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Abstract

This paper presents a novel, discriminative, multi-class

classifier based on Sequential Pattern Trees. It is efficient to

learn, compared to other Sequential Pattern methods, and

scalable for use with large classifier banks. For these rea-

sons it is well suited to Sign Language Recognition. Us-

ing deterministic robust features based on hand trajectories,

sign level classifiers are built from sub-units. Results are

presented both on a large lexicon single signer data set and

a multi-signer KinectTMdata set. In both cases it is shown

to out perform the non-discriminative Markov model ap-

proach and be equivalent to previous, more costly, Sequen-

tial Pattern (SP) techniques.

1. Introduction

This paper attempts to tackle the problem of indepen-

dent sign-language recognition. Sign Language, being as

complex as any spoken language, has many thousands of

signs each differing from the next by minor changes in hand

motion, shape or position. Its grammar includes the mod-

ification of signs to indicate an adverb modifying a verb

and the concept of placement where objects or people are

given a spatial position and then referred to later. This,

coupled with the intra-signer differences make true Sign

Language Recognition (SLR) an intricate challenge. Previ-

ous SLR work has shown the advantage of using tracking-

based, sub-unit classifiers [6]. While others have shown re-

sults on larger datasets using data driven approaches. Wang

et al., created an American Sign Language (ASL) dictio-

nary based on similarity between signs using a Dynamic

Space-Time Warping (DSTW) approach. They used an ex-

emplar, sign level approach and did not use Hidden Markov

Models (HMMs) due to the high quantities of training data

required. They present results for a dictionary containing

1113 signs [12]. More recently, Pitsikalis et al. [9] pro-

posed a method which uses linguistic labelling to split signs

into sub-units. From this they learn signer specific mod-

els, which are then combined via HMMs to create a classi-

fier over 961 signs. The common requirement of tracking

means that the KinectTMoffers the sign recognition com-

munity a short-cut to real-time performance. Zafrulla et

al. used this to extend their previous CopyCat game for

deaf children [13]. By using a cross validated system they

trained HMMs to recognise signs. One disadvantage of

HMMs is that they are learnt in a non-discriminatory fash-

ion. As a result, during the learning process, data from al-

ternate classes are ignored. This can result in sub-optimal

classifiers, particularly when there are large ambiguities be-

tween different classes. Additionally, HMMs do not per-

form explicit feature selection. As a result, features that do

not contribute or are detrimental to the recognition process

are always included.

To address the above issues, we consider discriminative

spatio-temporal patterns for classification called sequential

patterns (SPs). SPs are sequences of feature subsets. Us-

ing SPs provides the advantage of explicit spatio-temporal

feature selection. Additionally, SPs do not require dynamic

time warping for temporal alignment. A set of SPs can also

be stored and later used efficiently within a tree structure.

Research in SPs mainly lie in the area of data mining, where

the objective is finding frequent SPs. Related to our work

is Ayres et al. [1], where SPs are organised into a prefix

tree, which is then used to mine frequent patterns; the tree

itself is discarded upon completion of the mining process.

Later, Hong et al. [5] proposed a method for mining fre-

quent patterns by means of incrementally updating to a tree

structure based on shared subsequences between frequent

SPs. It should be noted that [1, 5] do not consider the prob-

lem of classification; simply mining of SPs that frequently

occur over a set of unlabelled examples. The use of SPs for

classification of signs was recently proposed by Elliott et

al[4], where SPs were learnt in a discriminatory fashion be-

fore being combined into strong classifiers for recognising

signs. One major drawback of using SPs for classification

is that they only permit binary classifiers to be built. For

problems with more than 2 classes, it is necessary to em-

ploy 1vs1 classifiers within a voting framework; a method

that does not scale well with the number of classes.
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1.1. Contributions

The work presented in this paper has the following key

contributions. Firstly, we improve on existing SP based ap-

proaches in the following ways: We introduce a novel Se-

quential Pattern Tree that is multi-class in nature. Allowing

us to tackle the binary limitation of existing SP classifiers.

Importantly, the tree structured model facilitates spatio-

temporal feature sharing across different classes. This,

along with the multi-class aspect of the Sequential Pattern

Tree (SP-Tree), ultimately results in a classifiers that are

considerably simpler but with superior or state-of-the-art

recognition performance. Additionally, the classifiers now

scale very well with the number of classes. We show that

the run-time efficiency of our classifiers is independent of

the number of classes. Instead, it only depends on the depth

and number of SP-Trees used.

1.2. Overview

The rest of the paper is organised as follows: Section 2

introduces the novel Sequential Pattern Trees. Here, we will

also provide an important theoretical link between SP-Trees

and SPs. Following this, Section 3 proposes a novel algo-

rithm for efficiently learning a set of SP-Trees within the

Boosting framework. Following this, we apply the proposed

method in experiments investigating both signer dependent

and independent datasets in Section 4. We also investigate

the scalability of our approach by testing on a dataset with

a large number of signs (982). We then compare our results

with a traditional Markovian approach as well as state-of-

the-art SP Boosting and HMMs methods before concluding

in Section 5

2. Sequential Pattern Trees

In this section, we propose a novel model known as Se-

quential Pattern Tree for efficiently representing discrim-

inative spatio-temporal patterns that can be used later for

performing multi-class recognition.

2.1. Sequential Patterns

The concept of an SP-Tree is based on SPs. A SP is a se-

quence of feature subsets, where these features are required

to take a particular value. Here, since only binary feature

vectors are considered, this required feature value is set as

1. Thus, a SP can be specifically defined as:

Definition 2.1 Given a binary feature vector F = (fi)
D
i=1,

let T ⊂ {1, ..., D} be a set of integers where ∀t ∈ T, ft =
1, that is, T represents all the dimensions of F that have the

value of 1. We call T an itemset. Let T = (Ti)
|T|
i=1

be a

sequence of |T| itemsets. We denote T as a SP. (Examples

shown in Figure 1).

In order to use SPs for classification, we firstly note that

an input sequence of T consecutive D-dimensional binary

vectors can be converted into a T length SP. Next, we define

an operator to determine if a SP is present within a given

feature vector sequence:

Definition 2.2 Let T and I be SPs. We say that the SP

T is present in I if there exists a sequence (βi)
|T|
i=1

, where

βi < βj when i < j and ∀i = {1, ..., |T|}, Ti ⊂ Iβi
. This

relationship is denoted with the ⊂S operator, i.e. T ⊂S I.

Conversely, if the sequence (βi)
|T|
i=1

does not exist, we de-

note it as T 6⊂S I.

2.2. SP-Tree Definition

In this section, we provide a mathematical definition of

an SP-Tree as well as how paths within this tree result in

different SPs. To start, we propose to define each node in

the SP-Tree such that it can assume two potential roles: a

feature selector, or if the node is a leaf node, a output a class

label.

Definition 2.3 Let c ∈ {1, ...C} be a class label, d ∈
{1, ..., D} be a feature vector dimension index. We define

a node N of an SP-Tree as the following pair: N = (c, d).
In the future, we will refer to c as the node label and d as

the node dimension. We denote the space of nodes with N .

Next, we attempt to capture both the spatial and temporal

aspects of the data by proposing two different type of edges

for connecting a pair of SP-Tree nodes: static edges and

sequential edges.

Definition 2.4 Let N1 = (c1, d1),N2 = (c2, d2), N1, N2 ∈
N be two nodes in an SP-Tree. We define an edge E of an

SP-Tree as the tuple: (N1, N2, e, k), where e ∈ 1, 2 denotes

whether E is a static edge (e = 1) or a sequential edge

(e = 2) and k ∈ +1,−1, where k = 1 denotes a positive

(i.e. true) decision edge, and k = −1 represents a negative

(i.e. false) decision edge. In the case where E is a positive

static edge, then the itemset {c1, c2} is captured by the re-

spective SP-Tree, or {c2} when E is a negative static edge.

When E is a positive sequential edge, the SP ({c1}, {c2})
is captured by the SP-Tree. Conversely, with a negative se-

quential edge, the SP ({c2}) is captured instead. We denote

the space of SP-Tree edges as E .

Having defined both the tree nodes and their edges, we

now provide the definition for a SP-Tree:

Definition 2.5 Let N = {Ni : Ni ∈ N}
|N|
i=1

be a set of

SP-Tree nodes and E = {Ei : Ei ∈ E}
|E|
i=1

be a set of SP-

Tree edges. We define the root node as N ′ ∈ N such that

(N,N ′) /∈ E for each N ∈ N. A SP-Tree T is defined

as: T = (N,E, N ′). We also define leaf nodes of T as any

node N where there does not exist any M ∈ N such that

(N,M) ∈ E.



In this work, we only consider binary SP-Trees. This im-

poses constraints on the possible edges that can exist be-

tween pairs of nodes, specifically: given a SP-Tree T =
(N,E), for each node N ∈ N that is not a leaf node, there

are only 2 edges leading from N , namely E+, E− ∈ E

where E+ = (N,M, e+,+1) and E− = (N,L, e−,−1)
for some e+, e− ∈ {1, 2} and M 6= L. Additionally, each

node N has at most one parent node: |{(M,N) : (M,N) ∈
E,M ∈ N,M 6= N}| ≤ 1.

2.3. Multi-Class (Weak) Classfication using SP-
Trees

In this section, we describe how one can use an SP-

Tree to perform multi-class classification of given input se-

quences. To achieve this, we first need to see how SPs are

related to SP-Trees. To this end, we firstly consider the

types of paths one can make when traversing between two

nodes on the tree.

Definition 2.6 We define a path P through an SP-Tree T

as a sequence of nodes P = (Ni)
|P |
i=1

where for each

i ∈ {1, ..., |P | − 1}, there exists some ei ∈ {1, 2} and

some ki ∈ −1,+1 such that (Ni, Ni+1, ei, ki) ∈ E. We

define a specific path called a static path if for each i ∈
{1, ..., |P |}, ei = 1.

Given the above definition, we now show the relationship

between static paths and itemsets.

Lemma 2.1 Let P = (Ni)
|P |
i=1

be a static path from the SP-

Tree T and let di be the node dimension of node Ni. Let

subset P′ ⊆ P be the set of nodes in P that are parents to

positive edges linking two nodes in P: P ′ = {P : P ∈
P, Q ∈ P, (P,Q, 1,+1) ∈ E}. Then, we find that P mod-

els the itemset: I = {d′i}
|P ′|
i=1

, where d′i are the node dimen-

sions of the nodes in P
′. Henceforth, we shall say that I is

an itemset derived from static path P. (The proof follows

directly from the definition of static edges and Algo. 1.)

Lemma 2.1 implies that if a path P contains C sequential

links within it, then there are C + 1 static paths in P . From

this, we now arrive at the important property that a unique

SP can be derived from an SP-Tree path:

Theorem 2.2 A SP of length B + 1 can be derived from

an SP-Tree (T) path P = (Ni)
|P |
i=1

with B ≥ 0 positive

sequential links.

Proof Since P has B positive sequential links, P is parti-

tioned into a sequence of B+1 static paths: (Pi)
B+1

i=1
, Pi ⊂

P . Let Ii be the itemset derived from static path Pi. Then,

the itemset sequence (Ii)
B+1

i=1
is a SP.

An illustration of how different SP-Tree paths can produce

different SPs can be seen in Figure 1.

2.3.1 Classification Algorithm

It is now possible to describe how SP-Trees can be used to

classify a new input sequence within a multi-class problem.

We start by proposing the function SPT Path in Algo.

1 for extracting an SP-Tree path from an existing SP-Tree

given an input sequence. Algo. 1 works in a greedy man-

ner, whereby SPs corresponding to paths along the positive

edges of the tree are given preference in the searching pro-

cess. In other words, Algo. 1 will attempt to find SPs on

paths with as many positive edges as possible, only using

negative paths when there is no other choice. One crucial

aspect of this algorithm is that only a single path in an SP-

Tree is extracted for a given input sequence. Another im-

portant aspect is that the complexity of this algorithm in ex-

tracting the respective SP is O(n) with respect to the depth of

the tree. In Section 3.4, we shall see how this is key in mak-

ing our proposed method highly efficient, when compared

against 1vs1 voting classifiers in a multi-class problem.

Next, given an input sequence F and an SP-Tree T, let

P = SPT Path(F,T), where P = (Pi)
|P|
i=1

. We can then

obtain a class label for an SP-Tree path using the label of

the last node in the path:

L(P) = c|P| (1)

where P|P| = (c|P|, d|P|), and c ∈ {1, ..., C}, where C is

the number of classes. Using Algo. 1 and Eq. 1, let F be

the space of input sequences, it is now possible to classify

an input sequence (F ∈ F), given an SP-Tree T using the

classification function hT : F → {1, ..., C}:

hT(F) = L(SPT Path(F,T)) (2)

3. Boosting Discriminative SP-Trees

Having defined the SP-Trees and how one uses them for

multi-class classification, we now deal with the problem of

learning and combining the required trees to produce a ro-

bust and accurate classifier that can work with novel input

sequences. To this end, we propose a novel machine learn-

ing method for learning strong classifiers based on SP-Trees

within the Multi-class AdaBoost framework [14]. A strong

classifier outputs a class label based on the maximum votes

cast by a number (S) of selected and weighted weak clas-

sifiers: H(I) = argmaxc
∑S

i=1
αiI(hi(I) = c). In this

paper, the weak classifiers hi are the SP-Tree classifiers de-

fined in Section 2.3 as Eq. 2. Each hi is selected iteratively

with respect to the following error:

ǫi =

X∑

i=1

I(hi(Xi) 6= yi) (3)

Typically, in order to determine the optimal weak classi-

fier at each Boosting iteration, the common approach is to



(a) (b) (c)

Figure 1: (a) An example of an SP-Tree with static (thin) and sequential (thick) edges. Each node has a +ve (solid line) and

-ve (dashed) edge. Leaf nodes output class labels. (b) A tree path and its corresponding SP ({1, 2}, {1}) and belonging to

class 2. (c) Another path belonging to class 2 on the same tree modelling SP ({3}, {1}).

Algorithm 1 SP-Tree Path: P = SPT Path( F,T )

Input: Input sequence F = (Fi)
F
i=1, Fi ∈ {0, 1}D

Input: SP-Tree T = (N,E, N ′), where the root node, set

of nodes and edges for T are N ′, N and E respectively.

Output: SP-Tree Path P = (Pi)
|P|
i=1

Initialise index set R = {1, ..., F}
Initialise current node to root node: N cur = N ′

ecur = 1
P = (N ′), A = 2
while N cur is not leaf node do

d = dcur, where dcur is the node dimension of N cur

G = {j : j ∈ R,Fj,d = 1}
if G = ∅ then

N cur = M, ecur = e, such that (N,M, e,−1) ∈ E

else

N cur = M, ecur = e, such that (N,M, e,+1) ∈ E

if ecur = 2 then

Rnew = {(min(R) + 1), ..., F}
else

Rnew = G
end if

R = Rnew

end if

PA = N cur, A = A+ 1
end while

Return P = (Pi)
A
i=1

exhaustively consider the entire set of possible weak classi-

fiers and finally select the best weak classifier (i.e. that with

the lowest ǫi). However, when dealing with SP-Tree-based

weak classifiers, the weak classifier search space becomes

too large, making an exhaustive search no longer feasible.

To address this, we next propose a novel method (detailed

in Algo 2 and Algo 3) for efficiently learning a locally op-

timal SP-Tree-based weak classifier that also accounts for

the training examples weight distribution.

3.1. Training Data Definitions

We firstly provide some preliminary definitions that we

will re-use in the next few sections. Firstly, the number of

classes is denoted as C, the training set with X number of

training examples is defined as: X = {Xi}
X
i=1, where Xi

is a sequence of D-dimensional binary feature vectors. The

length of Xi is denoted as |Xi|. We define Xi = (xi)
|Xi|
i=1

,

xi ∈ {0, 1}D. Associated with the examples in X is a set

of labels Y = (yi)
X
i=1, yi ∈ {1, ..., C} and a normalised set

of example weights W = (wi)
X
i=1, where

∑X

i=1
wi = 1.

3.2. Simultaneous Learning of SP-Tree Structure
and Features

Learning an SP-Tree weak classifier requires us to ad-

dress the following issues: determining the label of the

node; quantifying the “goodness” of a node; determining

the node dimension; determining the edge type (i.e. static

or sequential) between two nodes.

Firstly, we determine the label of a node as follows: Sup-

pose we are considering an SP-Tree’s (T) node N = (c, d)
and are given a training subset (X′ ⊆ X) called the node

training set. Let the labels and weights of the examples

in X
′ be Y ′ and W ′ respectively. A normalised histogram

(fi)
C
i=1 built using Y ′ will give us the label distribution of

X
′. The label for N is then simply the maximum frequency

label in (fi)
C
i=1: c = argmaxi∈{1,...,C} fi.

Determining the node dimensions and edge types in an

SP-Tree is done simultaneously and in a top-down recursive

manner, where we extend branches from leaf-nodes by giv-

ing each leaf node a valid node dimension and subsequent

child leaf nodes. To achieve this, consider a leaf node N .

When using Algo. 1, it can be seen that only a subset of

training examples will “reach” it. Specifically, this training

example subset is defined as X
′ = {X : X ∈ X,P =

SPT Path(X,T)}, where X
′ ⊆ X and P be the path

from the SP-Tree root node to N . Next, we observe that

giving different values of d to node N and setting different

edge types to the link between N and its parent will cause

different binary partitions of X′.



To see this, we find that P corresponds to some SP: T =

(Ti)
|T |
i=1

(Theorem 2.2), where Ti is the ith itemset of T .

Suppose we want to set the node dimension of N as d and

set the edge between N and its parent node M as a static

edge. Then, the subset X′ will be split into X
′
+ = {X :

X ∈ X
′, (T1, ..., T|T |∪{d}) ⊂S X} and X

′
− = {X : X ∈

X
′, (T1, ..., T|T |∪{d}) 6⊂S X}, T|T |∪{d} denotes the new

itemset whereby d was added into itemset T|T |.

When the edge between N and its parent node is

a sequential edge, we have X
′
+ = {X : X ∈

X
′, (T1, ..., T|T |, {d}) ⊂S X} and X

′
− = {X :

X ∈ X
′, (T1, ..., T|T |, {d}) 6⊂S X}. Here, the new SP

(T1, ..., T|T |, {d}) is simply T with a new itemset {d} ap-

pended at the end. Note, that in both edge cases, X′ =
X

′
+ ∪X

′
−.

It is now possible to measure how “good” a node split

is. To this end, we utilise an adapted Gini impurity cri-

teria commonly used in decision tree learning [2]. Here,

we have changed the criteria to account for the boosted ex-

ample weights. Suppose we have found that node N has

caused a partition X
′
+ and X

′
−. Suppose the correspond-

ing weights of these partitions are W ′
+ and W ′

− respectively.

Similarly, let the corresponding labels be Y ′
+ and Y ′

− respec-

tively. We also define the total positive and negative parti-

tion weight coefficient as: Z+ =
∑|W ′

+|

i=1
w′

+,i/
∑|W ′|

i=1
w′

i

and Z− =
∑|W ′

−
|

i=1
w′

−,i/
∑|W ′|

i=1
w′

i respectively. Addition-

ally, using both the weights and labels, we can compute a

normalised label histogram for each partition: F ′
+ and F ′

−

respectively. The split criteria is defined as:

γ = Z+(1−
C∑

i=1

f2
+,i) + Z−(1−

C∑

i=1

f2
−,i) (4)

It is now possible to combine all the above methods into

a SP-Tree learning algorithm given in Algo. 2. This algo-

rithm learns an SP-Tree in a greedy manner, whereby the

splitting criteria defined in Eq. 4 is recursively minimised

at each non-leaf tree-node. We start by determining the op-

timal node dimension for the root node with respect to Eq.

4. This induces a partitioning of the dataset into two train-

ing subsets. Each training subset is then passed on to the

a new child node. From this point onwards, the algorithm

attempts obtain the optimal node dimension and edge type

for the respective child node, again with respect to Eq. 4.

The optimal node dimension and edge type is then used to

configure the child node being considered. This process is

repeated in a recursive manner via a queue-based system

until one of 3 termination criteria is reached: 1) maximum

tree-depth β is reached; 2) training subset is smaller than

minimum size α (set here as 1); 3) The training subset is

“pure” (i.e. only belongs to a single class).

Algorithm 2 SP-Tree Learn Algorithm

Input: Training Set: {(Xi, yi, wi)}
X
i=1 (Section 3.1)

Output: SP-Tree T

Queue element: (Node, TrainSubset, SearchDims.,Depth)
Set root node dim to d ∈ {1, ..., D} s.t. X gives optimal

γ (Eq. 4).

Let root node N ′ partition X into X+ and X−.

Get root label: c using Y (Section 3.2).

Root node: N ′ = (c, d).
N ′ leaf nodes: L = (−1,−1) and M = (−1,−1).
N = {N ′, L,M}
E = {(N ′, L,−1,−1), (N ′,M,−1,+1)}.

Initial search dimensions: D’ = {1,...,D} - {d}
Q = {(L,X+, D

′, 2), (L,X−, D
′, 2)}.

while Q 6= ∅ do

Remove last item of Q: (N cur,Xcur, Dcur, Ocur)
if |Xcur| ≤ α OR depthcur ≥ β then

break

end if

Denote the edge from N cur to its parent node (M cur)

as Ecur.

1) Get optimal static edge node dimension:

Set Ecur = (M cur, N cur, 1, k)
Get dstat ∈ Dcur s.t. Xcur gives min γstat (Eq. 4).

Partitions of dstat and Ecur: Xstat
+ and X

stat
− .

2) Get optimal sequential edge node dimension:

Set Ecur = (M cur, N cur, 2, k)
Set dseq ∈ {1, ..., D} s.t. Xcur gives min γseq (Eq.

4).

Partitions of dseq and Ecur: X
seq
+ and X

seq
− .

Set label of N cur as ccur

if γstat ≤ γseq then

Update current node: N cur = (ccur, dstat)
Update Ecur = (M cur, N cur, 1, k)
New search dims: Dnew = Dcur − {dstat}
New partitions: Xcur

− = X
stat
− and X

cur
+ = X

stat
+ .

else

Update current node: N cur = (ccur, dseq)
Update Ecur = (M cur, N cur, 2, k)
New search dims: Dnew = {1, ..., D}
New partitions: Xcur

− = X
seq
− and X

cur
+ = X

seq
+ .

end if

if min(γstat, γseq) > 0 then

New nodes: L = (−1,−1) and K = (−1,−1)
N = N ∪ {L,K}.

E = {(N cur, L,−1,−1), (N cur,K,−1,+1)}∪E.

New depth: Onew = Ocur + 1
Q = Q∪{(K,Xcur

+ , D′, Onew), (L,Xcur
− , D′, Onew)}.

end if

end while

Return SP-Tree: T = (N,E)



3.3. Final Algorithm

The final SP-Tree Boosting algorithm is detailed in Algo.

3. We have chosen to iteratively learn new SP-Trees based

on the multi-class AdaBoost method. However, we are not

limited to this particular form of Boosting and it would be

easy to integrate the SP-Tree learning algorithm (Algo. 2)

into other Boosting methods (e.g. GentleBoost, etc...).

Algorithm 3 SP-Tree-Boost Algorithm

Initialise example weights: ∀wi ∈ W,wi = 1/X
for t = 1, ...,M do

Select (ht = hTbest ) using Algo. 2

Obtain the classification error ǫt for ht (Eq. 3)

Obtain the weight αt = ln 1−ǫbest
ǫbest

+ ln(C − 1)

Update weights: wi = wi exp(−αi [ht(Xi) 6= yi])

Normalise weights:
∑X

i=1
wi = 1

end for

Return the strong classifier H(X) =

argmaxc
∑M

i=1
αiI(hi(X) = c)

3.4. SP-Tree Classifier Run-time Complexity

One major advantage of using strong classifiers based on

SP-Trees for multi-class recognition is in the run-time com-

plexity. Firstly, we notice that the run-time complexity of

the weak classifiers is directly dependent on the complexity

of the Algo. 1 which has a run-time complexity equal to

depth of the tree. Crucially, this is independent of the num-

ber of classes. As an example, suppose the SP-Trees were

limited to depth 15. An evaluation of any input sequence

for a weak classifier will at most traverse 15 nodes in its as-

sociated SP-Tree. Thus, the complexity of the final strong

classifier of M classifiers with SP-Trees limited to depth K

is simply: O(MK). In contrast, the 1vs1 voting-based clas-

sifiers used for converting binary classifiers into multi-class

recognisers has complexity of O(MC2). As a result, our

proposed classifiers permit massive efficiency gains over

traditional 1vs1 classifiers, especially when the number of

classes grow large (e.g. 100s).

4. Experiments

The experiments are designed to show the benefits of us-

ing a discriminative learning model which performs feature

selection. This should enable it to be more robust to noise

in complex data. Thus, we use one data set with multiple

signers in real world scenarios. However, while also being

robust, the approach needs to be scalable, therefore, the SP-

Tree is also demonstrated on a large lexicon set.

4.1. Database I: DGS Kinect 40

The first dataset was captured using a KinectTMcamera.

It contains 40 Deutsche Gebärdensprache - German Sign

Language (DGS) signs; a random mix of both similar and

dissimilar signs. There are 14 participants each performing

all the signs 5 times. The data was captured using a mo-

bile system. All signers in this set are non-native giving a

wide variety of signing styles.This set-up results in a com-

plex data set with examples of both inter and intra signer

differences.

Motion features extracted from this data are inspired by

sign linguistics conceptual terms; e.g. ‘hands move left’

‘dominant hand moves up’ [11]. Using a tracked human

skeleton from the OpenNI framework [8] 3D trajectories of

the hands can be extracted. The types of motion are de-

rived directly from deterministic rules on the x,y and z co-

ordinates of the hand positions. These are then described

using binary features based on single and dual handed mo-

tions (see Figure 2a for example motions). Linguistic loca-

tion characteristics are also abstract from the base x and y

co-ordinates; they happen in relation to the signer such as

‘at the head’ or ‘by the elbow’. As such, location features

are calculated using the Euclidean distance of the dominant

hand from skeletal joints as shown in Figure 2b. When the

dominant hand moves into the joint region then that feature

is activated. The final feature vector representing a single

frame is a 24-dimensional binary vector.

(a) Directions (b) Locations

Figure 2: Kinect Features

4.2. Database II: GSL 982 Signs

The second dataset contains videos of 982 Greek Sign

Language (GSL) signs with 5 examples of each, performed

by a single native signer (giving a total of 4910 samples).

This large lexicon gives a wide range of signs, some contain

similar motions and occasionally some signs share compo-

nent parts. Hand and head trajectories are extracted from the

videos using the work of Roussos et al. [10]. Three types of

features are extracted: motion of the hands; location of the

sign being performed; and handshape used. As with the pre-



(a) Single handed (b) Bimanual:

Synchronous

(c) Bimanual: Together/Apart

Figure 3: Motions detected from 2D tracking

(a) Grid Loca-

tions

(b) Cannonical Handshapes

Figure 4: Locations and Handshapes from 2D Data

vious data, individual hand motions in the x plane (left and

right) and y plane (up and down) are used. These are shown

in Figure 3. For the location information, the x,y coordi-

nates are quantised into a codebook based on the signer’s

head position and scale in the image. The quantised val-

ues fall in the range of y′ ∈ {0..10} and x′ ∈ {0..8} (for

a standard signing space) as shown in Figure 4a. Finally

handshapes are considered, the signers dominant hand is

segmented and HOGs extracted. Decision forests are learnt

over the HOG feature vector to classify the handshapes into

the 12 different classes based on canonical linguistic forms,

see Figure 4b [3]. These features are again represented as

binary values and result in a 65 dimension feature vector.

4.3. Experimental Setup

The accuracy results are presented as how often the cor-

rect result appears within the top n returned signs. For a

given query q the results are ranked and the correct result

appears at rank R(q). However, the signer will only look

through a few (n) signs before assuming that the result is

not found. As such we define a measure of success s(q, n)
which is true when R(q) ≤ n and false otherwise. The

percentage recall for a given value of n is therefore the pro-

portion of queries where s(q, n) is true. As with any search

system, the higher up the results the correct sign appears,

the better the ranking system. Results are shown for various

values of n. Ideally accuracy should be high for low values

of n allowing a user to find the sign quickly.

4.4. Results I: (Kinect 40)

As multiple signers are available in the DGS Kinect

Dataset, signer independent experiments are performed.

This involves reserving data from a single subject for test-

ing, then training on the remaining signers. This process

is repeated across all signers in the data set. For this ex-

periment, 200 SP-Trees were used with max depth 30. The

results of this are shown in Figure 5 for values of n = 1
and n = 4; the top 2.5% and 10% of the dataset. Compared

are the results from processing the data with Markov Chains

and SP Boosting [7]. Even given the relatively large num-

ber of signers in the data, both forms of SPs outperform the

Markov Chains by about 5%. This is due to their discrimi-

native nature which enables them to ignore the non-salient

features without having to model them. The proposed ap-

proach achieves similar results to the SPBoosting, outper-

forming it by 1% when n = 1 and trailing by 1% when

n = 4, but at a much greater efficiency. It will evaluate

200 SPs for each example where, in comparison, the SP-

Boosting uses 10(402 − 40) = 15600 SPs for this 40 class

problem. As such, it is possible to apply this approach to

much larger datasets as shown in the next section.

4.5. Results II: (982 sign database)

Since the SPBoosting is untenable on such a large dataset

(requiring nearly a million SPs) the results shown here com-

pare only to Markov Chains [3]. Here, 300 SP-Trees were

used with max depth 30. As can be seen, even on this sin-

gle signer data set (without the need to model inter-signer

noise) the SP-Trees are able to outperform the Markov

Chains. The trees are 2.7% more accurate when n = 1, be-

coming 7.9% better when n = 10. Work has been done on

a subset of 961 signs from the same dataset by Pitsikalis et

al. [9]. They use a more complex set of features based on

linguistics and combine them using HMMs. In spite of this

combination of strong elements, the SP-Trees are able to

compete with the 62% they achieve for n = 1.

1 2 3 4 5 6 7 8 9 10 

Markov Chain 71.4 77.7 81.1 82.3 84.0 84.5 85.0 85.7 85.8 85.9 

SPTree 74.1 81.7 86.5 89.2 90.2 91.1 91.9 92.8 93.6 93.8 
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Figure 6: Results on the 982 GSL sign dataset



P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Ave 

MarkovChain 60.4 50.2 55.9 54.1 38.9 62.3 46.0 53.1 53.8 50.0 42.8 52.7 50.3 38.5 50.6 

SPBoost 65.1 49.6 57.9 56.6 41.8 64.2 53.6 53.5 70.4 52.2 44.5 56.5 53.7 44.2 54.6 

SPTree 64.2 50.0 52.9 57.1 48.2 65.2 54.7 54.6 75.2 50.2 44.2 57.9 55.2 45.7 55.4 
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(a) n = 1

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Ave 

MarkovChain 88.2 80.6 92.6 79.5 68.5 89.7 75.7 84.0 83.3 84.9 73.7 78.7 81.4 72.1 80.9 

SPBoost 91.0 85.4 95.0 85.4 80.8 92.6 84.6 91.0 95.2 88.3 84.1 90.3 86.9 84.1 88.2 

SPTree 88.2 85.4 88.2 85.8 78.9 91.6 85.9 93.3 96.2 84.9 79.9 94.7 89.5 82.3 87.5 
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(b) n = 4

Figure 5: Results on the 40 DGS sign Kinect dataset

5. Conclusions

This paper has presented a novel approach to using SPs

for discriminative classification. By using a tree architec-

ture the resulting classifiers are both faster to learn and more

efficient to apply than previous SP approaches. This has

been effectively demonstrated on two sign language data

sets, showing both the robustness and scalability of the ap-

proach. By applying it to a 40 sign database of 14 sign-

ers the discriminative power of SPs is shown over Markov

model implementation. The approach gains 55% as the

first ranked sign and 87% within the top 10 signs. This is

not only equivalent to other SP methods but is completed

with significantly fewer individual SP comparisons making

it faster and more efficient. Secondly the classifier is shown

to be suitable for large classifier banks by applying it to a

dictionary of 982 signs. For this task it is compared to only

the Markov Model approach since other state of the art SP

approaches are non-scalable. Here, the SP-Trees were able

to outperform the Markov models resulting in a 7.9% in-

crease when considering the top 1% of the ranked data set.
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