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Abstract

This paper discusses sign language recognition using linguistic sub-units. It presents three types

of sub-units for consideration; those learnt from appearance data as well as those inferred from

both 2D or 3D tracking data. These sub-units are then combined using a sign level classifier; here,

two options are presented. The first uses Markov Models to encode the temporal changes between

sub-units. The second makes use of Sequential Pattern Boosting to apply discriminative feature

selection at the same time as encoding temporal information. This approach is more robust to noise

and performs well in signer independent tests, improving results from the 54% achieved by the

Markov Chains to 76%.

Keywords: sign language recognition, sequential pattern boosting, depth cameras, sub-units,

signer independence, data set

1. Introduction

This paper presents several approaches to sub-unit based Sign Language Recognition (SLR) cul-

minating in a real time KinectTMdemonstration system. SLR is a non-trivial task. Sign Lan-

guages (SLs) are made up of thousands of different signs; each differing from the other by minor

changes in motion, handshape, location or Non-Manual Featuress (NMFs). While Gesture Recogni-

tion (GR) solutions often build a classifier per gesture, this approach soon becomes intractable when

recognising large lexicons of signs, for even the relatively straightforward task of citation-form, dic-

tionary look-up. Speech recognition was faced with the same problem; the emergent solution was

to recognise the subcomponents (phonemes), then combine them into words using Hidden Markov

Models (HMMs). Sub-unit based SLR uses a similar two stage recognition system, in the first stage,

sign linguistic sub-units are identified. In the second stage, these sub-units are combined together

to create a sign level classifier.

Linguists also describe SLs in terms of component sub-units; by using these sub-units, not only

can larger sign lexicons be handled efficiently, allowing demonstration on databases of nearly 1000

signs, but they are also more robust to the natural variations of signs, which occur on both an inter

and an intra signer basis. This makes them suited to real-time signer independent recognition as

described later. This paper will focus on 4 main sub-unit categories based on HandShape, Location,

Motion and Hand-Arrangement. There are several methods for labelling these sub-units and this
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Figure 1: Overview of the 3 types of sub-units extracted and the 2 different sign level classifiers

used.

work builds on both the Ha, Tab, Sig, Dez system from the BSL dictionary (British Deaf Associa-

tion, 1992) and The Hamburg Notation System (HamNoSys), which has continued to develop over

recent years to allow more detailed description of signs from numerous SLs (Hanke and Schmaling,

2004).

This paper presents a comparison of sub-unit approaches, focussing on the advantages and dis-

advantages of each. Also presented is a newly released Kinect data set, containing multiple users

performing signs in various environments. There are three different types of sub-units considered;

those based on appearance data alone, those which use 2D tracking data with appearance based

handshapes and those which use 3D tracking data produced by a KinectTMsensor. Each of these
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three sub-unit types is tested with a Markov model approach to combine sub-units into sign level

classifiers. A further experiment is performed to investigate the discriminative learning power of

Sequential Pattern (SP) Boosting for signer independent recognition. An overview is shown in

Figure 1.

2. Background

The concept of using sub-units for SLR is not novel. Kim and Waldron (1993) were among the

first adopters, they worked on a limited vocabulary of 13-16 signs, using data gloves to get accurate

input information. Using the work of Stokoe (1960) as a base, and their previous work in telecom-

munications (Waldron and Simon, 1989), they noted the need to break signs into their component

sub-units for efficiency. They continued this throughout the remainder of their work, where they

used phonemic recognition modules for hand shape, orientation, position and movement recogni-

tion (Waldron and Kim, 1994). They made note of the dependency of position, orientation and

motion on one another and removed the motion aspect allowing the other sub-units to compensate

(on a small vocabulary, a dynamic representation of position is equivalent to motion) (Waldron and

Kim, 1995).

The early work of Vogler and Metaxas (1997) borrowed heavily from the studies of sign lan-

guage by Liddell and Johnson (1989), splitting signs into motion and pause sections. Their later

work (Vogler and Metaxas, 1999), used parallel HMMs on both hand shape and motion sub-units,

similar to those proposed by the linguist Stokoe (1960). Kadir et al. (2004) took this further by

combining head, hand and torso positions, as well as hand shape, to create a system based on hard

coded sub-unit classifiers that could be trained on as little as a single example.

Alternative methods have looked at data driven approaches to defining sub-units. Yin et al.

(2009) used an accelerometer glove to gather information about a sign, they then applied discrimi-

native feature extraction and ‘similar state tying’ algorithms, to decide sub-unit level segmentation

of the data. Whereas Kong and Ranganath (2008) and Han et al. (2009) looked at automatic seg-

mentation of sign motion into sub-units, using discontinuities in the trajectory and acceleration to

indicate where segments begin and end. These were then clustered into a code book of possible

exemplar trajectories using either Dynamic Time Warping (DTW) distance measures Han et al. or

Principal Component Analysis (PCA) Kong and Ranganath.

Traditional sign recognition systems use tracking and data driven approaches (Han et al., 2009;

Yin et al., 2009). However, there is an increasing body of research that suggests using linguisti-

cally derived features can offer superior performance. Cooper and Bowden (2010) learnt linguistic

sub-units from hand annotated data which they combined with Markov models to create sign level

classifiers, while Pitsikalis et al. (2011) presented a method which incorporated phonetic transcrip-

tions into sub-unit based statistical models. They used HamNoSys annotations combined with the

Postures, Detentions, Transitions, Steady Shifts (PDTS) phonetic model to break the signs and an-

notations into labelled sub-units. These were used to construct statistical sub-unit models which

they combined via HMMs.

The frequent requirement of tracked data means that the KinectTMdevice has offered the sign

recognition community a short-cut to real-time performance. In the relatively short time since its

release, several proof of concept demonstrations have emerged. Ershaed et al. (2011) have focussed

on Arabic sign language and have created a system which recognises isolated signs. They present

a system working for 4 signs and recognise some close up handshape information (Ershaed et al.,
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2011). At ESIEA they have been using Fast Artificial Neural Networks to train a system which

recognises two French signs (Wassner, 2011). This small vocabulary is a proof of concept but it is

unlikely to be scalable to larger lexicons. It is for this reason that many sign recognition approaches

use variants of HMMs (Starner and Pentland, 1997; Vogler and Metaxas, 1999; Kadir et al., 2004;

Cooper and Bowden, 2007). One of the first videos to be uploaded to the web came from Zafrulla

et al. (2011) and was an extension of their previous CopyCat game for deaf children (Zafrulla et al.,

2010). The original system uses coloured gloves and accelerometers to track the hands. By tracking

with a KinectTM, they use solely the upper part of the torso and normalise the skeleton according to

arm length (Zafrulla et al., 2011). They have an internal data set containing 6 signs; 2 subject signs,

2 prepositions and 2 object signs. The signs are used in 4 sentences (subject, preposition, object)

and they have recorded 20 examples of each. Their data set is currently single signer, making

the system signer dependent, while they list under further work that signer independence would

be desirable. By using a cross validated system they train HMMs (Via the Georgia Tech Gesture

Toolkit Lyons et al., 2007) to recognise the signs. They perform 3 types of tests, those with full

grammar constraints achieving 100%, those where the number of signs is known achieving 99.98%

and those with no restrictions achieving 98.8%.

2.1 Linguistics

Sign language sub-units can be likened to speech phonemes, but while a spoken language such as

English has only 40-50 phonemes (Shoup, 1980), SLs have many more. For example, The Dictio-

nary of British Sign Language/English (British Deaf Association, 1992) lists 57 ‘Dez’ (HandShape),

36 ‘Tab’ (Location), 8 ‘Ha’ (Hand-Arrangement), 28 ‘Sig’ (Motion) (plus 4 modifiers, for example,

short and repeated) and there are two sets of 6 ‘ori’ (Orientation), one for the fingers and one for

the palm.

HamNoSys uses a more combinatorial approach to sub-units. For instance, it lists 12 basic

handshapes which can be augmented using finger bending, thumb position and openeness charac-

teristics to create a single HandShape sub-unit. These handshapes are then combined with palm

and finger orientations to describe the final hand posture. Motion sub-units can be simple linear

directions, known as ‘Path Movements’ these can also be modified by curves, wiggles or zigzags.

Motion sub-units can also be modified by locations, for example, move from A to B with a curved

motion or move down beside the nose.

In addition, whereas spoken phonemes are broadly sequential, sign sub-units are parallel, with

some sequential elements added where required. This means that each of the 57 British Sign Lan-

guage (BSL) HandShape options can (theoretically) be in any one of the 36 BSL Orientation combi-

nations. In practice, due to the physical constraints of the human body, only a subset of comfortable

combinations occur, yet this subset is still considerable.

An advantage of the parallel nature of sub-units, is that they can be recognised independently

using different classifiers, then combined at the word level. The reason this is advantageous is that

Location classifiers need to be spatially variant, since they describe where a sign happens. Hand-

Arrangement should be spatially invariant but not rotationally variant, since they describe positional

relationships between the hands. While Motion are a mixture of spatially, temporally, rotationally

and scale variant sub-units since they describe types of motion which can be as generic as ‘hands

move apart’ or more specific such as ‘hand moves left’. Therefore each type of sub-unit can be

recognised by classifiers incorporating the correct combination of invariances. This paper presents

2208



SIGN LANGUAGE RECOGNITION USING SUB-UNITS

three methods for extracting sub-units; learnt appearance based (Section 3), hard coded 2D tracking

based (Section 4) and hard coded 3D tracking based (Section 5).

3. Learning Appearance Based Sub-units

The work in this section learns a subset of each type of sub-unit using AdaBoost from hand labelled

data. As has been previously discussed, not all types of sub-units can be detected using the same

type of classifier. For Location sub-units, there needs to be correlation between where the motion

is happening and where the person is; to this end spatial grid features centred around the face of

the signer are employed. For Motion sub-units, the salient information is what type of motion is

occurring, often regardless of its position, orientation or size. This is approached by extracting

moment features and using Binary Patterns (BPs) and additive classifiers based on their changes

over time. Hand-Arrangement sub-units look at where the hands are in relation to each other, so

these are only relevant for bi-manual signs. This is done using the same moment features as for

Motion but this time over a single frame, as there is no temporal context required. All of these

sub-unit level classifiers are learnt using AdaBoost (Freund and Schapire, 1995). The features used

in this section require segmentation of the hands and knowledge of where the face is. The Viola

Jones face detector (Viola and Jones, 2001) is used to locate the face. Skin segmentation could be

used to segment the hands, but since sub-unit labels are required this work uses the data set from the

work of Kadir et al. (2004) for which there is an in-house set of sub-unit labels for a portion of the

data. This data set was created using a gloved signer and as such a colour segmentation algorithm

is used in place of skin segmentation.

(a) The grid applied over the signer

(b) On Right Shoulder (c) Lower Face/Chin

Figure 2: Grid features for two stage classification. (a) shows an example of the grid produced from

the face dimensions while (b) and (c) show grid features chosen by boosting for two of

the 18 Location sub-units. The highlighted box shows the face location and the first and

second features chosen, are shown in black and grey respectively.
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3.1 Location Features

In order that the sign can be localised in relation to the signer, a grid is applied to the image,

dependent upon the position and scale of the face detection. Each cell in the grid is a quarter of

the face size and the grid is 10 rectangles wide by 8 deep, as shown in Figure 2a. These values are

based on the signing space of the signer. However, in this case, the grid does not extend beyond

the top of the signers head since the data set does not contain any signs which use that area. The

segmented frame is quantised into this grid and a cell fires if over 50% of its pixels are made up of

glove/skin. This is shown in Equation 1 where Rwc is the weak classifier response and Λskin(x,y) is

the likelihood that a pixel contains skin. f is the face height and all the grid values are relative to

this dimension.

Rwc =











1 if
f 2

8
<

x2

∑
i=x1

y2

∑
j=y1

(Λskin(i, j)> 0),

0 otherwise.

Where x1,y1,x2,y2 are given by

∀Gx,∀Gy























x1 = Gx f ,

x2 = (Gx +0.5) f ,

y1 = Gy f ,

y2 = (Gy +0.5) f ,

given Gx = {−2.5,−2,−1.5 . . .2},

Gy = {−4,−3.5,−3 . . .0}. (1)

For each of the Location sub-units, a classifier was built via AdaBoost to combine cells which fire

for each particular sub-unit, examples of these classifiers are shown in Figures 2b and (c). Note

how the first cell to be picked by the boosting (shown in black) is the one directly related to the

area indicated by the sub-unit label. The second cell chosen by boosting either adds to this location

information, as in Figure 2b, or comments on the stationary, non-dominant hand, as in Figure 2c.

Some of the sub-units types contain values which are not mutually exclusive, this needs to

be taken into account when labelling and using sub-unit data. The BSL dictionary (British Deaf

Association, 1992) lists several Location sub-units which overlap with each other, such as face and

mouth or nose. Using boosting to train classifiers requires positive and negative examples. For best

results, examples should not be contaminated, that is, the positive set should not contain negatives

and the negative set should not contain positives. Trying to distinguish between an area and its sub-

areas can prove futile, for example, the mouth is also on the face and therefore there are likely to

be false negatives in the training set when training face against mouth. The second stage, sign-level

classification does not require the sub-unit classifier responses to be mutually exclusive. As such a

hierarchy can be created of Location areas and their sub-areas. This hierarchy is shown in Figure 3;

a classifier is trained for each node of the tree, using examples which belong to it, or its children,

as positive data. Examples which do not belong to it, its parent or its child nodes provide negative

data.

This eliminates false negatives from the data set and avoids confusion. In Figure 3 the ringed

nodes show the sub-units for which there exist examples. Examples are labelled according to this
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hierarchy, for example, face, face lower or face lower mouth which makes finding children and

parents easier by using simple string comparisons.

Figure 3: The three Location sub-unit trees used for classification. There are three separate trees,

based around areas of the body which do not overlap. Areas on the leaves of the tree are

sub-areas of their parent nodes. The ringed labels indicate that there are exact examples

of that type in the data set.

3.2 Motion and Hand-Arrangement Moment Feature Vectors

For Hand-Arrangement and Motion, information regarding the arrangement and motion of the hands

is required. Moments offer a way of encoding the shapes in an image; if vectors of moment values

per frame are concatenated, then they can encode the change in shape of an image over time.

There are several different types of moments which can be calculated, each of them displaying

different properties. Four types were chosen to form a feature vector, m: spatial, mab, central, µab,

normalised central, µ̄ab and the Hu set of invariant moments (Hu, 1962) H1-H7. The order of a

moment is defined as a+ b. This work uses all moments, central moments and normalised central

moments up to the 3rd order, 10 per type, (00, 01, 10, 11, 20, 02, 12, 21, 30, 03). Finally, the

Hu set of invariant moments are considered, there are 7 of these moments and they are created by

combining the normalised central moments, see Hu (1962) for full details, they offer invariance to

scale, translation, rotation and skew. This gives a 37 dimensional feature vector, with a wide range

of different properties.

Rwc =

{

1 if Twc < Mi,t ,

0 otherwise.

(2)

Since spatial moments are not invariant to translation and scale, there needs to be a common point

of origin and similar scale across examples. To this end, the spatial moments are treated in a similar
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way to the spatial features in Section 3.1, by centring and scaling the image about the face of

the signer before computation. For training Hand-Arrangement, this vector is used to boost a set

of thresholds for individual moments, mi on a given frame t, Equation 2. For Motion, temporal

information needs to be included. Therefore the video clips are described by a stack of these vectors,

M, like a series of 2D arrays, as shown in Figure 4(a) where the horizontal vectors of moments are

concatenated vertically, the lighter the colour, the higher the value of the moment on that frame.

(a) BP example (b) Concatenated Moment Vector

Figure 4: Moment vectors and Binary Patterns for two stage classification. (b) A pictorial descrip-

tion of moment vectors (normalised along each moment type for a selection of examples),

the lighter the colour the larger the moment value. (a) BP, working from top to bottom an

increase in gradient is depicted by a 1 and a decrease or no change by a 0.

3.3 Motion Binary Patterns and Additive Classifiers

As has been previously discussed, the Motion classifiers are looking for changes in the moments

over time. By concatenating feature vectors temporally as shown in Figure 4(b), these spatio-

temporal changes can be found. Component values can either increase, decrease or remain the

same, from one frame to the next. If an increase is described as a 1 and a decrease or no change is

described as a 0 then a BP can be used to encode a series of increases/decreases. A temporal vec-

tor is said to match the given BP if every ‘1’ accompanies an increase between concurrent frames

and every ‘0’ a decrease/‘no change’. This is shown in Equation 3 where Mi,t is the value of the

component, Mi, at time t and bpt is the value of the BP at frame t.

Rwc = ||max
∀t

(BP(Mi,t))|−1|,

BP(Mi,t) = bpt −d(Mi,t ,Mi,t+1),

d(Mi,t ,Mi,t+1) =

{

0 if Mi,t ≤ Mi,t+1,

1 otherwise.
(3)

See Figure 5 for an example where feature vector A makes the weak classifier fire, whereas feature

vector B fails, due to the ringed gradients being incompatible.

Discarding all magnitude information would possibly remove salient information. To retain this

information, boosting is also given the option of using additive classifiers. These look at the average
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magnitude of a component over time. The weak classifiers are created by applying a threshold, Twc,

to the summation of a given component, over several frames. This threshold is optimised across the

training data during the boosting phase. For an additive classifier of size T , over component mi, the

response of the classifier, Rwc, can be described as in Equation 4.

Rwc =











1 if Twc ≤
T

∑
t=0

Mi,t ,

0 otherwise.

(4)

Boosting is given all possible combinations of BPs, acting on each of the possible components.

The BPs are limited in size, being between 2 and 5 changes (3 - 6 frames) long. The additive

features are also applied to all the possible components, but the lengths permitted are between 1

and 26 frames, the longest mean length of Motion sub-units. Both sets of weak classifiers can be

temporally offset from the beginning of an example, by any distance up to the maximum distance

of 26 frames.

Figure 5: An example of a BP being used to classify two examples. A comparison is made between

the elements of the weak classifiers BP and the temporal vector of the component being

assessed. If every ‘1’ in the BP aligns with an increase in the component and every ‘0’

aligns with a decrease or ‘no change’ then the component vector is said to match (e.g.,

case A). However if there are inconsistencies as ringed in case B then the weak classifier

will not fire.

Examples of the classifiers learnt are shown in Figure 6, additive classifiers are shown by boxes,

increasing BPs are shown by pale lines and decreasing ones by dark lines. When looking at a

sub-unit such as ‘hands move apart’ (Figure 6a), the majority of the BP classifiers show increasing

moments, which is what would be expected, as the eccentricity of the moments is likely to increase

as the hands move apart. Conversely, for ‘hands move together’ (Figure 6b), most of the BPs are

decreasing.

Since some Motion sub-units occur more quickly than others, the boosted classifiers are not all

constrained to being equal in temporal length. Instead, an optimal length is chosen over the training

set for each individual sub-unit. Several different length classifiers are boosted starting at 6 frames
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(a) hands move apart (b) Hands move together

Figure 6: Boosted temporal moments BP and additive Motion classifiers. The moment vectors are

stacked one frame ahead of another. The boxes show where an additive classifier has been

chosen, a dark line shows a decreasing moment value and a pale line an increasing value.

long, increasing in steps of 2 and finishing at 26 frames long. Training classification results are

then found for each sub-unit and the best length chosen to create a final set of classifiers, of various

lengths suited to the sub-units being classified.

4. 2D Tracking Based Sub-Units

Unfortunately, since the learnt, appearance based, sub-units require expertly annotated data they are

limited to data sets with this annotation. An alternative to appearance based features is given by

tracking. While tracking errors can propagate to create sub-unit errors, the hand trajectories offer

significant information which can aid recognition. With the advances of tracking systems and the

real-time solution introduced by the KinectTM, tracking is fast becoming an option for real-time,

robust recognition of sign language. This section works with hand and head trajectories, extracted

from videos by the work outlined by Roussos et al. (2010). The tracking information is used to

extract Motion and Location information. HandShape information is extracted via Histograms of

Gradients (HOGs) on hand image patches and learnt from labels using random forests. The labels

are taken from the linguistic representations of Sign Gesture Mark-up Language (SiGML) (Elliott

et al., 2001) or HamNoSys (Hanke and Schmaling, 2004).1

4.1 Motion Features

In order to link the x,y co-ordinates obtained from the tracking to the abstract concepts used by sign

linguists, rules are employed to extract HamNoSys based information from the trajectories. The

approximate size of the head is used as a heuristic to discard ambient motion (that less than 0.25

the head size) and the type of motion occurring is derived directly from deterministic rules on the

1. Note that conversion between the two forms is possible. However while HamNoSys is usually presented as a font for

linguistic use, SiGML is more suited to automatic processing.
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(a) Single handed (b) Bimanual: Synchronous (c) Bimanual: Together/Apart

Figure 7: Motions detected from tracking

x and y co-ordinates of the hand position. The types of motions encoded are shown in Figure 7,

the single handed motions are available for both hands and the dual handed motions are orientation

independent so as to match linguistic concepts.

4.2 Location Features

Similarly the x and y co-ordinates of the sign location need to be described relative to the signer

rather than in absolute pixel positions. This is achieved via quantisation of the values into a code-

book based on the signer’s head position and scale in the image. For any given hand position (xh,yh)
the quantised version (x′h,y

′
h) is achieved using the quantisation rules shown in Equation 5, where

(x f ,y f ) is the face position and (w f ,h f ) is the face size.

x′ = (xh − x f )/w f ,

y′ = (yh − y f )/h f . (5)

Due to the limited size of a natural signing space, this gives values in the range of y′ ∈ {0..10} and

x′ ∈ {0..8} which can be expressed as a binary feature vector of size 36, where the x and y positions

of the hands are quantised independently.

4.3 HandShape Features

While just the motion and location of the signs can be used for recognition of many examples, it has

been shown that adding the handshape can give significant improvement (Kadir et al., 2004). HOG

descriptors have proven efficient for sign language hand shape recognition (Buehler et al., 2009) and

these are employed as the base feature unit. In each frame, the signer’s dominant hand is segmented

using the x,y position and a skin model. These image patches are rotated to their principal axis

and scaled to a square, 256 pixels in size. Examples of these image patches are shown in Figure 8

beside the frame from which they have been extracted. HOGs are calculated over these squares at

a cell size of 32 pixels square with 9 orientation bins and with 2x2 overlapping blocks, these are

also shown in Figure 8. This gives a feature vector of 1764 histogram bins which describes the

appearance of a hand.

2215



COOPER, PUGEAULT, ONG AND BOWDEN

Figure 8: Example HOGs extracted from a frame

4.4 HandShape Classifiers

This work focusses on just the 12 basic handshapes, building multi-modal classifiers to account for

the different orientations. A list of these handshapes is shown in Figure 9.

ceeall cee12 cee12open finger2 finger23 finger2345

(153) (200) (107) (4077) (686) (2708)

finger23- fist flat pinch12 pinch12open pinchall

spread (749) (2445) (4612) (571) (845) (830)

Figure 9: The base handshapes (Number of occurrences in the data set)

Unfortunately, linguists annotating sign do so only at the sign level while most sub-units occur

for only part of a sign. Also, not only do handshapes change throughout the sign, they are made

more difficult to recognise due to motion blur. Using the motion of the hands, the sign can be split

into its component parts (as in Pitsikalis et al., 2011), that are then aligned with the sign annotations.

These annotations are in HamNoSys and have been prepared by trained experts, they include the

sign breakdown but not the temporal alignment. The frames most likely to contain a static handshape

(i.e., those with limited or no motion) are extracted for training.

Note that, as shown in Figure 10, a single SiGML class (in this case ‘finger2’) may contain

examples which vary greatly in appearance, making visual classification an extremely difficult task.
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Figure 10: A variety of examples for the HamNoSys/SiGML class ‘finger2’.

The extracted hand shapes are classified using a multi-class random forest. Random forests were

proposed by Amit and Geman (1997) and Breiman (2001). They have been shown to yield good

performance on a variety of classification and regression problems, and can be trained efficiently

in a parallel manner, allowing training on large feature vectors and data sets. In this system, the

forest is trained from automatically extracted samples of all 12 handshapes in the data set, shown

in Figure 9. Since signs may have multiple handshapes or several instances of the same handshape,

the total occurrences are greater than the number of signs, however they are not equally distributed

between the handshape classes. The large disparities in the number of examples between classes

(see Figure 9) may bias the learning, therefore the training set is rebalanced before learning by

selecting 1,000 random samples for each class, forming a new balanced data set. The forest used

consists of N = 100 multi-class decision trees Ti, each of which is trained on a random subset of

the training data. Each tree node splits the feature space in two by applying a threshold on one

dimension of the feature vector. This dimension (chosen from a random subset) and the threshold

value are chosen to yield the largest reduction in entropy in the class distribution. This recursive

partitioning of the data set continues until a node contains a subset of examples that belong to one

single class, or if the tree reaches a maximal depth (set to 10). Each leaf is then labelled according

to the mode of the contained samples. As a result, the forest yields a probability distribution over

all classes, where the likelihood for each class is the proportion of trees that voted for this class.

Formally, the confidence that feature vector x describes the handshape c is given by:

p[c] =
1

N
∑
i<N

δc(Ti(x)),

where N is the number of trees in the forest, Ti(x) is the leaf of the ith tree Ti into which x falls, and

δc(a) is the Kronecker delta function (δc(a) = 1 iff. c = a, δc(a) = 0 otherwise).

The performance of this hand shape classification on the test set is recorded on Table 1, where

each row corresponds to a shape, and each column corresponds to a predicted class (empty cells

signify zero). Lower performance is achieved for classes that are more frequent in the data set. The

more frequently a handshape occurs in the data set the more orientations it is likely to be used in.

This in turn makes the appearance of the class highly variable; see, for example, Figure 10 for the

case of ‘finger2’—the worst performing case. Also noted is the high confusion between ‘finger2’

and ‘fist’ most likely due to the similarity of these classes when the signer is pointing to themselves.

The handshape classifiers are evaluated for the right hand only during frames when it is not in

motion. The sign recognition system is evaluated using two different encodings for the detected

hand shapes. As will be described in Section 6, the next stage classifier requires inputs in the

form of binary feature vectors. Two types of 12 bit binary feature vector can be produced from

the classifier results. The first method applies a strict Winner Takes All (WTA) on the multi-class

forest’s response: the class with the highest probability is set to one, and the others to zero. For
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handshape predictions

flat 0.35 0.19 0.09 0.03 0.08 0.06 0.03 0.06 0.06 0.01 0.03 0.01

fist 0.03 0.69 0.02 0.04 0.11 0.05 0.02 0.03 0.02

finger2345 0.16 0.19 0.36 0.02 0.03 0.05 0.06 0.02 0.03 0.06 0.01

finger2 0.02 0.33 0.07 0.31 0.11 0.05 0.02 0.03 0.02 0.04

pinchall 0.03 0.09 0.04 0.01 0.65 0.11 0.01 0.01 0.04

pinch12 0.02 0.20 0.01 0.02 0.13 0.56 0.01 0.01 0.01 0.02

finger23 0.05 0.17 0.04 0.02 0.05 0.04 0.54 0.01 0.07 0.01

pinch12open 0.03 0.12 0.07 0.01 0.15 0.04 0.01 0.56 0.01

cee12 0.01 0.05 0.01 0.03 0.04 0.01 0.82 0.01

cee12open 0.01 0.99

finger23spread 0.01 0.15 0.02 0.06 0.01 0.05 0.02 0.65

ceeall 0.01 0.08 0.03 0.08 0.01 0.02 0.01 0.01 0.77

Table 1: Confusion matrix of the handshape recognition, for all 12 classes.

every non-motion frame, the vector contains a true value in the highest scoring class. The second

method applies a fixed threshold (τ = 0.25) on the confidences provided by the classifier for each

of the 12 handshapes classes. Handshapes that have a confidence above threshold (p[c]> τ) are set

to one, and the others to zero. This soft approach carries the double advantage that a) the feature

vector may encode the ambiguity between handshapes, which may itself carry information, and b)

may contain only zeros if confidences in all classes are small.

5. 3D Tracking Based Sub-Units

With the availability of the KinectTM, real-time tracking in 3D is now a realistic option. Due to this,

this final sub-unit section expands on the previous tracking sub-units to work in 3D. The tracking is

obtained using the OpenNI framework (Ope, 2010) with the PrimeSense tracker (Pri, 2010). Two

types of features are extracted, those encoding the Motion and Location of the sign being performed.

5.1 Motion Features

Again, the focus is on linear motion directions, as with the sub-units described in Section 4.1, but

this time with the z axis included. Specifically, individual hand motions in the x plane (left and

right), the y plane (up and down) and the z plane (towards and away from the signer). This is

augmented by the bi-manual classifiers for ‘hands move together’, ‘hands move apart’ and ‘hands

move in sync’, again, these are all now assessed in 3D. The approximate size of the head is used

as a heuristic to discard ambient motion (that less than 0.25 the head size) and the type of motion

occurring is derived directly from deterministic rules on the x,y,z co-ordinates of the hand position.

The resulting feature vector is a binary representation of the found linguistic values. The list of 17

motion features extracted is shown in Table 2.

5.2 Location Features

Whereas previously, with 2D tracking, a coarse grid is applied, in this section the skeleton returned

by the PrimeSense tracker can now be leveraged. This allows signer related locations to be described

with higher confidence. As such, the location features are calculated using the distance of the

dominant hand from skeletal joints. A feature will fire if the dominant hand is closer than Hhead/2

of the joint in question. A list of the 9 joints considered is shown in Table 2 and displayed to scale
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Locations
Motions

Right or Left Hand Bi-manual

head left ∆x > λ in sync

neck right ∆x <−λ |δ(L,R)|< λ

torso up ∆y > λ and

L shoulder down ∆y <−λ FR = FL

L elbow towards ∆z > λ together

L hand away ∆z <−λ ∆(δ(L,R))<−λ

L hip
none

∆L < λ apart

R shoulder ∆R < λ ∆(δ(L,R))> λ

R hip

Table 2: Table listing the locations and hand motions included in the feature vectors. The conditions

for motion are shown with the label. Where x,y,z is the position of the hand, either left (L)

or right (R), ∆ indicates a change from one frame to the next and δ(L,R) is the Euclidean

distance between the left and right hands. λ is the threshold value to reduce noise and

increase generalisation, this is set to be a quarter the head height. FR and FL are the

motion feature vectors relating to the right and left hand respectively.

in Figure 11. While displayed in 2D, the regions surrounding the joints are actually 3D spheres.

When the dominant hand (in this image shown by the smaller red dot) moves into the region around

a joint then that feature will fire. In the example shown, it would be difficult for two features to

fire at once. When in motion, the left hand and elbow regions may overlap with other body regions

meaning that more than one feature fires at a time.

Figure 11: Body joints used to extract sign locations

6. Sign Level classification

Each of the different sub-unit classifier sets is now combined with a sign-level classifier. The groups

of binary feature vectors are each concatenated to create a single binary feature vector F = ( fi)
D
i=1
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per frame, where fi ∈ {0,1} and D is the number of dimensions in the feature vector. This feature

vector is then used as the input to a sign level classifier for recognition. By using a binary approach,

better generalisation is obtained. This requires far less training data than approaches which must

generalise over both a continuous input space as well as the variability between signs (e.g., HMMs).

Two sign level classification methods are investigated. Firstly, Markov models which use the feature

vector as a whole and secondly Sequential Patten Boosting which performs discriminative feature

selection.

6.1 Markov Models

HMMs are a proven technology for time series analysis and recognition. While they have been

employed for sign recognition, they have issues due to the large training requirements. Kadir et al.

(2004) overcame these issues by instead using a simpler Markov model when the feature space is

discrete. The symbolic nature of linguistic sub-units means that the discrete time series of events

can be modelled without a hidden layer. To this end a Markov chain is constructed for each sign

in a lexicon. An ergodic model is used and a Look Up Table (LUT) employed to maintain as little

of the chain as is required. Code entries not contained within the LUT are assigned a nominal

probability. This is done to avoid otherwise correct chains being assigned zero probabilities if noise

corrupts the input signal. The result is a sparse state transition matrix, Pω(Ft |Ft−1), for each word ω

giving a classification bank of Markov chains. During creation of this transition matrix, secondary

transitions can be included, where Pω(Ft |Ft−2). This is similar to adding skip transitions to the left-

right hidden layer of a HMM which allows deletion errors in the incoming signal. While it could

be argued that the linguistic features constitute discrete emission probabilities; the lack of a doubly

stochastic process and the fact that the hidden states are determined directly from the observation

sequence, separates this from traditional HMMs which cannot be used due to their high training

requirements. During classification, the model bank is applied to incoming data in a similar fashion

to HMMs. The objective is to calculate the chain which best describes the incoming data, that is,

has the highest probability that it produced the observation F . Feature vectors are found in the LUT

using an L1 distance on the binary vectors. The probability of a model matching the observation

sequence is calculated as

P(ω|s) = υw

l

∏
t=1

Pω(Ft |Ft−1),

where l is the length of the word in the test sequence and υω is the prior probability of a chain

starting in any one of its states. In this work, without grammar, ∀ω,υω = 1.

6.2 SP Boosting

One limitation of Markov models is that they encode exact series of transitions over all features

rather than relying only on discriminative features. This leads to reliance on user dependant fea-

ture combinations which if not replicated in test data, will result in poor recognition performance.

Sequential Patterns (SPs), on the other hand, compare the input data for relevant features and ig-

nore the irrelevant features. A SP is a sequence of discriminative itemsets (i.e., feature subsets) that

occur in positive examples and not negative examples (see Figure 12). We define an itemset T as

the dimensions of the feature vector F = ( fi)
D
i=1 that have the value of 1: T ⊂ {1, ...,D} is a set of
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integers where ∀t ∈ T, ft = 1. Following this, we define a SP T of length |T| as: T = (Ti)
|T|
i=1, where

Ti is an itemset.

In order to use SPs for classification, we first define a method for detecting SPs in an input

sequence of feature vectors. To this end, firstly let T be a SP we wish to detect. Suppose the given

feature vector input sequence of |F| frames is F = (Ft)
|F|
t=1, where Ft is the binary feature vector

defined in Section 6. We firstly convert F into the SP I = (It)
|F|
t=1, where It is the itemset of feature

vector Ft . We say that the SP T is present in I if there exists a sequence (βi)
|T|
i=1, where βi < β j when

i < j and ∀i = {1, ..., |T|},Ti ⊂ Iβi
. This relationship is denoted with the ⊂S operator, that is, T ⊂S I.

Conversely, if the sequence (βi)
|T|
i=1 does not exist, we denote it as T 6⊂S I.

From this, we can then define a SP weak classifier as follows: Let T be a given SP and I be an

itemset sequence derived from some input binary vector sequence F . A SP weak classifier, hT(I),
can be constructed as follows:

hT(I) =

{

1, if T ⊂S I,

−1, if T 6⊂S I.

A strong classifier can be constructed by linearly combining a number (S) of selected SP weak

classifiers in the form of:

H(I) =
S

∑
i=1

αih
Ti

i (I).

The weak classifiers hi are selected iteratively based on example weights formed during training.

In order to determine the optimal weak classifier at each Boosting iteration, the common approach

is to exhaustively consider the entire set of candidate weak classifiers and finally select the best

weak classifier (i.e., that with the lowest weighted error). However, finding SP weak classifiers

corresponding to optimal SPs this way is not possible due to the immense size of the SP search

space. To this end, the method of SP Boosting is employed (Ong and Bowden, 2011). This method

poses the learning of discriminative SPs as a tree based search problem. The search is made efficient

by employing a set of pruning criteria to find the SPs that provide optimal discrimination between

the positive and negative examples. The resulting tree-search method is integrated into a boosting

framework; resulting in the SP-Boosting algorithm that combines a set of unique and optimal SPs

for a given classification problem. For this work, classifiers are built in a one-vs-one manner and

the results aggregated for each sign class.

7. Appearance Based Results

This section of work uses the same 164 sign data set as Kadir et al. (2004) and therefore a direct

comparison can be made between their hard coded tracking based system and the learnt sub-unit

approach using detection based sub-units. For this work, extra annotation was required as Kadir

et al. (2004) used only sign boundaries. 7410 Location examples, 322 Hand-Arrangement examples

and 578 Motion were hand labelled for training sub-unit classifiers. The data set consists of 1640

examples (ten of each sign). Signs were chosen randomly rather than picking specific examples

which are known to be easy to separate. The sub-unit classifiers are built using only data from four of

the ten examples of each sign and the word level classifier is then trained on five examples (including

the four previously seen by the sub-unit classifiers) leaving five completely unseen examples for

2221



COOPER, PUGEAULT, ONG AND BOWDEN

(a) Feature vector (b) SP

Figure 12: Pictorial description of SPs. (a) shows an example feature vector made up of 2D motions

of the hands. In this case the first element shows ‘right hand moves up’, the second ‘right

hand moves down’ etc. (b) shows a plausible pattern that might be found for the sign

‘bridge’. In this sign the hands move up to meet each other, they move apart and then

curve down as if drawing a hump-back bridge.

testing purposes. The second stage classifier is trained on the previously used four training examples

plus one other, giving five training examples per sign. The results are acquired from the five unseen

examples of each of the 164 signs. This is done for all six possible combinations of training/test

data. Results are shown in Table 3 alongside the results from Kadir et al. (2004). The first three

columns show the results of combining each type of appearance sub-unit with the second stage

sign classifier. Unsurprisingly, none of the individual types contains sufficient information to be

able to accurately separate the data. However, when combined, the appearance based classifiers

learnt from the data are comparable to the hard coded classifiers used on perfectly tracked data.

The performance drops by only 6.6 Percentage Points (pp), from 79.2% to 72.6% whilst giving the

advantage of not needing the high quality tracking system.

Figure 13, visually demonstrates the sub-unit level classifiers being used with the second stage

classifier. The output from the sub-unit classifiers are shown on the right hand side in a vector

format on a frame by frame basis. It shows the repetition of features for the sign ‘Box’. As can be

seen there is a pattern in the vector which repeats each time the sign is made. It is this repetition

which the second stage classifier is using to detect signs.

8. 2D Tracking Results

The data set used for these experiments contains 984 Greek Sign Language (GSL) signs with 5 ex-

amples of each performed by a single signer (for a total of 4920 samples). The handshape classifiers

are learnt on data from the first 4 examples of each sign. The sign level classifiers are trained on the

same 4 examples, the remaining sign of each type is reserved for testing.
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Minimum (%) 31.6 30.7 28.2 68.7 76.1

Maximum (%) 35.0 32.2 30.5 74.3 82.4

Std Dev 0.9 0.4 0.6 1.5 2.1

Mean (%) 33.2 31.7 29.4 72.6 79.2

Table 3: Classification performance of the appearance based two-stage detector. Using the appear-

ance based sub-unit classifiers. Kadir et al. (2004) results are included for comparison

purposes.

Figure 13: Repetition of the appearance based sub-unit classifier vector. The band down the right

hand side of the frame shows the sub-unit level classifier firing patterns for the last 288

frames, the vector for the most recent frame is at the bottom. The previous video during

the 288 frames shows four repetitions of the sign ‘Box’.

Table 4 shows sign level classification results. It is apparent from these results, that out of the

independent vectors, the location information is the strongest. This is due to the strong combination

of a detailed location feature vector and the temporal information encoded by the Markov chain.

Shown also is the improvement afforded by using the handshape classifiers with a threshold

vs a WTA implementation. By allowing the classifiers to return multiple possibilities more of the

data about the handshape is captured. Conversely, when none of the classifiers is confident, a ‘null’

response is permitted which reduces the amount of noise. Using the non-mutually exclusive version

of the handshapes in combination with the motion and location, the percentage of signs correctly
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Motion 25.1%

Location 60.5%

HandShape 3.4%

All: WTA 52.7%

All: Thresh 68.4%

All + Skips (P(Ft |Ft−2)) 71.4%

Table 4: Sign level classification results using 2D tracked features and the Markov Models. The

first three rows show the results when using the features independently with the Markov

chain (The handshapes used are non-mutually exclusive). The next three rows give the

results of using all the different feature vectors. Including the improvement gained by

allowing the handshapes to be non-mutually exclusive (thresh) versus the WTA option.

The final method is the combination of the superior handshapes with the location, motion

and the second order skips.

Markov Chains SPs

Top 1 Top 4 Top 1 Top 4

recall 71.4% 82.3% 74.1% 89.2%

Table 5: Comparison of recall results on the 2D tracking data using both Markov chains and SPs

returned is 68.4%. By including the 2nd order transitions whilst building the Markov chain there is

a 3 pp boost to 71.4%.

This work was developed for use as a sign dictionary, within this context, when queried by a

video search, the classification would not return a single response. Instead, like a search engine,

it should return a ranked list of possible signs. Ideally the target sign would be close to the top of

this list. To this end we show results for 2 possibilities; The percentage of signs which are correctly

ranked as the first possible sign (Top 1) and the percentage which are ranked in the top 4 possible

signs.

This approach is applied to the best sub-unit features above combined with either the Markov

Chains or the SP trees. The results of these tests are shown in Table 5. When using the the same

combination of sub-unit features as found to be optimal with the Markov Chains, the SP trees are

able to improve on the results by nearly 3 pp, increasing the recognition rate from 71.4% to 74.1%.

A further improvement is also found when expanding the search results list, within the top 4 signs

the recall rate increases from 82.3% to 89.2%.

9. 3D Tracking Results

While the KinectTMwork is intended for use as a live system, quantitative results can be obtained

by the standard method of splitting pre-recorded data into training and test sets. The split between

test and training data can be done in several ways. This work uses two versions, the first to show

results on signer dependent data, as is often used, the second shows performance on unseen signers,

a signer independent test.
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Test
Markov Models SP-Boosting

Top 1 Top 4 Top 1 Top 4

In
d
ep

en
d
en

t

1 56% 80% 72% 91%

2 61% 79% 80% 98%

3 30% 45% 67% 89%

4 55% 86% 77% 95%

5 58% 75% 78% 98%

6 63% 83% 80% 98%

Mean 54% 75% 76% 95%

StdDev 12% 15% 5% 4%

Dependent
79% 92% 92% 99.90%

Mean

Table 6: Results across the 20 sign GSL data set.

9.1 Data Sets

Two data sets were captured for training; The first is a data set of 20 GSL signs, randomly chosen and

containing both similar and dissimilar signs. This data includes six people performing each sign an

average of seven times. The signs were all captured in the same environment with the KinectTMand

the signer in approximately the same place for each subject. The second data set is larger and more

complex. It contains 40 Deutsche Gebärdensprache - German Sign Language (DGS) signs, chosen

to provide a phonetically balanced subset of HamNoSys phonemes. There are 15 participants each

performing all the signs 5 times. The data was captured using a mobile system giving varying view

points.

9.2 GSL Results

Two variations of tests were performed; firstly the signer dependent version, where one example

from each signer was reserved for testing and the remaining examples were used for training. This

variation was cross-validated multiple times by selecting different combinations of train and test

data. Of more interest for this application however, is signer independent performance. For this

reason the second experiment involves reserving data from a subject for testing, then training on the

remaining signers. This process is repeated across all signers in the data set. The results of both the

Markov models and the Sequential Patten Boosting applied to the basic 3D features are shown in

Table 6.

As is noted in Section 6.2, while the the Markov models perform well when they have training

data which is close to the test data, they are less able to generalise. This is shown by the dependent

results being high, average 92% within the top 4, compared to the average independent result which

is 17 pp lower at 75%. It is even more noticeable when comparing the highest ranked sign only,

which suffers from a drop of 25 pp, going from 79% to 54%. When looking at the individual results

of the independent test it can be seen that there are obvious outliers in the data, specifically signer 3

(the only female in the data set), where the recognition rates are markedly lower. This is reflected in

statistical analysis which gives high standard deviation across the signers in both the top 1 and top

4 rankings when using the Markov Chains.
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Subject Dependent Subject Independent

Top 1 Top 4 Top 1 Top 4

Min 56.7% 90.5% 39.9% 74.9%

Max 64.5% 94.6% 67.9% 92.4%

StdDev 1.9% 1.0% 8.5% 5.2%

Mean 59.8% 91.9% 49.4% 85.1%

Table 7: Subject Independent (SI) and Subject Dependent (SD) test results across 40 signs in the

DGS data set.

When the SP-Boosting is used, again the dependant case produces higher results, gaining nearly

100% when considering the top 4 ranked signs. However, due to the discriminative feature selection

process employed; the user independent case does not show such marked degradation, dropping just

4.9 pp within the top 4 signs, going from 99.9% to 95%. When considering the top ranked sign the

reduction is more significant at 16 pp, from 92% to 76%, but this is still a significant improvement

on the more traditional Markov model. It can also be seen that the variability in results across signers

is greatly reduced using SP-Boosting, whilst signer 3 is still the signer with the lowest percentage

of signs recognised, the standard deviation across all signs has dropped to 5% for the first ranked

signs and is again lower for the top 4 ranked signs.

9.3 DGS Results

The DGS data set offers a more challenging task as there is a wider range of signers and environ-

ments. Experiments were run in the same format using the same features as for the GSL data set.

Table 7 shows the results of both the dependent and independent tests. As can be seen with the

increased number of signs the percentage accuracy for the first returned result is lower than that of

the GSL tests at 59.8% for dependent and 49.4% for independent. However the recall rates within

the top 4 ranked signs (now only 10% of the data set) are still high at 91.9% for the dependent tests

and 85.1% for the independent ones. Again the relatively low standard deviation of 5.2% shows that

the SP-Boosting is picking the discriminative features which are able to generalise well to unseen

signers.

As can be seen in the confusion matrix (see Figure 14), while most signs are well distinguished,

there are some signs which routinely get confused with each other. A good example of this is the

three signs ‘already’, ‘Athens’ and ‘Greece’ which share very similar hand motion and location but

are distinguishable by handshape which is not currently modelled on this data set.

10. Discussion

Three different approaches to sub-unit feature extraction have been compared in this paper. The

first based on appearance only, the latter two on tracking. The advantage of the first approach is

that it doesn’t depend on high quality tracking for good results. However, it would be easily con-

fused via cluttered backgrounds or short sleeves (often a problem with sign language data sets). The

other advantage of the appearance based classification is that it includes information not available
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Figure 14: Aggregated confusion matrix of the first returned result for each subject independent

test on the DGS data set.

by trajectories alone, thus encoding information about handshape within the moment based clas-

sifiers. While this may aid classification on small data sets it makes it more difficult to de-couple

the handshape from the motion and location sub-units. This affects the generalisation ability of the

classifiers due to the differences between signers.

Where 2D tracking is available, the results are superior in general to the appearance based

results. This is shown in the work by Kadir et al. (2004), who achieve equivalent results on the

same data using tracking trajectories when compared to the appearance based ones presented here.

Unfortunately, it is not always possible to accurately track video data and this is why it is still valid

to examine appearance based approaches. The 2D tracking Location sub-features presented here

are based around a grid, while this is effective in localising the motion it is not as desirable as

the HamNoSys derived features used in the improved 3D tracking features. The grid suffers from

boundary noise as the hands move between cells. This noise causes problems when the features

are used in the second stage of classification. With the 3D features this is less obvious due to them

being relative to the signer in 3D and therefore the locations are not arbitrarily used by the signer

in the same way as the grid is. For example if a signer puts their hands to their shoulders, this

will cause multiple cells of the grid to fire and it may not be the same one each time. When using

3D, if the signer puts their hands to their shoulders then the shoulder feature fires. This move from

an arbitrary grid to consciously decided body locations reduces boundary effect around significant

areas in the signing space.

This in turn leads to the sign level classifiers. The Markov chains are very good at recognising

signer dependent, repetitive motion, in these cases they are almost on a par with the SPs. However,

they are much less capable of managing signer independent classification as they are unable to

distinguish between the signer accents and the signs themselves and therefore over-fit the data.
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Instead the SPs look for the discriminative features between the examples, ignoring any signer

specific features which might confuse the Markov Chains.

11. Conclusions

This work has presented three approaches to sub-unit based sign recognition. Tests were conducted

using boosting to learn three types of sub-units based on appearance features, which are then com-

bined with a second stage classifier to learn word level signs. These appearance based features offer

an alternative to costly tracking.

The second approach uses a 2D tracking based set of sub-units combined with some appearance

based handshape classifiers. The results show that a combination of these robust, generalising fea-

tures from tracking and learnt handshape classifiers overcomes the high ambiguity and variability

in the data set to achieve excellent recognition performance: achieving a recognition rate of 73% on

a large data set of 984 signs.

The third and final approach translates these tracking based sub-units into 3D, this offers user

independent, real-time recognition of isolated signs. Using this data a new learning method is

introduced, combining the sub-units with SP-Boosting as a discriminative approach. Results are

shown on two data sets with the recognition rate reaching 99.9% on a 20 sign multi-user data set and

85.1% on a more challenging and realistic subject independent, 40 sign test set. This demonstrates

that true signer independence is possible when more discriminative learning methods are employed.

In order to strengthen comparisons within the SLR field the data sets created within this work have

been released for use within the community.

12. Future Work

The learnt sub-units show promise and, as shown by the work of Pitsikalis et al. (2011), there are

several avenues which can be explored. However, for all of these directions, more linguistically

annotated data is required across multiple signers to allow the classifiers to discriminate between

the features which are signer specific and those which are independent. In addition, handshapes

are a large part of sign, while the work on the multi-signer depth data set has given good results,

handshapes should be included in future work using depth cameras. Finally, the recent creation

of a larger, multi-signer data set has set the ground work in place for better quantitative analysis.

Using this data in the same manner as the DGS40 data set should allow bench-marking of Kinect

sign recognition approaches, both for signer dependent and independent recognition. Appearance

only techniques can also be verified using the Kinect data set where appropriate as the RGB images

are also available though they are not used in this paper. Though it should be noted that this is an

especially challenging data set for appearance techniques due to the many varying backgrounds and

subjects.
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