
152 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

signac: A Python framework for data and workflow
management

Vyas Ramasubramani‡∗, Carl S. Adorf‡, Paul M. Dodd‡, Bradley D. Dice¶, Sharon C. Glotzer‡§¶‖

https://youtu.be/CCKQH1M2uR4

F

Abstract—Computational research requires versatile data and workflow man-
agement tools that can easily adapt to the highly dynamic requirements of
scientific investigations. Many existing tools require strict adherence to a par-
ticular usage pattern, so researchers often use less robust ad hoc solutions that
they find easier to adopt. The resulting data fragmentation and methodological
incompatibilities significantly impede research. Our talk showcases signac, an
open-source Python framework that offers highly modular and scalable solutions
for this problem. Named for the Pointillist painter Paul Signac, the framework’s
powerful workflow management tools enable users to construct and automate
workflows that transition seamlessly from laptops to HPC clusters. Crucially,
the underlying data model is completely independent of the workflow. The
flexible, serverless, and schema-free signac database can be introduced into
other workflows with essentially no overhead and no recourse to the signac
workflow model. Additionally, the data model’s simplicity makes it easy to parse
the underlying data without using signac at all. This modularity and simplicity
eliminates significant barriers for consistent data management across projects,
facilitating improved provenance management and data sharing with minimal
overhead.

Index Terms—data management, database, data sharing, provenance, compu-
tational workflow, hpc

Introduction

Streamlining data generation and analysis is a critical challenge
for science in the age of big data and high performance com-
puting (HPC). Modern computational resources can generate and
consume enormous quantities of data, but process automation
and data management tools have lagged behind. The highly file-
based workflows characteristic of computational science are not
amenable to traditional relational databases, and HPC applications
require that data is available on-demand, enforcing strict perfor-
mance requirements for any data storage mechanism. Building
processes acting on this data requires transparent interaction with
HPC clusters without sacrificing testability on personal computers,
and these processes must be sufficiently malleable to adapt to
changes in scientific inquiries.

* Corresponding author: vramasub@umich.edu
‡ Department of Chemical Engineering, University of Michigan, Ann Arbor
¶ Department of Physics, University of Michigan, Ann Arbor
§ Department of Materials Science and Engineering, University of Michigan,
Ann Arbor
|| Biointerfaces Institute, University of Michigan, Ann Arbor

Copyright © 2018 Vyas Ramasubramani et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

To illustrate the obstacles that must be overcome, we consider
a simple example in which we study the motion of an object
through a fluid medium. If we initially model the motion only
as a function of one parameter, an ad hoc solution for data
storage would be to store the trajectories in paths named for
the values of this parameter. If we then introduce some post-
processing step, we could run it on each of these files. However,
a problem arises if we realize that some additional parameter
is also relevant. A simple solution might be to just rename the
files to account for this parameter as well, but this approach
would quickly become intractable if the parameter space increased
further. A more flexible traditional solution involving the use of a
relational MySQL [Cor16] database, for instance, might introduce
undesirable setup costs and performance bottlenecks for file-based
workflows on HPC. Even if we do employ such a solution, we also
have to account for our workflow process: we need a way to run
analysis and post-processing on just the new data points without
performing unnecessary work on the old ones.

This paper showcases the signac framework, a data and
workflow management tool that addresses these issues in a simple,
powerful, and flexible manner (Fig. 1). The framework derives its
name from the painter Paul Signac, one of the early pioneers of
the Pointillist painting style. This style, in which paintings are
composed of individual points of color rather than brushstrokes,
provides an apt analogy for the underlying data model of the
signac framework in which a data space is composed of
individual data points that must be viewed together to make a
complete picture. By storing JSON-encoded [Ecm17] metadata
and the associated data together directly on the file system,
signac provides database functionality such as searching and
grouping data without the overhead of maintaining a server or
interfacing with external systems, and it takes advantage of the
high performance file systems common to HPC. Additionally,
a signac database is entirely contained within a single root
directory, making it compact and highly portable.

With signac, data space modifications like the one discussed
above are trivially achievable with just a few lines of Python code.
signac’s workflow component makes it just as easy to modify
the process of data generation by simply defining the steps as
Python functions. The workflow component of the framework,
signac-flow, will immediately enable the use of these func-
tions on the existing data space through a single command, and
it tracks which tasks are completed to avoid redundancy. The
resulting data can be accessed without reference to the workflow,
ensuring that it is immediately available to anyone irrespective of

https://youtu.be/CCKQH1M2uR4
mailto:vramasub@umich.edu

SIGNAC: A PYTHON FRAMEWORK FOR DATA AND WORKFLOW MANAGEMENT 153

(a)

(c)

(b)

Job fb4

Job 3d5
Job c82

�nd(...)

index()

generate
calc2

calc1
compare

Project Work�ow

operation(job)
generate(fb4)
calc1(fb4)
calc2(fb4)
compare(fb4)
generate(3d5)
calc1(3d5)
calc2(3d5)
compare(3d5)
...

Status

Status Tracking

Index
• fb4
• 3d5
• c82
 ...

Job State PointsJob State Points

''foo'': 8''foo'': 8
fb4fb4

''foo'': 5,
"baz": 3.5
''foo'': 5,
"baz": 3.5

c82c82
''foo'': 3,
"bar": 'C8'
''foo'': 3,
"bar": 'C8'

3d53d5

...

Active Workspace

Fig. 1: The data in a signac project (a) is contained in its workspace (dark grey outline), which in turn is composed of individual data points
(grey points) that exist within some multidimensional parameter space (light grey background). Each data point, or job, is associated with a
unique hash value (e.g., 3d5) computed from its state point, the unique key identifying the job. Using signac, the data can be easily searched,
filtered, grouped, and indexed. To generate and act on this data space, signac can be used to define workflows (b), which are generically
represented as a set of operations composing a directed graph. Using a series of pre- and post-conditions defined on these operations, signac
tracks the progress of this workflow on a per-job basis (c) to determine whether a particular job is complete (greyed text, green check), eligible
(bold text, blue arrow), or blocked (normal text, universal no).

the tools they are using.

Overview and Examples

To demonstrate how signac works, we take a simple, concrete
example of the scenario described above. Consider an experiment
in which we want to find the optimal launch angle to maximize
the distance traveled by a projectile through air. Figure 2 shows
how we might organize the data associated with this study using
signac. The central object in the signac data model is the
project, which represents all the data associated with a particular
instance of a signac data space. All of the project’s data is
contained within the workspace directory (see also Fig. 1). The
workspace holds subdirectories corresponding to jobs, which are
the individual data points in the data space. Each job is uniquely
identified by its state point, which is an arbitrary key-value
mapping. Although we see that these objects are stored in files
and folders, we will show that these objects are structured in a
way that provides layers of abstraction, making them far more
useful than simple file system storage.

One could easily imagine interfacing existing scripts with this
data model. The only requirement is some concept of a unique key
for all data so that it can be inserted into the database. The unique
key is what enables the creation of the 32 character hash, or job
id, used to identify the job and its workspace folder (shown in Fig.
2). The uniqueness of this hash value is what enables signac’s
efficient indexing and searching functionality. Additionally, this
hash value is automatically updated to reflect any changes to

individual jobs, making them highly mutable. For example, if we
instead wanted to consider how changing initial velocity affects
the distance traveled for a particular angle, we can add the velocity
to the existing job state points by taking advantage of the fact that
the project object is an iterable:

for job in project:
job.sp.v = 1

In this case, we wanted to modify the entire workspace; more
generally, however, we might want to modify only some subset
of jobs. One way to accomplish this would be to apply a filter
within the loop using conditionals based on the job state point,
e.g. if job.sp.theta < 5: job.sp.v = 1. A more el-
egant solution, however, is to take advantage of signac’s query
API, which allows the user to find only the jobs of interest
using a dictionary as a filter. For example, in the above snippet
we could replace for job in project with for job in
project.find_jobs(), using an arbitrary dictionary as the
argument to find_jobs to filter on the state point keys. The job
finding functionality of signac is the entry point for its database
functionality, which includes advanced indexing, selection, and
grouping operations.

Having made the above change to our data space, we could
now easily add new data points to test:

from numpy import linspace
for v in [1, 2, 3]:

for theta in np.round(linspace(0, 1.57, 5), 2):
sp = {"v": v, "theta": theta}
project.open_job(sp).init()

154 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

In [1]: import signac
project = signac.init_project("Projectiles")
!ls

In [2]: job = project.open_job({"theta": 1.57})
job.init()
!find . -not -path '*/\.*'

In [3]: print(job.get_id())
print(job.statepoint())

Notebook.ipynb signac.rc

.

./Notebook.ipynb

./signac.rc

./workspace

./workspace/4f8a64741a09749ac1320f4b61292e0c

./workspace/4f8a64741a09749ac1320f4b61292e0c/signac_statepoint.json

4f8a64741a09749ac1320f4b61292e0c
{'theta': 1.57}

Fig. 2: A very simple example using signac to create the basics of a data space. Initializing the project creates a signac.rc file, a
configuration file identifying this folder as a signac project. The workspace directory is created when the first job is added to the project,
and all job data is then stored in a subdirectory of the workspace. This subdirectory is named according to the job id, which is computed as
the hash of the job state point. In this example, all work is conducted inside a Jupyter [PG07], [KRKP+16] notebook to indicate how easily
this can be done. Note how fewer than ten lines of code are required to initialize a database and add data.

Jobs that already exist in the data space will not be overwritten by
the init operation, so there is no harm in performing a loop like
this multiple times.

All of signac’s core functionality is not only available as a
Python library, but also as a command line tool. This tool uses
the Python setuptools console_scripts entry point, so
it is automatically installed with signac and ships with built-in
help information. This interface not only facilitates the integration
of signac with non-Python code bases and workflows, it is also
very useful for more ad hoc analyses of signac data spaces. For
example, searching the database using the command line can be
very useful for quick data inspection:
$ # Many simple queries are automatically
$ # translated into JSON
$ signac find theta 0.39
Interpreted filter arguments as '{"theta": 0.39}'.
d3012d490304c3c1171a273a50b653ad
1524633c646adce7579abdd9c0154d0f
22fa30ddf3cc90b1b79d19fa7385bc95

$ # Operators (e.g. less than) are available
$ # using a ".-operator" syntax
$ signac find v.\$lt 2
d61ac71a00bf73a38434c884c0aa82c9
00e5f0c36294f0eee4a30cabb7c6046c
585599fe9149eed3e2dced76ef246903
22fa30ddf3cc90b1b79d19fa7385bc95
9fa1900a378aa05b9fd3d89f11ef0e5b

$ # More complex queries can be constructed
$ # using JSON directly
$ signac find '{"theta": {"$in": [0, 0.78]}}'
2faf0f76bde3af984a91b5e42e0d6a0b
585599fe9149eed3e2dced76ef246903
03d50a048c0423bda80c9a56e939f05b
3201fd381819dde4329d1754233f7b76

d61ac71a00bf73a38434c884c0aa82c9
13d54ee5821a739d50fc824214ae9a60

The query syntax is based on the MongoDB [Mon16] syntax
and enables, for instance, logical and arithmetic operators. In
fact, signac natively supports export of its databases to Mon-
goDB. Although we can add support for integration with any
database management system, we started with MongoDB for
two reasons: first, because researchers are likely to prefer the
comparatively less rigid approach of NoSQL databases to table-
based relational databases; and second, because translation from
a signac database to another JSON-based database is relatively
straightforward. Due to the ease of export and shared query syntax,
switching between signac and MongoDB is quite easy.

At any point, we can also get an overview of what the implicit
data space schema looks like:

$ signac schema
{
'theta': 'float([0.0, ..., 1.57], 5)',
'v': 'int([1, 2, 3], 3)',
}

Keys with constant values across the entire data space can be
optionally omitted from the schema. Additionally, schema can be
filtered, nested keys can be compressed to specified depths, and the
number of entries shown in each range can be limited as desired.

Workflows

The signac database is intended to be usable as a drop-in
solution for data management issues. The signac framework,
however, is designed to simplify the entire process of data gener-
ation, which includes clearly defining the processes that generate

SIGNAC: A PYTHON FRAMEWORK FOR DATA AND WORKFLOW MANAGEMENT 155

and operate on the data cleanly and concisely. To manage work-
flows, the signac-flow component of the framework provides
the FlowProject class (not to be confused with the signac
Project class that interfaces with the data in a signac project).
The FlowProject encodes operations acting on signac data
spaces as well as the sequence information required to string
these operations together into a complete workflow. In Fig. 3,
we demonstrate how signac-flow can be used to automate our
projectile investigation.

In this script, we register a simple function calculate as an
operation with the FlowProject.operation decorator. We
store our output in the job document, a lightweight JSON storage
mechanism that signac provides, and we check the document
to determine when the operation has been completed using the
FlowProject.post decorator. Any function of a job can be
used as a pre- or post-condition. In this case, we simply look for
the tmax key in the job document using the complete function.
Note the FlowProject.label decorator for this function; we
will discuss this in further detail below.

Although this particular example is quite simple, in principle
any workflow that can be represented by a directed graph may
be encoded and executed using signac-flow. In the context of
signac-flow, individual operations are the nodes of a graph,
and the pre- or post-conditions associated with each operation
determine the vertices. To simplify running such workflows, by
default the project.py run interface demonstrated in Fig. 3
will automatically run the entire workflow for every job in the
workspace. When conditions are defined in the manner shown
above, signac-flow will ensure that only incomplete tasks are
run, i.e., in this example, once tmax has been calculated for a
particular job, the calculate operation will not run again for
that job. Rather than running everything at once, it is also possible
to exercise more fine-grained control over which operations to run
using signac-flow:

$ # Runs all outstanding operations for all jobs
$ python project.py run
$ # `exec` ignores the workflow and just runs a
$ # specific job-operation
$ python project.py exec ${OP} ${JOB_ID}
$ # Run up to two operations for a specific job
$ python project.py run -j ${JOB_ID} -n 2

A critical feature of the signac framework is its scalability
to HPC. The file-based data model is designed to leverage the
high performance file systems common on such systems, and
workflows designed locally are immediately executable on HPC
clusters. In particular, any operation that can be successfully
executed in the manner shown in Fig. 3 can also be immediately
submitted to cluster schedulers. The signac-flow package
achieves this by creating cluster job scripts that perform the above
operations:

$ # Print the script for one 12-hour job
$ # Additional scheduler directives are customizable
$ python project.py submit -n 1 -w 12 --pretend
Query scheduler...
Submitting cluster job 'Projectiles/d61...':
- Operation: calculate(d61...)
#PBS -N Projectiles/d61...
#PBS -l walltime=12:00:00
#PBS -l nodes=1
#PBS -V

set -e
set -u

cd /path/to/project

Operation 'calculate' for job 'd61...':
python project.py exec calculate d61

The workflow tracking functionality of signac-flow also ex-
tends to compute clusters. Users can always check the status
of particular jobs to see how far they have progressed in the
workflow, and when working on a system with a scheduler,
signac-flow will automatically provide information about the
status of jobs submitted to the scheduler. Depending on the desired
verbosity, this status information can be output in a variety of
formats. A relatively detailed version of the output is shown here:

$ # Submit 3 random jobs for 12 hours
$ python project.py submit -n 3 -w 12
$ # Status output has options to control detail
$ python project.py status -de
Overview:
Total # of jobs: 15

label ratio
------- -------
complete |#-----------------------------| 6.67%

Detailed View:

Labels:
job_id labels
-------------------------------- --------
00e5f0c36294f0eee4a30cabb7c6046c complete
d61ac71a00bf73a38434c884c0aa82c9
...

Operations:
job_id operation eligible cluster_status
------ ----------- ---------- ----------------
d61ac7 calculate Y Q
41dea8 calculate Y A
585599 calculate Y Q
2fc415 calculate Y I
...

In the overview section, we see that 6.67%, or 1
15 jobs have

completed, reflecting the job run locally in Fig. 3. The rows in
this section are populated by any function decorated with the
FlowProject.label decorator, with each row showing the
percentage of jobs that evaluate to True for that function. While
any callable, such as a lambda expression, could be used as a
pre- or post-condition, using a function decorated in this manner
makes it easy to track total progress through the workflow. The
labels section below the overview provides the same information
on a per-job basis, in this case showing which jobs have completed
and which have not.

Finally, the operations section indicates the progress of jobs on
a per-operation basis. In this particular view, the eligible col-
umn is redundant because we have omitted completed operations
for brevity; however, if we requested a complete listing, the job
marked as complete in the labels section would be listed here with
an N in the eligible column. In this instance, there are fourteen
jobs remaining that are eligible for the calculate operation, of
which three have been submitted to the cluster (and are therefore
marked as active). Of these three, one has actually begun running
(and is marked as [A]), while the other two indicate that they are
queued (marked as [Q]). The final job shown is inactive on the
cluster ([I]) as it has not yet been submitted.

The quick overview of this section highlights the core features
of the signac framework. Although the example demonstrated
here is quite simple, the data model scales easily to thousands of

156 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

In [4]: %%writefile project.py
import flow
from flow.project import FlowProject

@FlowProject.label
def complete(job):
 return 'tmax' in job.document

@FlowProject.operation
@FlowProject.post(complete)
def calculate(job):
 import numpy as np
 g = 9.81
 roots = np.roots([-g/2, np.sin(job.sp.theta), 0])
 tmax = roots[roots != 0][0]
 job.doc.tmax = tmax

if __name__ == "__main__":
 FlowProject().main()

In [5]: !python project.py run

In [6]: !find workspace
job.document()

Writing project.py

Execute operation 'calculate(4f8a64741a09749ac1320f4b61292e0c)'...

workspace
workspace/4f8a64741a09749ac1320f4b61292e0c
workspace/4f8a64741a09749ac1320f4b61292e0c/signac_job_document.json
workspace/4f8a64741a09749ac1320f4b61292e0c/signac_statepoint.json

Out[6]: {'tmax': 0.2038735337271834}

Fig. 3: The signac-flow module enables the easy automation of workflows operating on signac workspaces. Here we demonstrate such a
workflow operating on the data space defined in Fig. 2. In this case, the workspace consists only of one job; the real power of the FlowProject
arises from its ability to automatically handle an arbitrary sequence of operations on a large number of jobs. Note that in this figure we are
still assuming v=1 for simplicity.

data points and far more complex and nonlinear workflows. More
involved demonstrations can be seen in the documentation1, on
the signac website2, or in the original paper published in the
Journal of Computational Materials Science [ADRG18].

Design and Implementation

Having provided an overview of signac’s functionality, we will
now delve into the specifics of its implementation. The central
element of the framework is the signac data management
package, which provides the means for organizing data directly
on the filesystem. The primary requirement for using this database

1. http://signac.readthedocs.io
2. http://signac.io

is that every job (data point) in the data space must be uniquely
indexable by some set of key-value pairs, namely the job state
point. The hash of this state point defines the job id, which in turn
is used to define the directory where data associated with this job
is stored. To ensure that the state point associated with the job id
can be recovered, a JSON-encoded copy of the state point is stored
within this directory.

This storage mechanism enables O(1) access to the data
associated with a particular state point through its hash as well
as O(N) indexing of the data space. This indexing is performed by
traversing the data space and parsing the state point files directly;
other files may also be parsed along the way if desired. In general,
signac automatically caches generated indexes within a single
session where possible, but for better performance after start-up

http://signac.readthedocs.io
http://signac.io

SIGNAC: A PYTHON FRAMEWORK FOR DATA AND WORKFLOW MANAGEMENT 157

the indexes can also be stored persistently. These indexes then
allow efficient selection and searching of the data space, and
MongoDB-style queries can be used for complex selections.

This distributed mode of operation is well-suited to the high
performance filesystems common to high performance computing.
The explicit horizontal partitioning and distributed storage of data
on a per-job basis is well suited to HPC operations, which are
typically executed for multiple jobs in parallel. Since data is
accessed distributively, there is no inherent bottleneck posed by
funneling all data read and write operations through one or more
server applications. Further sharding across multiple filesystems,
for instance, could be accomplished by devising a scheme to
divide a project’s data into multiple workspaces that would then
be indexed independently.

From the Python implementation standpoint, the central com-
ponent to the signac framework is the Project class, which
provides the interface to signac’s data model and features. In
addition to the core index-related functionality previously men-
tioned, the signac Project also encapsulates numerous addi-
tional features, including, for example, the generation of human-
readable views of the hash-obfuscated workspace; the ability to
move, copy, or clone a full project; the ability to synchronize data
across projects; and the detection of implicit schema. We qualify
these schema as implicit because they are only defined by the
state points of jobs within the workspace, i.e there is nothing like
a table schema to enforce a particular structure for the state points
of individual jobs. Searching through or iterating over a Project
instance generates Job objects, which provide Python interfaces
to the jobs within the project and their associated data. In addition
to providing a Pythonic access point to the job state point and the
job document, a Job object can always be mapped to its location
on the filesystem, making it ideal for associating file-based data
with the appropriate data point.

The central object in the signac-flow package is the
FlowProject class, which encapsulates a set of operations
acting on a signac data space. There is a tight relationship
between the FlowProject and the underlying data space, be-
cause operations are in general assumed to act on a per-job basis.
Using the sequence of conditions associated with each operation,
a FlowProject also tracks workflow progress on per-job basis
to determine which operations to run next for a given job. Dif-
ferent HPC environments and cluster schedulers are represented
by separate Python classes that provide the means for querying
schedulers for cluster job statuses, writing out the job scripts, and
constructing the submission commands. Job scripts are created
using templates written in jinja2 [Ron], making them easily
customizable for the requirements of specific compute clusters or
users. This means that workflows designed on one cluster can
be easily ported to another, and that users can easily contribute
new environment configurations that can be used by others.
Currently, we support Slurm and TORQUE schedulers, along with
more specialized support for the following supercomputers (listed
along with their funding organizations): XSEDE Comet, XSEDE
Stampede, XSEDE Bridges, INCITE Titan, INCITE Eos, and the
University of Michigan Flux clusters.

The signac framework prioritizes modularity and interop-
erability over monolithic functionality, making it readily exten-
sible. One of the tools built on top of the core infrastructure is
signac-dashboard [Bra18], a web interface for visualizing
signac data spaces that is currently under active development.
All tools in the framework, including signac-flow, share the

signac database as a core dependency. Aside from that, however,
core signac and signac-flow avoid any hard dependencies
and are implemented as pure Python packages compatible with
Python 2.7 and 3.3+. In conjunction with the framework’s full-
featured command line interface, these features of the framework
ensure that it can be easily incorporated into any existing file-based
workflows, even those using primarily non-Python tools.

Comparisons

In recent years, many Python tools have emerged to address issues
with data provenance and workflow management in computational
science. While some are very similar to the signac framework
in their goals, a major distinction between signac and other
comparable tools is that the signac data management component
is independent of signac-flow, making it much easier to
interact with the data outside the context of the workflow. As
a result, while these packages solve problems similar to those
addressed by signac, they take different and generally less
modular approaches to doing so. Other packages have focused on
the distinct but related need for complete provenance management
for reproducibility. These tools are orthogonal to signac and
may be used in conjunction with it.

Workflow and Provenance Management

Two of the best-known, most comparable Python workflow
managers are Fireworks [JOC+15] and AiiDA [PCS+16]. Fire-
works and AiiDA are full-featured workflow managers that,
like signac-flow, interface with high performance compute
clusters to execute complex, potentially nonlinear workflows.
These tools in fact currently offer more powerful features than
signac-flow for monitoring the progress of jobs, features that
are supported by the use of databases on the back end. However,
maintaining a server for workflow management can be cumber-
some, and it introduces additional unnecessary complexities.

A more significant limitation of these other tools is that their
data representations are closely tied to the workflow execution,
making it much more challenging to access the data outside the
context of the workflow. Concretely, these software typically store
data in a specific location based on a particular instance of an
operation’s execution, so the data can only be found by looking
for that specific instance of the operation. Conversely, in signac
the data is identified by its own metadata, namely its state point,
so once it has been generated its access is no longer linked to a
specific instance of a signac-flow operation (assuming that
signac-flow is being used at all).

Of course, knowing exactly where and how data was gen-
erated and transformed, i.e., the data provenance, is also valu-
able information. Two tools that are specialized for this task
are Sacred [GKC+17] and Sumatra [Dav12]. Superficially, the
signac framework appears especially similar to Sacred. Both
use decorators to convert functions into executable operations, and
configurations can be injected into these functions (in signac’s
case, using the job object). Internally, Sacred and signac-flow
both depend on the registration of particular functions with some
internal API: in signac-flow, functions are stored as opera-
tions within the FlowProject, whereas Sacred tracks functions
through the Experiment class. However, the focus of Sacred is
not to store data or execute workflows, but instead to track when
an operation was executed, the configuration that was used, and
what output was generated. Therefore, in principle signac and

158 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Sacred are complementary pieces of software that could be used
in concert to achieve different benefits.

We have found that integrating Sacred with signac is in
fact quite simple. Once functions are registered with either a
Sacred Experiment or a signac-flow FlowProject, the
operations can be run either through Python or on the command
line. While both tools typically advocate using their command
line interfaces, the two can be integrated by using one from the
command line while having it internally call the other through
the corresponding Python interface. When used in concert with
signac, the primary purpose of the Sacred command line
interface, the ability to directly interact with the configuration,
is instead being managed by the underlying signac database;
in principle, the goal of this integration would be to have all
configuration information tracked using signac. Conversely,
signac-flow’s command line interface offers not only the
ability to specify which parts of the workflow to run, but also to
query status information or submit operations to a scheduler with
a particular set of script options. As a result, to optimally utilize
both tools, we advocate using the signac-flow command
line functionality and encoding a Sacred Experiment within a
signac-flow operation.

The Sumatra provenance tracking tool is an alternative to
Sacred. Although it is written in Python, it is primarily designed
for use as a command line utility, making it more suitable than
Sacred for non Python application. However, it does provide a
Python API that offers greater flexibility than the command line
tool, and this is the recommended mode for integration with
signac-flow operations.

Data Management

We have found fewer alternatives to direct usage of the signac
data model; as mentioned previously, most currently existing
software packages tightly couple their data representation with
the workflow model. The closest comparison that we have found
is datreant [DSL+16], which provides the means for interacting
with files on the file system along with some features for finding,
filtering, and grouping. There are two primary distinctions be-
tween datreant and signac: signac requires a unique key for
each data point, and signac offers a tightly integrated workflow
management tool. The datreant data model is even simpler than
signac’s, which provides additional flexibility at the cost of
signac’s database functionality. This difference is indicative of
datreant’s focus on more general file management problems than
the issues signac is designed to solve. The generality of the
datreant data model makes integrating it into existing workflows
just as easy as integrating signac, and the MDSynthesis package
[Dot15] is one example of a workflow tool built around a datreant-
managed data space. However, MDSynthesis is highly domain-
specific and it cannot be used for other types of computational
studies. Therefore, while the combination of MDSynthesis and
datreant is a comparable tool to the signac framework in the
field of molecular simulation, it does not generalize to other use-
cases.

Conclusions

The signac framework provides all the tools required for thor-
ough data and workflow management in scientific computing.
Motivated by the need for managing the dynamic, heterogeneous
data spaces characteristic in computational sciences, the tools are

tailored for the use-cases most commonly faced in this field. The
framework has strived to achieve high ease of use and interop-
erability by emphasizing simple interfaces, minimizing external
requirements, and employing open data formats like JSON. By
doing so, the framework aims to minimize the initial barriers for
new users, making it easy for researchers to begin using signac
with little effort. The framework frees computational scientists
from repeatedly solving common data and workflow problems
throughout their research, and at a higher level, reduces the
burden of data sharing and provenance tracking, both of which are
critical to accelerating the production of reproducible and reusable
scientific results.

Acknowledgments

We would like to thank all contributors to the development of
the framework’s components, J.A. Anderson, M.E. Irrgang and
P. Damasceno for fruitful discussion, feedback and support, and
B. Swerdlow for his contributions and feedback and coming up
with the name. We would also like to thank all early adopters
that provided feedback and thus helped in guiding and improving
the development process. Development and deployment supported
by MICCoM, as part of the Computational Materials Sciences
Program funded by the U.S. Department of Energy, Office of Sci-
ence, Basic Energy Sciences, Materials Sciences and Engineering
Division, under Subcontract No. 6F-30844. Project conceptual-
ization and implementation supported by the National Science
Foundation, Award # DMR 1409620.

REFERENCES

[ADRG18] Carl S. Adorf, Paul M. Dodd, Vyas Ramasubramani, and
Sharon C. Glotzer. Simple data and workflow management
with the signac framework. Computational Materials Science,
146:220 – 229, 2018. URL: http://www.sciencedirect.com/
science/article/pii/S0927025618300429.

[Bra18] Bradley D. Dice. signac-dashboard, 2018. URL: https://
bitbucket.org/glotzer/signac-dashboard/src/master/.

[Cor16] Oracle Corporation. Mysql, 2016. URL: https://www.mysql.
com.

[Dav12] Andrew P. Davison. Automated capture of experiment context
for easier reproducibility in computational research. Comput.
Sci. Eng., 14:48–56, 2012.

[Dot15] David L. Dotson. MDSynthesis: a Python package enabling data-
driven molecular dynamics research, July 2015.

[DSL+16] David L. Dotson, Sean L. Seyler, Max Linke, Richard J. Gowers,
and Oliver Beckstein. datreant: persistent, pythonic trees for
heterogeneous data. In S Benthall and S Rostrup, editors,
Proceedings of the 15th Python in Science Conference, pages
51–56, Austin, TX, 2016.

[Ecm17] Ecma. The JSON Data Interchange Syntax, December
2017. URL: http://www.ecma-international.org/publications/
files/ECMA-ST/ECMA-404.pdf.

[GKC+17] Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and
Jürgen Schmidhuber. The sacred infrastructure for computational
research. In Katy Huff, David Lippa, Dillon Niederhut, and
M Pacer, editors, Proceedings of the 16th Python in Science
Conference, pages 49–56, Austin, TX, 2017.

[JOC+15] Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani,
Xiaohui Qu, Michael Kocher, Miriam Brafman, Guido Petretto,
Gian-Marco Rignanese, Geoffroy Hautier, Daniel Gunter, and
Kristin A. Persson. Fireworks: a dynamic workflow system de-
signed for high-throughput applications. Concurrency and Com-
putation: Practice and Experience, 27(17):5037–5059, 2015.

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez,
Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle
Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul
Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. Jupyter
notebooks – a publishing format for reproducible computational
workflows. In F. Loizides and B. Schmidt, editors, Positioning

http://www.sciencedirect.com/science/article/pii/S0927025618300429
http://www.sciencedirect.com/science/article/pii/S0927025618300429
https://bitbucket.org/glotzer/signac-dashboard/src/master/
https://bitbucket.org/glotzer/signac-dashboard/src/master/
https://www.mysql.com
https://www.mysql.com
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

SIGNAC: A PYTHON FRAMEWORK FOR DATA AND WORKFLOW MANAGEMENT 159

and Power in Academic Publishing: Players, Agents and Agen-
das, pages 87 – 90. IOS Press, 2016.

[Mon16] MongoDB, Inc. MongoDB, 2016. URL: https://www.mongodb.
com/.

[PCS+16] Giovanni Pizzi, Andrea Cepellotti, Riccardo Sabatini, Nicola
Marzari, and Boris Kozinsky. AiiDA: automated interactive
infrastructure and database for computational science. Comput.
Mater. Sci., 111:218–230, 2016.

[PG07] Fernando Pérez and Brian E. Granger. IPython: a system for
interactive scientific computing. Computing in Science and
Engineering, 9(3):21–29, May 2007. URL: http://ipython.org.

[Ron] Armin Ronacher. jinja2. Accessed on 2017/09/29. URL: http:
//jinja.pocoo.org/.

https://www.mongodb.com/
https://www.mongodb.com/
http://ipython.org
http://jinja.pocoo.org/
http://jinja.pocoo.org/

	Introduction
	Overview and Examples
	Workflows

	Design and Implementation
	Comparisons
	Workflow and Provenance Management
	Data Management

	Conclusions
	Acknowledgments
	References

