
Sign Change Fault Attacks

On Elliptic Curve Cryptosystems

Martin Otto

Codes and Cryptography Group / PaSCo graduate school

University of Paderborn, Paderborn, Germany

joint work with Johannes Blömer1 and Jean-Pierre Seifert2

1 University of Paderborn, Germany 2 Intel Corporation, Hillsboro (OR), USA

Martin Otto, 20.5.2005 – p.1/16



Content

Fault Model

Sign Change Faults

Attack

on Elliptic Curve Scalar Multiplication

Countermeasure

against Sign Change Attacks

Martin Otto, 20.5.2005 – p.2/16



Elliptic Curves: Notation

• Set of points (x : y : z) satisfying

⇒ Ep : y2z ≡ x3 + Axz2 + Bz3 mod p (1)

(Weierstraß-Equation in projective coordinates)

• We only consider E defined over Fp, p prime

• Group of points: All points satisfying (1)
(x : y : z) = (λx : λy : λz) for λ 6= 0

O = (0 : 1 : 0) −→ “point at infinity“
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Previous Work

Approaches:

Analysis of faults in curve and field parameters
(Biehl, Meyer, Müller 2000 & Ciet, Joye 2003)

Results:

With overwhelming probability, a (random) fault
results in a final result that is not on the curve.

Natural Countermeasure:

Check result before output: Is result a valid point
on curve?
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Fault Attacks on Elliptic Curve Addition
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Sign Change Faults
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Can we achieve Sign Change Faults?

Yes, we can! Examples:

NAF-based scalar multiplication: attack a key bit

Attacks during point addition, e.g., affine addition:

λ =
y1 − y2

x1 − x2

,
x3 =λ2 − x1 − x2

y3 = − y1 + λ · (x1 − x3)

Change y2 to achieve a Sign Change Fault
Attack ALU s.t. argument is inverted

Success depends on the implementation
(hardware and software)
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Fault Attacks With Sign Change Faults (1)

Compute Q = kP on Ep:
0 Set n := l(k)
1 Set Qn := O
2 For i from n-1 to 0 do
3 Set Q′

i
:= 2 · Qi+1

4 If (ki = 1) then set Qi := Q′
i
+ P

4 If (ki = 1) else set Qi := Q′
i

5 Return Q0
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Fault Attacks With Sign Change Faults (1)

Compute Q = kP on Ep:
0 Set n := l(k)
1 Set Qn := O
2 For i from n-1 to 0 do
3 Set Q′

i
:= 2 · Qi+1

4 If (ki = 1) then set Qi := Q′
i
+ P

4 If (ki = 1) else set Qi := Q′
i

5 Return Q0

Attacking

Q′
i 7−→E − Q′

i

��
��

at random
iteration i

Step 1: Describe faulty final result

Q̃ = −Q + 2 · Li(k), where Li(k) :=
∑i

j=0
kj2

j · P
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Fault Attacks With Sign Change Faults (2)

Step 2: Collect many faulty final results

Choose block size m ⇒ O(2m) operations:

Mount (n/m) log(2n) many attacks to hit every
possible block with Prob. at least 1/2
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Fault Attacks With Sign Change Faults (2)

Step 2: Collect many faulty final results

Choose block size m ⇒ O(2m) operations:

Mount (n/m) log(2n) many attacks to hit every
possible block with Prob. at least 1/2

Step 3: incremental computation of k

Assumption: all s lowest bits of k are known

try all possibilities with up to s + m bits:

Q̃
?
= −Q + 2 · Ls+m−1(k)

Compare to gathered faulty final results
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Fault Attacks With Sign Change Faults (3)

Step 4: Proof of correctness

guessed pattern describes a faulty final result Q̃:
we show: pattern correct

if no pattern describes Q̃:

“Zero Block Failure“: k has block of zeros
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Summary of Attack

Theorem: Secret scalar k of length n is recovered with

O(n · 2m · t)

scalar multiplications with probability at least 1/2
inducing t = (n/m) log(2n) Sign Change Faults.

This attack also applies to other scalar
multiplication algorithms (NAF-LR/RL,
Montgomery Ladder)

Attack layout derived from first fault attack on
RSA (Boneh, DeMillo, Lipton 1997)

Martin Otto, 20.5.2005 – p.11/16



Countermeasure Against Sign Change Attacks

What we want

check final result efficiently for correctness

Idea

Check using a “small“ curve:
Choose prime t and (At, xt, yt) to define

Et : y2z ≡ x3 + Atxz2 + Btz
3 mod t

Pt = (xt : yt : 1)

such that order of Et is prime
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A “combined“ curve

Determine Ept : y2z ≡ x3 + Aptxz2 + Bptz
3 mod pt

Ppt = (xpt : ypt : 1)

Requirement: Apt ≡ A mod p

Apt ≡ At mod t etc.

Using the Chinese Remainder Theorem (CRT):
Apt := CRT(A, At) etc.

First, compute Qpt := kPpt on Ept

We have Qpt ≡ kP mod p and

Qpt ≡ kPt mod t
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A New SCF-Secure Algorithm for k · P
SCF-Secure Scalar Multiplication Q = kP

# Precomputation (during production time of device)

1 Choose prime t and “small“ curve Et

2 Determine the “combined“ curve Ept

# Main (computations on the device)

3 Set Q := kPpt on Ept

4 Set R := kPt on Et

5 If R 6≡ Q mod t then output „failure“ else output Q on Ep

Analysis: Order of Et is security parameter

undetectable faults: Adversary needs O(2ord(Et)) guesses
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Conclusion

Summary:

New Sign Change Attacks

New Countermeasure

Open Problems:

Extend the idea to curves over binary fields

Other specialized fault types?
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Thank you!
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Appendix
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On Choosing Et

Theorem 1: (Hasse)
Given Ep : y2z ≡ x3 + Axz2 + Bz3 mod p, it is

p + 1 − 2
√

p ≤ #Ep ≤ p + 1 + 2
√

p.

Fact 2: ∃ p2 − p different elliptic curves over Fp.

Theorem 6: (Deurich)

There exists a constant c > 0 such that there are at

least c · (p
√

p)/ log(p) many elliptic curves for every

given group order.
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On Choosing Et

Conjecture 7: (Cramer and Goldwasser/Kilian)
There exist constants c1, c2 > 0 such that
π(t + 2

√
t) − π(t − 2

√
t) ≥ c2

√
t/logc1(t).

Theorem 8: Choose (At, xt, yt) ∈ Z
3
t uniformly at

random. (At, xt, yt) defines Et uniquely. If Conjecture
7 is true, then ∃c > 0 such that the probability that Et

has prime order is at least

c · c2

log1+c1(t)
,

where c1, c2 are as in Conjecture 7.
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Montgomery’s skalar Multiplikation

init P1(n−1) := P and P2(n−1) := 2P and n := bits(k)

main for i from n-2 downto 0 do

if (ki = 0) then set P2(i) := P1(i+1) + P2(i+1)

P1(i) := 2P1(i+1)

if (ki = 1) then set P1(i) := P1(i+1) + P2(i+1)

P2(i) := 2P2(i+1)

output Q = P1(0)

Montgomery Algorithm: Q = k · P

Q̃ =
(

li(k)
2i − 1

)

· (Q − li(k)P ) + li(k)P , where li(k) =
∑i

j=0 kj2
j
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Projektive Addition

P1 = (x1 : y1 : z1), P2 = (x2 : y2 : z2), P1 + P2 = P3 = (x3 : y3 : z3)

x3 :=r2 − tw2

2y3 :=vr − mw3

z3 :=z1z2w,

where u1 :=x1z
2
2 , s1 :=y1z

3
2 , w :=u1 − u2, r :=s1 − s2,

u2 :=x2z
2
1 , s2 :=y2z

3
1 , t :=u1 + u2, m :=s1 + s2,

and v :=tw2 − 2x3
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