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Abstract—To recognize speech, handwriting, or sign language, many hybrid

approaches have been proposed that combine Dynamic Time Warping (DTW) or

Hidden Markov Models (HMMs) with discriminative classifiers. However, all

methods rely directly on the likelihood models of DTW/HMM. We hypothesize that

time warping and classification should be separated because of conflicting

likelihood modeling demands. To overcome these restrictions, we propose using

Statistical DTW (SDTW) only for time warping, while classifying the warped

features with a different method. Two novel statistical classifiers are

proposed—Combined Discriminative Feature Detectors (CDFDs) and Quadratic

Classification on DF Fisher Mapping (Q-DFFM)—both using a selection of

discriminative features (DFs), and are shown to outperform HMM and SDTW.

However, we have found that combining likelihoods of multiple models in a second

classification stage degrades performance of the proposed classifiers, while

improving performance with HMM and SDTW. A proof-of-concept experiment,

combining DFFM mappings of multiple SDTW models with SDTW likelihoods,

shows that, also for model-combining, hybrid classification can provide significant

improvement over SDTW. Although recognition is mainly based on 3D hand

motion features, these results can be expected to generalize to recognition with

more detailed measurements such as hand/body pose and facial expression.

Index Terms—Time series analysis, face and gesture recognition, 3D/stereo

scene analysis, statistical dynamic programming, Markov processes, classifier

design and evaluation, real-time systems.

Ç

1 INTRODUCTION

TIME-VARIABLE signals like speech, handwriting, hand gestures,
and body movements cannot be compared in a euclidean space
directly because of misalignments in time. Therefore, automatic
recognition of these signals is not straightforward. In recent years,
successful methods for speech recognition have been thankfully
borrowed and adapted for sign language recognition. However,
this has been done without questioning the exact linguistic role of
the dynamics in sign language or possible conflicts between
optimality in time synchronization and class discrimination.
Therefore, in this article, we explore the consequences and benefits
of separating time synchronization from classification in sign
language recognition. The downside of this separation is that any
information about relative timings is lost. The advantage of
separate classification on synchronized features is that it allows
the use of standard classification methods with possibly higher
discriminative performance.

Dynamic Time Warping (DTW) and Hidden Markov Models

(HMMs) are two methods that simultaneously align signals and

compute a likelihood of similarity. Therefore, they both have been
applied successfully to recognize speech [1], [2], [3], [4], online [5]
or offline handwriting. Currently, they are also the most used
methods for recognition of gestures [6], [7], [8], [9]. Over the years,
DTW has lost some interest because HMM is able to statistically
model a set of samples to generalize better, while DTW is an
exemplar-based matching procedure, hence usually requiring
matching with a plurality of prototypes to get comparable
performance, resulting in a higher computational load. Recently,
however, Bahlmann and Burkhardt have shown that DTW can also
be applied to train a statistical model, using “Statistical DTW”
(SDTW) [5], achieving higher performance than HMM.

Since Bahlmann and Burkhardt have applied SDTW to online
handwriting recognition in [5], which can be seen as a 2D gesture
recognition problem, it can be expected that an improvement over
HMM can also be expected when SDTW is applied to sign
language recognition. Our results show that this is indeed the case.
However, we further improve upon SDTW, based on our main
proposition:

Proposition 1. The maximized likelihood that results in the optimal

signal warping is not the optimal conditional likelihood estimation of

the signal class.

This proposition is supported by the following lemmas:

Lemma 1. Transition probabilities in SDTW and HMM represent prior
probabilities on path shape, which is necessary for warping in case of

noisy or ambiguous observation likelihoods.

Lemma 2. When the meaning of a sequence has invariance to time

distortion, the class-conditional probability estimate of a signal should

exclude path shape likelihoods.

Lemma 1 argues that transition probabilities should be applied to
find the best warp of a signal, while Lemma 2 implies that they
should not be used in classification of signals with invariance to
time distortions. Furthermore, warping may benefit from cues that
are the same for each sign, e.g., the transition from rest to
movement at the onset of a sign and from movement to rest at the
end. Such cues can be highly informative for warping, but
completely uninformative for classification at the same time. To
reduce the dimensionality and the influence of noise, parts that are
irrelevant for the meaning of a sign are often best discarded from
classification.

While most spoken languages can be regarded as 1D signals

(sequences of audio patterns), sign languages make use of a

combination of multiple cues that can be sequential (like in

speech), but also parallel, consisting of different aspects/dimen-

sions [10], [11]. The most commonly used dimensions are hand

shape/orientation, changes in hand shape/orientation, hand

location, movements of hand locations, hand-hand touching,

hand-body touching (mostly specific locations on the face), lip

movements, facial expression, and torso/shoulder pose and

movements. Furthermore, in many cases, context is essential to

uniquely define the meaning of a sign.

Regardless of which components of sign language are con-

sidered, they are all part of a dynamic process, as is speech.

However, that does not necessarily mean that the dynamical

aspects of sign language have the same behavior and play the same

linguistic role as dynamics in spoken languages. At least three

important distinctions have to be taken into account. First of all, the

one-dimensionality of speech makes it sequential in nature. The

(relative) timing and speed of a sequence of phonemes convey a lot

2040 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 11, NOVEMBER 2008

. The authors are with the Delft University of Technology, Faculty of
Electrical Engineering, Mathematics, and Computer Science, Information
and Communication Theory Group, Mekelweg 4, 2628 CD Delft, The
Netherlands. E-mail: j.lichtenauer@imperial.ac.uk,
{E.A.Hendriks, M.J.T.Reinders}@TUDelft.nl.

Manuscript received 13 Sept. 2007; revised 18 Feb. 2008; accepted 5 May
2008; published online 13 May 2008.
Recommended for acceptance by A. Martinez.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2007-09-0596.
Digital Object Identifier no. 10.1109/TPAMI.2008.123.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 12, 2009 at 10:36 from IEEE Xplore.  Restrictions apply. 



of the meaning in a word. On the contrary, sign language is

composed of many parallel components. Because of this richness in

dimensionality, it is possible to vary speed and timing significantly

without changing the message [10], [12]. Second, for most signs,

only a subset of the degrees of freedom are important. However,

this can be a different set for different signs. Furthermore, motion

path features like motion orientation and curvature are not defined

during a standstill, which will result in extremely noisy values.

Third, the moments before the actual stroke of a sign (the

preparation), after finishing the sign (retraction), or in between

different signs or parts of signs (transition) are not essential for

recognition. These parts are either irrelevant or redundant [13].

However, they cannot simply be detected and excluded like

silences in speech or pen-off periods in handwriting. The above

can be summarized by the following observations:

Observation 1. Because of the high dimensionality of sign language,

time is relatively less important for the meaning of a sign than it is for

a spoken word or written letter.

Observation 2. Signs in sign language are defined on (different) subsets

of a person’s degrees of freedom and can vary greatly on the other

dimensions without any change of meaning.

Observation 3. Preparations, retractions, and transitions in sign

language cannot be removed beforehand, unlike silences in speech or

pen-off periods in handwriting.

If Observation 1 is true, it may result in larger deviations of
gesture speed and timing, and it also implies that the
consequences of Lemma 2 have to be considered. Observation 2
implies that sign-specific feature selection would be necessary
for good discrimination, which would have to be done after
synchronization, just like removal of the irrelevant or redundant
segments indicated by Observation 3.

The important consequence of Proposition 1 is that warping
and classification of time-variable signals should be regarded as
two distinct problems, instead of naively incorporating it into one
integral Bayesian model. Observations 1 to 3 imply that this holds
in particular for sign language. Therefore, we use SDTW only to
warp a signal onto a reference model, and regard the time-
normalized signal as a fixed-size feature set. To remove irrelevant
and redundant parts and dimensions, we apply robust statistics to
select only discriminative features (DFs). The proposed method is
computationally attractive, as time warping is solved by dynamic
programming, and the classification step is even significantly less
costly. Our experiments are limited to hand-motion trajectories
and apparent hand-size change in isolated signs. This is because
these are the few components that the current state of the art in
human motion analysis allows to track in reasonably soft-
constrained situations without manual initialization of tracking.
Therefore, they are currently the most relevant properties for
practical applications. We assume that if information about
(relative) timing can be disregarded for classification when only
these properties are used, this will certainly be the case if even
more parallel aspects (e.g., detailed hand/body pose and facial
expression) are considered, which would be inevitable to obtain
perfect recognition [14].

2 RELATED WORK

We are not the first to combine a variable-time signal match, like
DTW/HMM, with fixed-vector-size mappings or classifiers in
order to improve results. Previous approaches can be roughly
divided into methods that apply DTW/HMM on mappings of the
fixed-size measurement vectors of all time frames (to get a more
informative observation likelihood) and methods that use the

results of a fixed number of different DTW/HMM evaluations as
the input of a second-stage classifier. In [15], a Multilayer
Perceptron provides estimates of the emission probabilities for
all phonemes of speech, subsequently used for matching a HMM.
In [16], a Neural Network classifies the measurements of separate
frames into a first and second guess of a speech phoneme, and a
DTW match uses the phoneme matches with a template word as a
distance measure. In [17], the measurements for a frame of a
gestured command, recorded by a camera, are converted into a
probability estimate of each state by a Radial Basis Function
network. The resulting state emission probabilities are used for an
HMM. In [18], Chinese sign language is measured with data
gloves. Signs that are not well separated by HMM alone are
classified in an extra recognition step by a Support Vector Machine
(SVM) using a DTW kernel. In [19], a sequential HMM is trained
for each hand gesture measured from two cameras. The HMM
match result is split into five components which are used as
features for a multiclass SVM classifier, trained by applying one
HMM to all training gestures. The final classification is obtained by
majority voting of the results of the HMM/SVM pairs for all
gesture classes. A similar approach is chosen in [20] to classify
online hand writing characters. Instead of using HMM, here,
SDTW is used as a kernel for SVM.

The above works confirm that results can be improved over
HMM/DTW alone. However, all methods have relied directly on
the likelihoods obtained from DTW or HMM. Instead, we consider
DTW/HMM primarily as a registration method. We use the
complete set of registered features as a richer sign representation
instead of, or in addition to, the outputs of HMM/DTW. This
approach may even be combined with mappings of input vectors
per frame as well, although this is beyond the scope of this article.

Alon et al. [21] have proposed Dynamic Space Time Warping
(DSTW), which considers multiple possible 2D hand locations in
each frame. This reduces the consequences of imperfect tracking.
Although our experiments use single-hypothesis 3D tracking, the
principle of separating warping and classification may easily be
extended to DSTW. One advantage of our approach is that the
negative influence of irrelevant variations in preparations, transi-
tions, and retractions can be reduced by applying feature selection
on the registered feature set. Instead, Yang et al. [22] have resolved
this problem by including a separate model with constant distance
that is fitted to sequences that do not fit well to any known sign.
The disadvantage is that it introduces the possibility of falsely
inserting the transition model in the place of a sign that differs
more from its model than is accounted for.

3 STATIC DYNAMIC TIME WARPING

STDW was first introduced in [5]. A description of DTW is given
in [23, Section 4]. DTW compares each test signal t ¼ ½t1; . . . ; tNt

�
to a stored reference r ¼ ½r1; . . . ; rNr

�. The difference between
SDTW and normal DTW is that, instead of comparing a test
signal t to a reference signal r, the reference R ¼ ½R1; . . . ;RNR � in
SDTW is not a signal but a statistical model consisting of a
Normal distribution for each time point j with mean ��j,
covariance matrix ��j, and transition probabilities �jð��Þ:
Rj ¼ f��j;��j; �jð��Þg. �� 2 IP is a transition of the warping path
to a point with state j, where IP are the possible transitions from
ð�tðn� 1Þ; �Rðn� 1ÞÞ to ð�tðnÞ; �RðnÞÞ.

The matching cost C�ðt;RÞ is defined by

C�ðt;RÞ ¼
PN

n¼1 d t�tðnÞ;R�RðnÞ
� �

w IPðnÞð ÞPN
n¼1 wðIPðnÞÞ

; ð1Þ

C�ðt;RÞ ¼ C�� ðt;RÞ ¼ min
�
C�ðt;RÞ; ð2Þ
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where � ¼ f�tð1Þ; . . . ; �tðN�Þ; �rð1Þ; . . . ; �rðN�Þg are the steps of
the path through the 2D correspondence matrix Cðt;RÞ of the time
frames of t and R, IPðnÞ is a transition step between two
subsequent points of the path � through Cðt;RÞ, and wðIPðnÞÞ is
a function that assigns a weight to a transition type. C�ðt;RÞ is also
used as the final match cost. Some constraints of the path are
implied to confine the minimization procedure to practical results.
The most common constraints are that the path starts in �ð1Þ ¼
ð1; 1Þ and ends in �ðN�Þ ¼ ðNt;NrÞ, and the set of possible
transitions IP is limited to

IPðnÞ ¼ �tðnþ 1Þ � �tðnÞð Þ; �rðnþ 1Þ � �rðnÞð Þ½ �
2 ½0; 1�; ½1; 0�; ½1; 1�f g;

ð3Þ

corresponding to horizontal, vertical, and diagonal steps, respec-
tively. The distance function dðti;RjÞ is defined as the inverse log
likelihood:

dðti;RjÞ ¼
1

2
ln j2���jj
� �

þ ðti � ��jÞ
T���1

j ðti � ��jÞ
� �
� ln �jð��Þ

� �
:

ð4Þ

Equation (2) is approximated efficiently using dynamic
programming by the omission of the denominator in (1) in the
choice of subpaths. The denominator is applied only on the finally
chosen path. The transition weighting function wðIPðnÞÞ can be
chosen so that all possible subpaths leading to one location in
Cðt;RÞ have an equal sum of weights: unbiased. In that case, the
approximation of (1) by dynamic programming is exact. In [3] and
[4], it is explained how to obtain such unbiased weighting
functions. We will use the (most used) biased method that assigns
w ¼ 1 to all three transition types. Instead of a solution of (2), this
weighting gives preference to more diagonal, shorter paths.
According to Lemma 1, a bias toward more linear paths may
actually be an advantage, as it acts as a path shape prior in case of
noisy measurements.

The biased SDTW, as defined above, is equivalent to a forward
HMM with self-transitions and no skips, to which “null-transi-
tions” are added. The null-transitions can be used to step to a next
state (or the same state) without advancing in time. This allows
unlimited compression of the model in time. The damage of a
missing part can be limited to the missing part only (like one less
repetition of a repetitive motion or an extremely high signing
speed causing a significant reduction of time points), while, with a
regular HMM, an observation is assigned only once to any state
instance, causing the left-out part of the trained HMM to steal
away observations belonging to other surrounding states and
limiting the amount that a sign can be compressed in time.

An SDTW modelR is trained on a set of examples by iteratively
warping all training samples with an initial model R and
reestimating each ��j, ��j, and �jð��Þ from the aligned observations
[5]. Note that, similar to a Markov Model, the transition
probabilities �jð��Þ at step n only depend on �ðnÞ and the
previous �ðn� 1Þ. However, a gap or insertion in a sign t (e.g.,
fewer or more repetitions in a repetitive motion) requires a number
of subsequent repetitions of a time frame of t or a state of R,
respectively, while, otherwise, steps in both are required (more or
less diagonal path). Therefore, the memory-less assumption of
transitions does not hold for gaps and insertions.

4 CLASSIFICATION

(S)DTW (or fitting an HMM) finds the best hidden sequence of a
specific model in another sign by maximizing the likelihood of the
observation over possible time synchronizations. A limitation of a
SDTW/HMM likelihood model is that the observation likelihood is
modeled independently per state/frame, usually by mixtures of

Gaussians, and modeling of interframe dependencies is limited to
these observation likelihoods. Furthermore, the same feature types
are used for all signs and frames, even though the relevance of
these measurements may vary significantly between signs and
frames. Our proposed Combined Discriminative Feature Detectors
(CDFD) classifier, explained in Section 4.2, not only applies feature
selection but also uses an alternative likelihood model that
overcomes shortcomings of the independence assumption. In
Section 4.3, we propose another classifier, Quadratic Classification
on DF Fisher Mapping (Q-DFFM), that works in the joint feature
space of all selected features of all frames together. But first, the
next paragraph describes a robust method to discard non-DFs that
is used in both proposed classifiers.

4.1 Discriminative Feature (DF) Selection

Following Observations 2 and 3, we expect that recognition would
greatly benefit from leaving out segments and dimensions
completely from classification, if they are irrelevant or do not
differ between sign classes. The features used for classification are
reduced to a set of DFs by a robust statistical test. A feature fjðmÞ
of type m (see Table 1 in the supplemental material, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2008.123) corresponding
to the synchronized time frame j is selected for classification only if
the middle 50 percent of its distribution (between the 0.25 and 0.75
quantile) over the set �p of training examples of the correct sign
(positive examples) has an overlap of less than 25 percent with the
distribution of the set �n of training examples of incorrect signs
(negative examples).

4.2 Combined Discriminative Feature Detectors (CDFD)

After feature selection, a relatively large number of features still
remains (around 500 selected out of ~1,900), while it is difficult to
obtain a large multisigner training set (variation of a single signer
does not generalize well to others). Because of the curse of
dimensionality, we assume independence between features. The
classification is based on assuming an independent Normal
distribution Lðt̂;R; j;mÞ of each feature type m in reference
frame j (1D):

Lðt̂;R; j;mÞ ¼ ln p t̂jðmÞjRjðmÞ
� �� �

¼� 1

2
ln 2��2

j ðmÞ
� �

þ
t̂jðmÞ � �jðmÞ
� �2

�2
j ðmÞ

 !
:
ð5Þ

Usually, the feature log likelihoods, computed in (5), would be
naively combined by their sum. However, this would result in a
low likelihood of a sloppy but completely correct sign. Using a
strictly statistical approach, this problem can only be solved by
accounting for dependence between frames, which is difficult with
a small training set. To overcome this problem, CDFD first
converts the feature likelihood distributions to piece-wise uniform
functions, which can be seen as Feature Detectors (FD):

qðt̂;R; j;mÞ ¼ 1; for Lðt̂;R; j;mÞ � TjðmÞ � Tg;
0; for Lðt̂;R; j;mÞ < TjðmÞ � Tg;

�
ð6Þ

where Tg is the gauge parameter that will determine the operating
point of the final classifier and TjðmÞ is the calibrated threshold
that accepts 90 percent of the positive training data for a particular
feature at Tg ¼ 0. The choice of 90 percent as the calibration point is
a trade-off between generalizing (including the complete range of
allowed variation of a feature) and the expected reliability of the
training set (rejecting outliers). The training set contains tracking
errors and signs that were not performed well enough to be
correct. We assume that these errors are below 10 percent for all
selected features. Excluding the outer 10 percent of the positive
distribution should eliminate the influence of these outliers in
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determining the default boundary of allowed variation. We have
added an experiment in [23, Section 2] that shows the sensitivity to
the choice of the acceptance rate for TjðmÞ. Decreasing the
acceptance rate with 10 percent results in a decrease of
approximately 0.5 percent in the partial Area Under the Receiving
Operator Characteristic (ROC) curve between 0 and 0.1 false
positive rate ðpAUC0:1Þ.

With qðt̂;R; j;mÞ, all outliers outside of the allowable variation
are penalized equally with a score of 0, no matter how great their
distance to the mean feature value. Likewise, all variation inside
the allowed interval gets the same score of 1. This makes it
possible to accept sloppy but completely correct signs (e.g., signs
that are made smaller than usual), while rejecting incorrect signs
that are very similar to a subset of the feature models (e.g.,
incomplete signs).

The classifier output is generated by

QRðtÞ ¼
XNR
j¼1

XNm

m¼1

sjðmÞqðt̂;R; j;mÞ; ð7Þ

where sjðmÞ is 1 for selected features (from Section 4.1) and 0
otherwise, and Nm is the number of feature types, equal to 25
(see Table 1 in the supplemental material, which can be found on
the Computer Society Digital Library at http://doi.ieeecomputer
society.org/10.1109/TPAMI.2008.123). A sign is classified by

CRðtÞ ¼
correct; QRðtÞ � TC;
incorrect; QRðtÞ < TC;

�
ð8Þ

where TC is the value that classifies 50 percent of the positive
training set correctly at Tg ¼ 0 (median of QR). TC determines the
fraction in time that a sign needs to be correct, hence allowing for
some tracking errors or small human errors and/or hesitations in
making the correct sign. Because, in our application, a sign has to
be made correct from beginning to end, TC is kept fixed. Instead, Tg
determines the allowed variation and is adapted to the allowed
sloppiness (the operating point).

4.3 Quadratic Classification on DF Fisher Mapping
(Q-DFFM)

Instead of combining independent feature detectors, Q-DFFM
estimates a statistical model of a sign class that includes
dependencies between features and time frames. To overcome
the curse of dimensionality, the dimensionality of the DF set is
reduced by Fisher mapping [24], which is a form of Linear
Discriminant Analysis (LDA). The final classifier should distin-
guish between only two classes (“correct” and “incorrect”).
However, the incorrect class of the training set is composed of
many different sign classes. This fact can be exploited by finding a
set of projections of DF that optimally separates all different sign
classes. It can be expected that such a mapped space captures
information that is generally useful to distinguish different sign
classes. The Fisher mapping attempts to find the best linear
separation between each class and the other classes. Projecting the
initial feature space onto the separating directions for all classes
results in a NC � 1 dimensional feature space, with NC being the
total number of sign classes in the training set. When it is not
possible to separate all classes with the provided measurements,
some of the Fisher dimensions will be useless. Therefore, only the
most discriminating NF � NC � 1 dimensions are used. Note that
any NF < NC � 1 results in loss of optimality for separating all
classes [25]. In [25], a method is proposed to regain optimality. This
may lead to better performance, although our dimensionality
reduction is meant for nonlinear separation of the target class
instead of linear separation of all classes. The entire training set is
mapped by the (subset of the) Fisher mapping, on which a
quadratic (Gaussian) two-class classifier is trained. The target sign

class is one of the two classes, while all examples of other sign
classes in the training set are merged into a single “background”
class. The likelihood ratio between the two estimated Gaussian
distributions is the final classifier.

5 EXPERIMENTS

Sign classification is evaluated on a set of 120 different signs of the
Dutch Sign Language (DSL), each performed by 75 different
persons. The images are captured at 640 � 480 pixels and 25 fps.
Most sign examples contain partial occlusions of hands with each
other or with the face/neck. A description of the system setup is
given in [23, Section 5].

The data that are used for recognition consist of estimates of
3D locations of both hands over time, plus the size of the
segmented hands in the image. They are measured from the
images of a calibrated stereo camera. The image analysis
procedures to extract the measurements from the camera output
are described in [23, Section 6], and the supplementary video
“3DTracking.avi,” which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2008.123. From these measurements, a set of 25 higher
level features are extracted. Nine measurements consist of hand
coordinates relative to the face or to the other hand, 14 describe the
motion of the hands, and two correspond to the size changes of the
segmented hands. To reduce variation due to signer speed, the
features corresponding to change are soft-thresholded. As the
average sign length is around 3 seconds, or 75 frames, the total
number of features can be more than 1,500 per sign. The features
obtained for each video frame are described in Section 7 of the
supplemental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2008.123. Note that hand motion features are only
a small fraction of all the cues that define meaning in sign
language. Other cues (like hand shape, facial expression, and
context) are often static during a sign stroke. The dynamic motion
features are expected to be more affected by Observation 1 than
other features. It is assumed that better modeling of dynamic
components alone will also lead to improved performance when
other cues are considered as well.

We consider two different scenarios of sign language recogni-
tion: target-class (two-class) and multiclass classification. In target-
class classification, the target class is the correct sign, while
examples of other signs form a second (background) class.
Although multiclass classification is mostly chosen for research,
it is not practically feasible when the number of classes becomes
large, or multiple classes cannot be distinguished based on the
measured features (full overlap). Furthermore, a rejection step for
unknown classes is often omitted. In practice, rejection of
unknown classes (incorrect gestures that can be anything) is one
of the most important requirements. Moreover, discriminating
between known sign classes is sometimes even undesirable in case
of full overlap in the measured features. Forcing an algorithm to
discriminate between two indistinguishable signs will deteriorate
recognition performance for both.

A target-class classification experiment consists of 120 fivefold
cross-validations. One test run consists of training and testing a
classifier that should distinguish one specific sign class (denoted
as the “positive” class) from any other sign or gesture (negative
class). Because the purpose of target-class classification is to reject
unseen classes, the 120 sign classes were split into 96 training
classes and 24 test classes. Only the target class has examples both
in the training set (60 examples) and the test set (15 examples).
Whenever a target class is one of the assigned training classes,
only the remaining 95 nontarget classes are used for training, and
when the target class is one of the assigned test classes, only the
remaining 23 nontarget classes are used for testing. For Q-DFFM,
the number of dimensions NF of the Fisher mapping is optimized
by maximizing the average partial Area Under the ROC curve
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between 0 and 0.1 false positive rate ðpAUC0:1Þ of a sixfold cross-
validation on the training set.

Note that the classifier is tested only on negative classes that it
has never seen before. Unlike multiclass classification, the
performance in this test will not necessarily decrease with a larger

number of classes, as the classifier is tested as a one-against-all
(two-class) classifier. The performance may even increase if more
classes are added to the negative training set, as it will improve
generalization.

To test target-class classification in Multiple Class Likelihood
(MCL) space, the samples of the negative training classes for each

model were also split into 60 training samples and 15 test samples,
just like the positive set, to prevent the positive test samples of a
target class from being used as negative samples for training the
single-class models of other classes.

In the target-class case, classifier performance can be evaluated
by the ROC curve that shows all possible operating points. One
point on the ROC curve denotes the false positive error rate with
the corresponding true positive rate for a specific classification
threshold. The area under the ROC curve is averaged over all
cross-validations and positive sign classes to obtain a total score.
The larger the area, the better. As we are only interested in the
operating points with realistic (usable) results, only the ROC curve
partial AUC between a false positive rate of 0 and 0.1 are
considered ðpAUC0:1Þ.

Multiclass classification was also tested in fivefold cross-

validation, using a feature space of all 120 single-class models,
trained on 60 and tested on 15 samples of each class. The
performance is evaluated by the average of the classification error
rate in each cross-validation.

5.1 SDTW Outperforms HMM

In the first experiment, we compared SDTW to HMM. Results can
be seen as the pAUCs in Table 1. The HMMs have 40 states and
Bakis topology (left to right with single-state skips and self-
transitions). The length of the HMM is a trade-off between
modeling detail and the minimum length (maximum speed) that
can be recognized. This HMM size is comparable to [26], where the
average length was 41 at the same frame rate of 25 fps. The HMMs
are trained with Baum-Welch, but evaluated using the Viterbi
algorithm. In SDTW, the transition probabilities were not used
(assumed equal). To see the influence of different aspects of SDTW,
the HMM is converted to full-scale SDTW in three steps. First (“b”
in Table 1), the trained HMM models are evaluated as SDTW by
using their state means and covariances. This already gives a
significant performance improvement over “a.” Apparently, HMM
really suffers from the rigid warping constraints. In “c,” the
training is also done using SDTW. This results in a comparable
performance increase over “b” as “b” had over “a.” This is not so
surprising, as the same warping restrictions of HMM are expected
to be a limitation during training as well. The third step, “d,”
increases the length of the SDTW model to the average length of
the positive training examples. This is not possible with HMM
since an HMM can never have more states than the number of
frames of the smallest sequence. However, no significant perfor-
mance change can be observed due to increasing the number of
states (p-value 0.52 in a paired t-test of the pAUCs). This is because
the DSL signs do not have as many different details as the number
of frames recorded here (25 per second). Therefore, multiple

frames can be modeled with the same state. Adding more states
does not provide better modeling accuracy.

5.2 Transition Probabilities Are Questionable

To test the influence of transition probabilities in SDTW, several
possibilities of using transition probabilities have been compared.
According to Lemma 2, we expect a negative effect of using
transition probabilities in the likelihood computation. However,
according to Lemma 1, we expect a positive effect of transition
probabilities for the warping itself. The results in Table 2 are only
partially consistent with our predictions. As predicted by Lemma 2,
using transition probabilities in the class-likelihood computation
resulted in a decrease of performance (“b” versus “a”). Although
small, the difference with using transition probabilities only in
warping was significant with p-value ¼ 8� 10�22. Note that we
cannot be certain if this performance decrease is due to Lemma 2 or
because of a poor modeling of transition probabilities (e.g., the
memory-less assumption).

Adding transition probabilities only in the warping step (“a” in
Table 2) had no effect compared to SDTW without transition
probabilities (“d” in Table 1). The p-value was 0.74. This might be
explained from the huge scale difference between transition
probabilities and the observation likelihoods. Because of the
high-dimensional Gaussian models, likelihoods can differ so much
that they totally dwarf the influence of the transition probabilities.
However, there will probably also be cases where the differences of
the observation likelihoods are not so large, so that still does not
explain why no difference can be seen at all. Another explanation
may be that the bias toward short paths in the SDTW warping may
overrule the influence of the transition probabilities. To test this
hypothesis, the experiments are repeated using unbiased warping
(“e” in Table 2). Although, now, the transition probabilities in
warping indeed have an influence (p-value ¼ 9� 10�6 compared to
“c”), the effect is opposite from what was expected. The transition
probabilities actually have a negative influence on warping instead
of positive, suggesting poor modeling capability. Apparently, the
standard use of transition probabilities in SDTW is questionable.
On the contrary, the bias in SDTW does provide an important
positive effect on performance (Table 1 “d” versus Table 2 “c”).
This is because it gives preference to diagonal transitions, and
therefore shorter, more linear paths. Linear warping is mostly the
best “guess”/prior when observation likelihoods are inconclusive;
hence, this result is in support of Lemma 1. City block STDW
(Table 2 “d”) is also unbiased because the diagonal transition is
omitted. It performs a little worse than unbiased SDTW because
the extra diagonal step provides more freedom to avoid low
observation likelihoods.

5.3 Hybrid Approach Best for Single-Model Target
Classification

First, we have compared the hybrid methods to SDTW and HMM
when a single model is used. The results are shown in the “single-
model” column of Table 3. Besides our proposed CDFD and Q-
DFFM methods (“d” and “e”, respectively), we have also tested a
Fisher classifier (“f”) and SVM with radial basis function kernel
(“g”). However, for these methods, we have also applied our DF
selection, since, otherwise, the dimensionality was too high. The
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TABLE 2
A Comparison between Different Ways

of Handling Transitions in SDTW

The measures are the average percentages of pAUC0:1 of the ROC curves.

TABLE 1
A Comparison between Standard HMM and SDTW

The measures are the average percentages of pAUC0:1 of the ROC curves.
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Combined Discriminative Feature Likelihood (CDFL) method
(“c”) is an intermediate step between the likelihood computation
in SDTW and CDFD. Instead of Gaussian modeling of all features
per frame together, as in SDTW, all features are modeled
independently by a 1D Gaussian, and only the selected features
are used. The result of CDFL is significantly better than SDTW
(“b”). This is in accordance with Observation 2, which implies
that a lot of measurements can be discarded to improve
performance.

The benefit of a hybrid approach is clearly visible, with the best
result for Q-DFFM (“e” �). The result for Q-DFFM is even better
than CDFD (“d”) with p-value ¼ 5� 10�9. However, the practical
advantage of CDFD is that the operating point can be set more
intuitively. The threshold is directly proportional to the allowed
variation in the selected measurements. Although this may not be a
theoretical advantage, in practice, setting the operating point of a
classifier is a problem in itself. An example that could be recognized
by Q-DFFM but not by SDTW is shown in Fig. 1. Especially, the
ending (retraction) differs a lot, but is irrelevant for recognition.
Two other examples are shown in [23, Section 3], and the original
videos are also included, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2008.123.

Furthermore, we have also tested combinations of HMMþ
CDFD=Q-DFFM (“h” and “i”) to see if the proposed limitations of
HMM are really a problem. Indeed, the results are worse when
compared to the same classification methods combined with
SDTW warping (“h” versus “d” and “i” versus “e”). These
differences can be due to the rigid HMM warping and/or the
lower number of states in HMM (40), which is a consequence of the
warping rigidity.

5.4 Hybrid Model Combining Requires Different
Approach

So far, we have classified a target class by its likelihood using the
sign’s own SDTW model. Combining the outputs of multiple
models is a common practice to increase performance. Therefore,
in this experiment, we concatenate the likelihood output of the
target-class classifier for the actual target class and the outputs of
the target-class classifiers trained for all 95 or 96 (depending on the
cross-validation step) nontarget classes (as they were trained for
the experiments in Section 5.3). This forms a 96- or 97-D MCL
feature space in which a second-stage classifier can be trained. This
is done with the likelihood estimations of HMM, SDTW,
SDTWþ CDFD, and SDTWþQ-DFFM. We applied three differ-
ent classifiers in MCL space: Fisher, Quadratic (Gaussian)
Discriminant Classifier (QDC), and linear SVM. The results for
target-class classification in MCL space are shown in the last three
columns of Table 3.

While HMM and SDTW have improved by combining multiple
likelihood models (“a,” “b”), the hybrid target-class classification
methods have decreased in performance (“d,” “e”). This is

probably because the single-model hybrid classifiers are too
specialized for discrimination of one class. CDFD likelihood is
meaningful only for signs of which at least TC of DF are similar to
the target sign. The Q-DFFM likelihood is a linear separation with
the target sign on one end and all the other signs on the other.
Therefore, the MCL dimensions corresponding to nontarget classes
may contain less information about the real target class for CDFD
and Q-DFFM than HMM and SDTW models do. A change of
HMM/SDTW likelihood for the target-class model, due to an
allowable sign variation, may strongly correlate to changes of
likelihood for models of other classes. These relations can be
exploited by the second-stage classifier. Furthermore, the single-
model hybrid approaches are more vulnerable to errors in the
warping of the single SDTW model.

Contrary to the Q-DFFM output, DFFM does contain informa-
tion that can be useful for other classes, for its 96 (or 97)
dimensions consist of linear separations for all sign classes in the
training set based on the alignment to the target-class SDTW
model. The DFFM mappings for the NC � 1 ¼ 95 (or 96) SDTW
models in the training set could be combined in a single 9,120- (or
9,216-) D feature space that would be highly correlated. However,
this high dimensionality poses a computationally complex
optimization problem which is beyond the scope of this article.
Instead, as a proof of concept for this multimodel hybrid approach,
we have expanded the SDTW MCL space with the five best
separating dimensions of each DFFM mapping of SDTW-synchro-
nized features. This results in a ð96 or 97Þ � ð1þ 5Þ ¼ 576- (or 582-)
D feature space. The results for a Fisher classifier in this MCL&F
space is shown in Table 3 (“j”). QDC and SVM were not able to run
at this data size. Despite the 500 percent increase of dimension-
ality, the performance with the added information has increased
from 97.22 percent to 97.50 percent with a p-value of 0.009.

5.5 Multiclass Classification Not Suitable to Detect a
Target Class

Multiclass classification is performed in the exact same way as the
model combining for target-class classification in Section 5.4. Only,
now, the second-stage classifier is trained as a multiclass classifier
combining the outputs of single-model target-class classifiers for
all 120 sign classes. This gives five recognition rates (corresponding
to the cross-validations) for classifying a sign as 1 of 120 classes.
The average rates and standard deviations are shown in Table 4.
Since this is a multiclass problem, Nearest Neighbor (NN) is used
instead of SVM. Because there are three pairs and two triplets of
sign classes that cannot be distinguished by motion alone, the
maximum achievable recognition rate by using motion alone is
94.1 percent. If hand shape would be added, only one ambiguous
pair would remain, raising the limit to 99.2 percent. It cannot be
expected that this rate can be achieved using the 2D hand size
change as the only hand shape feature.

Remarkably, HMM (“a”) now performs better than SDTW
(“b”). However, the difference is practically 0 ðp-value ¼ 0:94Þ. The
single-model hybrid methods underperform in the combined
space, just like when combined for target-class classification.
Again, the hybrid model-combining method SDTW&DFFM5 (“e”)
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TABLE 3
Results for Target-Class Classification Using a Single Model

or Using Three Different Methods in MCL Space

The measures are the average percentages of pAUC0:1 of the ROC curves.

Fig. 1. Example of the sign “to chop,” which is detected by Q-DFFM but not by
SDTW. (a) The trajectory in 3D space and (b) the relative height of both hands
against time. The instructor’s sign is shown on top and the test sign below. The flat
lines correspond to the hand that was not used in this sign.
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results in a significant improvement over SDTW with an average
accuracy of 92.3 percent. One of the five cross-validations even
reached a recognition rate of 93.7 percent, which comes close to the
maximum of 94.1 percent that can be achieved with hand motion
alone. The improvement over HMM outputs combined with Fisher
has a p-value of 0.019.

Since the result of multiclass classification can be used to detect
a target class, we can compare multiclass classification with the
target-class classifiers described above. The SDTW&DFFM5 Fish-
er-combined multiclass classifier would erroneously recognize a
random sign of an unseen class as the target class at a false positive
rate of 1/120, while a target sign would be recognized correctly
92.3 percent of the time. For the best target-class classifier
(SDTW&DFFM5, Table 3 “j”), the true positive rate at a false
positive rate of 1/120 is 93.0 percent on average. This is
significantly higher, with p-value 0.054 over the five cross-
validations.

6 CONCLUSION

We have proposed and evaluated a hybrid approach to sign
language recognition by using SDTW only for time warping and a
separate classifier on the warped features. One of the main
advantages of this approach is that non-DFs can be discarded to
reduce dimensionality and noise. This is especially important in
sign language, as signs are often constrained only within a subset
of all possible degrees of freedom. The two single-model
classification methods we proposed (SDTWþ CDFD and
SDTWþQ-DFFM) both significantly outperform SDTW by itself
in target-class classification.

We have also confirmed that SDTW provides a significant
improvement over HMM because of the warping rigidity in
HMM. However, we have observed that transition probabilities in
SDTW provide a poor prior on DTW path shape and can even
decrease recognition performance. On the other hand, the DTW
warping bias, introduced by not compensating for the increased
length of nondiagonal transitions, actually improved performance,
acting as a prior on path shape with preference for shorter, more
linear paths.

Furthermore, we have found that when a second-stage
classification on the likelihood outputs of multiple target-class
classifiers is applied, results from multiple SDTW or HMM models
improve, while the hybrid methods degrade. We have shown that
a successful model-combining hybrid method can be obtained by
including the DFFM mappings for separate SDTW models in the
feature space for the second stage, in addition to SDTW like-
lihoods. This resulted in a significant improvement over HMM and
SDTW both in target-class classification using combined models
and in multiclass classification.

Although recognition relied mainly on 3D hand motion features,
it can be expected that these results generalize to more detailed
measurements such as hand/body pose and facial expressions.
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TABLE 4
Classification Accuracy for Multiclass Classification
Using Three Different Discriminants in MCL Space

The measures are the average percentages of correct classification.
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