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SIGN CHANGES IN HARMONIC ANALYSIS

ON REDUCTIVE GROUPS

BY

ROBERT E. KOTTWITZ1

Abstract. Let C be a connected reductive group over a field F. In this note the

author constructs an element e(G) of the Brauer group of F. The square of this

element is trivial. For a local field, e(G) may be regarded as an element of {±1}

and is needed for harmonic analysis on reductive groups over that field. For a global

field there is a product formula.

The purpose of this note is to provide a cohomological interpretation of the sign

changes in harmonic analysis on reductive groups over local fields that are caused by

inner twistings. The best understood example occurs in the work of Shelstad [8] on

inner twistings of real groups. Theorem 6.3 of that paper gives the following

character identity:

xM) = (-ir(C'^(C)x,(Y)-

Here G is a connected reductive group over R, G' is its quasi-split inner form, x,,-

and Xç are stabilized characters of matched tempered L-packets of G'(R) and G(R),

and y' and y are matched regular semisimple elements of G'(R) and G(R). The sign

change in the character identity is (-l)*«7'*-?*0' where q(G) is one half of the

dimension of the symmetric space attached to G (more precisely, attached to the

simply connected cover of the derived group of G). Although q(G) may be only half

integral, the difference q(G') — q(G) is always integral.

It is reasonable to expect an analogous character identity for groups G over a

nonarchimedean local field F We can determine what the sign change must be by

considering the Steinberg characters of G(F) and G'(F), since these should be

related by the character identity. Let r(G) denote the F-rank of the derived group of

G; the Steinberg character of G(F) has value (-l)r(C) on the elliptic regular set of

G(F), and hence the sign change in the character identity must be (-\y(c')-r(c\

There are two groups for which the character identity has been proved: the

multiplicative group of a central division algebra of dimension d2 over F for d = 2

(see Proposition 15.5 on p. 484 of [4]) and d = 3 (see Theorem 1 of [1]).

Later in this paper we will use a cohomological construction to define a sign

e(G) = ± 1 for any connected reductive group G over a local field. Let G' denote a

quasi-split inner form of G. We will show that e(G) — (-i)r<c'>~''(c> when the base
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290 R. E. KOTTWITZ

field is nonarchimedean, e(G) = (-l)*'0''-q{G) when the base field is R, and

e(G) = 1 when the base field is C. For a group G over a global field we will prove a

product formula Uve(Gv) = 1; the product is taken over all places v of the global

field, all but a finite number of terms in the product being 1. This product formula is

consistent with our expectation that no sign changes occur when comparing the

characters (as distributions) of automorphic representations of G, G' (since no sign

changes occur in going from the elliptic regular terms of the trace formula for G to

those for G').

Changes of sign also occur in the matching of functions by orbital integrals. For

example let E/F be a cyclic extension of local fields, let G = GL2, and consider the

matching of functions on G(E) and G(F) that arises in the theory of base change.

For our purposes the best reference is [5]. There is a sign e(y) in the formula (A') of

that article :

/ f(g-]yg) dg/dt = e(y) f <p(g-"Sg) dgE/dt'.
JGy(F)\G(F) JGj¡(E)\G(E)

For semisimple y the sign can be explained in the following way. The element

8 G G(E) can be used to define an inner form Gy of Gy such that Gy(F) = G£(E).

Since we are considering semisimple y, Gy is reductive. Since G is GL2, Gy is

connected as well. It turns out that e(y) is equal to e(Gy)/e(Gy).

We can give another example with a similar result. Let F be a local field, D a

quaternion algebra over F, G the group over F associated to Dx , G' the quasi-split

inner form of G, namely GL2. Let F denote an algebraic closure of F and choose an

isomorphism D ®FF -» Af2(F). This induces an isomorphism <p: G -» G' over F. For

every x G G(F) there exists y G G'(F) such that q>(x) and y are conjugate in G'(F),

and the conjugacy class of y in G'(F) is determined uniquely by the conjugacy class

of x in G(F). It can be shown that for every smooth compactly supported function/

on G(F) there exists a smooth compactly supported function/' on G'(F) such that

e{G'v)( f'(h-xyh) dh/du
■   jg;,(F)\g'(F)

is equal to

e(Gx)f f(g-xxg) dg/dt

if y comes from x G G(F) and is equal to 0 if y does not come from any element of

G(F). In the formula above the measure dg (resp. dt) is obtained from the measure

dh (resp. du) by transporting invariant differentials of top degree from G' to G (resp.

from G'v to Gx); note that we can use the inner twisting <p: G -» G' to get an inner

twisting Gx-^> G'v, canonical up to inner automorphisms of G'y. This matching result

for functions /, /' is stated in slightly different terms on p. 246 of [2]. However the

-1 that occurs for central elements is omitted there (formula (8.8) should be replaced

by/(e) = -<p(e))- The same matching result holds when D is replaced by a division

algebra of dimension 9 and GL2 is replaced by GL3 (see Theorem 2.12 of [1] and

observe that e(Gx) and e(G¿) are always 1 in this case).
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The generalizations of these two examples (base change, inner twistings) to

arbitrary connected reductive groups will have to take into account the difference

between conjugacy and stable conjugacy [6], and thus will be more complicated.

Nevertheless, it seems likely that the signs that occur will be of the form e(H) where

H is some centralizer or twisted centralizer. Moreover it may be the case that the

signs e(Gx) will be needed in order to define stable orbital integrals associated to

singular semisimple elements.

The remainder of this paper will be devoted to constructing e(G) cohomologically

and to proving the functorial properties satisfied by e(G). In order to make the

proofs more transparent, we will make our cohomological construction in greater

generality. For any field F denote by F2( F ) the subgroup of the Brauer group of F

consisting of elements x such that 2x = 0. For any connected reductive group G

over F, we will define an element e(G) of B2(F). For a nonarchimedean local field,

the Brauer group is isomorphic to Q/Z, hence F2( F ) = {± 1}. The Brauer group of

R is {± 1}, hence F2(R) =* {± 1}. The Brauer group of C is trivial, hence F2(C) - {1}.

In this way we see that for groups G over a local field F, e(G) can be regarded as an

element of {± 1}.

Here is the construction of e(G). Choose a quasi-split inner form G' of G and an

inner twisting <p: G -> G', that is, an isomorphism <p: G -> G' over a separable

closure Fs of F such that for every a G Gal(Fs/F) the automorphism aa = <p° ° <p~x

of G' is inner. Then (aa) is a 1-cocycle of Gal(Fs/F) in the adjoint group G^d of G'.

This gives us an element of Hx(Gû(Fs/F), G'íd(Fs)). This pointed set is canonically

isomorphic to the (nonabelian) étale cohomology set //e'(Spec(F), G'ad). We have a

map

(O //J(Spec(F), G'íd) - //;(Spec(F), G',d)

where H}(Spec(F), G^d) is the nonabelian cohomology set obtained by using the flat

topology considered by Shatz on p. 204 of [7]. Consider the sequence

i - z - h - g;, - i

where H -» G'îd is the simply connected cover of Ga'd and Z is the kernel of H -> G'&d

(in other words, the center of H in the sense of group schemes). In general this

sequence is not an exact sequence of sheaves in the étale topology on Spec(F),

although it is when the characteristic of F is 0, or even when the characteristic of F is

a prime p and p does not divide the order of the finite group scheme Z. However the

sequence is an exact sequence of sheaves in the flat topology on Spec(F) (that

H -* Gád is an epimorphism of sheaves of sets follows from the fact that the

morphism H -» G^d is flat and finite). This explains why we are using the flat

topology. If we had limited ourselves to fields of characteristic 0, the étale topology

would have been good enough, and we could have used Galois cohomology sets. For

the theory of nonabelian cohomology we refer the reader to [3]. Since Z is central in

H, we have a coboundary map

(2) Hx(F,Gld)^Hf(F,Z)
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(we will simplify our notation by writing F instead of Spec(F) in the cohomology

sets). Choose a maximal torus T of H and choose a Borel subgroup F of H

containing T. Let p be half of the sum of the positive roots of T (positive with

respect to B). Since H is simply connected, p is a character of T. The restriction A of

p to Z is independent of T and F. From this it follows that X is defined over F and

that X is preserved by any automorphism of H. The character X: Z -» Gm induces a

homomorphism

(3) Hf(F,Z)^Hf(F,Gm).

But by Theorem 43 on p. 215 of [7], we have H2(F, Gm) * Hf(F, Gm), and it is well

known that H2(F, Gm) is canonically isomorphic to the Brauer group of F. Since 2A

is trivial on Z, the image of H2(F, Z) in the Brauer group is contained in B2(F).

Applying the maps (1), (2), (3) to the element of HX(F, G^d) obtained from the inner

twisting cp, we get an element e(G) of B2(F).

If we make a different choice of <p, the element of HX(F, G^d) we obtain may be

different, but we will now show that the image in B2(F) does not change. Suppose

that <p is replaced by \p: G -» G'. Write \¡/ = a ° <p with a G Autf(G'). The condition

that \p° ° tp~] be inner for all a G Gal(FJF) is equivalent to the condition that

a" o a'x be inner for all a G Gal(FJF). Since G' is quasi-split over F we can find a

splitting of the exact sequence

l-G¿(F,)-AutF<(G')-Out(G')-l

that is compatible with the action of Gal( Fs/F). Hence there exists ß G AutF(G')

such that a = ß ° y with y inner. Then

But (y" ° tfa ° Y"1) is cohomologous to (a„), and thus the elements of H¡(F, Ga'd)

obtained from \p and <p are in the same orbit under the action of AutF(G^d). But

AutF(Gád), which is the same as AutF(H), acts on the whole sequence

l-Z-»ff-.G¿,-l,

hence the elements of Hj(F, Z) obtained from \p and 9 are in the same orbit under

the action of AutF(H). But we have already remarked that the character X: Z -» Gm

is preserved by A\xtF(H). This implies that the elements of H2(F,Gm) obtained

from \¡/ and <p are the same. This completes the definition of the element e(G) of

B2(F). The next step is to establish the functorial properties of e(G).

Proposition. The following properties are satisfied by e(G).

(1) If G is quasi-split, then e(G) = 1.

(2) For any central subgroup Z of G we have e(G) = e(G/Z).

(3) e(G, X G2) = e(G,)e(G2) (using multiplicative notation in the Brauer group).

(4) Let E be an extension field of F. Then for any G over F we have e(GE) —

KesE/F(e(G)) where Res£/ir denotes the restriction homomorphism from the Brauer

group of F to the Brauer group of E.

(5) Let E be a finite separable extension field of F. Then for any G over E we have

e(R(G)) = CorE/F(e(G))  where R(G) denotes the F-group obtained from  G by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HARMONIC ANALYSIS ON REDUCTIVE GROUPS 293

restriction of scalars from E to F and Cor£/F denotes the corestriction homomorphism

from the Brauer group of E to the Brauer group of F.

(6) Let S be an F-split torus of G and let M be the centralizer of S in G. Then

e(G) = e(M).

(7) Let D be a central simple algebra over F of dimension d2 and let G be the

F-group Dx . Let [D] denote the class of D in the Brauer group of F. If d is odd, then

e(G) is trivial. If d is even, then e(G) = [D]d/2 (using multiplicative notation in the

Brauer group of F).

(1), (2), (3), (4) are all obvious. To establish (5) we consider the following

commutative diagram

H}(F,R(Gri))-yHf(F,R(Z))-^^H2{F,R(Gm))-    '-^H2(F,Gm)

v

Hx(E,G^d) ->H2(E,Z)

where the vertical arrows are Shapiro maps, obtained as compositions

H}(F, R(*)) -* HX(E, R(*)) - HX(E,*)

(note that over F there is a canonical homomorphism F(*) -» *). It is easy to see that

R(Z) is the center of R(H), that R(H) is the simply connected cover of R(G)'id —

R(G^d), and that the character of R(Z) used to define e(R(G)) is the composition

R(Z) - F(GJ-Gm

where N is the norm homomorphism. Choose an inner twisting <p: R(G) -> R(G').

Since G is a direct factor (in a canonical way) of R(G) over F, <jp induces an inner

twisting ^: G -» G'. The element of HJ(F, R(G'zd)) corresponding to <p maps to the

element of Hf(E,G'^d) corresponding to xp. Hence there is an element of

H2(F, R(Gm)) that maps under N to e(R(G)) and under the Shapiro map to e(G).

The same statement is true with flat cohomology replaced by étale cohomology, or in

other words, by Galois cohomology. But by Proposition 8 on p. 33 of [7], the

corestriction homomorphism from H2(E, Gm) to H2(F, Gm) is the composition of N

with the inverse of the Shapiro isomorphism. This proves (5).

Next we prove (6). Let 5ad denote the image of S in Gad and let C denote the

center of G. Then the centralizer of Sad in Gad is equal to the image of Af in Gad and

is therefore isomorphic to M/C. By (2) we have ¿(Af) = e(Af/C) and e(G) =

e(G/C). This reduces us to the case in which G is an adjoint group.

Our next step is to show that the inner twisting y: G -> G' can be chosen so that

the restriction of qp to 5 is defined over F. For this we may as well assume

(temporarily) that S is a maximal F-split torus of G. Choose a minimal parabolic

F-subgroup F of G of which Af = Centc(S) is a Levi subgroup. Choose a maximal

F-split torus S' of G' and a Borel subgroup F' of G' defined over F of which

T = CentG-(S') is a Levi subgroup (T is a maximal torus of G'). Choose also a

maximal F-torus T of Af; then F is a maximal F-torus of G that contains S. We may

Cor

+ H2(E,Gmy
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choose the inner twisting 9: G - G' so that 9(F) = T and 9(F) D B'. With these

assumptions 9 |s is defined over F, as we will now show. Let a G Gal(FJF). Let ga

be an element of G' such that 90^-" = Int(g0). It follows from 9(F) D F' that

(Int ga)(B') C 9(F). This means that (Intg0)(F') and F' are two Borel subgroups

contained in 9(F), and hence that ga G 9(F). It follows from 9(F) = T that ga

normalizes 7". These two conditions on ga imply that ga belongs to the unique Levi

component of 9(F) containing T, namely 9(Af ). In particular ga centralizes <p(S)

and therefore the restriction of 9 to S is defined over F.

From now on we assume that 9 |s is defined over F. Let Af' denote the centralizer

of y>(S). This usage of notation is consistent with our previous usage since Af is in

fact a quasi-split inner form of M. Let p: H -» G' be a simply connected covering of

G', and let Z be the kernel of p. The sequence 1 -» Z -> H -» G' -» 1 and the

character X: Z — Gm defined previously are what we need to calculate e(G). Let I

denote the inverse image of A/' under p. It is not hard to show that I is the

centralizer in H of the F-split torus p~x((p(S)). Hence 7 is a Levi subgroup of a

parabolic F-subgroup of H, and in particular the derived group 7der of / is simply

connected (because H is simply connected). Let ZM denote the center of 7der. The

sequence

(A) 1 - ZM -> /der - M¿ -> 1

and character XM: ZM — Gm are what we need to calculate e(M). The reason for

assuming that the restriction of 9 to S is defined over F is that this condition implies

that the element of HX(F, G') corresponding to 9 lies in the image of Hxe(F, Af'). The

same is then true for the flat cohomology sets. A consequence of this is that the

element of H2(F, Z) used to get e(G) can be calculated using the coboundary map

associated to the sequence

(B) 1 - Z -* I -* M' -* 1.

Both Z and ZM are subgroups of Center(7). By considering the sequences (A) and

(B) above together with the sequence

1 - Center(7) -» I -» M'àd -» 1

we see that the elements of Hf(F, Z) and H2(F, ZM) used to obtain e(G) and e(M)

respectively have the same image in H2(F,Center(I)). To complete the proof it is

enough to show that there is a character defined over F on Center(Z) that restricts to

X on Z and to XM on ZM. Choose a maximal F-split torus 50 of H containing

p~l((p(S)) and let F0 be the centralizer of SQ in H. Since H is quasi-split, T0 is a

maximal F-torus of H and there exists a Borel subgroup F0 of if defined over F

containing F0. Let p be half the sum of the positive roots on T0. Then p is defined

over F, and the restriction of p to Z is by definition X. Because we chose S0 so as to

have it contain p~x((p(S)), we have that F0 is a maximal torus of /. Hence Center(7)

is contained in F0 and we may restrict p to Center(7) to get a character of that group

defined over F whose restriction to Z is X. An easy calculation using the expression

for p as the sum of the fundamental weights of F0 shows that the restriction of p to

ZM is XM (the fundamental weights of H that are not fundamental weights of I are

trivial on ZM). This completes the proof of (6).
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The last statement to prove is (7). The quasi-split inner form of G is G' = GLd.

The sequence used to compute e(G) is

l-^-SL^FGL^l.

The sequence

j
(*) ! ^Mj^Gm^Gm-1

is an exact sequence of sheaves in the flat topology. Since Hf(F,Gm) = Hx(F,Gm)

= {0}, the long exact cohomology sequence of (*) shows that H2(F, nd) may be

identified with the elements of the Brauer group killed by d. If we use an inner

twisting 9: G -» G' obtained from an isomorphism D ®f Fs A Md(Fs), we find that

the element of Hf(F, Z) associated to 9 is [D], the class of D in the Brauer group of

F. The character X: ¡id -» Gm is easy to calculate. It is trivial when d is odd and is

given by z 1-» zd/2 when d is even. This proves statement (7).

Using well-known facts about the Brauer groups of local fields we obtain the

following result.

Corollary. Over a local field F the following properties are satisfied by e(G), with

e(G) now viewed as an element of {± 1}.

(1) If G is quasi-split, then e(G) = 1.

(2) For any central subgroup Z of G we have e(G) = e(Gt/Z).

(3)e(Gx XG2) = e(Gl)e(G2).

(4) Let E be a finite extension field of F. Then for any G over F we have

e(GE) = e(GyEFX.

(5) Let E be a finite separable extension field of F. Then for any G over E we have

e(ResE/FG) = e(G).

(6) Let S be an F-split torus of G and let M = Centc(S). Then e(G) - e(M).

(7) Let D be a central simple algebra over F of dimension d2 with invariant

r/d G Q/Z and let G be the F-group Dx . Then e(G) is trivial unless d is even and r is

odd, in which case e(G) = -1.

We are now in a position to show that e(G) has the values given previously. For

F = C the Brauer group is trivial and hence e(G) = 1 for all G. For F = R we

define a quantity e'(G) by the formula

e'(G) = (_i)«<G')-9«?>

We must prove that e(G) = e'(G) for all G. Let S be a maximal R-split torus of G

and denote by Af the centralizer of S in G. Then e(G) = e(Af) by (6) of the

corollary above. By Proposition 6.6 of [8] we have

q(G') - q(G) = q(M') - q(M)

(this proposition is proved by showing that q(G) — q(M) = 5[dimc;Y + dimcS]

where N is the unipotent radical of a parabolic subgroup of G with Levi component

M, and noting that dimc N and dimc S do not change when G, Af are replaced by

G', Af). Thus we have e'(G) = e'(M), and it suffices to show that e(M) = e'(M).
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We further have that e(M) = e(Afad) and e'(Af) = e'(Afad). Since Afad is aniso-

tropic, we have reduced our problem to the case in which G is an anisotropic adjoint

group over R.

Since G' is an inner twist of an anisotropic group, G' has a maximal R-torus T

that is anisotropic over R and there exists an element s G F'(R) with s2 = 1 such

that lnt(s) is a Cartan involution of G'. Let G's denote the centralizer of 5 in G'.

Then GS'(R) is a maximal compact subgroup of G'(R). We have q(G) = 0 since G is

anisotropic, and we have

q(G') = \(dimcG' - dimcG;) = ^(dimLie(G') - dimLie(G;)).

Let F denote the set of roots of 7" in G'. Then

dimLie(G') - dimLie(G;) = Card{a G F: a(s) =£1}.

Choose an ordering on F and let F+ denote the set of positive roots with respect to

this ordering. Let

q = Card{a G F+ : a(s) #1}.

We need to show that e(G) = (-1)*.

The inner form G of G' can be obtained from the 1-cocycle (ca) where c„ = 1 if a

is trivial and ca = s if a is complex conjugation. Since the characteristic of R is 0, we

may calculate e(G) using Galois cohomology instead of flat cohomology. As usual

denote by Z the center of the simply connected cover H of G'. Choose an element

t G H(R) that maps to s under H -» G' (the existence of t follows from the

connectedness of F'(R)). The image of (ca) under if'(R, G') -* H2(R, Z) can be

represented by (daT) where dar — 1 unless a, t are both complex conjugation in

which case daT = t2. The image of (dar) under the homomorphism

H2(R, Z) - H2(R,Gm)

induced by X can be represented by (ear) where eaT = X(daT). We have

X(i2) = X2(t)=   yj  a(/)=   yj  a(sy
a£R+ aGR +

But since s2 = 1 the only possible values for a(s) are 1 and -1, and thus it follows

that X(i2) = (-1)*. This shows that ear = 1 unless a, t are both complex conjuga-

tion, in which case eaT = (-1)9. For a = 1 this 2-cocycle represents the nontrivial

element of H2(R,Gm) = { + 1} (it must be nontrivial since there are groups for

which e(G) = -1). This shows that e(G) = (-1)«.

We will use a similar method for nonarchimedean local fields F. In this case we

define a quantity e'(G) by the formula

We must show that e(G) = e'(G) for all G. Let S be a maximal F-split torus of G

and denote by Af the centralizer of S in G. We know that e(G) = e(M). But

r(G) — r(M) is equal to the difference of the F-ranks of Center(Af ) and Center(G),

hence does not change when G, Af are replaced by G', Af; therefore we also have

e'(G) = e'(M). As for real groups we are reduced to the case in which the derived
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group of G is anisotropic. We may assume that G is adjoint as well (since e(G) and

e'(G) both depend only on Gad). Since e and e' are multiplicative for direct products

of groups, we may assume that G is F-simple. Then G is isomorphic to a group of the

form ResE/FH for some finite separable extension F of F and some absolutely

simple F-group H. We have e(G) = e(H). Since r(G) = r(H) and r(G') = r(H') we

also have e'(G) = e'(H). This reduces us to the case in which G is absolutely simple

as well as anisotropic and adjoint. With these conditions G must be isomorphic to

Dx/Fx for some central division algebra D over F. Write inv(D) = r/d for

relatively prime positive integers r, d. Then r(G) = 0 and r(G') = r(PGLd) = d — 1.

This shows that e'(G) = (-\)d~x. By statement (7) of the corollary above we also

havee(G) = (-l)'/-1.

Our last result is a product formula.

Proposition. Let F be a global field and let S be the set of places of F. For v G S

let Gv denote the Fv-group obtained from G by extension of scalars from F to Fv. Then

e(Gv) = 1 for all but a finite number of v G S, and

lJe(Gv) = \.
ves

We first note that Gv is quasi-split for all but a finite number of v G S, and hence

that e(Gv) — 1 for all but a finite number of v G S. Let F be a central division

algebra over F whose class in the Brauer group of F is equal to e(G). It follows from

(4) of the proposition proved earlier that

e(Gj = exp(2tfj-inv(Z>„)).

The product formula then follows from the well-known formula

2 inv(F»J = 0.
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