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SIGN CHANGES IN SUMS OF THE LIOUVILLE FUNCTION

PETER BORWEIN, RON FERGUSON, AND MICHAEL J. MOSSINGHOFF

Abstract. The Liouville function λ(n) is the completely multiplicative func-
tion whose value is −1 at each prime. We develop some algorithms for com-

puting the sum T (n) =
∑n

k=1 λ(k)/k, and use these methods to determine the
smallest positive integer n where T (n) < 0. This answers a question originat-
ing in some work of Turán, who linked the behavior of T (n) to questions about
the Riemann zeta function. We also study the problem of evaluating Pólya’s
sum L(n) =

∑n
k=1 λ(k), and we determine some new local extrema for this

function, including some new positive values.

1. Introduction

The Liouville function λ(n) is the completely multiplicative function defined by
λ(p) = −1 for each prime p. Let ζ(s) denote the Riemann zeta function, defined
for complex s with �(s) > 1 by

ζ(s) =
∑
n≥1

1
ns

=
∏
p

(
1 − 1

ps

)−1

.

It follows then that

(1)
ζ(2s)
ζ(s)

=
∏
p

(
1 +

1
ps

)−1

=
∑
n≥1

λ(n)
ns

for �(s) > 1.
Let L(n) denote the sum of the values of the Liouville function up to n,

L(n) :=
n∑

k=1

λ(k),

so that L(n) records the difference between the number of positive integers up to
n with an even number of prime factors and those with an odd number (counting
multiplicity). Pólya noted in 1919 [15] that the Riemann hypothesis follows if L(n)
does not change sign for sufficiently large n. This may be established by applying
partial summation in (1) and then employing a well-known theorem of Landau on
the convergence of Dirichlet series with terms of constant sign; see for instance
[14]. It is also known that the zeros of the zeta function are all simple if L(n) is
eventually of constant sign.
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Pólya proved in [15] that L((p − 3)/4) = 0 for any prime p > 7 for which p ≡ 3
mod 4 and the number of classes of positive definite quadratic forms of discriminant
−p is 1, so L((p−3)/4) = 0 for p = 11, 19, 43, 67, and 163. He verified that L(n) ≤ 0
for all n between 2 and approximately 1500, and found that in fact L(n) = 0 for
several values of n beyond those obtained from the quadratic imaginary fields with
class number 1; for example, L(586) = 0.

In 1940, Gupta [6] verified that L(n) ≤ 0 for 2 ≤ n ≤ 20000. Also, D. H.
Lehmer’s review of Gupta’s paper mentions that L(48512) = −2, so it seems possi-
ble that Lehmer may have performed some extensive computations on this problem
around this time, too. Haselgrove [7] later verified that L(n) remains negative up
to 250 000, and in his article [8] he remarks that Lehmer had in fact checked this
condition up to n = 600 000.

In 1942, Ingham [10] noted that the Riemann hypothesis, and the simplicity of
the zeros of ζ(s) follow more generally if either L(n) < c

√
n or L(n) > −c

√
n,

for some positive constant c. Further, it would also follow from either of these
conditions that the imaginary parts of the zeros of ζ(s) lying in the upper half-plane
would satisfy infinitely many nontrivial linear relations over the field of rationals.

Similar statements hold for a particular weighted sum of the Liouville function.
Landau proved in his thesis that the convergence of the sum∑

n≥1

λ(n)
n

= 0

is in fact equivalent to the prime number theorem. (Landau also considered the
analogous statement involving the Möbius function, µ(n).) Define the function
T (n) by

T (n) :=
n∑

k=1

λ(k)
k

,

and let Un(s) denote the sum of the first n terms of the series for the zeta function,

Un(s) :=
n∑

k=1

1
ks

.

In 1948, Turán [18] explored connections between the values of T (n) and Un(s), and
their relation to the Riemann hypothesis. He proved that the Riemann hypothesis
follows if Un(s) does not vanish in the half-plane �(s) > 1 for sufficiently large n,
or more generally in the half-plane

(2) �(s) ≥ 1 +
c√
n

for some positive constant c. Somewhat weaker conditions suffice as well (see [18]
and [19]). Since ζ(s) has no zeros in �(s) > 1, these conditions may seem plausible.
In fact, Turán proved that if Un(s) does not vanish in the half-plane (2), then

T (n) > − c1√
n

for a positive constant c1, and that this condition implies the Riemann hypothesis.
In particular, therefore, the Riemann hypothesis follows if T (n) remains positive
for large n.

We remark that in 1983 Montgomery [13] established that Un(s) does in fact
have zeros with large real part, proving that for each positive number c < 4

π − 1
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and every n > n0(c), the function Un(s) has zeros in the half-plane �(s) > 1 +
c(log log n)/ log n.

In [18], Turán reported that the positivity of T (n) was checked for n ≤ 1000 by
five Danish mathematicians: Eilertsen, Kristensen, Petersen, Poulsen, and Winther.
In 1952, Larsen [11] corrected some minor errors in the previously reported values
for T (293) and T (1000), and checked that T (n) > 0 for n ≤ 4528. The stopping
point here was selected no doubt because L(4528) = −74, and L(n) does not achieve
a smaller value until n = 6317. We mention however that Larsen’s reported value
for T (4528) is not correct (its actual value is .0035514 . . .), and that his reported
minimum over this range at n = 2837 is erroneous as well. In fact, Larsen remarked
that his value for T (2837) is something of a near miss, since he calculated it to be
less than 1/2837. However, only n = 3, 8, 13, and 32 have the property that
T (n) < 1/n, at least until shortly before the first sign change of T (n), described
later in this article.

In 1953, Bateman and Chowla [2] remarked that the condition T (n) > 0 was
checked up to n = 100 000 at the Institute for Numerical Analysis, a laboratory
affiliated with the National Bureau of Standards that existed at UCLA between
1947 and 1954. It is not mentioned who performed these calculations, but it seems
likely that it was again D. H. Lehmer, who was involved with computations at
the Institute around this time. (Lehmer’s review of the article of Bateman and
Chowla in fact includes some additional information on the calculation to 100 000,
namely, that the computations were performed on the National Bureau of Standards
Western Automatic Computer, known as the SWAC [9].1)

In 1958, Haselgrove proved that both L(n) and T (n) change sign [8]. We briefly
describe his proof, which builds on the work of Ingham [10]. Assume that the
Riemann hypothesis is valid, and that the zeros of the zeta function are all simple.
Let {ρn} denote the sequence of zeros of ζ(s) on the critical line in the upper half-
plane, and write ρn = 1

2 + iγn, with γn < γn+1 for n ≥ 1. Define the function A(x)
by

(3) A(x) := e−x/2L(ex),

and for a positive real number m, define the function A∗
m(x) by

(4) A∗
m(x) :=

1
ζ(1/2)

+ 2�
( ∑

0<γn<m

(
1 − γn

m

) ζ(2ρn)
ρnζ ′(ρn)

eiγnx

)
.

Then, for any fixed positive real numbers m and y, Ingham proved that

(5) lim inf
x→∞

A(x) ≤ lim inf
x→∞

A∗
m(x) ≤ A∗

m(y) ≤ lim sup
x→∞

A∗
m(x) ≤ lim sup

x→∞
A(x).

Therefore, if one can find values for m and y for which A∗
m(y) > 0, then it follows

that L(n) > 0 for infinitely many integers n. (Naturally, one obtains the same
conclusion if the Riemann hypothesis is false, or if its zeros are not all simple.)
Haselgrove found that selecting m = 1000 and y = 831.847 produces A∗

m(y) ≈
.00495. This computation employed the first 649 zeros of the Riemann zeta function.

Turán’s problem was investigated in the same way. Define

(6) B(x) := ex/2T (ex)

1The SWAC was employed in a number of computations in number theory around this time,
including Robinson’s determination of the first five Mersenne primes found with the aid of a
computer [16].
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and let

(7) B∗
m(x) := − 1

ζ(1/2)
+ 2�

( ∑
0<γn<m

(
1 − γn

m

) ζ(2ρn)
(ρn − 1)ζ ′(ρn)

eiγnx

)
.

Then inequalities analogous to those in (5) hold for the functions B(x) and B∗
m(x),

and Haselgrove found that selecting m = 1000 and y = 853.853 or y = 996.980
produces a negative value of B∗

m(y). It follows that T (n) < 0 for infinitely many
integers n. Haselgrove’s results, however, do not identify a specific value of n where
L(n) > 0 or T (n) < 0.

Lehman investigated Pólya’s problem in 1960 [12]. He proved that the function
A∗(x) represents a smoothing of the function A(x), provided the Riemann hypoth-
esis holds and that there exists a constant c in (0, 1) such that 1/ζ ′(ρ) = O(|ρ|c)
whenever ρ is a complex zero of ζ(s). For example, Figure 1(a) shows a plot of A(x)
for several hundred sampled values of L(ex) over 22 ≤ x ≤ 23, and Figure 1(b) ex-
hibits A∗

10000(x) over the same interval. Figures 2(a) and 2(b) show that B∗
m(x)

approximates B(x) in the same way.

(a) A(x) (b) A∗
10000(x)

Figure 1. A(x) and A∗
10000(x) for 22 ≤ x ≤ 23

(a) B(x) (b) B∗
10000(x)

Figure 2. B(x) and B∗
10000(x) for 22 ≤ x ≤ 23

By investigating the functions A∗
m(x) for m ≤ 1000, Lehman suspected that

L(n) changes sign near n = 9.05 · 108. He developed an algorithm for computing
L(n) for a particular value of n quickly, and used this method to determine that
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in fact L(906 180 359) = 1. This algorithm is described in section 3. Lehman also
recorded that L(906 400 000) = 708, and Anderson and Stark [1] used this datum
to show that there exist infinitely many integers n for which

(8) L(n) > .023519
√

n.

In 1980, Tanaka [17] determined that n = 906 150 257 is the smallest integer n > 1
for which L(n) = 1. Tanaka also reported that L(n) ≤ 829 for n ≤ 109, although he
did not report that this value occurred at n = 906 316 571. With this information,
the method of Anderson and Stark shows that

(9) L(n) > .027536
√

n

infinitely often. The value of the constant here is simply 829/
√

906316571.
Precise information on negative values of T (n), however, have remained un-

known. In this paper, we determine the smallest positive integer n for which
T (n) < 0. We also determine the minimum value of T (n) for n ≤ 7.5 · 1013.
We establish the following theorem in section 2.

Theorem 1. Let T (n) denote the sum
∑n

k=1 λ(k)/k. The smallest positive integer
n for which T (n) < 0 is n = 72 185 376 951 205, and the minimal value of T (n) for
n ≤ 7.5 · 1013 is T (72 204 113 780 255) ≈ −2.0757641 · 10−9.

This minimal value was recently used by Granville and Soundararajan [5] to
determine an explicit bound on negative values of the truncation of the series for
L(1, χ), where L(s, χ) is the L-function associated with the quadratic Dirichlet
character χ. The relationship between Turán’s problem and truncations of L(1, χ)
for real Dirichlet characters is also discussed by Bateman and Chowla [2] and Wiener
and Wintner [20].

In section 3, we describe our implementation of Lehman’s method for computing
L(n). We use this algorithm to determine some additional values where L(n) > 0.
These results allow us to strengthen inequality (9) immediately. We establish the
following theorem.

Theorem 2. There exist infinitely many positive integers n for which

L(n) > .061867
√

n.

2. Sign changes in Turán’s sum

Figure 3 exhibits the function B∗
25000(x) near x = 31.91, and indicates that T (n)

may change sign near n = exp(31.9105) ≈ 7.22 · 1013. We develop some algorithms
to establish that the first sign change for T (n) indeed occurs near this value.

2.1. Constructing a table of values for λ(n). To facilitate our computation of
L(n) and T (n), we first construct a table of values of the Liouville function up to
a given integer, N . Clearly, only one bit is needed to indicate the value of λ(k)
for each integer k. We find it convenient to use the 0 bit to indicate λ(k) = 1 and
the 1 bit to indicate λ(k) = −1. It is an inefficient use of memory, however, to
store the value of λ(k) for each k ≤ N , when one can exploit the simple relation
λ(kp) = −λ(k) for any prime p. By avoiding storage of the values of λ(k) when k
is a multiple of 2, 3, or 5, we reduce the size of the table to 4N/15 bits. Of course,
to compensate for this, a program using the table must remove all multiples of 2,
3, and 5 before looking up the value of the Liouville function on the remaining
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Figure 3. B∗
25000(x) near x = 31.9

part, but this imposes a reasonable balance of time and space requirements in our
programs. Removing multiples of 2, 3, and 5 is particularly convenient, since then
we only store eight bits for each block of 30 integers, and the smallest addressable
block of memory on most computers is a byte consisting of eight bits.

Algorithm 1. Construction of a table of values for the Liouville function.

Input. A positive integer N , with 30 | N .
Output. A table consisting of the values of λ(n) for each integer n in [1, N ] with

gcd(n, 30) = 1, one bit per value.
Description.

Step 1. Allocate N/30 bytes of memory. Store 127 in the first byte and 255 in
all subsequent bytes. Set a := 30.

Step 2. Set b := min{2a − 1, N − 1}.

Step 3. For each prime p with 7 ≤ p ≤
√

b, perform the following action: For
each multiple k of p in [a, b] with gcd(k, 30) = 1, set the bit representing
k in the table to 1 − β, where β is the bit representing λ(k/p).

Step 4. Set a := b + 1. If a = N then save the table and quit; otherwise return
to Step 2.

Note that the first byte in the table is 127 because λ(1) = 1 and λ(k) = −1 for
each k with 1 < k < 30 and gcd(k, 30) = 1, so the first eight bits in the table must
be 01111111. Also, we initialize every subsequent bit in the table with 1 because
any bit left undisturbed by the algorithm necessarily represents a prime number.

2.2. Computing the values of λ(n) across an interval. Next we describe an
algorithm that employs a sieving strategy, aided by a table of values of λ(k) pro-
duced by Algorithm 1, to compute sums involving the Liouville function over an
interval. This algorithm is designed so that multiple machines can sieve different in-
tervals independently. We define L(a, b) to be the sum of the values of the Liouville
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function over the interval [a, b],

(10) L(a, b) :=
b∑

k=a

λ(k),

and define T+(a, b) and T−(a, b) to be the sum of the positive and negative terms,
respectively, in the Turán sum over [a, b],

T+(a, b) :=
∑

a≤k≤b
λ(k)=1

1
k

,(11)

T−(a, b) :=
∑

a≤k≤b
λ(k)=−1

1
k

.(12)

Algorithm 2 employs a sieving strategy to compute the values of the Liouville
function over an interval. Unlike Algorithm 1, our table of values for λ(n) requires
two bits per integer, since three different states are possible for each integer in the
block: λ(n) is known and has value 1 (represented by the bit pattern 01), λ(k) is
known and has value −1 (bit pattern 10), and λ(n) is unknown (bit pattern 00).
Given positive integers a0, n, and M , the algorithm computes the sums (10), (11),
and (12) over the interval [a0, a0+nM) by performing n sieving computations, each
on an interval of size M .

Algorithm 2. Computing the values of the Liouville function over an interval.

Input. Positive integers a0, M , N , n, and b, with 4 | M , 30 | N , and a table
recording λ(k) for all positive integers k ≤ N with gcd(k, 30) = 1.

Output. The values of L(a0, a0+nM−1), T+(a0, a0+nM−1), T−(a0, a0+nM−1),
the maximal and minimal values of L(a0, a0 + k) and T+(a0, a0 + k) −
T−(a0, a0+k) over 0 ≤ k < nM , and the values of k where these extreme
values occur. The values of T+ and T− over the interval are computed
to b bits of precision.

Description.
Step 1. Read a table of values of the Liouville function up to N , created using

Algorithm 1. Read a table of primes up to
√

a0 + nM . Allocate a table I
of size 2M bits to record values of the Liouville function over an interval
of size M .

Step 2. For each integer m with 0 ≤ m < n, set a := a0+mM , set b := a+M−1,
set the bits in I to indicate that λ(k) is unknown for a ≤ k ≤ b, and
perform Steps 3 through 6. Then perform Step 7.

Step 3. For each prime p satisfying b/(N − 1) ≤ p ≤
√

b, use a sieving strategy
to test each multiple k of p in [a, b]. For each such k, if the value of
λ(k) is presently unknown, then since k/p < N , we may use the table
to determine the value of λ(k/p). This requires removing all factors of
2, 3, and 5 from k and keeping track of the number of such factors. Set
λ(k) = −λ(k/p).

Step 4. For each prime p from �b/(N − 1)� − 1 down to 7, again use a sieving
strategy to test each multiple k of p in [a, b]. If λ(k) is presently unknown,
then remove a factor of p from k, as well as any factors of 2, 3, and 5.
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Then use trial division to search for additional prime factors q of k,
beginning with q = 7 and halting when either the remaining cofactor
is less than N , or when all primes up to p have been tested (in the
latter case the remaining cofactor is prime). Use the count of prime
divisors removed from k, together with the table of existing values for
the Liouville function, to set the value for λ(k).

Step 5. Scan the table for any remaining multiples of 2, 3, or 5 (these have the
form 2r3s5t or 2r3s5tp, with p a large prime), and set λ(k) for these
numbers.

Step 6. Any remaining numbers k in [a, b] for which λ(k) is unknown are in fact
prime. Use the table I, together with the computations from the prior
blocks, to determine L(a0, b), T+(a0, b), T−(a0, b), and the maximal and
minimal values of L(a0, k) and T+(a0, k) − T−(a0, k) for a0 ≤ k ≤ b.

Step 7. Save the values L(a0, a0+nM−1), T+(a0, a0+nM−1), and T−(a0, a0+
nM − 1) to a file, as well as the maximum and minimum values of
L(a0, a0 +k) and T+(a0, a0 +k)−T−(a0, a0 +k) over 0 ≤ k < nM , and
the values of k where these local extrema occur.

2.3. Results. We use Algorithm 2 to compute the sums L(n) and T (n) up to
7.5 · 1013. This computation was performed using a cluster of PowerMac G5 work-
stations, each with 2.5 GHz dual processors and two gigabytes of memory, at the
center for Interdisciplinary Research in the Mathematical and Computational Sci-
ences (IRMACS) at Simon Fraser University. We use a table of values of the
Liouville function (for integers relatively prime to 30) produced by Algorithm 1 up
to N = 4 · 1010 + 20; this requires about 1.3 gigabytes of memory. Empirically, we
find that M = 16 000 000 is a good choice for the sieving block size (the somewhat
small block size may allow more of the sieving interval to be held in cache). We use
b = 192 bits of precision in the computation of the Turán sums, using the GMP
library [4] to perform these high-precision calculations. Each value λ(n)/n is then
computed to approximately 58 digits of precision, so our computation of T (n) up
to 7.5 · 1013 is accurate to at least 44 decimal places.

The computation was divided into 1286 segments, each one running overnight on
one processor. The first 380 partitions sieved n = 4000 blocks of size M ; the latter
905 segments used n = 3500. The last process computed the values of the Pólya
and Turán sums over the prefix [1, N − 1]. These jobs were run over 30 nights on
the IRMACS cluster, requiring about 2.5 years of CPU time in all.

We check the integrity of the data produced by these computations with several
calculations. First, for each interval [a, b] corresponding to a segment of the compu-
tation, we check if T+(a, b)+T−(a, b) matches

∑b
n=a 1/n to the required precision,

computing the harmonic series independently to high precision by analytic means.
Second, we use Lehman’s algorithm, described in section 3, to check that the values
of L(a) and L(b) are correct, as well as the maximum and minimum values attained
by L(n) over [a, b].

We find that T (n) first changes sign at

n0 = 72 185 376 951 205,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SIGN CHANGES IN SUMS OF THE LIOUVILLE FUNCTION 1689

Table 1. Some local minima of L(n) and T (n).

n L(n) T (n) n L(n) T (n)

293 −21 5.11228 · 10−3 3847002655 −68681
468 −24 4430947670 −73436
684 −28 6321603934 −96460
1132 −42 2.81770 · 10−3 10097286319 −123643 1.38015 · 10−6

1760 −48 15511912966 −158636 8.42129 · 10−7

2804 −66 1.99019 · 10−3 24395556935 −172987
4528 −74 39769975545 −238673 8.05229 · 10−7

7027 −103 1.37995 · 10−3 98220859787 −365305 6.08024 · 10−7

9840 −128 8.62126 · 10−4 149093624694 −461684 4.29564 · 10−7

24426 −186 217295584371 −598109 2.20717 · 10−7

59577 −307 4.97200 · 10−4 341058604701 −726209
96862 −414 1.19960 · 10−4 576863787872 −900668
386434 −698 835018639060 −1038386
614155 −991 1.08828 · 10−4 1342121202207 −1369777 1.64664 · 10−7

925985 −1253 5.46512 · 10−5 2057920042277 −1767635 1.00682 · 10−7

2110931 −1803 2147203463859 −1784793 9.56193 · 10−8

3456120 −2254 3271541048420 −2206930 8.51691 · 10−8

5306119 −2931 4.10527 · 10−5 4686763744950 −2259182
5384780 −2932 5191024637118 −2775466 6.31694 · 10−8

8803471 −3461 7934523825335 −3003875

12897104 −4878 3.05124 · 10−6 8196557476890 −3458310 5.48241 · 10−8

76015169 −10443 12078577080679 −4122117 5.47191 · 10−8

184699341 −17847 18790887277234 −4752656
281876941 −19647 20999693845505 −5400411 3.73147 · 10−8

456877629 −28531 1.42684 · 10−6 29254665607331 −6870529 2.06873 · 10−8

712638284 −29736 48136689451475 −7816269
1122289008 −43080 72204113780255 −11805117 −2.07576 · 10−9

1806141032 −50356 117374745179544 −14496306
2719280841 −62567 176064978093269 −17555181

and here T (n0) ≈ −1.0613886773 · 10−14. It then immediately crosses back to a
positive value, crosses back to negative again at n0+8, reverts to positive at n0+56,
and oscillates more than 150 000 times before beginning a lengthier succession of
negative values beginning at n0 + 10 532 340 211. The minimum value of T (n) over
n ≤ 7.5 · 1013 then occurs at n1 = 72 204 113 780 255, as reported in Theorem 1,
and

T (n1) = −0.00000000207576410927140618499378389075 . . . .

The sum next achieves a positive value at n = 72 213 638 492 881, and oscillates
many more times up to n2 = 72 234 579 516 031, its last crossing over this interval.
In all, there are 327 144 sign changes of the Turán sum below 7.5 ·1013, all occurring
between n0 and n2. Some successive local minima for T (n), as well as L(n), appear
in Table 1.

Further analysis of the function B∗
m(x) from (7) indicates that the next sign

change for T (n) (for n > n2) may occur near n = e43.897 ≈ 1.159 · 1019; see
Figure 4.
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Figure 4. B∗
25000(x) near x = 43.9

3. Sign changes in Pólya’s sum

It is an elementary fact that the summatory function of the Liouville function is
nonzero precisely on the squares:

(13)
∑
k|n

λ(k) =

{
1 if n is a square,
0 otherwise.

Lehman [12] exploits this fact to develop a method for computing L(n) for a par-
ticular integer n without computing λ(k) for each k ≤ n. We describe Lehman’s
formula here, and describe our strategy in implementing it to compute L(n) for
large n.

3.1. Lehman’s method. From (13) we see that for any x > 0 we have

(14)
⌊√

x
⌋

=
∑
n≤x

∑
k|n

λ(k) =
∑
k≤x

λ(k)
∑
n≤x

k

1 =
∑
n≤x

∑
k≤ x

n

λ(k) =
∑
n≤x

L
(x

n

)
.

Let w be a positive real number satisfying w < x, and suppose m is an integer
between 1 and 	x/w
. Replacing x by x/m in (14), then multiplying by the Möbius
function µ(m) and summing over m, we obtain∑

m≤ x
w

µ(m)
⌊ x

m

⌋
=

∑
m≤ x

w

µ(m)
∑
n≤x

L
( x

mn

)
.

We now break the right side into three sums for different ranges of n. We find that∑
m≤ x

w

µ(m)
∑

n≤ x
mw

L
( x

mn

)
=

∑
�≤ x

w

L
(x

�

) ∑
m|�

µ(m) = L(x),

∑
m≤ x

w

µ(m)
∑

x
mw <n≤ x

mv

L
( x

mn

)
=

∑
x
w <�≤x

v

L
(x

�

) ∑
m|�

m≤ x
w

µ(m),
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and ∑
m≤ x

w

µ(m)
∑

x
mv <n≤ x

m

L
( x

mn

)
=

∑
m≤ x

w

µ(m)
∑
k<v

λ(k)
(⌊ x

km

⌋
−

⌊ x

mv

⌋)
.

Combining these expressions, we see that

L(x) =
∑

m≤ x
w

µ(m)

(⌊√
x

m

⌋
−

∑
k<v

λ(k)
(⌊ x

km

⌋
−

⌊ x

mv

⌋))

−
∑

x
w <�≤x

v

L
(x

�

) ∑
m|�

m≤ x
w

µ(m).

In the same way, since ∑
n≤x
2�n

L
(x

n

)
=

⌊√
x
⌋
−

⌊√
x

2

⌋
,

one may obtain a somewhat more complicated formula for L(x) that requires sum-
ming over only odd values of � and m:

L(x) =
∑

m≤ x
w

2�m

µ(m)

(⌊√
x

m

⌋
−

⌊√
x

2m

⌋
+

⌊
x

2mv
+

1
2

⌋ ∑
k<v

λ(k)

−
∑
k<v

⌊
x

2km
+

1
2

⌋
λ(k)

)
−

∑
x
w <�≤x

v
2��

L
(x

�

) ∑
m|�

m≤ x
w

µ(m).

This is Lehman’s formula for computing L(x). One could in fact optimize the
formula further, for instance by summing over only those integers � and m that are
relatively prime to 6, but this formula suffices for our purposes.

We now select v and w to minimize the resources required to calculate L(x).
The first sum requires values of the Möbius function up to x/w and values of
L(n) for n < v, and we store these values in two arrays. To balance the space
requirements here we then require vw = x. Using this data, the first sum then
needs O(vx/w) = O(v2) time.

The second sum requires more care. Evidently we require values of L(n) for
n < w, but it is not necessary to store O(w) values here. Instead, we need only
store the values of L(x/�) for odd integers � in (x/w, x/v]. We therefore store the
values of L(n) for n ≤

√
x in an array, and we insert the values of L(x/�) for odd

integers � between v and
√

x in a search tree that guarantees O(log x) time for
insertions and searches. Thus, the space requirement here is O(

√
x).

For the last part of the second sum, define the function ξ(�) by

ξ(�) :=
∑
m|�

m≤ x
w

µ(m).

We require values of ξ(�) for odd integers � ≤ x/v. We use a sieving strategy to
compute the values of this function in blocks of size q, where q is a free parameter.
First, we initialize each element of an array of integers of size q to 0, then we
add µ(3) = −1 to each multiple of 3 in the range represented by the array, then
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µ(5) = −1 to each multiple of 5, and continue this for each odd integer m ≤ x/w.
By setting q =

√
x, we match the space requirement for the L(n). Amortizing over

the length of the interval, we see that this computation requires O(log x) time per
value of ξ(�).

With this strategy the time then required to compute the second sum is

O

(
w log x +

x log x

v

)
= O(w log x),

and the space needed is O(
√

x). We remark that we could reduce the space fur-
ther by employing a sieving strategy in the computation of the L(n), but for the
applications of interest here, the table of values of λ(n) for n ≤ 4 · 1010 that was
computed with Algorithm 1 suffices.

To minimize the time required, we thus set v and w so that vw = x and O(v2) =
O(w log x), so

v = c(x log x)1/3

and

w =
x2/3

c(log x)1/3
,

for a positive constant c, so that both sums require O((x log x)2/3) time. We find
empirically that choosing c = 1/2 produces favorable computation times.

We remark that Deléglise and Rivat [3] developed a similar algorithm for com-
puting the Mertens function M(n) =

∑n
k=1 µ(k).

3.2. Results. We used this algorithm to compute several values of L(n). First,
we used it to check particular values of L(n) computed by Algorithm 2 on each
interval of the computation. Second, we used this method, in combination with
Algorithm 2, to find another range where L(n) is often positive, and indeed quite
large.

Prior to this work, the only known positive values of L(n) occurred for n < 109,
in fact between n1 = 906 150 257 and n2 = 906 488 079. There are 133 sign changes
of L(n) for n < 109 and, as Tanaka [17] observed, 252 integers in this range where
L(n) = 0, including the nine values of n ≤ 586 found by Pólya where this occurs.

Some investigation of the approximating formula A∗
m(x) from (4) indicates that

the next crossing point for L(n) probably occurs near n = e33.492 ≈ 3.511 ·1014; see
Figure 5. We use Lehman’s formula and Algorithm 2 to verify that L(n) indeed
achieves positive values near this point. We first sample the values of L(n) in
this vicinity, then use Algorithm 2 to compute the values of L(n) (but not T (n))
for 3.5 · 1014 ≤ n ≤ 3.54 · 1014. We find that L(n) exhibits 159 016 sign changes
in this range; of these, 24 715 occur between n3 = 351 100 332 278 253 and n4 =
351 111 026 085 887, and the remaining 134 301 sign changes occur between n6 =
352 716 987 837 481 and n7 = 352 748 014 189 959. A local maximum is achieved at

n5 = 351 753 358 289 465,

where
L(n5) = 1 160 327.

Theorem 2 follows immediately from this value by using the results of Anderson
and Stark [1], since L(n5)/

√
n5 = 0.0618673 . . ..

This calculation detects 317 060 integers in the range 3.5 · 1014 ≤ n ≤ 3.54 · 1014

where L(n) = 0, beginning with n3 − 3 = 351 100 332 278 250. Of these, 49 590
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Figure 5. A∗
25000(x) near x = 33.5

occur between n3 − 3 and n4 + 5, and the other 267 470 occur between n6 − 13 and
n7 − 1. The complete list of 317 312 known positive integers n where L(n) = 0 is
available from the authors.

We remark that it is possible that L(n) ≥ 0 for additional integers n < 3.5 ·1014,
although this seems unlikely, considering the values of the function A∗

m(x). To
resolve this in part, however, we used Algorithm 2 to extend the calculation of
L(n) (but not T (n)) up to n = 2 · 1014. This computation required 1318 additional
jobs, performed over 25 nights, using n = 8000 blocks per process at first, reducing
later to n = 6000 and then n = 5000. The total CPU time for this calculation was
approximately 2.25 years. With this computation, we verified that indeed L(n) < 0
for 109 ≤ n ≤ 2 · 1014.
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