Sign Change Fault Attacks On Elliptic Curve Cryptosystems

Martin Otto

Codes and Cryptography Group / PaSCo graduate school

University of Paderborn, Paderborn, Germany

joint work with Johannes ${\rm Bl\"omer}^1$ and Jean-Pierre ${\rm Seifert}^2$

¹ University of Paderborn, Germany

² Intel Corporation, Hillsboro (OR), USA

Content

Fault Model

Sign Change Faults

Attack

on Elliptic Curve Scalar Multiplication

Countermeasure

against Sign Change Attacks

Elliptic Curves: Notation

• Set of points (x:y:z) satisfying

$$\Rightarrow E_p: y^2 z \equiv x^3 + Axz^2 + Bz^3 \bmod p \qquad (1)$$

(Weierstraß-Equation in projective coordinates)

- We only consider E defined over \mathbb{F}_p , p prime
- Group of points: All points satisfying (1)
 - $(x:y:z) = (\lambda x:\lambda y:\lambda z)$ for $\lambda \neq 0$
 - ${\scriptstyle \bullet} \ {\cal O} = (0:1:0) \longrightarrow \text{``point at infinity''}$

Previous Work

Approaches:

 Analysis of faults in curve and field parameters (Biehl, Meyer, Müller 2000 & Ciet, Joye 2003)

Results:

With overwhelming probability, a (random) fault results in a final result that is not on the curve.

Natural Countermeasure:

Check result before output: Is result a valid point on curve?

GK

Scientific Computation

GΚ

Scientific Computation

GΚ

Scientific Computation

Martin Otto, 20.5.2005 - p.6/16

Yes, we can! Examples:

- NAF-based scalar multiplication: attack a key bit
- Attacks during point addition, e.g., affine addition:

$$\lambda = \frac{y_1 - y_2}{x_1 - x_2}, \qquad \qquad x_3 = \lambda^2 - x_1 - x_2 \\ y_3 = -y_1 + \lambda \cdot (x_1 - x_3)$$

- Change y_2 to achieve a Sign Change Fault
- Attack ALU s.t. argument is inverted
- Success depends on the implementation (hardware and software)

Fault Attacks With Sign Change Faults (1)

$$\begin{array}{l} \mbox{Compute } Q = kP \mbox{ on } E_p \end{tabular} \\ \mbox{0 Set n} := I(k) \\ \mbox{1 Set } Q_n := \mathcal{O} \\ \mbox{2 For i from n-1 to 0 do} \\ \mbox{3 Set } Q_i' := 2 \cdot Q_{i+1} \\ \mbox{4 If } (k_i = 1) \mbox{ then set } Q_i := Q_i' + P \\ \mbox{ else set } Q_i := Q_i' \\ \mbox{5 Return } Q_0 \end{array}$$

Fault Attacks With Sign Change Faults (1)

$$\begin{array}{l} \mbox{Compute } Q = kP \mbox{ on } E_p \\ \mbox{0 Set n} := I(k) \\ \mbox{1 Set } Q_n := \mathcal{O} \\ \mbox{2 For i from n-1 to 0 do} \\ \mbox{3 Set } Q_i' \\ \mbox{:= } 2 \cdot Q_{i+1} \\ \mbox{4 If } (k_i = 1) \mbox{ then set } Q_i \\ \mbox{:= } Q_i' + P \\ \mbox{else set } Q_i \\ \mbox{:= } Q_i' \\ \mbox{5 Return } Q_0 \end{array}$$

$$Q'_i \mapsto -Q'_i$$

at random iteration i

Fault Attacks With Sign Change Faults (1)

$$\begin{array}{l} \mbox{Compute } Q = kP \mbox{ on } E_p: \\ \mbox{0 Set n} := I(k) \\ \mbox{1 Set } Q_n := \mathcal{O} \\ \mbox{2 For i from n-1 to 0 do} \\ \mbox{3 Set } Q_i':= 2 \cdot Q_{i+1} \\ \mbox{4 If } (k_i = 1) \mbox{ then set } Q_i := Q_i' + P \\ \mbox{ else set } Q_i := Q_i' \\ \mbox{5 Return } Q_0 \end{array}$$

$$Q'_i \mapsto -Q'_i$$

at random iteration i

Step 1: Describe faulty final result

$$ilde{Q} = -Q + 2 \cdot L_i(k)$$
, where $L_i(k) := \sum_{j=0}^i k_j 2^j \cdot P$

Step 2: Collect many faulty final results

- Choose block size $m \Rightarrow O(2^m)$ operations:
- Mount $(n/m) \log(2n)$ many attacks to hit every possible block with Prob. at least 1/2

Step 2: Collect many faulty final results

- Choose block size $m \Rightarrow O(2^m)$ operations:
- Mount $(n/m) \log(2n)$ many attacks to hit every possible block with Prob. at least 1/2

Step 3: incremental computation of k

- Assumption: all s lowest bits of k are known
- try all possibilities with up to s + m bits:

$$\tilde{Q} \stackrel{?}{=} -Q + 2 \cdot L_{s+m-1}(k)$$

Compare to gathered faulty final results

Die Universität der Informationsaesellschaf

Step 4: Proof of correctness

- guessed pattern describes a faulty final result \tilde{Q} : we show: pattern correct
- if no pattern describes \tilde{Q} :
 - "Zero Block Failure": k has block of zeros

Theorem: Secret scalar k of length n is recovered with

$$O(n \cdot 2^m \cdot t)$$

scalar multiplications with probability at least 1/2 inducing $t = (n/m) \log(2n)$ Sign Change Faults.

- This attack also applies to other scalar multiplication algorithms (NAF-LR/RL, Montgomery Ladder)
- Attack layout derived from first fault attack on RSA (Boneh, DeMillo, Lipton 1997)

What we want

check final result efficiently for correctness

Idea

• Check using a "small" curve: Choose prime t and (A_t, x_t, y_t) to define

$$E_t : y^2 z \equiv x^3 + A_t x z^2 + B_t z^3 \mod t$$
$$P_t = (x_t : y_t : 1)$$

such that order of E_t is prime

A "combined" curve

- Determine $E_{pt}: y^2 z \equiv x^3 + A_{pt} x z^2 + B_{pt} z^3 \mod pt$ $P_{pt} = (x_{pt}: y_{pt}: 1)$
- Requirement: $A_{pt} \equiv A \mod p$ $A_{pt} \equiv A_t \mod t$ etc.
- Using the Chinese Remainder Theorem (CRT): $A_{pt} := CRT(A, A_t)$ etc.
- First, compute $Q_{pt} := kP_{pt}$ on E_{pt} We have $Q_{pt} \equiv kP \mod p$ and $Q_{pt} \equiv kP_t \mod t$

A New SCF-Secure Algorithm for $k\cdot P$

SCF-Secure Scalar Multiplication Q = kP

- # Precomputation (during production time of device)
- 1 Choose prime t and "small" curve E_t
- 2 Determine the "combined" curve E_{pt}
- # Main (computations on the device)
- $\label{eq:set_Q} \textbf{3} \quad \textbf{Set} \ \textbf{Q} := k P_{pt} \ \textbf{on} \ \textbf{E}_{pt}$
- 5 If $R \neq Q$ mod t then **output** "failure" else **output** Q on E_p
- Analysis: Order of E_t is security parameter
- undetectable faults: Adversary needs $O(2^{ord(E_t)})$ guesses

Conclusion

Summary:

- New Sign Change Attacks
- New Countermeasure

Open Problems:

- Extend the idea to curves over binary fields
- Other specialized fault types?

Thank you!

Martin Otto, 20.5.2005 - p.16/16

Appendix

Martin Otto, 20.5.2005 - p.17/16

On Choosing E_t

Theorem 1: (Hasse) Given $E_p: y^2z \equiv x^3 + Axz^2 + Bz^3 \mod p$, it is

$$p + 1 - 2\sqrt{p} \le \#E_p \le p + 1 + 2\sqrt{p}.$$

Fact 2: $\exists p^2 - p$ different elliptic curves over \mathbb{F}_p . Theorem 6: (Deurich) There exists a constant c > 0 such that there are at least $c \cdot (p\sqrt{p})/\log(p)$ many elliptic curves for every given group order.

Conjecture 7: (Cramer and Goldwasser/Kilian) There exist constants $c_1, c_2 > 0$ such that $\pi(t + 2\sqrt{t}) - \pi(t - 2\sqrt{t}) \ge c_2\sqrt{t}/\log^{c_1}(t)$.

Theorem 8: Choose $(A_t, x_t, y_t) \in \mathbb{Z}_t^3$ uniformly at random. (A_t, x_t, y_t) defines E_t uniquely. If Conjecture 7 is true, then $\exists c > 0$ such that the probability that E_t has prime order is at least

$$\frac{c \cdot c_2}{\log^{1+c_1}(t)},$$

where c_1, c_2 are as in Conjecture 7.

Die Universität der Informationsgesellschaft

Montgomery's skalar Multiplikation

Montgomery Algorithm: $Q = k \cdot P$ init $P1_{(n-1)} := P$ and $P2_{(n-1)} := 2P$ and n := bits(k)main for i from n-2 downto 0 do if $(k_i = 0)$ then set $P2_{(i)} := P1_{(i+1)} + P2_{(i+1)}$ $P1_{(i)} := 2P1_{(i+1)}$ if $(k_i = 1)$ then set $P1_{(i)} := P1_{(i+1)} + P2_{(i+1)}$ $P2_{(i)} := 2P2_{(i+1)}$ output $Q = P1_{(0)}$

$$\tilde{Q} = \left(\frac{l_i(k)}{2^i} - 1\right) \cdot (Q - l_i(k)P) + l_i(k)P$$
, where $l_i(k) = \sum_{j=0}^i k_j 2^j$

Projektive Addition

$$P_1 = (x_1 : y_1 : z_1), P_2 = (x_2 : y_2 : z_2), P_1 + P_2 = P_3 = (x_3 : y_3 : z_3)$$

$$x_3 := r^2 - tw^2$$
$$2y_3 := vr - mw^3$$

$$z_3 := z_1 z_2 w,$$

where

e
$$u_1 := x_1 z_2^2$$
, $s_1 := y_1 z_2^3$, $w := u_1 - u_2$, $r := s_1 - s_2$,
 $u_2 := x_2 z_1^2$, $s_2 := y_2 z_1^3$, $t := u_1 + u_2$, $m := s_1 + s_2$,
and $v := tw^2 - 2x_3$

