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The ac Josephson effect in a ferromagnetic Josephson junction, which is composed of two

superconductors separated by a ferromagnetic metal (FM), is studied by a tunneling Hamiltonian and

Green’s function method. We obtain two types of superconducting phase dependent currents, i.e.,

Josephson current and quasiparticle-pair-interference current (QPIC). These currents change their signs

with thickness of the FM layer due to the 0–� transition characteristic to the ferromagnetic Josephson

junction. As a function of applied voltage, the Josephson critical current shows a logarithmic divergence

called the Riedel peak at the gap voltage, while the QPIC shows a discontinuous jump. The Riedel peak

reverses due to the 0–� transition and disappears near the 0–� transition point. The discontinuous jump

in the QPIC also represents similar behaviors to the Riedel peak. These results are in contrast to the

conventional ones.
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1. Introduction

The Josephson effect is a macroscopic quantum phenom-

enon involving phase coherence between two superconduc-

tors (SC’s), and is characterized by a zero voltage current

through a thin insulating barrier (dc Josephson effect). On

the other hand, when a finite voltage is applied across the

junction, an alternating current flows according to time-

dependence of phase-difference, �, in two superconductors

(ac Josephson effect), which gives two types of current as,

IJ1 ¼ Ic1 sin � and IJ2 ¼ Ic2 cos �.
1) The former is the same as

the dc Josephson current except for time-dependence of �,

while the latter is a phase-dependent dissipative current

inherent to the ac case. As a function of applied voltage, V ,

the amplitudes, Ic1 and Ic2, show singularities originating

from the gap, �, in an s-wave superconductor. The Ic1 has

a logarithmic divergence called the Riedel peak at the gap

voltage, V ¼ 2�=e, due to the square root singularities in

the density of states,2–7) while the Ic2 shows a discontinuity

at V ¼ 2�=e and is zero below V < 2�=e at zero temper-

ature.3,5) The Ic2 is experimentally observed near the

superconducting transition temperature, Tc,
8) in various

types of Josephson junctions.9–14)

Recently, a Josephson junction with a ferromagnetic metal

(FM), which is called the ferromagnetic Josephson junction,

has been actively studied both experimentally and theoret-

ically.15–28) One of the most interesting phenomena in the

ferromagnetic Josephson junction is the oscillation of the Ic1
as a function of the thickness of the ferromagnetic film. The

mechanism of the oscillation is similar to that of Fulde–

Ferrell–Larkin–Ovchinnikov (FFLO) state.29,30) Cooper pairs

penetrating into the FM acquire a finite center of mass

momentum proportional to the magnetic exchange splitting,

hex, between up- and down-spin bands. As a result, the pair

correlation in FM oscillates as a function of the thickness of

FM. If the thickness of the FM is about a half of the period

of the oscillation, the current-phase relation is shifted by �

from that of a conventional Josephson junction (0-junction)

like as, Ic1 < 0. This is called a �-junction, which has

potential applications as a quantum bit.31,32) In addition, the

�-junction is used in some experiments to measure a

nonsinusoidal current-phase relation. Using the ac Josephson

effect, Sellier et al. experimentally evidenced the second

harmonic term given by sin 2� in the SC/FM/SC junction.20)

However, most of studies on the � junctions have been so

far focused on the dc Josephson effect. Studies on the ac

Josephson effect in ferromagnetic � junctions will open a

new pathway of basic physics and will contribute to realize

the quantum bit including SC/FM/SC junctions.

In this paper, we study the ac Josephson effect in a SC/X/

SC junction, where X is either a NM or a FM. Using a

tunneling Hamiltonian and Green’s function method,33–35)

we obtain two types of phase dependent current, i.e. the

ac Josephson current (IJ1 ¼ Ic1 sin �) and the QPIC (IJ2 ¼

Ic2 cos �). In a SC/NM/SC junction, Ic1 and Ic2 monoto-

nously decrease with the thickness of NM. As a function

of applied voltage, Ic1 shows a logarithmic divergence (the

Riedel peak) at the gap voltage, V ¼ 2�=e, while Ic2
discontinuously jumps at the same voltage. On the other

hand, in a SC/FM/SC junction, Ic1 and Ic2 exhibit the strong

dependence on the thickness of FM and change their signs

by crossing the 0–� transition point due to the magnetic

exchange splitting between the up- and down-spin bands in

FM. In particular, it is predicted that the Riedel peak in Ic1
disappears at the 0–� transition and the 0–� transition occurs

in Ic2 like as Ic1.

The rest of this paper is organized as follows. In §2, we

introduce the model Hamiltonian including the tunneling

Hamiltonian, and explain the formulation to calculate the

ac current by the thermal Green’s function method. In §3,

the ac Josephson current and the QPIC in the SC/NM/SC

and SC/FM/SC junctions are shown as functions of thick-

ness and applied voltage. We compare these two types of

junctions and discuss similarities and differences. Summary

and discussion are given in §4. Below, h� ¼ 1 and kB ¼ 1 are

used in the equations.
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2. Tunneling Hamiltonian Approach for AC Josephson

Current

2.1 Model Hamiltonian

We consider a junction composed of a ballistic FM with

the thickness d and s-wave SC electrodes as shown in Fig. 1.

A dc bias voltage, V , is applied across the junction.

The SCs and the FM are connected by tunneling

Hamiltonian. The total Hamiltonian is given by

H ¼ HL
SC þ HR

SC þ HFM þ HT; ð1Þ

HL
SC ¼

X

�

Z

dr y
L;� �

1

2m
r2 � �

eV

2

� �

 L;�

þ�ei�L
Z

dr y
L;" 

y
L;# þ h.c.; ð2Þ

HR
SC ¼ L ! R;��

eV

2
! þ�

eV

2

� �

; ð3Þ

HFM ¼
X

�

Z

dr y
FM;� �

1

2m
r2 � �� i�hex

� �

 FM;� ; ð4Þ

HT ¼
X

�

Z

r2L;r02FM

dr dr0 Tr;r0 
y
L;� FM;�

þ
X

�

Z

r2R;r02FM

dr dr0 Tr;r0 
y
R;� FM;�

þ h.c.; ð5Þ

where  i;� �  i;�ðrÞ is the electron field operator with the

position r in the region i (¼ L, R, or FM) and the spin �

(= ";#). We adopt the BCS mean field Hamiltonian H
L(R)
SC

with the s-wave gap � and the phase variable �L(R) in the

left (right) SC. Then, the phase difference is given by

� � �L � �R. The electron mass and the chemical potential

are denoted by m and �, respectively. Note that �eV=2 is

added in the Hamiltonian (2), since the applied voltage, V ,

imposes a chemical potential difference, V=2, at each

boundary between FM and SC. The Hamiltonian of the

FM, HFM, which has no impurity scattering, has the

exchange energy, hex. HT is the tunneling Hamiltonian,

whose matrix element is denoted by Tr;r0 and has a

finite value at the SC/FM boundary as, Tr;r0 ¼

T0�ðr� r
0Þ�ðr� rL(R)Þ. rL(R) is the position of the interface

between the left (right) SC and the FM.

We calculate the expectation value of a current operator,

ĴJ ¼ �ie
X

�

Z

r2L;r02FM

dr d r0Tr;r0e
�ieVt=2 

y
L;�ðxÞ FM;�ðx

0Þ

þ h.c.; ð6Þ

where x involves both time, t, and r. The superconducting

phase dependent current is given by

IJ � hĴJi ¼ Ic1 sin � þ Ic2 cos �; ð7Þ

where hĴJi is the expectation value of the current operator.

The first term of eq. (7) is the Josephson current and Ic1 is

the Josephson critical current. The second term is called the

quasiparticle-pair-interference current (QPIC).

2.2 Josephson critical current and QPIC formula

In the SC/FM/SC junction, the fourth order term of ĴJ

with regard to Tr;r0 is shown in Fig. 1. Detailed calculations

are given in Appendices A and B. For hex=�, !n=�� 1, and

temperature, T ¼ 0K, Ic1 and Ic2 are given by,

Ic1 ¼
�0�

2
0

�e

Z 1

�0

dE
�ð�0 � jE � eVjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 ��2
0

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
0 � ðE � eVÞ2

q

�

�

Ci
2E � eV

vF
d

� �

sin
2E � eV

vF
d

� �

� cos
2E � eV

vF
d

� �

Si
2E � eV

vF
d

� �

�
�

2

� ��

� cos
2hex

vF
d

� �

; ð8Þ

Ic2 ¼
�0�

2
0

e

Z eV=2��0

0

dE

�
�ðeV � 2�0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE þ eV=2Þ2 ��2
0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE � eV=2Þ2 ��2
0

q

� cos
2E

vF
d

� �

cos
2hex

vF
d

� �

; ð9Þ

where �0 is the superconducting gap at T ¼ 0K, �0 �

16�e2T4
0NLð0ÞNRð0Þ½mv=ð2�dÞ�

2 is a constant determined

by materials and interface, NL(R) is the density of states in

the left (right) lead at the Fermi level, vF is the Fermi

velocity, v and d are the volume and the thickness of the

X, respectively. CiðxÞ and SiðxÞ are the cosine and sine

integrals, respectively. When hex ¼ 0, our formulation

reproduces the current in the SC/NM/SC junction.

For d=�0 � 1, eq. (8) is simplified as

Ic1 ’
�0�

2
0

�e

Z 1

�0

dE
�ð�0 � jE � eV jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 ��2
0

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
0 � ðE � eVÞ2

q

� cos
2hex

vF
d

� �

vF

2E � eV

1

d
;

ð10Þ

where �0 � vF=2�0. It is found that Ic1 decays with d in the

power law as 1=d. This behavior is consistent with the case

of dc Josephson critical current in a double barrier Josephson

junction.28) On the other hand, for d ! 0, eqs. (8) and (9)

reproduce the current in SC/I/SC junctions.5) The integra-

tion in eqs. (8) and (9) is numerically carried out and results

are shown in the next section.

3. d- and V-Dependence of Ic1 and Ic2

In this section, we show thickness d and bias voltage V

dependences of Ic1 and Ic2. First, the SC/NM/SC junction is

discussed to see the difference between NM and FM cases

clearly. Then, we will give detailed discussions on the SC/

FM/SC junction.

SC SCX

Fig. 1. Fourth order diagram with a tunneling matrix element contributing

to IJ. Insulating barrier is at interfaces between SC and X.
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3.1 SC/NM/SC junction

The thickness dependence of Ic1 and Ic2 is shown for

several values of V in Fig. 2. In Fig. 2(a), the vertical axis is

the normalized Ic1 and the horizontal axis is the thickness d

normalized by the coherence length �0. It is found that

Ic1 shows a monotonic decrease as a function of d. For

d=�0 � 1, Ic1 decreases in the power law as 1=d shown in

eq. (10). In Fig. 2(b), Ic2 is plotted. It is found that Ic2
decreases as a function of d for eV=2�0 ¼ 1:5, while it is

always equal to zero at eV=2�0 ¼ 0.

The Ic1 in the SC/NM/SC junction is shown for several

values of d in Fig. 3(a). The vertical axis is the normalized

Ic1 and the horizontal axis is the normalized voltage,

eV=2�0. In Fig. 3(a), Ic1 shows the Riedel peak at the gap

voltage similar to that in a SC/I/SC junction. In this system,

the Riedel peak exhibits weak dependence on d. The Ic2 is

shown in Fig. 3(b). It is found that Ic2 has discontinuity at

eV=2�0 ¼ 1. The behavior of Ic2 is the same as the case of

SC/I/SC and Ic2 exhibits very weak dependence on d.

Here, we examine the above results in details. Ic1 shows

the monotonic decrease as a function of d, which represents

a decoherence of the Cooper pair penetrating into the NM.

This behavior is equivalent to the case of dc Josephson

effect. On the other hand, the behavior of Ic2 is quite

different from that of Ic1, since Ic2 has a finite value only

when V is larger than the gap voltage as shown by Fig. 3(b).

Therefore, it is interpreted as quasiparticles in the band

below the superconducting gap contribute to Ic2 and carry

the superconducting phase coherent dissipative current as in

the case of a SC/I/SC junction.36) Moreover, Ic2 in a long

SC/NM/SC junction (d � �0) oscillates as a function of d

and V with the period ð4�E=vFÞd because of cos½ð2E=vFÞ=d�

in eq. (9). This behavior represents the phase shift by � and

the 0–� transition occurs as a function of d and V . In the V-

dependence of Ic1, the divergence of Ic1 at the gap voltage is

also shown in the SC/I/SC junctions. Since, the density of

states has a square-root singularity at the gap edge as we can

see in eq. (8), the amplitude of the Josephson critical current

produces a logarithmic singularity at the gap voltage. This

mechanism on the singularity is the same as that of SC/I/SC

junction. In Ic2, the current vanishes for eV=2�0 < 1 and

jumps at the eV=2�0 ¼ 1. This behavior is similar to that of

the SC/I/SC junctions. In a long SC/NM/SC junction

(d � �0), Ic2 oscillates as a function of V with the period

ð4�E=vFÞd as shown in eq. (9).

3.2 SC/FM/SC junction

In this subsection, the case of the SC/FM/SC junction is

compared with that of the SC/NM/SC junction from the

viewpoints of the d-dependences of Ic1 and Ic2 as shown

in Fig. 4. In Fig. 4(a), the normalized Ic1 is plotted as a

function of d=�0. For eV=2�0 ¼ 0, i.e., dc Josephson effect,

Ic1 shows a damped oscillatory behavior as a function of d

and the 0–� transition occurs by increasing d unlike the case

of SC/NM/SC junction. For eV=2�0 ¼ 1:5, Ic1 is qualita-

0 0.5 1 1.5

0.5

1.5

eV/2Δ0=0
eV/2Δ0=1.5

c
1

I

0/d ξ

(a)

~

c
2

I

0/d ξ

(b)
c2 00 for eV / 2ΔI = = 0

1.8
eV/2Δ0=1.5

0 0.5 1 1.5
0

0.1 ~

~

Fig. 2. (a) Normalized Josephson critical current, ~IIc1, and (b) the

quasiparticle-pair-interference current, ~IIc2, as functions of d=�0 for a

SC/NM/SC junction (hex ¼ 0), where ~IIc1 ¼ Ic1�e=�0�0 and ~IIc2 ¼

Ic2�e=�0�0.

0 1 2

1

3

5

d/ξ0 = 0.01
d/ξ0 = 0.16
d/ξ0 = 0.3

c
1

I

0eV / 2Δ

(a)

~

0 1 2
0

2

d/ξ0 = 0.01
d/ξ0 = 0.16
d/ξ0  = 0.3

c
2

I

0eV / 2Δ

(b)

~

Fig. 3. (a) Normalized Josephson critical current, ~IIc1, and (b) quasipar-

ticle-pair-interference current, ~IIc2, as functions of eV=2�0 in a SC/NM/

SC junction, where ~IIc1 ¼ Ic1�e=�0�0 and ~IIc2 ¼ Ic2�e=�0�0.
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tively the same as that in the dc Josephson effect. On the

other hand, Ic2 is zero for eV=2�0 ¼ 0, but has a finite value

for eV=2�0 ¼ 1:5 similar to the SC/NM/SC junction.

However, the Ic2 changes its sign with increasing d due to

the 0–� transition and vanishes at the transition point as

shown in Fig. 4(b).

Figure 5 shows the ac current amplitude as a function of V

in the SC/FM/SC junction. In Fig. 5(a), the vertical axis is

the normalized Ic1 and the horizontal axis is the normalized

voltage, eV=2�0. In this system, the Riedel peak exhibits a

strong dependence on d and changes its sign with increasing

d due to the 0–� transition. Therefore, near the thickness at

which the 0–� transition occurs, the Riedel peak disappears

as shown in Fig. 5(a). In Fig. 5(b), it is found that Ic2 has

a finite value above eV=2�0 ¼ 1. For d=�0 ¼ 0:01, the

behavior of Ic2 is the same as those of SC/I/SC and SC/

NM/SC junctions. On the other hand, Ic2 changes its sign

with increasing d due to the 0–� transition and disappears

near the thickness at which the 0–� transition occurs, as

shown in Fig. 5(b).

The Ic1 shows the damped oscillatory behavior as a

function of d and the 0–� transition occurs. In eq. (8), only

the ratio of hex and vF determines the period of oscillation in

the Ic1–d curve. The mechanism of 0–� transition in the ac

Josephson effect is the same as that of the 0–� transition in

the dc Josephson effect. Concerning Ic2, it has a finite value

above eV=2�0 ¼ 1, similar to the SC/I/SC and SC/NM/SC

junctions. The behavior of Ic2 is quite different from that

of SC/NM/SC junction. In the SC/FM/SC junction, the

oscillating term in eq. (9) is composed of two part. One is

cosð2Ed=vFÞ (the region of E being from 0 to eV=2��0),

the other is cosð2hexd=vFÞ. In the practical case, hex is

experimentally larger than eV .17–27) Therefore, the period is

dominated by hex and is short compared with �0. The V-

dependence of Ic1 and Ic2 in the SC/FM/SC junction shows

remarkable phenomenon. In Ic1, the Riedel peak exhibits a

strong dependence on d. It changes its sign with changing

d and disappears at the 0–� transition point as shown in

Fig. 6(a). Ic2 also changes its sign with changing d and

disappears at the 0–� transition point as shown in Fig. 6(b).

We expect that these results provide a new method to

observe the 0–� transition in SC/FM/SC junctions.

We take a look at the total ac current given by

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2c1 þ I2c2

p

sinð2eVt þ �Þ; ð11Þ

� ¼ arctanðIc2=Ic1Þ: ð12Þ

Figure 6 shows the current-phase relation (CPR) for

hex=�0 ¼ 100, d=�0 ¼ 0:07, and eV=�0 ¼ 1:5 and 2.5. For

eV=2�0 < 1, only the Josephson current flows because

of Ic2 ¼ 0. Therefore, the CPR represents a conventional

behavior as in a SC/I/SC junction as shown by the dashed

line in Fig. 6. On the other hand, for eV=2�0 > 1, the phase

of CPR is shifted by � due to the finite QPIC. The behavior

is shown in the solid line in Fig. 6. From these results, we
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Fig. 4. (a) Normalized Josephson critical current, ~IIc1, and (b) quasipar-

ticle-pair-interference current, ~IIc2, as functions of d=�0 for hex=�0 ¼ 50

in SC/FM/SC junction, where ~IIc1 ¼ Ic1�e=�0�0 and ~IIc2 ¼ Ic2�e=�0�0.
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Fig. 5. (a) Normalized Josephson critical current, ~IIc1, and (b) quasipar-

ticle-pair-interference current, ~IIc2, as functions of eV=2�0 for

hex=�0 ¼ 50 in SC/FM/SC junction, where ~IIc1 ¼ Ic1�e=�0�0 and
~IIc2 ¼ Ic2�e=�0�0.
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can confirm the existence of the QPIC when the voltage

dependence of the current-phase relation is measured.

4. Summary

In summary, we have studied the ac Josephson effect in

the SC/X/SC junction (X ¼ NM, FM). Using a tunneling

Hamiltonian and Green’s function method, we obtained the

Josephson current and the quasiparticle-pair-interference

current (QPIC). The Josephson critical current, Ic1, shows

the Riedel peak at the gap voltage, V ¼ 2�=e. In the SC/

NM/SC junction, the Riedel peak exhibits weak dependence

on d. The amplitude of QPIC, Ic2, has a finite value above

the gap voltage at T ¼ 0K. These behaviors are similar to

those of SC/I/SC junctions. On the other hand, the critical

currents in the SC/FM/SC junction show quite different

behaviors compared with those in the SC/I/SC and SC/

NM/SC junctions. In Ic1, the Riedel peak exhibits a strong

dependence on d and changes its sign with increasing d due

to the 0–� transition. Therefore, at the thickness of the 0–�

transition, the Riedel peak disappears. Ic2 also shows the 0–�

transition with increasing d and vanishes at the thickness of

the 0–� transition. The ac Josephson current has a strong

dependence on the applied voltage, and at the gap voltage

the amplitude of Ic1 shows logarithmic divergence. The

amplitude of the higher harmonic Josephson current also

shows the applied voltage dependence, similar to the

Josephson current. The study of the ac Josephson effect in

the SC/FM/SC junction gives a possibility to observe the

higher harmonic Josephson current.

We have studied the ferromagnetic Josephson junction

in the clean limit in this paper. In many experimental

situations, FMs are usually in a diffusive transport region.

However, the essence of 0–� transition in the ac Josephson

current may be the same even if the case of a dirty FM.

Recently, the current–voltage characteristic was studied by

using the superconducting phase difference coupled with

the spin wave excitation in the ferromagnetic Josephson

junction within the phenomenological model.37) And the dc

Josephson current coupled with the spin wave excitation was

also discussed.38) Therefore, it might be important to

consider the spin wave excitation for the ac Josephson

current from microscopic view point. These problems will

be left in a future issue.
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Appendix A: Perturbative Calculation of Ic1 and Ic2 in

Path Integral Formulation

A.1 Basic formula

In the path integral formulation, the partition function is

given by

Z ¼ Tr½e�	H� ¼

Z

D�	
D�e�S

¼

Z

D�	
D�exp �

Z 	

0

d


Z

dr 	@
 þ Hð
Þ

� �� �

;

ðA:1Þ

where Wick’s rotation is performed, it ! 
, eV=2 ! i�

(	 ¼ T�1, 
 is an imaginary time variable, � is a

temporary boson’s Matsubara frequency. That becomes

eV=2 by an analytic continuation.) and  	@
 �  	
L@
 L þ

 	
FM@
 FM þ  	

R@
 R. It is noted that the energy of the left-

hand superconductor (L) is different from that of the right-

hand superconductor (R), since the voltage, V , is applied.

When these systems are separated each other, the time-

development in the left-hand side is given by

ULðt; t
0Þ ¼ exp½�iðHL � NLÞðt � t0Þ

þ iðeV=2ÞNLðt � t0Þ�; ðA:2Þ

while that in the right-hand side is

URðt; t
0Þ ¼ exp½�iðHR � NRÞðt � t0Þ

� iðeV=2ÞNRðt � t0Þ�;
ðA:3Þ

Here, we make a transformation as,

 Lðr; tÞ ¼ eiðeV/2Þt ~  Lðr; tÞ; ðA:4Þ

 Rðr; tÞ ¼ e�iðeV/2Þt ~  Rðr; tÞ: ðA:5Þ

Therefore, H in the action, S, is transformed as

~HHL
BCS ¼

X

�

Z

dx ~  	
L;� @
 �

1

2m
r2 � �

� �

~  L;�

� gL

Z

dx ~  	
L;"

~  	
L;#

~  L;#
~  L;"; ðA:6Þ

~HHFM ¼ ðunchangedÞ; ðA:7Þ

~HHR
BCS ¼ ðL ! RÞ; ðA:8Þ

~HHT ¼
X

�

Z

r2L;r02FM

dx dx0 Tx;x0e
�ieVt=2 ~  	

L;�
~  FM;�

þ
X

�

Z

r2R;r02FM

dx dx0 Tx;x0e
ieVt=2 ~  	

R;�
~  FM;�

þ h.c. ðA:9Þ

For convenience, the tilde is abbreviate: ~  
ð	Þ
i;� � ~  

ð	Þ
i;� ðxÞ, i is

L, R, or FM, x ¼ ðr; 
Þ, and Tx;x0 � Tr;r0�ð
 � 

0Þ. The current

operator is defined as

ĴJ ¼ �e
dNL

dt
¼ �e

Z

dr
dnL

dt
� ie

Z

dr nL;H

� �

;

0 2 4 6

-2

2
eV/Δ0=1.5
eV/Δ0=2.5

hex/Δ0=100
d/ξ0=0.07

0/t Δ

I~

Fig. 6. Ac current ~II as a function of t=�0 for hex=�0 ¼ 100, d=�0 ¼ 0:07,

eV=�0 ¼ 1:5 and 2.5. ~II ¼ I�e=�0�0.
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¼ �ie
X

�

Z

r2L;r02FM

dr dr0 Tr;r0e
�ieVt=2 

y
L;� FM;�

þ h.c.; ðA:10Þ

nL ¼
X

�

 
y
L;� L;�: ðA:11Þ

We eliminate the quartic interaction term in Hamiltonian

eqs. (A·6) and (A·8) using Stratonovich–Hubbard trans-

formation,

1 ¼

Z

D�	
D�

� exp �
1

g

Z

dxð�� g # "Þð�
	 � g 	

" 
	
#Þ

� �

; ðA:12Þ

where �ð	Þ � �ð	ÞðxÞ. With this transformation, the action

becomes

S ¼ Scond þ Sel; ðA:13Þ

Scond ¼

Z

dx
j�Lj

2

gL
þ

Z

dx
j�Rj

2

gR
; ðA:14Þ

Sel ¼

Z

dx

Z

dx0 �	ðxÞ½G���ðx0Þ: ðA:15Þ

The Green’s function, G� � G�ðx; x0Þ, is a 6� 6 matrix

spanned both in the space of L, FM, R, and Nambu space.

The electronic fields are expressed as

�ðxÞ �

 L"

 	
L#

 FM"

 	
FM#

 R"

 	
R#

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

; ðA:16Þ

The inverse of the Green’s function for electron system, G�,

is given by

ĜG� ¼

�ĜG�
L T̂T 0

T̂T	 �ĜG�
FM T̂T

0 T̂T	 �ĜG�
R

2

6

6

4

3

7

7

5

¼ �ĜG�
0 þ P̂P; ðA:17Þ

�ĜG�1
0 ¼

�ĜG�
L 0 0

0 �ĜG�
FM 0

0 0 �ĜG�
R

2

6

6

4

3

7

7

5

; ðA:18Þ

P̂P ¼

0 T̂T 0

T̂T	 0 T̂T

0 T̂T	 0

2

6

4

3

7

5
; ðA:19Þ

�ĜG�
L ¼ @
�̂�0 �

1

2m
�þ �

� �

�̂�3 ��Le
i�L�̂�3 �̂�1

� �

� �ðx� x0Þ; ðA:20Þ

�ĜG�
R ¼ ðL ! RÞ; ðA:21Þ

� ĜG�
FM ¼ @
�̂�0 �

1

2m
�þ �þ i�hex

� �

�̂�3

� �

� �ðx� x0Þ; ðA:22Þ

T̂T ¼
e�i�
Tr;r0 0

0 �ei�
T	
r;r0

" #

�ð
 � 
0Þ: ðA:23Þ

�̂�1, �̂�3 are the Pauli matrices and �̂�0 is a unit matrix. �L(R) is

the phase of superconducting order parameter, �L(R)e
i�L(R) .

Below, we consider the case that the superconductor L and R

are same.

An auxiliary field, �, that couples to the current operator,

ĴJ, is introduced in eq. (A·10) as,

Scond ¼

Z

dx
j�Lj

2

gL
þ

Z

dx
j�Rj

2

gR

þ

Z 	

0

d
 �J; ðA:24Þ

�J ¼ �

Z

dx dx0 �	ðxÞ½ĴJ��ðx0Þ; ðA:25Þ

where � � ð
Þ and J � Jðx; x0Þ. The current operator is

denoted as,

ĴJ ¼

0 �ieR̂R 0

ieR̂R	 0 0

0 0 0

2

6

4

3

7

5
; ðA:26Þ

R̂R ¼
e�i�
Tr;r0 0

0 ei�
T	
r;r0

" #

�ð
 � 
0Þ: ðA:27Þ

Tracing out the electron fields from eq. (A·25), we obtain

the effective free energy, Feff , with Josephson junction as

following,

	Feff ¼ �Trfln½ĜG�1 þ �ĴJ�g

¼ �Trfln½ð�ĜG�
0 þ �ĴJÞ þ P̂P�g: ðA:28Þ

In eq. (A·28), Tr means taking trace with respect to the

matrix element of the Green’s function and integrating with

respect to x; x0. In the fourth order perturbation theory about

the tunneling matrix, the current is approximated to be

hJi ¼
@Feff

@�

	

	

	

	

�¼0

¼ �
1

	

@

@�
Trfln½ð�ĜG�

0 þ �ĴJÞ þ P̂P�g

	

	

	

	

�¼0

’
1

	
Tr½ĴJĜG0� þ

1

	
Tr½ĴJĜG0P̂PĜG0� þ

1

	
Tr½ĴJĜG0P̂PĜG0P̂PĜG0P̂PĜG0�:

ðA:29Þ

The first and second terms does not contribute the Josephson

current, whose leading term is the third one in eq. (A·29).

Because Tr is not affected by a change of basis, the matrix

element can be transformed from (r; 
) component to its

Fourier component (k; i!n). Here, i!n is the Matsubara

frequency of the electrons. Here we made use of the fact that

the tunneling matrix element differs from 0 only for r 
 r
0

and in the neighborhood of the SC/FM boundary, i.e.,

Tr;r0 ¼ T0�ðr� r
0Þ�ðr� rL(R)Þ, where rL(R) is the position of

the interface between the left (right) SC and the FM. Tracing

out the matrix element of the Green’s function, we can

obtain the current formula as follows,

IJ ¼ �8eT4
0 Im

1

	

�
X

fkg;i!n

½eiðk
"

FM
�k

#

FM
Þr fLðkL; i!n þ i�Þg

ð0Þ
FM;"ðk

"
FM; i!nÞ

� g
ð0Þ
FM;#ðk

#
FM;�i!nÞ f

	
RðkR; i!n � i�Þ�; ðA:30Þ

where r ¼ rR � rL and each Green’s function is given by

fLðkL; i!n þ i�Þ ¼
�Le

i’L

ð!n þ�Þ2 þ �2L þ�2
L

; ðA:31Þ
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fRðkL; i!n � i�Þ ¼ ðL ! RÞ; ðA:32Þ

g
ð0Þ
FM;"ðkFM"; i!nÞ ¼ �

1

i!n � �
"
FM

; ðA:33Þ

g
ð0Þ
FM;#ð�kFM#;�i!nÞ ¼ �

1

i!n þ �
#
FM

; ðA:34Þ

�L(R) ¼
k2L(R)

2m
� �; ðA:35Þ

��FM ¼
k2FM

2m
� �� �hex: ðA:36Þ

Note that kFM" and kFM# are independent of each other. After

integrating Green’s functions of the FM as to kFM;� , we can

obtain the following formula,

IJ ¼ 16eT4
0

mv

2�d

� �2

Im

�

i
�2

	

X

kL;kR ;!n>0

1

ð!n þ�Þ2 þ E2
kL

1

ð!n ��Þ2 þ E2
kR

cos
2hex

vFd

� �

e�2!nd=vF

�

sin �

þ 16eT4
0

mv

2�d

� �2

Im

�

�2

	

X

kL;kR;!n>0

1

ð!n þ�Þ2 þ E2
kL

1

ð!n ��Þ2 þ E2
kR

cos
2hex

vFd

� �

e�2!nd=vF

�

cos �

� Ic1 sin � þ Ic2 cos �; ðA:37Þ

where v is a volume of the FM, kF is the Fermi wave number, 	 ¼ T�1.

Appendix B: Summation of Matsubara Frequency

We evaluate Matsubara frequency summation in (A·37). This summation is performed by a contour integration in Fig. B·1.

The integral has the form

IC ¼ �

I

C

dz

2�i
f ðzÞnFðzÞe

i2zd=vF ; ðB:1Þ

f ðzÞ ¼
1

zþ i�� EkL

1

zþ i�þ EkL

1

z� i�� EkR

1

z� i�þ EkR

; ðB:2Þ

C ¼ C1 þ C2 þ C! þ CR; ðB:3Þ

where nFðzÞ is a Fermi distribution function, C1 and C2 are a closed path enclosing the pole of the anomalous Green’s

function, C! is a integration on the real axis of complex plane, and CR is a large semicircle of radius R in the limit as R ! 1.

The contour integration with CR is zero because of the Jordan’s theorem. When each contour integration is performed, the

following result is obtained,

IC1 ¼
1

4EkLEkR

1

i2�þ EkR � EkL

�
1

i2�þ EkR � EkL

� �

nFðEkR Þ exp i
i2�þ 2EkR

vF
d

� �

ðB:4Þ

IC2 ¼ �
1

4EkLEkR

1

i2�� EkR � EkL

�
1

i2�� EkR þ EkL

� �

nFð�EkRÞ exp i
i2�� 2EkR

vF
d

� �

ðB:5Þ

I! ¼

�

�

Z 1

�1

d!

�i

1

4EkLEkR

1

i2�� EkR � EkL

1

i2�þ 2!� 2EkL

þ
1

i2�� 2!� 2EkR

� �

þ

Z 1

�1

d!

�i

1

4EkLEkR

1

i2�þ EkR � EkL

1

i2�þ 2!� 2EkL

þ
1

i2�� 2!þ 2EkR

� �

þ

Z 1

�1

d!

�i

1

4EkLEkR

1

i2�� EkR þ EkL

1

i2�þ 2!þ 2EkL

þ
1

i2�� 2!� 2EkR

� �

nFð!Þ exp i
!

�
kFL

� �

ðB:6Þ

�

Z 1

�1

d!

�i

1

4EkLEkR

1

i2�þ EkR þ EkL

1

i2�þ 2!þ 2EkL

þ
1

i2�� 2!þ 2EkR

� ��

nFð!Þ exp i
2!

vF
d

� �

: ðB:7Þ

Here, we consider the case of absolute zero temperature. Then nFðEkL(R) Þ ¼ 0, nFð!Þ ¼ �ð�!Þ. Making an analytic

continuation i2� ! eV þ i� and integrations with respect to ! and EkL or EkR , we obtain the analytical form of Ic1 and Ic2,

Ic1 ¼
�0�

2
0

�e

Z 1

�0

dE
�ð�0 � jE � eVjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 ��2
0

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
0 � ðE � eVÞ2

q

�

Ci
2E � eV

vF
d

� �

sin
2E � eV

vF
d

� �

� cos
2E � eV

vF
d

� �

Si
2E � eV

vF
d

� �

�
�

2

� ��

cos
2hex

vF
d

� �

; ðB:8Þ

×

×
×

×

RC

Re

Im

× ×

Rk
Rk

iΩ−E iΩ + E

×

Cω

C1C2

Fig. B�1. Paths in the complex plane for the contour integration of

eq. (B·1).
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Ic2 ¼
�0�

2
0

e

Z eV=2��0

0

dE
�ðeV � 2�0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE þ eV=2Þ2 ��2
0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE � eV=2Þ2 ��2
0

q cos
2E

vF
d

� �

cos
2hex

vF
d

� �

; ðB:9Þ

where �0 ¼ 16�e2T4
0NLð0ÞNRð0Þ½mv=ð2�dÞ�
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