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Abstract 

In MOS integrated circuits, signals may 

propagate between stages with fanout. The HOS 

interconnect may be modeled by an RC tree, Exact 

calculation of signal delay through such networks is 

difficult. However, upper and lower bounds for 

delay that are computationally simple are presented 

here. The results can be used (I) to bound the 

delay, given the signal threshold; or (2) to bound 

the signal voltage, given a delay time; or (3) to 

certify that a circuit is "fast enough", given both 

the maximum delay and the voltage threshold. 

Introduction 

In ~S integrated circuits, a given inverter or 

logic node may drive several gates, some of them 

through long wires whose distributed resistance and 

capacitance may not be negligible. There does net 

seem to be reported in the literature any simple 

method for estimating signal propagation delay in 

such circuits, nor is there any general theory of 

the properties of RC trees, as distinct from RC 

lines. The work reported here has led to a 

computationally simple technique for finding upper 

and lower bounds for the delay. The technique is of 

importance for VLSI designs in which the delay 

introduced by the interconnections may be comparable 

to or longer than active-device delay. This can be 

the case for polysilicon wires as short as 1 mm, 

with 4-micron devices. The importance of this 

technique grows as the wiring lengths increase or 

feature sizes decrease. 

*This work was supported in part by Digital 

Equipment Corporation, in part by the Advanced 

Research Projects Agency of the Department of 

Defense and monitored by the Office of Naval 

Research under Contract N00014-C-80-0622, and in 

part by the Air Force under Contract number AFOSR 

4-9620-80-0073. 

Consider the circuit of Figure I. The slowest 

transition (and therefore presumably the one of most 

interest) occurs when the driving inverter shuts off 

and its output voltage rises from a small value to 

VDD. During this process the various parasitic 

capacitances on the output are charged through the 

pullup transistor. Figure 2 shows a simple model of 

this circuit for timing analysis. The pullup, which 

is nonlinear, is approximated by a linear resistor, 

and the transition is represented by a voltage 

source going from 0 to VDD at time t = 0. 

(Later, for simplicity, a unit step will be 

considered instead,) The polysilicon lines are 

represented by uniform RC lines. The resistance of 

the metal line is neglected, but its parasitic 

capacitance remains. Capacitances associated with 

the pullup source diffusion, contact cuts, and the 

gates being driven are included. Any nonlinear 

capacitances are approximated by linear ones. The 

work reported here actually applies to voltage 

sources other than steps, and an example appears 

below with a saturated ramp input source. 

In general, the circuit response cannot be 

found in closed form. The results of this paper can 

be used to calculate upper and lower bounds to the 

delay that are very tight in the case where most of 

the resistance is in the pullup. The theory as 

presented here does not explicitly deal with non- 

linearities and therefore does not apply to signal 

propagation through pass transistors unless they are 

modelled as linear resistors. A more complete 

discussion of this theory will appear elsewhere [I], 

[2 ] .  

Analysis 

An RC tree is defined as follows. Consider any 

resistor tree with no node at ground. From each 

node in this tree a capacitor to ground may be 

added, and any resistor may be replaced by a 

distributed RC line. Although nonuniform RC lines 

may appear in an RC tree, for simplicity the 
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examples in this paper involve only lumped resistors 

and capacitors and uniform RC lines. An RC tree has 

one input and any number of outputs;. Side branches 

may or may not end in a node that is considered as 

an output; in fact, outputs may be taken anywhere in 

the tree. Nonuniform RC lines are special cases of 

RC trees, without any side branches. An important 

property of RC trees is that there is a unique path 

from any point in the tree to the input. 

The tree representing the signal path is driven 

at the input with a unit step voltage. (Below, this 

result is generalized to other driving voltages.) 

Gradually the voltages at all other nodes, and in 

particular at all the outputs, rise from 0 to i 

volt. It is assumed that the output voltages cannot 

be calculated easily. The problem is to find simple 

upper and lower bounds for the output voltages, or, 

equivalently, to find upper and lower bounds for the 

delay associated with each output. 

Consider any output node e, and any lumped 

capacitor at node k with capacitance C k. For the 

moment consider only lumped capacitors; the theory 

is similar if the distributed lines are considered 

also. One may think of many-stage approximations 

for the distributed lines, or one may convert some 

summations in the formulas below to a form including 

both summations over lumped capacitors and integrals 

over distributed ones. 

The resistance Rke is defined as the 

resistance of the portion of the (unique) path 

between the input and e, that is common with the 

(unique) path between the input and node k. In 

particular, Ree is the resistance between input and 

output e and Rkk is the resistance between the 

input and node k. Thus Rke ~ Rkk and Rke ~ Ree- 
For an illustration, see Figure 3. 

The sum (over all the capacitors in the 

network) 

different output nodes, Tp is the same for all 

outputs. It is easily seen that 

TRe ! TDe i Tp. (4) 

For nonuniform RC lines (i.e., RC trees without side 

branches) TDe = Tp. For a single uniform RC line, 

Tp = TDe = RC/2, and TRe = RC/3. 

A detailed derivation [I] leads to the upper 

bounds for the unit step response Ve(t) 

Ve(t) i 1 TDe - t 
Tp 

TDe -t/TRe 
Ve(t) ! I - e 

Tp 

and lower bounds for the unit step response Ve(t) 

Ve(t) > 0 

Ve(t) ~ i 

(5) 

TDe 

(6) 

t + TRe 

TDe (Tp - TRe)/T P e-t/Tp 
Ve(t ) ~ 1 - e 

Tp 

(7) 

where (9) applies if t ~ Tp - TRe. The tightest 

upper bounds are (5) for small t and (6) for 

large t. The tightest lower bounds are (7) for 

t ~ TDe - TRe, (8) for TDe - TRe ! t 6 Tp - TRe , 
and (9) for Tp - TRe j t. 

Bounds for the time, given the unit step 

response voltage, are possible because the voltage 

is a monotonic function of time (a fact proven in 

[I]). Of course 

TDe =~kRkeCk (I) t ~ 0 

(8) 

has the dimensions of time, and is equal to the 

first-order moment of the impulse response, which 

has been called "delay" by Elmore [3]. Next, define 

for each output e two quantities that also have 

the dimensions of time, 

(9) 

Tp = ~k RkkCk (2) 

TRe = (~k R~eCk)/Ree" (3) 

All three summations extend over all the capacitors 

of the network. Each of these three quantities 

plays a role in the final delay formulas, but none 

of them is equal to the delay. Each can be computed 

easily, even in the presence of distributed lines, 

and while TRe is in g~neral different for 

(10) 

and in addition, (5) and (6) can be inverted to 

yield 

t ~ TDe - Tp[l - Ve(t)] (11) 

t ~ TRe in 
TDe 

Tp[l - Ve(t)] 
(12) 

and (8) and (9) yield 

t < TDe 
TR e 

- 1 - Ve(t) 

t _< Tp - TRe + Tp in 
TDe 

Tp[l - Ve(t)] 

(13) 

(14) 
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Figure I. 
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Figure 2. Linear-circuit model for the network of Figure I. The 

voltage source is a step at time t = 0. 
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Figure 3. Illustration of resistance terms. For this network, 

Rke = R I + R2, Rkk = R 1 + R 2 + R3, and Ree = R 1 + R 2 + R 5. 
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Figure 4. Form of the bounds, with the distances 

from the exact solution exaggerated for clarity. 
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Figure 5. Example network. Parameter values 

are in ohms and farads. 
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Figure 6. 
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Upper and lower bounds for the network in Figure 5, with a saturated ramp input. 

The exact solution, found from circuit simulation, is shown also. 
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where (14) only applies if Ve(t) ~ I - TDe/T P. The 

general form of all these bounds is illustrated in 

Figure 4. 

Arbitrary Input Waveforms 

Bounds for the response Ye(t) of an RC tree 

to an arbitrary excitation x(t) can be obtained 

from the bounds Vue(t ) and Vle(t) just derived 

for the unit step response Ve(t). 

First, the superposition integral can be used 

to obtain Ye(t) as 

~0 t dx(t') 
- -  dt" Ye(t) = Ve(t - t') dt" 

= Ve(t) * dx/dt 

where * denotes time convolution. From 

(15) 

Vle(t) J Ve(t) ! Vue(t) 

one obtains, if dx/dt ~ O, 

or if 

where 

(16) 

Vle(t) * dx/dt ! Ye (t) ! Vue(t) * dx/dt (17) 

dx/dt < 0, 

Vue(t) * dx/dt ! Ye (t) J Vle(t) * dx/dt (18) 

Vue(t) and Vle(t) are known analytically. 

From (17) it can be seen that bounds for the ramp 

response can be obtained simply by integrating the 

unit step bounds. Equations (17) and (18) apply for 

monotonic inputs. 

The general case, where the excitation x(t) 

has both positive and negative slopes, is treated 

elsewhere [I]. 

As an illustration of the use of these 

relations, consider the network of Figure 5, excited 

with a saturated ramp. The actual response 

(calculated from an expensive simulation) is shown 

along with the upper and lower bounds, from (17), in 

Figure 6. 

Practical Algorithms 

One way to use the inequalities of the previous 

sections is to consider the overall RC tree, and 

compute for each capacitor the appropriate Rke and 

Rkk so that Tp, TDe , and TRe for each output 
can be found. Of course for distributed lines the 

sums are replaced by appropriate integrals. In this 

approach, the calculations necessary for each output 

require time proportional to the square of the 

number of elements. 

An alternate approach is to build up the 

network by construction, and calculate independently 

for each of the partially constructed networks 

enough information to permit the final calculation 

of Tp, TDe , and TRe. The computation time for 

each output is then proportional to the number of 

elements, rather than the square of the number. 

Programs that implement this approach appear 

elsewhere, in both a restricted form [2] and a more 

general form [I]. 

Conclusions 

A computationally efficient method for 

calculating the signal delay through MOS 

interconnect lines with fanout has been described. 

Tight upper and lower bounds for the step response 

of RC trees have been presented. Linear-time 

algorithms exist for calculating these bounds from 

an algebraic description of the tree. Substantial 

computational simplicity is achieved even in the 

presence of RC distributed lines by representing 

the RC tree by a small set of suitably defined 

characteristic times, which can be calculated by 

inspection and used to generate the bounds. 
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