast, the values of the diagonals represent wrongly-predicted values in each class of
dataset. To better show the patterns in the behaviour and performance of the model, the
highest value at each level of class in every row/column is shaded with a darker colour.

In Figure 15, the CNN model’s confusion matrix is given to show the performances on
the classification task.
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Figure 15. Confusion matrix for the CNN model.

From the multi-class confusion matrix shown in the above figure, the highest values
for each class level lie on the diagonal. This indicates that most of the correct values in the
dataset were predicted correctly by the CNN. On the other hand, most diagonal values are
zeros, while others are significantly low values. This shows that there were very few errors
in the predictions made by the developed CNN model in most instances. The F1-score had
an accuracy of 96%. The average macro-level average precision and recall for the model
were 97% and 96%, respectively. The average weighted precision and recall were 97% and
96%, respectively. Thu, we can say that the convolutional neural network model developed
in this experiment showed consistent training and testing accuracy and attained a high
level of reliability in its predictions. Therefore, it can be concluded that the performance of
the convolutional neural network was exceptionally good for the prediction of numerical
sign language using pre-processed data.

4.1.3. Building and Training of the LSTM Deep Learning Model Using the
Pre-Processed Dataset

The same pre-processed input dataset that involved importing NumPy arrays from
Kaggle.com mapped and classified as described in the above procedure was applied again
to develop, train, and test the LSTM model. Using an Adam optimizer learning rate of
0.001, the results were compiled and fitted into the LSTM model. The training and testing
of the model were carried out over the course of 100 iterations.

Some configuration parameters for LSTM are given in Figure 16.
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Figure 16. Building the LSTM model.

4.1.4. Evaluation of the LSTM Model

As in the case of the CNN model, the training accuracy of the LSTM model involves
more than testing the accuracy. The difference between testing and training accuracy is not
likely to fall below 5% under normal conditions. Both the training and testing accuracy
generally vary throughout the process; this variation can either be positive or negative
at different stages of the training or testing process based on the performance behaviour
of the developed model. In this experiment, the training and testing of the LSTM model
were both left to run and were recorded for all 40 iterations. During the training and
testing process the accuracy was 35% and 32% respectively. As the training progressed,
the training accuracy continued to increase following a very irregular pattern; the rate of
increase was not stable. In addition, while the testing accuracy continued to increase as
testing approached the fortieth iteration, the rate of increase was very irregular. The lowest
training accuracy for the LSTM model was 29.0%, while the highest training accuracy was
49.4%, for a range of 20.5%.

On the other hand, the lowest testing accuracy for the LSTM model was 25.5%, and the
highest testing accuracy was 48.47%, for a range of 22.97%. The loss in both training and
testing for the LSTM model had a relatively decreasing tread with the iteration. Again, the
decrease was in a very irregular manner. The figure below shows a graphical illustration
of the behaviour of the LSTM model in both training and testing accuracy. The accuracy
is plotted on the Y-axis in the graph, ranging from 0–100% (where 1.0 represents 100%),
while the number of epochs is plotted on the X-axis from the first to the fortieth iteration.
The blue curve in the graph represents training accuracy, while the orange curve represents
testing accuracy.

A graph shows trainign and testing accuracy rates against the number of iterations for
the LSTM model in Figure 17.
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accuracy
val_accuracy

Figure 17. Graph of LSTM model training and testing accuracy against the number of iterations.

The graph shows that although both the training and testing accuracy increase as the
number of epochs increases, the curves have a very irregular pattern. According to the
graph, the lowest training and testing accuracies occurred at around the fifth iteration,
while the highest precision for both training and testing lies at around the 36th and 40th
iteration, respectively. Neither curve seems to show stable perforce at any range of iteration
testing. The loss in both the training and testing is illustrated in the figure below. The loss
is plotted on the Y-axis of the graph, while the epoch is plotted on the X-axis. The blue
curve represents the loss in training, while the orange curve represents the loss in testing.

A graph shows trainign and testing loss function against the number of epochs for the
LSTM model in Figure 18.

Loss
Val_Loss

Figure 18. Graph of loss against the number of epochs in training and testing of the LSTM model.

Although this graph shows a relatively decreasing trend in the loss during both
training and testing, the trend is very irregular, with random steep increases and decreases
all along the curve. This brings a sense of unpredictability to the dataset.

A deeper analysis of these results was carried out using a confusion matrix for multi-
class datasets, as shown below. In the confusion matrix, the rows represent the actual
values in the dataset, while the columns represent the predicted values. The diagonal of the
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confusion matrix represents the values of the correct datasets which were rightly expected.
In contrast, the weights of the diagonals represent the wrongly predicted values in each
class of datasets. To better show the pattern in the behaviour and performance of the model,
the highest value at each level of class in every row/column is shaded a darker colour.

In Figure 19, the LSTM model’s confusion matrix is provided to show the classification
performances.

Figure 19. Confusion matrix for the LSTM Model.

From the confusion matrix, it can be seen that most of the highest predicted values in
the different levels of the classes are randomly distributed throughout the matrix. There is
no noticeable pattern of values at the diagonal of the matrix, which shows that there is no
reliable or stable pattern in the correctness of the LSTM model in predicting numerical sign
language. The macro-level average precision and recall of the model were 52% and 38%,
respectively. The average weighted precision and recall were 52% and 37%, respectively.
The performance of the LSTM model in both training and testing was generally poor.
Comparing the predictive performance of the LSTM and CNN models using pre-processed
numerical sign language data, the CNN model performed exceptionally well compared to
the LSTM model.

4.2. Facial Expressions Combined with Pose Signs

This section covers the results for the deep learning models when used to detect
simple common message poses such as those for Hello, Good, Thanks, Sorry, and Happy.
Instead of using pre-processed data, in this case the data collected under this part relied on
collection of different facial and pose landmarks using a computer webcam. This involved
installing and exporting the required dependencies in python and then using a MediaPipe
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holistic to extract key points from the different facial and pose landmarks. Then, the way
in which fundamental point values for the different landmarks would be carried out at
different points in the model was determined. The dimensions for these images were 150,
30, 1662. This means that the length was 150 while the width was 30, which is non- uniform.
As mentioned earlier, the CNN model only accepts images with equal dimensions for
height and width. Therefore, the images dataset collected for this model was only used
to develop, train, and test the LSTM model. It should be noted that the data set was a
70/30 Spector, with 70% of the data used for training and 30% for testing. The dataset was
further processed and reshaped into LSTM-compatible data and scaled to convert all the
bales into intervals of (0,1). Using an Adam optimizer learning rate of 0.01, the results
were compiled and fitted into the LSTM model. The training and testing of the model were
carried out over the course of 2000 iterations.

Evaluation of the Second LSTM Model

During the training and testing of the LSTM model, the first training accuracy was
12.2%, while the first testing accuracy was 11.22%. The training accuracy changed rapidly,
with an increase of about 10% during the first few iterations. A training accuracy range
between 21–29% was then maintained for the rest of the epoch with minimal variance.
An exciting pattern occurred with the testing accuracy throughout the testing, with the
accuracy varying for the first few epochs, attaining an accuracy of 22% at the fourteenth
epoch, and maintaining the same value up to the 34th. After that point, the accuracy
dropped further to 11.11% and remained constant for the rest of the epochs. The figure
below shows a graphical representation of both training and testing accuracy against the
number of epochs. The accuracy is plotted on the Y-axis, while the number of epochs is
plotted on the X-axis. The blue curve in the graph represents training accuracy, while the
orange curve represents testing accuracy.

In Figure 20, training an testing accuracy rates (y-axis) are given in the diagram against
the epochs number (x-axis).

Figure 20. The second LSTM training and testing accuracy against the number of epochs.

The graph shows that the LSTM model maintained an average training accuracy of
about 23%, with almost zero variance for a significant part of the training procedure. The
system maintained a very low testing accuracy of 11% for a significant portion of the testing
procedure. The loss in both cases has related behaviour, starting at a very high value and
then dropping suddenly. The initial loss values for training and testing were 316 and 10,449,
respectively, while the final value in both cases was 1.6. The figure below shows a graphical
representation of the loss in training and testing. The loss value is plotted on the Y-axis,
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while the number of epochs is plotted on the X-axis. The blue curve represents training
loss, while the orange curve represents testing accuracy.

In Figure 21, the accuracy loss function is represented against the number of epochs in
training and testing for the second LSTM model.

10,000

Figure 21. Loss against the number of epochs in training and testing of the second LSTM model.

A confusion matrix analysis was used to further analyse the behaviour of the LSTM
model when used to predict simple common sign language messages. Figure 22 shows the
results of the confusion matrix analysis as below.

Figure 22. Confusion matrix for the second LSTM model.
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From the confusion matrix diagram above it can be seen that many values were
wrongly predicted, with the diagonal values all showing zeros; this indicates that no
signs were predicted correctly. The macro-level average precision and recall for the model
were 2% and 20%, respectively. The average weighted precision and recall were 1% and
11%, respectively. This indicates that the second LSTM model generally showed poor
performance in training and predicting the simple common sign language signs.

5. Discussion

In this section, the results obtained in the course of this research regarding the objec-
tives, hypotheses, and relevant secondary topics are discussed in depth, along with the role
of the above results and the provided literature analysis in answering the research questions
at issue. To this end, this section is divided into three main parts, namely, the interpretation
of the results, the implications of the results, and the limitations of this study. The inter-
pretation section elaborates on what the obtained results mean; the implications section
discusses the relevance of the research and its relationship to existing findings; finally, the
limitations section covers those aspects of the study where possible constraints may have
hindered the investigation from reaching a complete evaluation or definite conclusions.

5.1. Interpretations of the Results

This research aimed to answer the main research question of how effective deep
learning and computer vision models could be in narrowing the gap between people with
speech impairments who can only use sign language and the general public who cannot
speak using sign language. The present study aimed to determine which deep learning
model among LSTM and CNN was the most efficient in interpreting or predicting British
Sign Language. The process of answering the above questions involved a critical analysis of
the existing literature concerning deep learning as well as a coding experiment. The coding
experiment involved collecting different datasets, using those datasets to develop two deep
learning models (CNN and LSTM), training them, and testing their efficiency in predicting
British Sign Language. Below is a summary of the findings from the coding experiment.

5.1.1. Summary of the Results

The coding experiment was divided into two main approaches depending on the
dataset used. The first approach involved developing deep learning models to predict
numerical sign language gestures using pre-processed data from Kaggle.com. The second
approach involved developing deep learning models to predict simple standard messages
(facial expressions combined with pose signs) using a dataset obtained using a computer
webcam. In the first approach, both CNN and LSTM models were successfully developed,
trained, and tested, and their performance was evaluated using a multi-class confusion
matrix. Based on this approach, the testing and training accuracy of the convolutional
neural network rose to 98.8% and 97.4%, respectively. The training and testing accuracy
increased as the number of iterations increased, showing a positive correlation. Based on
the multi-class confusion matrix, the convolutional neural network model developed in
this experiment showed consistent training and testing accuracy and attained a high level
of reliability in its predictions thanks to a consistently high rate of correct numerical hand
gestures predicted correctly by the model. The CNN model achieved average weighted
precision and recall of 97% and 96%, respectively.

On the other hand, the training and testing accuracy of the LSTM model reached
a maximum of 49.4% and 48.7%, respectively. Although accuracy increased with the
number of iterations, the curves had a very irregular pattern. Based on the multi-class
confusion matrix, the LSTM model developed in this experiment showed inconsistent
training and testing accuracy and attained a low level of reliability in its predictions. This
was because the model followed a very random prediction method, and as a consequence
the correct prediction of signs was random. Furthermore, the number of correct numerical
hand gestures which were predicted correctly was very low. The macro-level average
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precision and recall for the model were 52% and 38%, respectively, and the respective
average weighted precision and recall were 52% and 37%. From this first approach, it can
be concluded that the convolutional neural network performed significantly better than the
LSTM. This better performance was present in all aspects, including testing and training
accuracy, precision, and reliability.

Regarding the second approach, only the LSTM model was successfully developed,
trained, tested, and evaluated for performance using the multi-class confusion matrix, as
the CNN model could only accept 4D input data and images with uniform length and
width dimensions. These four dimensions include an image’s batch size, length, width,
and depth [47]. The dataset obtained from the webcam mainly had key points for the face,
hands, and pose, as opposed to images; thus, it was not possible for the CNN to extract
the necessary four dimensions. The performance of the LSTM model saw the training and
testing accuracy increase by an average of 23% and 11%, respectively. The exciting aspect
of this experiment is that the training accuracy increased significantly within the first few
iterations, then maintained an average of 23% throughout the remaining iterations.

On the other hand, the testing accuracy increased within the first few iterations and
then decreased suddenly, maintaining an average accuracy of 11%. Based on the multi-class
confusion matrix, this LSTM model showed inferior prediction ability and unreliability
in the prediction of sign language, as demonstrated by the lack correctly predicted signs.
All the values of the diagonal of the matrix were 00, indicating that no signs in the simple
standard message (facial expressions combined with pose signs) were correctly predicted.
The macro-level average precision and recall for the model were 2% and 20%, respectively,
while the average weighted precision and recall were 1% and 11 %, respectively. This
indicates that the second LSTM model generally showed poor performance in both training
and prediction of simple common sign language signs.

5.1.2. Interpretation of the Results

The obtained these results clearly show that the convolutional neural network per-
formed better than the LSTM model, indicating that the CNN model is the best model
among the two in predicting British Sign Language. The CNN model’s 98% training accu-
racy, 97% testing accuracy, and 97% precision with only 100 iterations show that this deep
learning model has high potential to predict British Sign Language efficiently. These results
confirm the first hypothesis, namely, that deep learning and computer vision models can
effectively improve the communication ability of speech-impaired people, offering high
accuracy, precision, and reliability. In addition, the results support the second hypothesis of
this study, as the CNN model showed better accuracy, precision, and reliability compared
to the LSTM model.

The training and testing accuracy of the CNN model increased with an increased
number of training iterations, thus establishing a positive correlation. Increasing the
number of iterations increased the training duration and provided the model with more
time to learn from the data and make correct predictions on that basis. From the obtained
results, we can confirm that the accuracy of the CNN model increases with the increased
duration of the training period as determined by the number of iterations and images.
That the LSTM performed poorly with the same data types and under the same setting as
the convolutional neural network, indicating that different deep learning models perform
differently with different tasks and coding.

5.1.3. Interrelation of the Findings and Literature Review

In answering whether deep learning models and computer vision models can help
narrow the gap between the speech-impaired community and the general public, the
results of these experiments show that certain deep learning models, such as CNN, perform
well. Achieving an accuracy of 98% within only 100 iterations is a good indicator that
the CNN deep learning model can help narrow this gap if further modifications can be
added using more iterations. These findings confirm what other researchers in the literature
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review had argued in their studies. This includes acknowledging that a gap needs to be
eliminated between speech-impaired community members and the rest of the community,
as pointed out by [24,47]. The success of developing a deep learning model that could
predict sign language at such a high level of accuracy, precision, and reliability confirms
the findings of other researchers [27] that the deep learning model can be relied upon to
narrow this gap [27]. Although the actual experiment conducted in this research did not
compare efficiency between conduct-based human action recognition and vision-based
human action recognition, this research agrees with their argument that the latter could
be preferable. This is because (as [17] stated in his study) the deep learning model can be
a very reliable, relatively inexpensive, and efficient approach that best fits sign language
recognition, as further confirmed in this study by the CNN model.

It should be noted that developing this model was economical, and required the
purchase of no additional hardware components. Although the university had provided
the necessary resources for all the experiments, the cost of the required resources would
have been only GBP 60 for a graphics card-enabled laptop). Few specialised professional
skills were necessary, unlike the electronic and mechatronic engineering required to use
conduct-based models (for instance, the model developed by Abraham & V, 2018 required
installation and modification of sensors and a mechanism that links flex angles, voltage,
and resistance). In addition, developing the model did not take very much time compared
to the demands of building a conduct-based model. These practical differences confirm
that the deep learning model can effectively narrow the gap between the speech-impaired
community and the general public by assuring high accuracy, precision, and reliability
at low cost. Considering the relationship between the performance of the CNN model
compared to the LSTM, the findings of this research agree with the various authors that
have pointed out that CNN performes well on sign language prediction tasks. In [27], a
human action recognition model for Indian sign language was developed and attained 99%
accuracy. A different CNN model [32] was developed for Italian sign language detection,
achieving an accuracy of 91.7% and a score of 0.789 on the Jaccard index during the Chalearn
spotting competition in 2014, which involves the detection of people’s gestures. The present
research agrees with their recommendation that CNN models are reliable for automatic
sign language recognition. The findings in the present research further agree that CNN
testing and training accuracy increases with an increased number of iterations and with
an increase number of images in the datasets, improving the training duration [4]. The
models developed in their research attained 99.94 and 97.62 training and testing accuracy,
respectively, which is very close to the findings in this paper. These results are close to
what [47] achieved in their models as well, namely, a 99.8 and 97.8 accuracy in predicting
numerical and alphabetical Indian sign language.

The poor performance of the LSTM model can be explained by reference to limita-
tions previously pointed out by other authors. For instance, [48] pointed out that it can
be challenging to train the LSTM model, as memory-bandwidth-bound computation is
required. This imposes hardware disadvantages and limitations on the applicability of
LSTM in image recognition and prediction. In [49], the authors state that for efficient
application of the LSTM model in image classification and recognition, additional actions
such as extraction of image features may be necessary before the model is applied. Several
other studies have pointed out that the LSTM model functions better in human action
recognition when integrated with other boosting models or in composition with different
parameters or models. This model consisted of a convolutional neural network integrated
with an attention mechanism to retrieve spatial features and bio-inspired deep learning
with long short-term memory. This model showed good performance and required a lower
processing time. Therefore, it can be concluded that the LSTM model is able to perform
better if additional parameters and modifications can be incorporated to curb its limitations.
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5.2. Implications of the Results

The findings of this research add to the evidence demonstrated in previous research
that deep learning and computer vision-based models can help narrow the gap between
the speech impaired community and the general public. This can be seen in the success of
building deep learning models. The convolutional neural network model developed here
was able to predict British Sign Language hand gestures with high accuracy, precision, and
reliability for numerical sign language. The development of this model was economical,
time-efficient, and required a relatively basic skill level compared to conduct-based models.
The accuracy of the model was found to have a positive correlation with the number of input
images. This proves the potential to build a more advanced deep learning convolutional
neural network model able to predict British Sign Language with high accuracy and
prediction. The success of such a model would enable speech-impaired people to express
themselves using sign language while the model translates their message into written text
that anyone can read and reply to in text.

The results of this research further add to the existing research showing that convolu-
tional neural networks perform well in the prediction of sign language compared to LSTM
models. The CNN model showed attainment of high accuracy in training and testing along
with high precision, consistency, and reliability. This matches the results published by
other researchers in their attempts to use the CNN model in the prediction of different sign
languages. Therefore, the implication is that the UK government or private actors could
choose to implement a deep learning model that applies CNN for recognition and predic-
tion of British Sign Language to help ease communication between people with speech
impairments and the rest of the community. In addition, any research intending to develop
a machine learning model for recognition and prediction of any other sign language in the
world might begin by trying the CNN model, as it has proven to be successful in many
different settings. Other scholars intending to perform research on deep learning can apply
this research in various ways as well.

The findings of the present study and its research implications help to improve knowl-
edge through its potential applications in new research and in the advancement and
confirmation of the validity of already-existing research. It should be noted that the success
of this research represents the fulfillment of future research recommendations outlined
by previous authors. For instance, [27] suggested that future research could focus on
comparing the performance of different deep learning models in human actions and sign
language recognition and prediction. Other researchers, such as [27,32] , called for the
need for research on the use of CNN to predict other sign languages and improve the
existing findings. In this regard, the present research compared the performance of CNN
and LSTM models in terms of their accuracy, consistency, and precision, and further in-
volved the application of the developed model in the recognition and prediction of British
sign language.

The practical application of these research findings lie in developing a CNN sign
language recognition and prediction system to be used in public service offices and business
organizations such as hospitals, banks, wholesale shops, and schools. Such a convolutional
neuron network could enable speech-impaired people to express themselves using sign
language. The model would translate the message to a text form that the service providers
can understand. In addition, the findings of this research could be applied to develop a
universal CNN model that could recognize and predict different types of sign language
from different locations all over the world. This would make it possible for speech-impaired
people who use different sign languages to communicate. For example, a person using
British sign language could speak with a person using Indian sign language, provided they
can both read and understand text written in the same language.

5.3. Acknowledgement of Limitations

To achieve the objectives of this research two approaches were considered, which were
based on the types of data required. The first approach, which involved developing both
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CNN and LSTM models for recognizing and predicting hand gestures in British numerical
sign language, was successfully completed. This approach depended on pre-processed data
obtained from the Kaggle.com website. However, the second approach, which required
the development of both CNN and LSTM models for predicting simple common messages
(facial expressions combined with pose signs) was not fully accomplished, as only the
LSTM model was developed. The main limitation preventing the full achievement of this
approach was the lack of CNN compatibility. Unlike the first approach, which involved
using pre-processed data from Kaggle.com, this approach depended on a dataset retrieved
using a computer webcam. Using the webcam involved extracting specific key points from
the face, hands, and pose landmarks, and the CNN model could not accept data in this
form as it applied four-dimensional data consisting of the image’s batch size, length, width,
and depth. The data obtained by the webcam consisted of three-dimensional data informed
of key points of the different landmarks, and not images; thus, the CNN could not extract
the fourth dimension, that is, the depth of vision. This aspect of CNN limited development
of a CNN model to predict simple common messages (facial expressions combined with
pose signs) and compare its performance with that of the LSTM model. If this had not been
the case, and the CNN model had accepted the data, it would be possible to make a more
informed conclusion as to the better performance of the CNN in predicting hand gestures
and simple standard messages (facial expressions combined with pose signs). However,
considering the results with respect to the performance of the CNN model in both this
experiment and other studies referred to in the literature review, it is justified to assume
that the CNN model would have performed well in the prediction of simple common
messages (facial expressions combined with pose signs).

6. Conclusions
6.1. Summary and Findings

This paper aimed to develop an efficient deep learning model for the detection, un-
derstanding, and translation of British sign language to written text. The research was
based on background information pointing out that this problem represents a significant
communication gap between the speech-impaired (that is, deaf and mute people) and the
general public. These two groups of people use a different form of language to communi-
cate; speech-impaired people use sign language, while other people generally use spoken
language. This background information points out that it is difficult for most people to
learn sign language, and speech- impaired people are not able to learn spoken languages. It
should be further noted that sign language falls into different types depending on geograph-
ical locations and ethnic divisions. This means that it is not possible for all speech-impaired
people to communicate using common sign languages. This gap could quickly be narrowed
if these groups could both be linked using written text messages. Although other methods
can be applied to link communication under these circumstances, such as using a human
translator, conductor-based machines for sign language, and deep learning/computer
vision models, this research points out that the latter is the most effective.

The primary approach of this research was to develop two deep learning models, a
long short-term memory (LSTM) model and a convolutional neural network (CNN) model,
and compare their performance. The experiment involved collecting the required datasets,
using them to develop the models, training and testing the two models, and applying a
multi-class confusion matrix to evaluate their performance. The parameters used for the
comparison included training and testing accuracy and the systems’ respective precision
and reliability/consistency in predicting sign language. The approach was then divided
into two categories; the first used pre-processed data to predict hand gestures for British
numerical sign language, and the second used a key points dataset to indicate simple
common messages (facial expressions combined with pose signs). In the first approach,
both the CNN and LSTM models were developed. The CNN model showed the best
performance in all aspects, including accuracy, precision, and reliability, as stated in the
research hypothesis. Furthermore, this model showed a positive correlation between
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training/testing accuracy and the length of the training period as determined by the
number of iterations and images per dataset. This resulted in the CNN model attaining
high accuracy. A more significant number of signs and more iterations could be applied
to increase the training and testing accuracy; the model would then be applicable for
accommodating more than one type of sign language, making it more efficient.

On the other hand, the LSTM model showed very poor performance in both categories
of the experimental approach. This model attained very low accuracy, precision, and
consistency in predicting the correct sign based on the multi-class confusion matrix. The
most reasonable explanation for the poor performance of the LSTM was due to certain
limitations that were pointed out in the literature review. For instance, this model can
be difficult to train, as it requires a memory-bandwidth-bound computation which has
hardware limitations. LSTM models depend on more complex frameworks to achieve
good performance compared to CNN model. This research found that while LSTM models
are better in classification of text data, for image data sets more input parameters may be
needed. The performance of the LSTM model could be improved by integrating it with
other models to curb its limitations. It was not possible for a CNN model to be developed in
the second approach, as the dataset used was incompatible with the requirements of a CNN.
However, based on the results of the first approach as well as on the literature review, it
can be assumed that the CNN model would have performed well in this second approach.

Therefore, this research concludes that convolutional neural networks perform better
in recognizing and predicting British sign language than LSTM models. In addition, this
research further concludes that the CNN model could be used to accommodate more than
one set/type of sign language recognition prediction. The findings of this research answer
the question of which deep learning models perform better in attempting to narrow the
gap between speech-impaired people and the general public.

6.2. Contribution to This Research

The success of this research is beneficial to people from the speech-impaired commu-
nity, the government and economy of the UK, and to scholars and researchers worldwide.
The proposed CNN sign language recognition and prediction model would help people
from the speech-impaired community to interact more easily with the general public, pro-
moting better communication in services provided in public offices and organizations
that are not conversant with sign language. It would be possible for people with speech
impairments to feel as appreciated and able to participate in the community as anyone else.
The government could implement such a model in its offices and operations in order to
take care of people with disabilities. This would enable speech-impaired people to easily
express their needs to the government, promoting political harmony. Speech-impaired
people would be able to join more workplaces and work more efficiently, earning more
income and contributing to economic growth. For scholars and researchers, the findings of
this research can serve as the basis for future works.

6.3. Future Recommendations of This Study

This research points to the following recommendations. A live-trained CNN model
can be developed based on insights from this research. This is because the CNN model has
proven to perform better than LSTM based on this study. Such a model should convert,
detect, interpret, or predict sign language from video and display it through a special
screen. It should be able to pre-process data automatically. Sign language recognition
and prediction should be effectively instantaneous. The model should be fitted with high-
definition digital cameras to capture high-quality videos that the CNN model can process.

Developers and sponsors can adopt the finding of this research on convolutional neural
networks and modify it for the benefit of society at large. This could include building a
more comprehensive model that accommodates the entire set of British Sign Language and
using it to help speech-impaired people to more easily communicate in public offices or
facilities. A further recommendation is that future research develop a CNN model that
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accommodates different sign languages and compare its effectiveness. Future research
could additionally try to improve the performance of LSTM by combining it with other
models and then comparing the performance of the LSTM composite models with CNNs.

Author Contributions: Conceptualization, S.D. and F.F.A.; Methodology, S.D. and F.F.A.; Validation,
S.D. and F.F.A.; formal analysis, S.D. and F.F.A.; investigation S.D.; resources, S.D. and F.A.; data cura-
tion, S.D. and F.F.A.; writing—original draft preparation S.D.; writing—reviewing and editing, S.D.,
F.F.A. and A.B; visualisation, S.D., F.F.A. and A.B.; supervision, F.F.A. and A.B.; project administration,
F.F.A. and A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chiarelli, B. The Origin of Human Language, Studies in Language Origins; Publisher John Benjamins: Amsterdam, The Netherlands,

1991; 35p.
2. Thomas, J.; McDonagh, D. Shared language: Towards more effective communication. Australas. Med. J. 2013, 6, 46–54. [CrossRef]

[PubMed]
3. Efthimiou, E.; Fotinea, S.E.; Vogler, C.; Hanke, T.; Glauert, J.; Bowden, R.; Braffort, A.; Collet, C.; Maragos, P.; Segouat, J. Sign

Language Recognition, Generation, and Modelling: A Research Effort with Applications in Deaf Communication. In UAHCI
2009: Universal Access in Human-Computer Interaction. Addressing Diversity; Lecture Notes in Computer Science; Stephanidis, C.,
Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5614._3. [CrossRef]

4. Wangchuk, K.; Riyamongkol, P.; Waranusast, R. Real-time Bhutanese Sign Language digits recognition system using Convolu-
tional Neural Network. Science Direct. ICT Express 2021, 7, 215–220. [CrossRef]
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