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Abstract

The paper provides a review of the estimation of structural VARs
with sign restrictions. It is shown how sign restrictions solve the para-
metric identification problem present in structural systems but leave
the model identification problem unresolved. A market and a macro
model are used to illustrate these points. Suggestions have been made
on how to find a unique model. These are reviewed, along with some of
the difficulties that can arise in how one is to use the impulse responses
found with sign restrictions.

1 Introduction

Structural Vector Autoregressions (SVARs) have become one of the major
ways of extracting information about the macro economy. One might cite
three major uses of them in macro-econometric research.
1. For quantifying impulse responses to macroeconomic shocks.
2. For measuring the degree of uncertainty about the impulse responses

or other quantities formed from them.
3. For deciding on the contribution of different shocks to fluctuations and

forecast errors through variance decompositions.
To determine this information a VAR is first fitted to summarize the data

and then a structural VAR (SVAR) is proposed whose structural equation er-
rors are taken to be the economic shocks. The parameters of these structural
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equations are then estimated by utilizing the information in the VAR. The
VAR is a reduced form which summarizes the data; the SVAR provides an
interpretation of the data. As for any set of structural equations, recovery of
the structural equation parameters (shocks) requires the use of identification
restrictions that reduce the number of "free" parameters in the structural
equations to the number that can be recovered from the information in the
reduced form.
Five major methods for recovering the structural equation parameters

(identifying the shocks) are present in the literature. Four of these explicitly
utilize parametric restrictions. These involve the nature of the structural
equations. Parametric restrictions on these equations can vary according
to whether particular variables appear in the latter (Cowles Commission),
whether there is a recursive causal structure (Wold (1951), Quenouille (1957)
and Sims (1980)), and whether shocks have known short-run (Gali (1992)) or
long-run (Blanchard and Quah (1989)) effects. In each case the parametric
restrictions free up enough instruments for the contemporaneous endogenous
variables in the structural equations, thereby enabling the parameters of
those equations to be estimated. Recently, a fifth method for estimating
SVARs has arisen that employs sign restrictions upon the impulse responses
as a way of identifying shocks - Faust (1998), Uhlig (2005), Canova and De
Nicoló (2002). Applications of this method have been growing, as seen in the
papers listed in Table 1. The table is a sub-set of published studies and adopts
a taxonomy which distinguishes between cases where only sign restrictions
are used (often there are mixtures of sign and parametric restrictions), the
type of shock (permanent or transitory), the number of shocks identified, and
whether the sign restrictions come from a formal model or not. Consequently,
it is worth examining this literature in more detail, and the aim of our paper
is to exposit how the method works and to identify some of the difficulties
that can arise in its application.
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Table 1 Summary of Empirical VAR Studies Employing Sign Restrictions

Fluctuations Peersman (2005) STNI
Rüffer et al (2007) STNI
Sanchez (2007) STNF

Ex Rate An (2006) STOI
Farrant/Peersman (2006) STNF
Lewis (2007) STNF
Bjørnland/Halvorsen (2008) MTNI
Scholl/Uhlig (2008) STNI

Fiscal Policy Mountford/Uhlig (2005, 2008) STNI
Dungey/Fry (2009) MPTNI

Housing Jarociński/Smets (2008) MTNI
Vargas-Silva (2008) STOI

Monetary Policy Faust (1998) STOI
Canova/De Nicoló (2002) STOF
Mountford (2005) STNI
Uhlig (2005) STOI
Rafiq/Mallick (2008) STOI
Scholl/Uhlig (2008) STNI

Technology Francis/Owyang/Theodorou (2003) MPTOI
Francis/Owyang/Roush (2005) MPTOF
Dedola/Neri (2006) SPTOF
Chari/Kehoe/McGrattan (2008) MPTNF
Peersman/Straub (2009) STNF

Various Hau and Rey (2004) STNF
Eickmeier/Hofmann/Worms (2009) STNI
Fujita(2009) STOI

Restriction Type: S= Sign only, M = Mixed

Shock Types: P=Permanent, T= Transitory

Number of Shocks: O=One only, N=Numerous

Restriction Source: F=Formal, I= Informal

In practical work it is often found that a combination of all the meth-
ods mentioned above need to be employed in order to be able to identify all
the shocks of interest. We emphasize that which of the five methods men-
tioned above is used in practice does not depend on the data, but rather
on the preferences of the investigator and/or of those who wish to utilize an

4



SVAR to study some issue. These preferences may well be incompatible as
some users may feel that certain types of restrictions are more plausible than
others. Prima facie it does seem likely that long-run and sign restrictions
would be regarded as less restrictive than the other approaches, but without
a specific context there can be no basis for recommending any particular ap-
proach. Each has difficulties and these need to be understood when making
an informed judgement on their utility. Although it is likely in practice that
a mixed set of restrictions will be employed, because the literature on sign
restrictions is more recent than that on the other methods it is convenient
to simply assume that only sign restrictions are being employed.
Section 2 introduces the most common summative model (a VAR) and

two structural models used in later analysis - a simple demand-supply model
(called the market model), and a basic macroeconomic model determining
output, interest rates and inflation (called the macro model). Section 3 then
examines how the five approaches described above would identify the shocks
of the market model. Only a brief account of the parametric approaches
is provided in order to allow for a more detailed description of the sign re-
striction methodology. By using the market model it is shown that sign
restrictions do implicitly impose parametric restrictions. In section 4 we out-
line some difficulties that can arise when implementing sign restrictions and
the various solutions that have been proposed to them. One example is how
one is to respond to the fact that a unique set of impulse responses is not
available. This arises because, while the sign restrictions solve the struc-
tural identification problem by providing sufficient information to identify
the structural parameters, they leave unresolved what Preston (1978) called
the model identification problem - the latter referring to the fact that there
are many models with identified parameters that provide the same fit to the
data. Another is what one does if only the effects of a single shock such as
technology or money is of interest? Section 5 addresses a range of more com-
plex questions involving whether the methodology can recover the correct
impulse responses and how one is to handle both permanent and transitory
shocks. Finally, section 6 concludes.
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2 The VAR Representation and Two Simple

Structural Models

2.1 VAR and SVAR Representations

Most of the literature we deal with assumes that the data can be represented
by a VAR (for simplicity we will make it of first order)

zt = A1zt−1 + et, (1)

where zt is an n×1 vector of variables and et is a set of errors that have zero
expectation, constant covariance matrix Ω and no serial correlation. From
this an interpretation of the data is provided through a SVAR

B0zt = B1zt−1 + εt, (2)

where εt are shocks that have zero mean, no serial correlation, constant
variances and no correlation between the individual shocks i.e. E(εitεjt) = 0.
Comparing (1) and (2) gives B0et = εt i.e. the structural shocks εt we seek
to measure are linear combinations of the VAR errors et. The latter can be
estimated by the VAR residuals êt. To estimate the structural (economic)
shocks, εt, then requires that one construct an appropriate set of weights
(B̂0) on êt. Clearly the VAR is the reduced form of the structure set out in
the SVAR.
The solution to the VAR(1) is the moving average (MA) form

zt = D0et +D1et−1 +D2et−2 + ... (3)

where Dj is the j’th period impulse response of zt+j to a unit change in et
(D0 = In). It follows that the MA form for the SVAR is

zt = C0εt + C1εt−1...,

with the j’th period impulse response of zt+j to εt being Cj = DjB
−1
0 = DjC0

as C0 = B−1
0 . It is important to note that, since A1 can be estimated by

regressing zt on zt−1, and so does not require a structural model specification,
Dj can be estimated from that information (in the first order case Dj = Aj1).
Hence, if one knows C0 one can find all the Cj without stipulating a structural
model. For this reason we will sometimes set A1 = 0 in our illustrations of
the various approaches, as that facilitates a focus upon how C0 is determined
by each of them. Moreover, a failure to accurately estimate C0 will mean
that further Cj will be estimated inaccurately.

6



2.2 Two Simple Structural Models

2.2.1 A Market (Demand/Supply) Model

We take the case of a simple model comprising a demand and a supply
function with associated shocks. This will be termed the market model.
Specifically the SVAR system will be

qt = −βpt + φqqqt−1 + φqppt−1 + εDt (4)

pt = γqt + φpqqt−1 + φpppt−1 + εSt, (5)

where the shocks have expected values of zero and are assumed uncorrelated
with standard deviations of σD and σS respectively. Hence, in terms of the

SVAR discussion above, zt =

[
qt
pt

]
. The reduced form of the market model

is a VAR(1) with the form

qt = aqqqt−1 + aqppt−1 + e1t (6)

pt = apqqt−1 + apppt−1 + e2t. (7)

Since the equations (4) and (5) are essentially identical for arbitrary para-
meter values, at this point there is nothing which distinguishes the demand
(εDt) and cost shocks (εSt), and the task is to introduce extra information
that does enable us to identify these. It would seem likely that most re-
searchers would agree with the sign information in Table 2 for the impact of
positive shocks upon the contemporaneous variables (a positive movement in
εSt will mean a negative supply side shock).

1 Since the patterns are distinct
this suggests that we are likely to be able to identify separate shocks. Indeed
it is clearly going to be a requirement that shocks have distinct sign patterns
in their effects on variables if we are to isolate them separately.

1Although in later analyses we will always exhibit the pattern matrix in response to

positive shocks, it needs to be recognized that a pattern for C0 of

[
− −
− +

]
would also

be consistent with demand and cost shocks, although with negative signs. So one needs to

allow for this in any search. Of course

[
− +
− −

]
and

[
+ +
+ −

]
would also be acceptable.

Clearly the need to check for the complete set of compatible sign restrictions will grow as
the number of shocks increases.
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Table 2: Sign Restrictions for Market
Model (Demand/Supply) Shocks

variable\shock Demand Supply
pt + +
qt + -

2.2.2 A Small Macro Model

A small macro model that is used a lot involves an output gap (yt), inflation
(πt) and a policy interest rate (it). In terms of (1) the system variables are
z′t =

[
yt πt it

]
. A first order SVAR model for these variables would then

be

yt = z′t−1γy + βyiit + βyππt + εyt (8)

πt = z′t−1γπ + βπiit + βπyyt + επt (9)

it = z′t−1γi + βiyyt + βiππt + εit. (10)

The three shocks will be monetary policy (εit), a demand shock (εyt) and
a cost-push (supply) shock (επt). For simplicity the shocks will be treated
as having no serial correlation, so that the reduced form is a VAR(1) of the
form

yt = z′t−1αy + e1t (11)

πt = z′t−1απ + e2t (12)

it = z′t−1αi + e3t. (13)

The signs of the contemporaneous effects to positive shocks will most likely
be those in Table 3. Again these are distinct and this enables the separation
of the three structural shocks.

Table 3: Sign Restrictions for Macro Model Shocks

variable\shock Demand Cost-Push Interest Rate
yt + - -
πt + + -
it + + +
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3 Identifying Shocks

3.1 The Parametric Approaches

In order to contrast the sign restriction approach to other methods of iden-
tifying shocks, let us think about how one might estimate the market model
using the types of parametric restrictions distinguished in the introduction
(we ignore the first possibility of constraining some coefficients of lagged
values to zero). These restrictions are designed to identify the structural
equations and hence the shocks.
(i) If the system is assumed to be recursive e.g. β is set to zero, then OLS

can be applied to the supply equation, since qt is a function of εDt and this
is uncorrelated with εSt. Three unknown parameters are left and there are
three pieces of information to estimate them with - the estimated variances
of pt, qt and the covariance of pt and qt.
(ii) A restriction that (say) a demand shock has no long-run effect upon

the price would imply that φpq = −γ, and so the supply curve would become
a function of ∆qt and pt−1. This implies that there is one less structural
parameter to estimate in the supply curve and qt−1 is then freed up to be
used as an instrument for ∆qt. Once the supply equation is estimated the
demand equation can be found by using the residuals ε̂St as an instrument
for pt.
(iii) An assumption that the short run effect of a demand shock upon

prices is zero would imply that γ

(1+βγ)
= 0 in the reduced form (VAR) equation

for pt
pt = ψ1qt−1 + ψ2pt−1 +

γεDt
(1 + βγ)

+
εSt

(1 + βγ)
, (14)

where ψj are functions of φij and γ, β. Consequently, the VAR residual for
pt would not involve εDt and so can be used as an instrument for pt in the
demand curve.
Thus in all cases the identification problem is solved by reducing the

number of parameters to be estimated to three and by making available
suitable instruments for estimation.

3.2 Sign Restrictions

Now a set of n estimated shocks êt will be available from the model we choose
to be the summative one. For the market model the VAR shocks e1t and e2t
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are from (6)−(7), while in the macro model the shocks ejt are in (11)-(13). By
combining them in an appropriate way we can produce candidate structural
shocks ε̂t that are uncorrelated. Now there will be many such combinations.
Some of them will produce impulse responses that have the correct signs,
while others won’t. Thus in the market model case there will only be some
weights which produce shocks that respect the patterns in Table 2. So our
first task is to select an algorithm that gives a set of weights. Once one has
these we can check if they are "successful", in the sense that the impulse
response functions Ĉj for the corresponding structural shocks agree with the
postulated sign information. If they are not successful we will discard them
and "draw" another set of weights.
Now the critical constraint needed in designing an algorithm to do this is

that the generated weights must be such as to ensure that the constructed
structural shocks ε̂t are uncorrelated. Suppose we begin by first estimating
a recursive VAR e.g. in the market model we could act as if β was zero.
In that case, after estimation, we would have a set of shocks v̂t such that
êt = B̂−1

0 v̂t, where B̂0 is a lower triangular matrix, as this characterizes a
recursive system.2 By design these shocks, v̂t, are uncorrelated. However,
rather than work directly with such shocks it is desirable to work with shocks
that have unit variance, and this can be done by dividing each of the v̂kt by
its standard deviation. Hence, let Ŝ be the matrix that has the estimated
standard deviations of the v̂t on the diagonal and zeros elsewhere. Then êt =
B̂−1
0 ŜŜ−1v̂t = T̂ η̂t, where η̂t = Ŝ−1v̂t are now regarded as structural shocks.
These shocks possess unit variances and can be thought of as coming from a
structural system T−1zt = T−1B1zt−1 + ηt. These η̂t shocks will be termed
our base set. Notice that they are just a re-scaled version of the v̂t, so their
nature has not changed.3

2Although the residuals v̂t could be thought of as structural shocks, ε̂t, we want to make
the point that they are just shocks to begin the search process with, and there is no need
to regard the recursive system as a plausible structure. It is the fact that shocks found
from a recursive system are uncorrelated which makes them useful. Later we mention
other ways of initiating the search.

3Numerically it is generally more efficient to estimate η̂t by estimating the covariance
matrix of the residuals êt, Ω̂, and then applying a Cholesky decomposition F

−1Ω̂F ′−1 = In
to form η̂t = F

−1êt rather than first estimating a recursive system. The η̂t constructed in
this way will have unit variances and be uncorrelated. This is a useful way of proceeding
since all that is needed to implement it is the estimated covariance matrix of the errors
in the equations of the summative model. It also means that the summative model need
not be a VAR. It could be a Vector Error Correction Model or a state space model and
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Now we form combinations of the η̂t using a matrix Q i.e. η̂
∗

t = Qη̂t. The
η̂∗t are candidates for "named" structural shocks e.g. "supply" and "demand".
They need to be uncorrelated and so Q must be restricted. The appropriate
restriction is that Q is a square matrix such that Q′Q = QQ′ = In, since
that means

êt = T̂Q′Qη̂t
= T̂ ∗η̂∗t ,

and cov(η∗tη
∗′

t ) = Qcov(η̂
t
η̂′
t
)Q′ = In. Thus we have found a new set of

shocks, η̂∗t , with the same covariance matrix as η̂t (and which will reproduce
the var(zt)), but which will have a different impact (T̂

∗) upon et and the
variables zt. It is this ability to create a large number of candidate shocks
with varying impulse responses that is the basis of sign restriction methods.
It is clearly very simple to construct all these shocks using programs that do
matrix operations once we have a method for forming a Q with the property
Q′Q = QQ′ = In. There are many such Q

′s and we will refer to each as a
"draw".
How does one find a Q matrix? There are actually quite a few ways

of doing this. The two most popular utilize Givens and Householder trans-
formations (the latter is the basis of the QR decomposition used in many
ill-conditioned regression problems), but this does not exhaust the possibil-
ities. We provide an account of each of these and the relationship between
them in the following sub-sections.

3.2.1 Givens Matrices

In the context of a 3 variable VAR (the macro model) a 3× 3 Givens matrix
Q12 has the form

Q12 =




cos θ − sin θ 0
sin θ cos θ 0
0 0 1





i.e. the matrix is the identity matrix in which the block consisting of the first
and second columns and rows has been replaced by cosine and sine terms and
θ lies between 0 and π.4 Q12 is called a Givens rotation. Then Q

′

12Q12 = I3

we use that fact in later sections.
4In general Qij is formed by taking an n × n identity matrix and setting Q

ii
ij = cos θ,

Q
ij
ij = − sin θ, Q

ji
ij = sin θ,Q

jj
ij = cos θ, where the superscripts refer to the row and column

of Qij .
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using the fact that cos2 θ + sin2 θ = 1. There are then three possible Givens
rotations for a three variable system; the others being Q13 and Q23. Each of
the Qij depends on a separate parameter θk. In practice most users of the
approach have adopted the multiple of the basic set of Givens matrices as Q
e.g. in the three variable case we would use

QG(θ) = Q12(θ1)×Q13(θ2)×Q23(θ3).

It’s clear that QG is orthogonal and so shocks formed as η
∗

t = QGηt will be
uncorrelated and their impact upon zt will be T̂

∗ = T̂Q′G.
Now, the matrix QG above depends upon three different θk. Canova and

De Nicoló (2002) suggested that one make a grid of M values for each of
the values of θk between 0 and π, and then compute all the possible QG.
Of course all of these models distinguished by different numerical values for
θk are observationally equivalent in that they produce an exact fit to the
variance of the data on zt.

5 Only those QG producing shocks that agree with
the maintained sign restrictions would be retained.
As an example we look at the macro model described in Cho and Moreno

(2006) estimated with some data on the US output gap, inflation and the
Federal Funds rate. As described above, begin with a recursive model impos-
ing βyi = 0, βyπ = 0, βπi = 0. OLS on each of (8)-(10) then gives structural
equation residuals that are uncorrelated. More potential structural shocks
can subsequently be found by combining these residuals (after re-scaling to
make them have unit variances) with Q matrices. Two of these Q matrices
(from the Givens approach) are given below. They have the property that
Q′Q = I3.

6

Q(1) =




−.4551 .3848 .8030
−.5853 −.8089 .0559
.6710 −.4446 .5933



 , Q(2) =




.0444 −.8431 .5359
.8612 −.2395 −.4482
.5062 .4815 .7155



 .

(15)
When Q(2) is used the generated structural shocks have a sign pattern

for C0 of




+ − +
+ + +
+ + +



 , which disagrees with the restrictions in Table 3.

5It is assumed in the analysis that the zt have been mean corrected before the VAR is
fitted.

6The fact that we retain only four decimal places above means that Q′Q is not exactly
I3.
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In contrast, Q(1) does produce a set of impulse responses that is consistent
with the table. Hence, employing the sign restriction methodology only the
impulses found using Q(1) would be retained.

3.2.2 Householder Transformations

The alternative method of forming an orthogonal matrix Q is to generate
some random variables W from an N(0, I3) density (for a three variable
VAR) and then decompose W = QRR, where QR is an orthogonal matrix
and R is a triangular matrix. Householder transformations of a matrix are
used to decompose W. The algorithm producing QR is often called a QR
decomposition. Clearly QR = I corresponds to the matrix used in recursive
orderings. Since many draws of W can be made, one can find many QR.
Rubio-Ramírez et al. (2005) seem to have been the first to propose this, and
they have argued that, as the size of the VAR grows, this is a computationally
efficient strategy relative to the Givens approach. In Fry and Pagan (2007)
we show that the methods are equivalent, so the main factor in choice would
be computational speed. As the system grows in size we would expect the
Householder method to be superior.

3.3 Sign Restrictions in the Market Model

So how do sign restrictions resolve the structural identification problem in
the market model? As noted previously the key problem is how to identify
the initial impulse responses C0. For illustrative purposes, it is convenient
to suppress the dynamics by setting B1 = 0 and to study the solutions for
C0 alone. Information on the signs expected for the elements of C0 is given
in Table 2. In the next step a recursive system is set up and estimated.
Of course the market model is generally not recursive, but this is simply a
mathematical device to generate a set of shocks v̂t that are uncorrelated. We
therefore assume the following recursive system

pt = v1t (16)

qt − τpt = v2t. (17)

Three parameters are estimated in this system - τ = cov(qt, pt)/var(pt) and
the two variances of vjt, σ

2
j . Effectively, this means that the variances of pt

and qt and their covariance are used for estimation. A base set of impulses
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will then be found from ηjt = σjvjt, where σ
j is the inverse of the standard

deviation of vjt.
7 By definition η1t = σ1v1t = σ1pt and η2t = σ2v2t =

σ2(qt − τpt).
These base impulses are then used to construct new shocks η∗jt by using

a Givens rotation as the weighting matrix. Since there is only one Givens

matrix in the two variable case, Q =

[
cos θ − sin θ
sin θ cos θ

]
, the transformed

system becomes

[
η∗1t
η∗2t

]
=

[
σ1pt cos θ − σ2(qt − τpt) sin θ
σ1pt sin θ + σ2(qt − τpt) cos θ

]
,

Letting φ1 = cos θ and φ2 = sin θ the two equations can be written as

(σ1φ1 + σ2φ2τ)pt − σ2φ2qt = η∗1t (18)

(σ1φ2 − σ2τφ1)pt + σ
2φ1qt = η∗2t, (19)

with impulse responses of (pt, qt) to η
∗

jt being

[
σ1φ1 + σ

2φ2τ −σ2φ2
σ1φ2 − σ2τφ1 σ2φ1

]
−1

= G−1 =
1

det(G)

[
σ2φ1 σ2φ2

−σ1φ2 + σ
2τφ1 σ1φ1 + σ

2φ2τ

]
.

Because σj are fixed by the data the sign of the impact of the shocks upon pt
and qt will be dependent on sgn(φ1) and sgn(φ2), and these can be positive
or negative depending upon the values taken by θ. Consequently there may
be many impulse responses which satisfy the sign restrictions, each of which
is indexed by a value of θ. Note that, even though we started with a recursive
system, we will generally not have one as θ varies.
It is useful now to observe that, given θ, the number of unknown para-

meters in (18)-(19) has been reduced to three (τ , σ1, σ2), just as happened
with the parametric methods. This reduction means that a unique set of
parameters can be recovered for a given system of equations (and a specified
θ), and so the structural parameter identification problem has been solved.

7A different way to get ηjt would be to fit a recursive system with var(pt)
−1/2pt and

{var(qt)(1− ρ
2

pq)}
−1/2qt as regressors, where ρpq is the correlation between pt and qt.
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4 Some Basic Issues with Sign Restrictions

4.1 Model and Structural Identification

Now in the discussion of the previous section we only retain those shocks
whose impulses agreed with the postulated signs. But it is clear that there
may be many impulse responses that satisfy these sign restrictions. Thus,
when using Givens’ matrices, it is unlikely that there will be a single value
of θ that will produce the requisite sign restrictions. Figure 1 shows the
large range of impulse responses one gets by applying the contemporaneous
sign restrictions of Table 3 to the macro model data that we used earlier
when illustrating the effects of choosing two values for Q. It is noticeable
that, even though the initial response of output to the interest rate has been
forced to be negative, there are some cases where that response becomes
positive very quickly. Each value of θ produces a new model constituting a
new set of structural equations and shocks. Consequently, although we have
converted any given system of equations (consistent with a given θ) to one
that has a structure that is identified, we have not identified a unique model.
The difference between structural and model identification was emphasized
by Preston (1978).
What should one do about this multiple models problem? One response is
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Figure 1: Impulse Responses for Macro Model: Median, MT and 5,95 Per-
centiles

to try to summarize the information in the graphs in some way e.g. reporting
a central tendency and the magnitude of the spread of responses. Thus, if
the impulse responses C

(k)
j that satisfy the sign restrictions are computed,

where k indexes the different values of θ, various percentiles such as the 5%,
50% and 95% might be reported. This is done in Figure 2.

It may seem as if this is emulating the approach when one presents per-
centiles of a distribution from either a Bayesian or bootstrap experiment.
But it is important to recognize that the distribution here is across models.
It has nothing to do with sampling uncertainty. Referring to this range as
if it is a confidence interval (something that is very common in the applied
literature) is quite false. All you get is a glimpse of the possible range of
responses as the model varies. Of course, this might be valuable. Often we
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do present information about how our answers change as models are var-
ied. Leamer (1978) did this in a regression context with his extreme bounds
analysis. But it should not be imbued with probabilistic language. Even if
the VAR parameters A1 and Ω were known with certainty, there will be a
question of how one proceeds whenever there are many θ. There is of course
a greater range when one accounts for the uncertainty in A1 and Ω, as is of-
ten done in this literature. Examples are Uhlig (2005) and Peersman (2005),
where Bayesian methods are applied to estimate the summative model, but
it does not help to understand the model identification issue by confusing
these two sources of variation.
Do any difficulties arise in interpreting (say) these summary measures?

Let us illustrate the issues by considering the median of the impulse re-
sponses, by far the most popular choice for capturing the central tendency.
Suppose there is a single variable and two shocks, and that we have impulse
responses C

(k)
11 and C

(k)
12 , where k indexes the models (values for θ). Ordering

these into ascending order enables one to find the medians C
(k1)
11 = med{C

(k)
11 }

and C
(k2)
12 = med{C

(k)
12 }. But k1 may not equal k2, and so the model that

produced the impulse response that is the median of {C
(k)
11 } may not be the

same as that for {C
(k)
12 }. Presenting the medians may be likened to presenting

the responses to technology shocks from an RBC model, and the monetary
shocks from a monetary model, and it is hard to believe that this is a rea-
sonable approach. Clearly, this comment applies to other percentiles so that
the extreme values which are being reported may come from very different
models.
Another piece of information presented in many papers is a variance de-

composition of var(zt) into the contributions from various shocks. Often this
is done using the medians of the impulse responses. Is this correct? Now
a variance decomposition requires that the shocks be defined in the same
way, necessitating a common value of θ be used, since only in this case will
the shocks be uncorrelated by design. If shocks are not uncorrelated then a
variance decomposition does not make much sense. This issue is not resolved
by another common practice that computes the fraction of the variance ex-
plained by the j′th shock (j = 1, .., n) in the k′th model (k = 1, ...,M)

,ψ
(k)
j , j = 1, .., n, and then reports the n medians of {ψ

(k)
j }k=1,...,M . Since

in general these medians will not come from the same model there is noth-
ing which ensures that the med{ψ

(k)
j } sum to one across all shocks i.e. the

variance is exhaustively accounted for.
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Now it needs to be said that the issue of model identification is always
present and is not specific to sign restrictions. Thus, if one used a recursive
system to get structural identification, there are many other such systems
(orderings) that will yield the same VAR and give the same fit to the data.
Each structure coming from a given ordering is parametrically identified but,
as all of the orderings exactly replicate the data, there is no unique model.
Only if one is prepared to consider that there is a single recursive model that
is tenable as the data generating process will this occur, and that is rare. For
example, Kilian and Murphy (2009) work with recursive systems involving
oil prices but resile from being dogmatic about any one recursive system.
Indeed, one often sees comments to the effect that re-ordering the equations
did not modify the conclusions much.
Why then should we pay any more attention to this model identification

issue for sign restrictions than for other ways of identifying VARs? Some
insight into this comes from examining the two possible recursive versions of
the market model - that given in (16) and (17) and the other being where
pt and qt are inter-changed in these equations. Although observationally
equivalent the two models can be treated as different views about how the
market operates. In one case quantity is treated as predetermined, and so
prices reconcile supply and demand, while the other has price being set and
quantity doing the adjustment. A choice between these might be made using
institutional knowledge that is difficult to put into a VAR framework. But,
in the sign restriction approach to the market model there is no equivalent
interpretation, as the restriction employed for identification essentially ties
the supply and demand elasticities together. Nevertheless any solution to
the multiple models problem has to be the same as for recursive models,
namely the introduction of extra information that enables one to discriminate
between them.
What sort of extra knowledge might be used? There is no one way of

doing this in the literature. One possibility is to continue to add on sign
restrictions which relate to longer lags in the impulses. Thus one can see
from the curves in Figure 1 that, imposing a negative effect of an interest rate
shock upon output and inflation for ten periods rather than one period, would
eliminate many of the 1000 models in that figure. To formally understand
why this might work, and the limitations to it, we examine the relation
between impulses noted earlier viz. Cj = DjC0. Because Dj can be estimated
from the VAR and does not need structural information, restrictions on Cj
translate into indirect restrictions on C0, and so Cj > 0 requires C0 to be such
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that DjC0 > 0. This may well reduce the number of possible C ′0s (models)
that jointly satisfy sign restrictions on the higher order impulses as well as on
C0. If the restrictions on Cj were quantitative then the indirect restrictions
implied on C0 would certainly narrow the possible values of C0. However,
the same effect does not necessarily hold for qualitative restrictions. For
example, if all elements of C0 are positive, and so too are the estimated D1

from a VAR(1) fitted to the data, then a restriction that the elements of
C1 are positive adds nothing to what has already been assumed about the
signs of C0. There appears to be a belief in the literature that adding on
sign restrictions for longer impulse responses, Cj, j > 0, provides stronger
identifying information, and this seems to stem from the Monte Carlo study
in Paustian (2007). However, as is clear from the connections that exist
between the Cj and C0 noted above, nothing guarantees this.
Quantitative information about the likely magnitude of the impulse re-

sponses is sometimes invoked in order to reduce the set of models. Thus
Kilian and Murphy (2009) argue that some estimates generated of the short-
run supply elasticity of oil and the initial impact of oil prices upon activity are
implausible, and so models producing them should be discarded. A second
group of methods looks at setting up a criterion based upon the magnitude of
impulses and minimizing it with respect to θ. Faust (1998) and Uhlig (2005)
do this. Uhlig’s criterion is to give a high weight to "large" standardized
impulses over "small" ones. Thus he says "Given a choice among many can-
didate monetary impulse vectors...it might therefore be desirable to pick the
one which generates a more decisive response of the variables" - Uhlig (2005,
p 414). The exact form of the penalty function varies with the application.
Thus, in general all one can say is that a value for θ is found by minimizing
a criterion that is a function of the magnitude of the impulse responses C

(k)
j .

Provided it is clear that this is being done, it is simply a matter of deciding if
the supplementary quantitative criterion is acceptable, although one needs to
recognize that non-sign information is being invoked to get a unique model.
A different approach to selecting a single value of θ by minimizing a cri-

terion is that in Fry and Pagan (2005). This begins with the observation
that researchers seem to be attracted to the idea of presenting the median as
a good summary of the central tendency of impulse responses across mod-
els. Our second observation was that the median responses may come from
different models, potentially making them impossible to utilize in exercises
such as variance decompositions. So it seems logical to find a single model
whose impulse responses are as close to the median values as possible. We
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will term this the median target method (MT). The MT solution is to choose
that value of θ(k) that produces impulses which are as close to the median
responses as possible. To devise a criterion to do this it is necessary to recog-
nize that the impulses need to be made unit-free by standardizing them.
This is done by subtracting off their median and dividing by their standard
deviation, where these are measured over whatever set of models has been
retained as satisfying the sign restrictions. These standardized impulses are
then placed in a vector φ(l) (in a two variable case φ is 4×1 as there are four
impulses) for each value θ(l). Subsequently we choose the l that minimizes
MT = φ(l)′φ(l), and then use that θ(l) to calculate impulses. Whether this
strategy produces a unique l is an empirical question, although in applica-
tions we have made it turns out to do so. In the event that the median shocks
are uncorrelated then we would find that the median responses would be se-
lected by this criterion. So a difference between the median responses and the
MT−selected responses essentially indicates that the shocks associated with
the median impulses are correlated. Consequently, theMT methodology can
be regarded as a diagnostic device.
Figure 2 also shows the median impulses and those coming from the MT

approach. Clearly major differences in the effects of an interest rate shock
upon output emerge when it is insisted that the shocks must come from a
single model. A comparison of the median with the adjusted measure for
other shocks does not reveal as great a difference, except perhaps in the
initial impact of monetary policy on inflation. In Fry and Pagan (2005) we
found that applying the MT method to the data in Blanchard and Quah
(1989) produced very little difference when assessing the impact of demand
and supply shocks. A number of other papers also report that the results
are not too dissimilar e.g. Rüffer et al (2007), Canova and Paustian (2010).
It does seem to us however that it is more satisfactory to ensure that the
impulses come from the same model rather then getting them from different
models, even if in some specific instances the adjustment does not produce
major changes. At the very least one needs to check that a failure to insist
that shocks come from a single model has not created any distortions. The
adjustment is simple to compute. One might also observe that, although the
discussion above has been about the median, it also applies to any of the
"percentile" measures.
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4.2 Identifying a Single Shock

In the description above it was assumed that n shocks were to be found.
But sometimes only a single shock is of interest and therefore only one shock
is isolated. Examples are Rafiq and Mallick (2008), An (2006), and Uhlig
(2005), although there are many others where the number of shocks identi-
fied is greater than one but less than n. Dealing with the single shock case
we might still utilize the n× n Q-matrices above to produce n uncorrelated
structural shocks, but only focus upon one of them. Two issues arise here.
Firstly, in some papers one has the impression that it is only necessary that
the weights used for constructing the structural shocks be an n× 1 vector q
that has unit length. Uhlig’s papers often state it in this way e.g Scholl and
Uhlig (2008, p 5). If q is not selected from a Q that is orthogonal then the
resulting shock need not be uncorrelated with the remaining (unidentified)
n−1 shocks. To the extent that one does not need this property for analysis
then there is no problem, but if one is trying to perform a variance decom-
position it is mandatory. Our reading of a number of papers in the literature
is that q was not selected in a way to ensure orthogonality.
A second problem arises from the following scenario. Suppose that there

are two variables and we believe that one shock has a positive initial effect on
the first variable. However we are unwilling to describe either its effects on the
second variable or to set any signs for the initial effects of the second shock.

This scenario would generate signs for C0 of

[
+ ?
? ?

]
, where ?means that no

sign information is provided. It is clear that this is not enough information to

discriminate between the shocks. Indeed, even the pattern

[
+ ?
+ ?

]
would

not suffice, since it is possible that the impulse responses found from a draw

of Q might be

[
+ +
+ +

]
, and then we are faced with the fact that both

shocks have the same sign pattern. In any finite number of draws one may
not encounter this, but that is just fortuitous. Hence a problem arises if there
is a failure to specify enough information to discriminate between shocks. We
will refer to this as the multiple shocks problem, as distinct from the multiple
models problem that was mentioned earlier.
As an illustration of the multiple shocks problem suppose we look at

the macro model when Q(2) in (15) is used as the weighting matrix to form
shocks. Suppose it is desired to identify only a single shock - demand -
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using the sign restrictions from the macro model. Then, when Q(2) is used
to construct three shocks, two of these would produce the right signs, and
so both are potential demand shocks. However, we cannot accept both as
demand shocks given that they are in the same model. It is only if one
describes the signs patterns for all of the shocks that it is possible to rule
out the use of Q(2). Consequently, if only a single shock is to be isolated
(more generally any number less than n) some information will need to be
provided on what strategy was used to deal with this issue. At the moment
little mention is made in many published articles using sign restrictions. The
problem does seem to come up quite a bit e.g. Rüffer et al (2007) mention
that it occurs in their study, although they offer no comment on what they
did about it, and Mountford (2005) also alludes to it.

4.3 The Origin of Sign Restrictions

Generally these have been rather informal, although increasingly they have
been drawn from DSGEmodels. Thus the New Keynesian (NK) policy model
with the form

yt = α1yyt−1 + β1yEt(yt+1) + γ1i(it − Et(πt+1)) + εyt

πt = α2ππt−1 + β2πEt(πt+1) + γ2yyt + επt

it = α3πit−1 + γ3yyt + β3πEtπt+1 + εit,

is often invoked as a small macro model. Assuming that there is no serial
correlation in the shocks, the solution is a VAR(1) in z′t =

[
yt πt it

]
, with

the VAR(1) coefficients A1,Ω being a function of the NK model parameters
θ. Maximum likelihood estimates of θ can be found with the same data as
used to fit the VAR(1) for the sign restriction work. Using the MLE’s of θ,
the resulting impulse responses are in figure 3, along with those coming from
the MT method of producing a unique set of impulses under sign restrictions.
There are some very large quantitative differences. Indeed, the NK impulses
often lie well outside the range coming from the 1000 models produced with
sign restrictions. It might be wondered why this is the case as the NK model
implies a VAR for the variables. But it is a restricted VAR. Hence, if the
sign restriction impulses are CSRj = CSR0 D̂V AR

j , then those from the NK

model will be governed by CNKj = CNK0 D̂NK
j . Consequently, there can be

two reasons for the difference between impulses from the two approaches - a
discrepancy between the initial effects CSR0 and CNK0 and a difference between
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the estimated VAR coefficients Dj.
8 All the sign restriction models keep Dj

fixed at the OLS estimates of the VAR(1). In contrast, the NK model says
there are restrictions on the VAR parameters, and these are imposed in the
ML estimation. Hence, if the NK model restrictions are incorrect, there will
be a bias in D̂NK

j , which will show up as different impulse responses to the
unrestricted ones. This points to a rationale for just using the NK model as
a source of sign restrictions rather than exploiting its stronger implications
for VAR coefficient relations. Of course the sign restrictions may depend
upon the structural model coefficient values fed into the NK model, and so
it has been proposed that the model be simulated for a wide range of these,
retaining only those signs that are robust to the parameter variations.The
sign restrictions in Table 3 are likely to be broadly consistent with those found
by simulating models such as NK above for a range of parameter values.
As we will see in the next section this strategy of using theoretic models to

produce sign restrictions has been increasingly used in the literature. Canova
and Paustian (2010) examine it in some detail, simulating data from a DSGE
model and then seeing if the correct impulse responses would be recovered.
They find that it recovers the shocks reasonably well, provided that enough of
these are used and all shocks are identified. In contrast Jääskelä and Jennings
(2010) found that they could not recover the correct impulse responses from
an NK model of a small open economy, despite using many sign restrictions.
The model-based approach to producing sign restrictions seems a useful

way to proceed, as it does not commit the user to the DSGE model, but has
the advantage that it restricts the informal approach in a fashion that prob-
ably commands reasonable assent. A lot depends on why one is performing
the VAR analysis. If one is trying to "discover" what the data says about re-
lations then imposing sign restrictions from (say) the NK model above would
not appeal as much, since one would never see (say) that interest rates had
a positive impact on inflation in the data. "Puzzles" like this are sometimes
the source of productive theorizing and so one should be careful about pre-
determining outcomes. Of course one check on this is available from the
draws that yielded impulse responses that didn’t agree with the sign restric-
tions. If there are a large number of these then one might well conclude that
the data is not in favour of the model used to generate the sign restrictions.

8In this case the coefficients of πt−1 in the VAR equation for πt are .4 (NK) and .9
(unrestricted). The covariance matrix of the VAR errors also shows some differences - the
correlation between the output gap and inflation VAR equation errors being .4 in the data
and .1 implied by the NK model.
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Figure 2: Comparison of the impulse responses of the small macro model
(MT method - solid line), and a New Keynesian model (dashed line).
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Sometimes the number rejected is very high e.g. Kilian and Murphy (2009)
report only 30860 "successful" models from 1.5 million draws. Peersman and
Straub (2006) used the rejected information in this way to assess whether
the New Keynesian model was a good description of the data.

5 Some Advanced Issues with Sign Restric-

tions

A number of questions and issues arise with sign restrictions that deserve
comment. First, do sign restrictions recover the correct impulse responses?
This question is considered in the next sub-section by using the market model,
and it is concluded that, while they can be potentially recovered up to an
unknown scaling factor, the standard strategies for dealing with the multiple
models problem may mean that the true impulse responses are not isolated.
But even if there is no certainty that the correct impulses can be found it
is desirable to maximize the chances of doing so and we therefore examine
some recommendations that have been made about how to do this. Second,
if we wish to align the summative model with theoretical models it is often
necessary to recognize that, whilst the latter generally imply a VAR in all
the model variables, only a sub-set of variables are actually used in mod-
elling, and these may not follow a VAR i.e. using a VAR as the summative
model would be incorrect. We show how this complication can be dealt with
fairly easily. Finally, we ask what one does if there are both permanent and
transitory shocks in the system? Again a VAR is not the correct summative
model and it needs to be replaced by a VECM. Hence we spend some time
indicating how to adapt the methods proposed earlier in connection with
VARs to the VECM case.

5.1 Can We Recover Correct Impulse Responses from
Sign Restrictions?

In the literature one sometimes gains the impression that the answer to the
question posed above is in the affirmative. But it is a tricky question to give
an answer to, as it depends on what type of experiment you wish to perform
with the impulse responses. To see why, note that, in the market model with
no dynamics, the VAR equations for pt and qt would be
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qt = (1−
βγ

(1 + βγ)
)εDt −

βεSt
(1 + βγ)

(20)

pt =
γεDt

(1 + βγ)
+

εSt
(1 + βγ)

. (21)

Now, because εSt and εDt are uncorrelated, dividing by their standard devi-
ations would produce some base shocks ηjt that have unit variance, namely

η1t = σ−1D εDt, η2t = σ−1S εSt. This leads to a re-writing of (20) and (21) as

q∗t = σ−1D qt = (1−
βγ

(1 + βγ)
)η1t −

βρη2t
(1 + βγ)

(22)

p∗t = σ−1S pt =
γρ−1η1t
(1 + βγ)

+
η2t

(1 + βγ)
, (23)

where ρ = σS
σD
. Now the impulse responses to εjt have exactly the same signs

as those for ηjt but the magnitude of the latter depends upon the ratio of
the standard deviations of the cost and demand shocks ( ρ), and not on their
separate values. Moreover, it is clear from (22) and (23) that the impulse
responses for a unit shock to ηjt describe the effects on q

∗

t and p
∗

t and not on
qt and pt. Fundamentally, the difficulty is that εDt = σDη1t and εSt = σSη2t,
meaning that the ηjt are not equal to the demand and supply shocks, but are
scaled versions of them. Another way of describing the significance of this
is that the impulse responses to unit shocks in ηjt indicate the responses of
qt and pt to one standard deviation shocks in εDt and εSt. Hence, in partial
answer to the question of this sub-section, correct impulse responses to one
standard deviation demand and cost shocks should be recoverable using sign
restrictions (provided the summative model is correct).
When would we be happy to have just one standard deviation responses

i.e. those provided by sign restriction information? Two cases come to mind.
One is if we are looking at when a peak in impulses occurs e.g. whether there
is over-shooting in exchange rates as in Scholl and Uhlig (2008), since the
location of the peak is invariant to any positive scaling factor for the impulses.
Another would be when variance decompositions are being computed, since
here what is needed are impulse responses to one standard deviation shocks.
When would we be less enthusiastic about the impulses found with sign

restrictions? In many policy-related contexts we want to answer questions
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such as "what would be the responses to a 100 basis point interest rate
shock", or, in the market model context, to a unit shock in demand? In the
latter case we would need to know the standard deviation of the demand
shocks εDt in order to work out an answer from the sign restriction impulse
responses, as these only provide the impact of one standard deviation shocks.
But, because the magnitude of the standard deviation of the demand shocks
is not an estimable quantity with just sign restrictions, we cannot construct
impulse responses to answer questions like those just posed (unless of course
σD = 1 ). In this important sense the sign restriction approach would not
recover the required impulse responses.9

The discussion above has centered on whether the true impulses would
be in the range of models identified by sign restrictions. Leaving aside the
issue that one might need to generate a very large number of these models
to ensure that, we are still left with the problem of which one to select. As
we have mentioned earlier, the "median" impulses are often presented. But
there is nothing which says that the true impulses would coincide with the
median. One feels that often the "median" impulses are thought of as "most
probable", but, as we pointed out earlier, the range of impulses is due to
multiple models and not any uncertainty coming from data.
To emphasize that multiple models create problems in deciding on the

values of the true impulses, we perform the following experiment. Suppose a
structural macro model is used to generate a very large sample of data, and
the model is designed so that it has impulse responses that agree with the sign
restrictions in Table 3. In the analysis of section 3 alternative impulses were
found by re-combining those for the shocks in an arbitrary recursive model.
We termed these the base shocks. Instead, let us take the base shocks to be
those from the structural macro model itself. These certainly qualify, being
uncorrelated, although they would not be available in practice. Nevertheless,
if we were fortunate enough to know them, the impulse responses generated
by sign restrictions will be combinations of the true ones, with weights given
by Q. When Q = I we will get the true impulse responses. So where in the
range of models do the true impulse responses lie? In our scenario the true

9It might be that the differences between the impulse responses seen in figure 3 come
from the fact that the standard errors of shocks estimated from the NK model are inaccu-
rate due to specification problems with that model, and so these cannot be compared with
the one unit shock responses in the ηjt found from the sign restrictions. As mentioned the
latter would be equivalent to doing one standard deviation shocks from the "true" model
(provided it is described by a VAR(1)).
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impulse responses were chosen to obey the Table 3 sign restrictions and were
close to those of the empirically estimated NK model. Computing a range of
estimates by choosing different Q, it was found that the true impact impulse
responses of output and inflation to an interest rate shock lay at the 12.5 and
.4 percentiles, far from the median. Hence, the implication of this experiment
is that, even if the true impulses lie in the range of models generated by the
sign restrictions, we do not know where in the range they are. All we can
say is that, if the range is very narrow, then we should get a good indication
of what the true impulses are. Otherwise we cannot know.
Paustian (2007) performs Monte Carlo experiments on models where sign

restrictions on a set of (primary) variables are imposed to identify the shocks,
and then the impulses to other (secondary) variables are checked to see if
they have the correct sign. He draws two conclusions from the experiments.
Firstly, it is likely that the correct signs for the impact of the shocks on the
secondary variables will be found if the identified shocks have a dominant
influence on the primary variables. Secondly, the more shocks that are iden-
tified the greater is the likelihood that the correct signs will be recovered.
This leads him to conclude that sign restrictions can reliably recover some
qualitative features of impulse responses under certain conditions.
The results he gets can be explained. Because the reduced form VAR

shocks are et, and the structural ones are εt, the connection between them
is et = B−1

0 εt. If there are no lags and n = 3, the first "VAR" equation will
have the following relation between its error and the structural shocks:

e1t = b110 ε1t + b
12
0 ε2t + b

13
0 ε3t, (24)

where bij0 are the coefficients of B
−1
0 . If ε1t was known, then b

11
0 (the impact

response) could be consistently estimated by regressing e1t on ε1t, since the
omitted regressors ε2t, ε3t are uncorrelated with ε1t. However, ε1t is not known
and sign restrictions involve combining the VAR errors ejt with weights to
extract an estimate ε∗it. Such an estimate can be written as a combination of
the εjt :

ε∗1t = φ1ε1t + φ2ε2t + φ3ε3t. (25)

From (25) it is clear that a regression of e1t on ε
∗

1t will produce a biased
estimator of b110 owing to the simultaneous presence of ε2t, ε3t in the regressor
and the error term of the equation. Of course this bias will decline as the
variance of ε∗1t increases relative to the variance of b

12
0 ε2t + b

13
0 ε3t, and this is

the first conclusion Paustian reaches.

28



To see the second we just need to note that, if a second shock is identified,
the regression becomes one of e1t on ε

∗

1t and ε
∗

2t. There is no certainty, but it
is likely that the biases will be smaller now than before. If it was the case
that ε2t had been correctly estimated then it would have been eliminated
from the error term of the regression, leaving only ε3t. So it is likely that,
as we estimate more shocks using sign restrictions, the bias will be reduced.
Again however this is not a general result as it depends upon the extent to
which the shocks have been correctly extracted.

5.2 Other Summative Representations

As mentioned in the introduction to the section, if we try to align theory-
inspired interpretative models (such as DSGE models) with the summative
model, we often encounter the situation that there are variables in the former
that are not observable, and so the latter model is fitted with a smaller
number of variables.10 Let the observable variables (data) be zt and the
larger set in the theoretical model be z+t . Then, it has been known for a
long time, see Wallis (1977) and Zellner and Palm (1974), that a VAR in
z+t becomes a Vector Autoregressive Moving Average (VARMA) in zt. Thus
a VAR will not represent the data precisely if it should be generated by a
theoretical model with latent (unobserved) variables, although, if one makes
the order sufficiently high, it might be argued to be approximately correct.
Basically this implies that the impulse responses from the theoretical model,
C+j , will not be equal to those from an approximating VAR, unless the order
is infinite. As shown in Kapetanios et al (2007), this difference can be very
large for some shocks and models and so one needs to exercise care in using
information from theory-consistent models to identify shocks in VARs.11 Of
course it is possible that this problem is less of an issue for the signs of the
responses than it is for the magnitudes i.e. the signs of C+j and Cj may agree
even if the magnitudes don’t.12 Fundamentally the problem is that a VAR is

10Technology is an obvious example of a variable in a DSGE model that is rarely present
in an estimated VAR. But it is also the case that researchers often treat the capital stock
as unobservable and so it is omitted from the list of variables in the empirical VAR.
11Using a model that was a smaller version of The Bank of England Quarterly Model

but a VAR with only a standard set of six variables, Kapetanios et al (2007) found that
a VAR(50) and thirty thousand observations were needed to recover the true impulse
responses.
12Indeed this seems to be supported by the simulations in Canova and Paustian (2007),

although it may just reflect the particular context they are working in.
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not the correct summative model.13 As an alternative one might estimate a
VARMA process or a VAR with some latent variables, but mostly researchers
have dealt with the latent variable problem by expressing the theoretic model
in a state space form (SSF)

zt = Hz+t (26)

z+t = Mz+t−1 +Gε+t , (27)

and then estimating this. Readily available computer programs such as
Dynare are designed to do so. Thus the role of a theory-inspired model
is to provide the variables in z+t , and the order of the VAR associated with
them, while the empirical investigator selects zt. In the DSGE modelM and
G will be functions of the model parameters θ (H simply selects variables
and so generally doesn’t depend on θ). The appropriate summative model
therefore is the SSF (26)-(27), but withM being treated as unrestricted and
Gε+t being replaced by some errors et. Once estimated the residuals êt can
be combined together using the Q matrices dealt with earlier to produce new
shocks ηt and then passed through the estimated SSF to find the impulse
responses for these new shocks. As noted in footnote 1 it will generally be
easiest to produce initial ηt shocks that are uncorrelated by performing a
Choleski decomposition upon êt, but an alternative approach would be to
make M triangular, and to then estimate the resulting SSF by a MLE. A
program such as Dynare would enable one to do this efficiently.

5.3 Permanent and Transitory Shocks

If there are as many permanent shocks to be identified as there are observ-
able variables then this would imply that there is no co-integration between
the variables. Therefore, the appropriate summative model is a VAR in dif-
ferenced variables. Hence it is only how the data is measured that changes,
allowing sign restrictions to be easily imposed by working on the residuals
from the differenced-variables VAR. Sometimes one sees such a summative
model in the sign restrictions literature. Examples are Jarociński and Smets
(2008) and Farrant and Peersman (2006). But it needs to be stressed that
all shocks have to be regarded as transitory for this summative model to be

13There are even cases where there is no invertible MA representation, and so no VAR
exists.
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correct. When there are both transitory and permanent shocks there is co-
integration, and so the summative model will be the Vector Error Correction
Model (VECM)

∆z+t = αβ′z+t−1 + et.

Correspondingly, a Structural VECM (SVECM) of the form

B0∆z
+
t = (B0α)β

′z+t−1 + εt, (28)

would be used to interpret the data. Because this is a relatively simple exten-
sion of the standard approach, it does not need any extensive development.
It is only if there are latent variables that special issues arise. Hence, if zt
rather than z+t is observed (and zt has less variables than z

+
t ), the problems

identified in the preceding sub-section arising from latent variables occur
again, although they can be solved in the same way, namely via a state space
form. This situation arises in many DSGE models in which the permanent
shock is technology while all other shocks are transitory.
Care does need to be exercized in finding the structural shocks. There are

standard formulae for converting the VECM residuals êt into n−r permanent
êPt and r transitory êTt uncorrelated shocks, where r is the degree of co-
integration. It would then be necessary to re-combine these with Q matrices
to produce new uncorrelated permanent and transitory structural shocks η̂Pt
and η̂Tt . In doing so we need to recognize that one cannot combine the
permanent shocks to produce a transitory shock. Consequently it is simplest
to work with QP , QT (each being Givens or QR) such that η̂

P
t = Qpê

P
t and

η̂Tt = QT ê
T
t . To initialize the sequence one could begin with a recursive SVAR

in which n− r of the structural shocks are designated to be permanent and
r to be transitory. The methodology outlined in Pagan and Pesaran (2008)
illustrates how such a system can be constructed and estimated.

6 Conclusion

When sign restriction work first began it was mainly about the identifica-
tion of a single shock. Since then it has become popular to identify multiple
shocks. Moreover, the range of applications has grown from the initial focus
on monetary policy. Given that sign information is rather weak we suspect
that it is best to utilize the restrictions in conjunction with parametric restric-
tions and that seems to be an emerging tendency as well. A number of other
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themes also seem to be developing. One is that contemporaneous restric-
tions might be preferable to imposing restrictions on longer lags. Another
is that DSGE models are a useful way of finding out likely sign restrictions,
particularly as the number of variables in the VAR grows. We have tried to
show these tendencies in the review, and have also argued that more care
often needs to be taken in devising the model that is to summarize the data,
a clear statement about whether shocks are permanent or transitory should
be provided, and an account of how the multiple models and multiple shocks
problems were dealt with must be present in the research. In some instances
the latter have not been well understood and often the responses to them
have been not well documented.
Table 1 provides a quick summary of the studies that appear in the litera-

ture, characterized by a number of the items mentioned above - viz. whether
there are a mixture of sign and other restrictions, namely whether there are
permanent shocks, how many shocks are identified and whether the source of
the restrictions comes from informal ideas or from a formal theory-oriented
model. This provides a quick overview of the diversity of the studies. As
well we classify them according to the main issue being dealt with such as
the isolation of the effects of technology shocks, monetary policy shocks, fis-
cal policy shocks etc. It is apparent from this table that sign restrictions
have become of increasing interest to applied researchers seeking information
about a large range of phenomena.
On balance, we do feel that sign restrictions have provided a useful tech-

nique for quantitative analysis. There are a number of instances in which
variables are simultaneously determined and it is hard to justify any para-
metric restrictions to resolve the identification problem. A classic example is
that of interest and exchange rates. In these cases sign restrictions appeal.
In other situations, such as isolating monetary policy, it seems more likely
that using institutional knowledge to provide parametric restrictions would
be a better way to proceed. This points to the fact that combinations of
restrictions are likely to be what we will need to adopt in the future to carry
out good applied work.
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Jarociński, M. and F.R. Smets (2008), "House Prices and the Stance of

Monetary Policy", Review, Federal Reserve Bank of St Louis, July/August
2008, 339-365.
Kapetanios, G., A.R. Pagan and A. Scott (2007), "Making a Match: Com-

bining Theory and Evidence in Policy-Oriented Macroeconomic Modelling",
Journal of Econometrics, 136, 565-594.
Kilian, L. and D. Murphy (2009), "Why Agnostic Sign Restrictions are

Not Enough: Understanding the Dynamics of Oil Market VAR Models",
manuscript, University of Michigan.
Leamer (1978), Specification Searches and Ad-Hoc Inference for Nonex-

perimental Data, John Wiley, New York
Lewis, V.J. (2007), "Productivity and the Euro-Dollar Real Exchange

Rate", Review of World Economics, 143, 324-347.
Mountford, A. (2005), "Leaning into the Wind: A Structural VAR Inves-

tigation of UK Monetary Policy", Oxford Bulletin of Economics and Statis-
tics, 67, 597-621.
Mountford, A. and H. Uhlig (2005), "What are the Effects of Fiscal Pol-

icy Shocks", Discussion Paper 2005-039, SFB 649, Humboldt-Universitat,
Berlin.
Mountford, A. and H. Uhlig (2008), "What are the Effects of Fiscal Policy

Shocks?", NBER Working Paper #14551.
Pagan, A.R. and M.H. Pesaran (2008), "Econometric Analysis of Struc-

tural Systems with Permanent and Transitory Shocks", Journal of Economic

34



Dynamics and Control, 32, 3376-3395.
Paustian, M. (2007), "Assessing Sign Restrictions" The B.E. Journal of

Macroeconomics, 7, 1-37.
Peersman, G. (2005), "What Caused the Early Millennium Slowdown?

Evidence Based on Autoregressions", Journal of Applied Econometrics, 20,
185-207.
Peersman, G. and R. Straub (2006), "Putting the New Keynesian Model

to a Test", IMF Working Paper, 06/135.
Peersman, G. and R. Straub (2009), "Technology Shocks and Robust

Sign Restrictions in a Euro Area SVAR", International Economic Review,
50, 727-750.
Preston, A.J. (1978), "Concepts of Structure and Model Identifiability

for Econometric Systems" in A.R. Bergstrom et al., Stability and Inflation
(Wiley, 1978), 275—297.
Quenouille, M.H. (1957), The Analysis of Multiple Time Series, Griffin’s

Statistical Monographs and Course No 1 (Griffin, London).
Rafiq, M.S. and S.K. Mallick (2008), "The Effects of Monetary Policy on

Output in EMU3 A Sign Restriction Approach", Journal of Macroeconomics,
30, 1756-1791.
Rubio-Ramírez, J.F., D.F.Waggoner and T. Zha (2005), "Markov-Switching

Structural Vector Autoregressions: Theory and Application",Working Paper
#2005-27, Federal Reserve Bank of Atlanta.
Rüffer, R., M. Sanchez and J-G Shen (2007), "Emerging Asia’s Growth

and Integration: How Autonomous are Business Cycles", ECB Working Pa-
per #715.
Sanchez, M. (2007), "What Drives Business Cycles and International

Trade in Emerging Market Economies?", ECB Working Paper #730.
Scholl, A. and H. Uhlig, (2008), "New Evidence on the Puzzles: Re-

sults from Agnostic Identification on Monetary Policy and Exchange Rates",
Journal of International Economics, 76, 1-13.
Sims, C.A. (1980), "Macroeconomics and Reality", Econometrica, 48, 1-

48.
Uhlig, H. (2005), "What are the Effects of Monetary Policy on Output?

Results from an Agnostic Identification Procedure", Journal of Monetary
Economics, 52, 381-419.
Vargas-Silva, C. (2008), "Monetary Policy and US Housing: A VAR Im-

posing Sign Restrictions", Journal of Macroeconomics, 30, 977-990.

35



Wallis, K.F. (1977), "Multiple Time Series and the Final Form of Econo-
metric Models", Econometrica, 45, 1481-1497.
Wold, H.O. (1951), "Dynamic Systems of the Recursive Type- Economic

and Statistical Aspects", Sankhya, 11 (1951), 205-216.
Zellner, A. and F. Palm (1974), "Time Series Analysis and Simultaneous

Equation Econometric Models", Journal of Econometrics, 2, 17-54.

36



List of NCER Working Papers 
 
 
No. 56   (Download full text)  
Mardi Dungey and Lyudmyla Hvozdyk  
Cojumping: Evidence from the US Treasury Bond and Futures Markets  
 
No. 55   (Download full text)  
Martin G. Kocher, Marc V. Lenz and Matthias Sutter  
Psychological pressure in competitive environments: Evidence from a randomized natural 
experiment: Comment  
 
No. 54   (Download full text)  
Adam Clements and Annastiina Silvennoinen  
Estimation of a volatility model and portfolio allocation  
 
No. 53   (Download full text)  
Luis Catão and Adrian Pagan  
The Credit Channel and Monetary Transmission in Brazil and Chile: A Structured VAR 
Approach  
 

No. 52   (Download full text)  
Vlad Pavlov and Stan Hurn  
Testing the Profitability of Technical Analysis as a Portfolio Selection Strategy  
 
No. 51   (Download full text)  
Sue Bridgewater, Lawrence M. Kahn and Amanda H. Goodall  
Substitution Between Managers and Subordinates: Evidence from British Football  
 
No. 50   (Download full text)  
Martin Fukac and Adrian Pagan  
Structural Macro‐Econometric Modelling in a Policy Environment  
 
No. 49   (Download full text)  
Tim M Christensen, Stan Hurn and Adrian Pagan 
Detecting Common Dynamics in Transitory Components  
 
No. 48   (Download full text)  
Egon Franck, Erwin Verbeek and Stephan Nüesch  
Inter‐market Arbitrage in Sports Betting 
 
No. 47   (Download full text)  
Raul Caruso  
Relational Good at Work! Crime and Sport Participation in Italy. Evidence from Panel Data 
Regional Analysis over the Period 1997‐2003.  
 
No. 46   (Download full text) (Accepted)  
Peter Dawson and Stephen Dobson  
The Influence of Social Pressure and Nationality on Individual Decisions: Evidence from the 
Behaviour of Referees  
 

http://www.ncer.edu.au/papers/documents/WPNo56.pdf
http://www.ncer.edu.au/papers/documents/WPNo55.pdf
http://www.ncer.edu.au/papers/documents/WPNo54.pdf
http://www.ncer.edu.au/papers/documents/WPNo53.pdf
http://www.ncer.edu.au/papers/documents/WPNo52.pdf
http://www.ncer.edu.au/papers/documents/WPNo51.pdf
http://www.ncer.edu.au/papers/documents/WPNo50.pdf
http://www.ncer.edu.au/papers/documents/WPNo49.pdf
http://www.ncer.edu.au/papers/documents/WPNo48.pdf
http://www.ncer.edu.au/papers/documents/WPNo47.pdf
http://www.ncer.edu.au/papers/documents/WPNo46.pdf


No. 45   (Download full text) 
Ralf Becker, Adam Clements and Christopher Coleman‐Fenn  
Forecast performance of implied volatility and the impact of the volatility risk premium  
 
No. 44   (Download full text)  

Adam Clements and Annastiina Silvennoinen  
On the economic benefit of utility based estimation of a volatility model  
 
No. 43   (Download full text)  

Adam Clements and Ralf Becker  
A nonparametric approach to forecasting realized volatility  
 
No. 42    (Download full text) 
Uwe Dulleck, Rudolf Kerschbamer and Matthias Sutter  
The Economics of Credence Goods: On the Role of Liability, Verifiability, Reputation and 
Competition  
 
No. 41   (Download full text)  
Adam Clements, Mark Doolan, Stan Hurn and Ralf Becker  
On the efficacy of techniques for evaluating multivariate volatility forecasts  
 
No. 40   (Download full text)  
Lawrence M. Kahn  
The Economics of Discrimination: Evidence from Basketball  
 
No. 39   (Download full text)  
Don Harding and Adrian Pagan  
An Econometric Analysis of Some Models for Constructed Binary Time Series  
 
No. 38   (Download full text)  
Richard Dennis  
Timeless Perspective Policymaking: When is Discretion Superior?  
 
No. 37   (Download full text)  
Paul Frijters, Amy Y.C. Liu and Xin Meng  
Are optimistic expectations keeping the Chinese happy?  
 
No. 36   (Download full text)  
Benno Torgler, Markus Schaffner, Bruno S. Frey, Sascha L. Schmidt and Uwe Dulleck  
Inequality Aversion and Performance in and on the Field  
 
No. 35   (Download full text)  
T M Christensen, A. S. Hurn and K A Lindsay  
Discrete time‐series models when counts are unobservable  
 
No. 34   (Download full text)  
Adam Clements, A S Hurn and K A Lindsay  
Developing analytical distributions for temperature indices for the purposes of pricing 
temperature‐based weather derivatives  
 

http://www.ncer.edu.au/papers/documents/WPNo45.pdf
http://www.ncer.edu.au/papers/documents/WPNo44.pdf
http://www.ncer.edu.au/papers/documents/WPNo43.pdf
http://www.ncer.edu.au/papers/documents/WPNo42.pdf
http://www.ncer.edu.au/papers/documents/WPNo41.pdf
http://www.ncer.edu.au/papers/documents/WPNo40.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo39Jan09.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo38Jan09.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo37Nov08.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo36Oct08.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo35Sep08.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo34Sep08.pdf


No. 33   (Download full text)  
Adam Clements, A S Hurn and K A Lindsay  
Estimating the Payoffs of Temperature‐based Weather Derivatives  
 
No. 32   (Download full text)  
T M Christensen, A S Hurn and K A Lindsay  
The Devil is in the Detail: Hints for Practical Optimisation  
 
No. 31   (Download full text)  
Uwe Dulleck, Franz Hackl, Bernhard Weiss and Rudolf Winter‐Ebmer  
Buying Online: Sequential Decision Making by Shopbot Visitors  
 
No. 30   (Download full text)  
Richard Dennis  
Model Uncertainty and Monetary Policy  
 
No. 29   (Download full text)  
Richard Dennis  
The Frequency of Price Adjustment and New Keynesian Business Cycle Dynamics  
 
No. 28   (Download full text)  
Paul Frijters and Aydogan Ulker  
Robustness in Health Research: Do differences in health measures, techniques, and time 
frame matter?  
 
No. 27   (Download full text)  
Paul Frijters, David W. Johnston, Manisha Shah and Michael A. Shields  
Early Child Development and Maternal Labor Force Participation: Using Handedness as an 
Instrument  
 
No. 26   (Download full text)  
Paul Frijters and Tony Beatton  
The mystery of the U‐shaped relationship between happiness and age.  
 
No. 25   (Download full text)  
T M Christensen, A S Hurn and K A Lindsay  
It never rains but it pours: Modelling the persistence of spikes in electricity prices  
 
No. 24   (Download full text)  
Ralf Becker, Adam Clements and Andrew McClelland  
The Jump component of S&P 500 volatility and the VIX index  
 
No. 23   (Download full text)  
A. S. Hurn and V.Pavlov  
Momentum in Australian Stock Returns: An Update  
 
No. 22   (Download full text)  
Mardi Dungey, George Milunovich and Susan Thorp  
Unobservable Shocks as Carriers of Contagion: A Dynamic Analysis Using Identified 
Structural GARCH  
 

http://www.ncer.edu.au/papers/documents/NCER_WpNo33Aug08.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo32Aug08.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo31Aug08.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo30Aug08.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo29Jul08.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo28Jul08.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo27Jul08.pdf
http://www.ncer.edu.au/papers/documents/NCER_WpNo26Jul08v2.pdf
http://www.ncer.edu.au/papers/documents/WpNo25June08.pdf
http://www.ncer.edu.au/papers/documents/WpNo24Mar08.pdf
http://www.ncer.edu.au/papers/documents/WpNo23Feb08.pdf
http://www.ncer.edu.au/papers/documents/WpNo22Feb08.pdf


No. 21   (Download full text) (forthcoming) 
Mardi Dungey and Adrian Pagan  
Extending an SVAR Model of the Australian Economy  
 
No. 20   (Download full text)  
Benno Torgler, Nemanja Antic and Uwe Dulleck  
Mirror, Mirror on the Wall, who is the Happiest of Them All?  
 
No. 19   (Download full text)  
Justina AV Fischer and Benno Torgler  
Social Capital And Relative Income Concerns: Evidence From 26 Countries  
 
No. 18   (Download full text)  
Ralf Becker and Adam Clements  
Forecasting stock market volatility conditional on macroeconomic conditions.  
 
No. 17   (Download full text)  
Ralf Becker and Adam Clements  
Are combination forecasts of S&P 500 volatility statistically superior?  
 
No. 16   (Download full text)  
Uwe Dulleck and Neil Foster  
Imported Equipment, Human Capital and Economic Growth in Developing Countries  
 
No. 15   (Download full text)  
Ralf Becker, Adam Clements and James Curchin  
Does implied volatility reflect a wider information set than econometric forecasts?  
 
No. 14   (Download full text)  
Renee Fry and Adrian Pagan  
Some Issues in Using Sign Restrictions for Identifying Structural VARs  
 
No. 13   (Download full text)  
Adrian Pagan  
Weak Instruments: A Guide to the Literature  
 
No. 12   (Download full text)  
Ronald G. Cummings, Jorge Martinez‐Vazquez, Michael McKee and Benno Torgler  
Effects of Tax Morale on Tax Compliance: Experimental and Survey Evidence  
 
No. 11   (Download full text)  
Benno Torgler, Sascha L. Schmidt and Bruno S. Frey  
The Power of Positional Concerns: A Panel Analysis  
 
No. 10   (Download full text)  
Ralf Becker, Stan Hurn and Vlad Pavlov  
Modelling Spikes in Electricity Prices  
 

http://www.ncer.edu.au/papers/documents/WpNo21Jan08.pdf
http://www.ncer.edu.au/papers/documents/WpNo20Oct07.pdf
http://www.ncer.edu.au/papers/documents/WpNo19July07.pdf
http://www.ncer.edu.au/papers/documents/WpNo18June07.pdf
http://www.ncer.edu.au/papers/documents/WpNo17June07.pdf
http://www.ncer.edu.au/papers/documents/WpNo16May07.pdf
http://www.ncer.edu.au/papers/documents/WpNo15May07.pdf
http://www.ncer.edu.au/papers/documents/WpNo14Apr07.pdf
http://www.ncer.edu.au/papers/documents/WpNo13Apr07.pdf
http://www.ncer.edu.au/papers/documents/WpNo12Feb07.pdf
http://www.ncer.edu.au/papers/documents/WpNo11Feb07.pdf
http://www.ncer.edu.au/papers/documents/WpNo10Feb07.pdf


No. 9   (Download full text)  
A. Hurn, J. Jeisman and K. Lindsay  
Teaching an Old Dog New Tricks: Improved Estimation of the Parameters of Stochastic 
Differential Equations by Numerical Solution of the Fokker‐Planck Equation  
 
No. 8   (Download full text)  
Stan Hurn and Ralf Becker  
Testing for nonlinearity in mean in the presence of heteroskedasticity.  
 
No. 7   (Download full text) (published) 
Adrian Pagan and Hashem Pesaran  
On Econometric Analysis of Structural Systems with Permanent and Transitory Shocks and 
Exogenous Variables.  
 
No. 6   (Download full text) (published) 
Martin Fukac and Adrian Pagan  
Limited Information Estimation and Evaluation of DSGE Models.  
 
No. 5   (Download full text)  
Andrew E. Clark, Paul Frijters and Michael A. Shields  
Income and Happiness: Evidence, Explanations and Economic Implications.  
 
No. 4   (Download full text)  
Louis J. Maccini and Adrian Pagan  
Inventories, Fluctuations and Business Cycles.  
 
No. 3   (Download full text)  
Adam Clements, Stan Hurn and Scott White  
Estimating Stochastic Volatility Models Using a Discrete Non‐linear Filter.   
 
No. 2   (Download full text)  
Stan Hurn, J.Jeisman and K.A. Lindsay  
Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the 
Parameters of Stochastic Differential Equations.  
 
No. 1   (Download full text)  
Adrian Pagan and Don Harding  
The Econometric Analysis of Constructed Binary Time Series.  
 
 

http://www.ncer.edu.au/papers/documents/WpNo9Feb07.pdf
http://www.ncer.edu.au/papers/documents/WpNo8Jan07.pdf
http://www.ncer.edu.au/papers/documents/WpNo7Jan07.pdf
http://www.ncer.edu.au/papers/documents/WPNo6.pdf
http://www.ncer.edu.au/papers/documents/WPNo5.pdf
http://www.ncer.edu.au/papers/documents/WPNo4.pdf
http://www.ncer.edu.au/papers/documents/WPNo3.pdf
http://www.ncer.edu.au/papers/documents/WPNo2.pdf
http://www.ncer.edu.au/papers/documents/WPNo1_001.pdf

	WP57 cover
	jelpaperrevfin.pdf
	List of NCER Working Papers

