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ABSTRACT
( )One of the major challenges of on-site partial discharge PD measurements is the

recovery of PD signals from a noisy environment. The different sources of noise in-
clude thermal or resistor noise added by the measuring circuit, and high-frequency
sinusoidal signals that electromagnetically couple from radio broadcasts andrrrrror
carrier wave communications. Sophisticated methods are required to detect PD

( )signals correctly. Fortunately, advances in analog-to-digital conversion ADC
( )technology, and recent developments in digital signal processing DSP enable easy

extraction of PD signals. This paper deals with the denoising of PD signals caused
by corona discharges. Several techniques are investigated and employed on simu-
lated as well as real PD data.

Index Terms — FFT, LMS, matched filtering, notch filtering, partial discharge
( ) ( )PD , PD models, real PD data, recursive least squares RLS , short-time Fourier

( ) ( )transform STFT , wavelets, Wigner-Ville distribution WVD .

1 INTRODUCTION

HEN high voltages are applied across insulators withWdefects, the insulators may either totally breakdown,
Ž .or partial discharges PDs may occur. Partial discharges

are localized discharges confined to the insulation system.

They are caused due to the presence of weak spots, such

as voids in the insulation where degradation takes place.

It is well known that PD measurements are widely em-
w xployed in testing power apparatus after manufacture 1 .

However, there is a recent trend to extend them to on-site

measurements, where the major problem encountered is

the strong coupling of external noise, particularly discrete
Ž .spectral interference DSI . For a sensitive PD measure-

Manuscript recei®ed on 12 March 2003, in final form 13 April 2005.

ment, these disturbing signals have to be rejected. In the

case of development and routine tests, the PD measure-

ments are carried out in the manufacturer’s shielded labo-

ratories, with filtered mains, to reach the demanded mea-

surement sensitivity. However, the problems faced in PD

measurements performed in unshielded laboratories as

well as on-site conditions, is the strong coupling of exter-

nal noise, particularly from broadcasting stations. This

noise can be suppressed by several analog and digital

techniques.

Ž .The giant strides made in digital signal processing DSP

techniques provide a vast scope for significant reduction

of these types of interference. Several of these techniques
w xhave been discussed in the literature 2-10 . In this paper,

different denoising techniques are applied to simulated PD

1070-9878rrrrr05rrrrr$20.00 � 2005 IEEE
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data as well as real PD data obtained from the Depart-

ment of High Voltage Engineering, Indian Institute of

Science, Bangalore, India. The PD data is obtained from

corona discharges. The simulated PD data is acquired

from a standard PD model, an ac stochastic model pro-
w xposed in 11 . The PD pulse shape employed is also ob-

w xtained from the literature 8, 12 . We have considered sev-
w xeral DSP techniques 13-23 , such as short-time Fourier

Ž . Ž .transform STFT and Wigner-Ville distribution WVD -

based denoising methods to recover the PD pulses.

The paper is organized as follows: Section 2 describes

the PD model and the PD pulse shape used in this paper.

Section 3 discusses the noise model used for the simu-

lated PD data and Section 4 describes the set-up used to

obtain real PD data. Section 5 explains the various denois-

ing techniques employed in this paper. Section 6 discusses

the results obtained and Section 7 concludes the paper.

2 PD MODEL AND PULSE SHAPE

Ž .Partial discharge PD models can be divided into two
Ž . Ž .types: a deterministic and b stochastic. In the case of

deterministic models, a discharge is assumed to occur as

soon as the local electric field exceeds the PD inception

field, as opposed to a stochastic model where a time lag is

caused while waiting for an initial electron to trigger a

discharge. In this paper, we use a stochastic model to pre-

dict the time of occurrence of partial discharges. This

model has been shown to produce results that are very
w xclose to experimental data 11 .

2.1 ac STOCHASTIC MODEL

w xIn this model 11 , a PD process is treated as a stochas-

tic process consisting of short duration discharges and

charge carrier driftrrecombination intervals between these

discharges. Two assumptions are made:

.1 The physical parameters of the PD system are time-in-

dependent, except for space or surface charges around the

PD defect, which may drift and recombine in the electric

field.

.2 It is sufficient to consider the resulting electric field,

E , being produced by the charge distribution at the PDi

defect. Thus, the time-dependent part of the physical state

of the PD system is completely described by the internal

field E .i

During a discharge at time t, the total electric field
Ž .E t is given bytot

E t sE t qE t , 1Ž . Ž . Ž . Ž .tot o i

Ž Ž .This field drops to a residual field � E q E if E tres res tot

. Ž .� 0 and vice versa , where E t is the external drivingo

field. The driftrrecombination process changes E accord-i

ing to the following differential equation:

Ė t s f E t , E t . 2Ž . Ž . Ž . Ž .Ž .i i o

Figure 1. Typical electric field plots for the AC stochastic model.

Ž .If the exact way in which E t decays is not very impor-i

tant, we can take

� Ei
Ė t s . 3Ž . Ž .i

�dec

Ž .Both processes, i.e., discharge jump of E and driftrre-i

Ž .combination continuous change of E are coupled by thei

discharge probability in the following way. Let c�dt be the

probability that a fast discharge occurs in the time interval
� 4t , tqdt . We have,

csc E t , E t . 4Ž . Ž . Ž .Ž .i o

ŽThe value of c is zero when E is less than E thetot inc

.inception field and for E � E , it depends on thetot inc

mechanism of first electron supply. Hence, the PD pro-

cess is completely determined by the parameters c, E , fres

Ž Ž . Ž .. Ž . Ž .E t , E t and E t . Typical random trajectories ofi o o

Ž . Ž .E t and E t for a corona discharge are shown in Fig-i tot

ure 1. The parameter values used in the simulation are

shown in Table 1.

2.2 PD PULSE SHAPE

Having modelled the location of partial discharge oc-

currences, we need to simulate the shapes of PD pulses as
w xwell. It has been shown in the literature 8, 12 that real

PD pulses can be represented by a double-exponential

function of the form

f t sexp � tr� �exp �2 tr� . 5Ž . Ž . Ž . Ž .

The time constant � is chosen to be 5 �s.

Ž .Table 1. Parameter values used in simulation Corona discharge .

y1 ˆŽ . Ž .c s � s E Eo r es

3 y6ŽŽ Ž . . .E t y1r0.025 120�10 1.08 0.5t o t

ˆNote: E and E are given in terms of E .o res inc
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3 NOISE MODEL

On-site PD measurements are seriously affected by in-

terference signals arising from different sources. Thermal

or resistor noise is added by the measuring circuit, whereas

the high-frequency sinusoidal signals from radio broad-

casts andror carrier wave communications are electro-

magnetically coupled and their amplitude is usually higher

than that of the PD signal itself.

A typical on-site PD measurement system is modelled
w xin 7 . According to this model, the PD pulses are affected

by white Gaussian noise and high-frequency sinusoidal

noise. The sinusoidal noise component, also referred to as
Ž .discrete spectral interference DSI , is made up of 10-11

high-frequency sinusoids at different power levels.

4 ACQUISITION OF REAL PD DATA

The real data for corona discharge was acquired with

the setup shown in Figure 2. The test object, in this par-

ticular instance happens to be a point-plane gap to pro-

duce corona pulses. This is a very simple type of PD with

periodic and regular pulses, also termed as ‘trichel pulses’.

The PD current pulse is generated and starts flowing

through C and Z , and is sensed by the measuringb m

impedance Z . Some part of the current flows throughm

the transformer also. Here, a PD-free transformer is used

so that the PD pulses due to the test object alone can be
Žgathered. Since the voltages used are low in the range of

.3 to 10 kV such a PD-free condition is easily met. The

input to the HV transformer is controlled using a variac.

In reality, the bad contacts of the variac, harmonics and

extraneous pulsed interferences generated elsewhere in a
Žpower system e.g., from thyristor drive circuits, arcing

.contacts, SMPS, etc. are conductively coupled into the

measuring circuit. So, sometimes a series high frequency
Ž .HF filter is used at the input, and also a parallel rejec-

tion filter is used in series between the HV transformer

output and the test object. However, since our goal was to

study interferences, such a filter was not used in this case.

Figure 2. Test setup for acquiring real PD data.

The measuring impedance Z is a passive parallel RLCm

combination, which has a bandpass characteristic. This,
Žtogether with an active bandpass filter the heart of the

.PD detector -cum amplifier, performs the task of ‘quasi-
Žintegration’ and assists in separating the PD pulses of very

.low amplitude buried in the capacitive displacement cur-

rents of relatively large magnitudes. The f1 and f2 values
Ž .of the bandpass filter which are switchable were set to

10 and 300 kHz, respectively. The peak of the quasi-in-

tegrated pulse is proportional to the charge of the PD
Ž .pulses due to the calibration procedure , and hence is

used as a measure of insulation degradation. These repet-

itive quasi-integrated PD pulses occur in both half cycles

of the applied sine wave. The digitizer samples these and

acquires them, which in turn are transferred into a per-
Ž .sonal computer PC via the general purpose instrumenta-

Ž .tion bus GPIB . We have used the HP VEE graphical

programming environment to control the transfer of data.

5 DENOISING TECHNIQUES

Various techniques have been mentioned in the litera-

ture to extract the PD pulses from noisy data. In addition

to this, we have also implemented time-frequency analysis

methods, such as STFT and WVD-based methods. The

different DSP techniques investigated in this paper are

listed in Table 2.

A brief description of these denoising techniques is

given below:

5.1 FAST FOURIER TRANSFORM
( )FFT -BASED DENOISING

Ž .Given a sequence of N samples f n , indexed by n s

Ž .0,1,..., N-1, the discrete Fourier transform DFT is de-

fined as

N �1
� j2� k nrNF k s f n e , ks0,1,..., N �1. 6Ž . Ž . Ž .Ý

ns 0

Ž .F k are often called the ‘Fourier Coefficients’ or
Ž .‘Harmonics’. The sequence f n can be calculated from

Ž . Ž .F k using the inverse discrete Fourier transform IDFT :

N �11
j2� k nrNf n s F k e , ns0,1,..., N �1. 7Ž . Ž . Ž .Ý

N ks 0

Ž .The fast Fourier transform FFT is a DFT algorithm that

reduces the number of computations for N points from
2 Ž . w x2 N to 2 N log N . In FFT-based signal denoising 9 ,2

the FFT of the signal is taken, and the FFT coefficients

above a certain threshold are dropped. Then, the signal is
Ž .reconstructed using an inverse FFT IFFT . This method

is mainly used to remove the sinusoidal noise, which has

pronounced peaks in the frequency domain. We have used

two kinds of FFT-based techniques, one with a constant

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 19,2010 at 13:18:14 UTC from IEEE Xplore.  Restrictions apply. 
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Table 2. Denoising Techniques.

Method
No. Denoising Technique

Ž .1a Fast Fourier Transform FFT , constant threshold
Ž .1b Fast Fourier Transform FFT ,

frequency-dependent threshold
Ž .2a Low-pass filtering Butterworth filter
Ž .2b Low-pass filtering Chebyshev filter
Ž .2c Low-pass filtering Inverse Chebyshev filter
Ž .2d Low-pass filtering Elliptic filter

Ž .3a Wigner-Ville Distribution WVD
Ž .3b Wigner-Ville Distribution WVD

Ž .4a Short-Time Fourier Transform STFT
Ž .4b Short-Time Fourier Transform STFT

Ž .5a Least Mean Squares LMS
5b Leaky LMS
5c Sign-error LMS
5d Sign-data LMS
5e Sign-sign LMS
5f Normalised LMS
5g Kurtosis-driven LMS
5h Kurtosis-driven LMS
5i Adaptive Recursive LMS
5j Cascade adaptive filtering
6a Frequency-Domain Adaptive Filtering

Ž .FDAF using DFT
6b Frequency-Domain Adaptive Filtering

Ž .FDAF using DCT
6c Frequency-Domain Adaptive Filtering

Ž .FDAF using DWT
Ž .7a Recursive Least Squares RLS

7b Exponentially-Weighted Recursive Least
Ž .Squares EWRLS

8 Matched Filtering
9a Notch filtering, algorithm 1,

direct implementation
9b Notch filtering, algorithm 1,

lattice filter implementation
9c Notch filtering, algorithm 2,

direct implementation
9d Notch filtering, algorithm 2,

lattice filter implementation
Ž .10a Wavelet-based Thresholding
Ž .10b Wavelet-based Mallat’s algorithm

Ž .threshold for all frequencies Method 1a and the other

with the threshold varying according to the formula,

2�thresholds j �1 60q10, js1,..., l , 8Ž . Ž .

Ž .where an l � point FFT is taken Method 1b .

5.2 LOW PASS FILTERING

The PD pulses are concentrated in the low frequency

region, whereas the sinusoidal components are usually in

the high frequency region. Hence, for low levels of white

noise, a low pass filter can extract the PD pulses effi-
w xciently. The different kinds of digital low pass filters 13

considered in this paper are shown in Table 3. The cut-off
Žfrequency specified is the normalised value a value of 1

.corresponds to half the sampling rate . Increasing the fil-

ter order improves the performance of the filter.

5.3 WIGNER-VILLE DISTRIBUTION
( )WVD -BASED DENOISING

The WVD of a signal is a time-frequency representa-
w xtion of the signal 14 . It is given by

N �11
� j� mŽ2 k � n.rNW n ,m s x x e . 9Ž . Ž .Ýx k n� k

2 N ks 0

w xIn 15 , the signal is segmented into blocks and the WVD
Ž Ž ..of each block W t, f is taken and processed as fol-x

Ž .lows. At every time t, W t, f is integrated in a smallx

Ž .range about a centre frequency f i.e., f � � f, fq� f . If

this value exceeds a pre-set threshold, it indicates the

presence of a signal at time t. The basis of this method is

the fact that the WVD is a quadratic time-frequency rep-

resentation, as evidenced by the following equation:

�
2� �W t , f dfs x t 10Ž . Ž . Ž .H x

��

Ž .In this method Method 3a , the signal is divided into

blocks of length 100, � f is taken to be 20 Hz and the

threshold chosen is 0.3.

Ž .An alternative WVD-based method Method 3b in-
w xvolves masking of the time-frequency response 16 . As

before, the signal is divided into blocks of length 100 and
Ž . Ž .W n,� is calculated. This is then multiplied by H n,� ,x

which is a 2-D matrix with ones in the frequency range of

the signal and zeroes elsewhere. This has the effect of

masking the noise components.

Y n ,� sW n ,� H n ,� 11Ž . Ž . Ž . Ž .x

Ž . Ž .If the desired signal, s n , satisfies s n s 0, n � n ando

Ž .n G n qL, then it can be reconstructed from Y n,� byo

w xthe synthesis algorithm given in 16 .

5.4 SHORT-TIME FOURIER TRANSFORM
( )STFT -BASED DENOISING

The STFT of a signal is another time-frequency repre-
w xsentation of the signal 14 . The expression for the STFT

is given by:

N �1
� j2� k mrNS n ,m s x k w n� k e , 12Ž . Ž . Ž . Ž .Ý

ks 0

Table 3. Low-pass filter characteristics.

Method No. Filter type Order Cut-off frequency Passband Stopband

2a Butterworth 3 0.5r� � �
2b Chebyshev 3 0.5r� 0.5 dB ripple �
2c Inverse Chebyshev 3 0.5r� � ripple 20 dB down
2d Elliptic 3 0.5r� 0.5 dB ripple ripple 20 dB down
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( ) ( ) ( )which is nothing but the DFT of x k w n� k . Here w n

represents the finite-length window. Usually a Hanning

window is used. The length of the window determines the

time and frequency resolutions of the STFT. Reducing this

length produces a reduction in the frequency resolution

and an increase in the time resolution. Increasing the

length has the opposite effect.

Ž .The first denoising scheme Method 4a involves calcu-

lating the STFT of the input signal, multiplying it by a 2D
Ž .array of ones and zeroes masking and then reconstruct-

w xing the signal from the modified STFT 17 . One such re-
Žconstruction method which minimizes the distance mea-

.sure is given by

�

w m� n f nŽ . Ž .Ý m

ms��
x n s , 13Ž . Ž .�

2w m� nŽ .Ý
ms��

Ž . Ž Ž . .where f n s IDFT S n,k , for n s m.m

Ž .The second method Method 4b involves estimating the
w xsignal from the modified STFT magnitude 17 . First the

STFT magnitude of the input signal is calculated. Then, a
Žfirst estimate of the actual signal x usually white noise,i

.i.e., mean 0 and variance 1 is made, its STFT is calcu-

lated and that STFT magnitude is replaced by the avail-

able STFT magnitude. Then, the signal is estimated using
Ž .the previous method 13 and this is taken as the next

estimate of the signal, x . The above process is theniq 1

repeated for a total of 10 iterations.

( )5.5 LEAST MEAN SQUARES LMS
APPROACH

The LMS method is an adaptive, iterative gradient
w x w xsearch method, discussed in 18 and 19 . Its update equa-

tion is given by:

W nq1 sW n q��e n �X n , 14Ž . Ž . Ž . Ž . Ž .

where W is filter coefficient vector, e an error vector, i.e.,

the difference between the desired filter output and the

actual filter output and X an input vector.

The desired signal is taken to be either the input signal

itself, or the input delayed by one sample. The first LMS-
Ž . Ž .based denoising method Method 5a implements 14 .

Here, the length of the filter is chosen to be 10 and �s 7

� 10y7. Several variants of the LMS algorithm are also

implemented in this paper.

. [ ] Ž .1 The leaky LMS algorithm 19 : Here Method 5b , the

update equation is

W nq1 s	�W n q��e n �X n . 15Ž . Ž . Ž . Ž . Ž .

	 is a constant leakage factor lying between 0 and 1.

Leakage allows the impact on the filter coefficient vector

of any single input sample to decay with time. The filter

length is chosen to be 10, 	 s 0.9 and � s 7 � 10y7.

w xThe following three methods 19 reduce the computa-

tional cost but are not as efficient.

. Ž .2 Sign-error LMS or Pilot LMS: Here Method 5c , the

update equation is

w xW nq1 sW n q��sgn e n �X n . 16Ž . Ž . Ž . Ž . Ž .

The filter length is chosen to be 10 and � s 3 � 10y6.

. Ž .3 Sign-data LMS or Clipped LMS: Here Method 5d , the

update equation is

w xW nq1 sW n q��e n �sgn X n . 17Ž . Ž . Ž . Ž . Ž .

The filter length is chosen to be 10 and � s 3 � 10y20.

. Ž .4 Sign-sign LMS or Zero-forcing LMS: Here Method 5e ,

the update equation is

w x w xW nq1 sW n q��sgn e n sgn X n . 18Ž . Ž . Ž . Ž . Ž .

The filter length is chosen to be 10 and � s 3 � 10y6.

. [ ] Ž .5 Normalized LMS 18 : This method Method 5f is used

to prevent instability in the LMS algorithm:

W nq1 sW n q��e n �X n r 	 q X T n �X nŽ . Ž . Ž . Ž . Ž . Ž .Ž .
19Ž .

Here the filter length is 10, � s 7 � 10y10 and 	 s 0
w x18 .

. [ ]6 Kurtosis dri®en LMS 20 : Two methods are employed

here. Both use the ‘kurtosis’ of the error which is defined
Ž 4Ž .. Ž 2Ž ..as C s E e n - 3E e n . Method 5g uses the fol-

lowing update equation:

� �W nq1 sW n q�� C �e n �X n . 20Ž . Ž . Ž . Ž . Ž .

Here, the length of the filter is 10 and � s 7 � 10y8

w x20 . Method 5h uses the following update equation:

W nq1 sW n q� � 1� e � 
 �C � �e n �X n . 21Ž . Ž . Ž . Ž . Ž . Ž .max

We have used a filter length of 10, 
 s 7 � 10y10 and

� s 100.max

. [ ] ( )7 Adapti®e recursi®e LMS 19 Adapti®e IIR filtering :
Ž .This method Method 5i is governed by the following set

of equations:

N NF B

y n s a x n� k q b y n� k 22Ž . Ž . Ž . Ž .Ý Ýk k

ks 0 ks1

T w xA s a ,a ,���,a 23Ž .o 1 NF

TB s b ,b ,���,b 24Ž .1 2 NB

A nq1 s A n �2k e n X n 25Ž . Ž . Ž . Ž . Ž .1

B nq1 sB n �2k e n Y n 26Ž . Ž . Ž . Ž . Ž .2

Here N s N s 30, k s10y5 and k s 10y10.B F 1 2

. [ ]8 Cascade adapti®e filtering 21 : The convergence can be

improved by cascading a number of adaptive filters
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Ž .Method 5j . If l denotes the length of each filter, Mk

Ž .denotes the number of stages, and x n the input to stagek

k then, the following equations define the system:

x n s X n 27Ž . Ž . Ž .1

x n s e n 28Ž . Ž . Ž .kq1 k

lk

me n s x n � w n x n� m , ms1,���, MŽ . Ž . Ž . Ž .Ýk k k k

ks1

29Ž .

We have used M s 10, l s 2 and � s 7 � 10y7.k

5.6 FREQUENCY-DOMAIN ADAPTIVE
( ) [ ]FILTERING FDAF 18, 19

Adaptive filtering can be done in the frequency domain
Ž .FDAF as well, in which case it is computationally effi-

cient compared to the LMS algorithm. The update equa-

tion in this case is given by

W nq1 sW n q��e n �X � n , for is1,..., N , 30Ž . Ž . Ž . Ž . Ž .i i i

where W, e, X are the DFTs or discrete cosine transforms
Ž . Ž .DCTs or discrete wavelet transforms DWTs of the cor-

responding quantities in the time-domain and N is the
w xfilter length. The DCT of an N-point sequence, x n , is

w xgiven by 18 :

N �1 2nq1 k�Ž .
w x w xC k s x n cos ks0,..., N �1.Ý ž /2 Nns 0

31Ž .

The DCT is a real transform unlike the DFT. The DWT

is discussed in Section 5.10. It can be shown that the LMS

algorithm requires 2 N 2 q N real multiplications, while
Ž . Ž .the FDAF using the FFT requires 3N log Nr2 q 4N2

multiplications.

We have implemented three kinds of frequency domain

adaptive filters. All of them use N s 8, � s 7 � 10y7.

Method 6a uses the DFT, method 6b uses the DCT and
Žmethod 6c uses the DWT with a Daubechies wavelet -

.db9 .

( )5.7 RECURSIVE LEAST SQUARES RLS
AND EXPONENTIALLY WEIGHTED

( )RECURSIVE LEAST SQUARES EWRLS
[ ]METHODS 19

The weaknesses of the LMS method are:

.1 It is slow.

.2 It exhibits generally non-uniform convergence.

To overcome these pitfalls, the recursive least squares
Ž . Ž .RLS method Method 7a has been proposed. This

method can be described by the following recursion pro-

cedure:

R �1 n�1 X n X T n R �1 n�1Ž . Ž . Ž . Ž .
�1 � 1R n sR n�1 �Ž . Ž . T � 11q X n R n�1 X nŽ . Ž . Ž .

32Ž .

Ž . �1Ž .Initialize W 0 , R �1 . Then for n s 0, 1,...

e n sd n �W T n X n 33Ž . Ž . Ž . Ž . Ž .

W nq1 sW n q
�R �1 n �e n �X n 34Ž . Ž . Ž . Ž . Ž . Ž .

ŽWe have used a filter length of 10 and 
 the weighting
. y7factor s 7 � 10 .

Ž .Another related method Method 7b , which has been

proposed, is the exponentially weighted RLS method
Ž .EWRLS . Its recursion equations are:

e n sd n �W T n�1 X n 35Ž . Ž . Ž . Ž . Ž .

1

 n s 36Ž . Ž .T � 1�q X n R n�1 X nŽ . Ž . Ž .

W nq1 sW n q
 n �R �1 n�1 �e n �X n 37Ž . Ž . Ž . Ž . Ž . Ž . Ž .

R �1 nŽ .

R �1 n�1 � 
 n R �1 n�1 X n X T n R �1 n�1Ž . Ž . Ž . Ž . Ž . Ž .
s

�

38Ž .

Usually 0 � � F 1. � � 1 implies that more weight is

given to the most recent errors. This is useful in the case

of non-stationary data. We have used a filter length of 10

and � s 0.95.

Even though the RLS and EWRLS methods converge

faster than the LMS method, it should be noted that they

are computationally more expensive.

[ ]5.8 MATCHED FILTERING 8

A matched filter arrangement, where the impulse re-
Ž .sponse of the filter h t is matched to the signal input

Ž .� t , is described by

h t s� T � t , 39Ž . Ž .Ž .o

where T corresponds to the sampling period. The outputo

Ž .signal-to-noise ratio SNR is maximum for a matched fil-

ter. Method 8 uses a matched filter.

5.9 NOTCH FILTERING

A notch filter can be used to remove the sinusoidal noise

present in the signal. The transfer function for a notch
w xfilter 22 is given by:

1� re j z �1 � 1� re � j z �1Ž . Ž .
H z sŽ . j � 1 � j � 11� 
 re z � 1� 
 re zŽ . Ž .

1qw z �1qw z � 2
1 2

s , 40Ž .
�1 � 21q
 w z q
 w z1 2

where w s �2 rcos , w s r 2 and 
 is a parameter1 2

which determines the bandwidth of the notch. In this

method, the notch is implemented using an infinite im-
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Ž .pulse response IIR lattice notch filter, whose transfer

function is given by

1qk 1qk z �1qk z � 2Ž .o 1 1
H z s . 41Ž . Ž .

�1 � 21qa 1qa z qa zŽ .o 1 1

The constraints to be satisfied for this to be a notch filter
w x Ž .are given in 22 . Two adaptation algorithms 1 and 2 pro-

w xposed in 22 have been implemented in this paper. We

have used � s 0.9023 and 
 s 0.9025. Methods 9a and

9b use adaptation algorithm 1, whereas methods 9c and

9d use adaptation algorithm 2. Methods 9a and 9c imple-

ment the filter directly, whereas the other two, implement

lattice filters.

5.10 WAVELET DENOISING

w xAn excellent introduction to wavelets is given in 23 .
Ž .The wavelet expansion for a function f t is given by

f t s a � t , 42Ž . Ž . Ž .ÝÝ j,k j ,k

k j

Ž .where both j and k are integer indices and the � t arej,k

the wavelet expansion functions that usually form an or-

thonormal basis. The set of coefficients a are called thej,k

Ž . Ž .discrete Wa®elet transform DWT of f t .

Two denoising methods based on wavelets have been

implemented in this paper. The first one uses threshold-
w xing of wavelet coefficients 23 and the second one uses

w xMallat’s algorithm 7 .

5.10.1 DENOISING BY THRESHOLDING
[ ]23

Donoho has proposed the following scheme for denois-

ing:

. Ž .1 Compute the discrete wavelet transform DWT of the

noisy signal.

.2 Perform thresholding.

Hard thresholding:

� �x t , if x t � �Ž . Ž .
thresholded value � t s 43Ž . Ž .� ½ 0, otherwise

Soft thresholding:

thresholded value � tŽ .�

� � � �sgn x t � x t � � , if x t � �Ž . Ž . Ž .Ž . Ž .
s 44Ž .½ 0, otherwise

.3 Reconstruct the signal by performing an inverse DWT
Ž .IDWT with the thresholded coefficients.

Ž .This method Method 10a is based on the property of

the wavelet coefficients, forming an unconditional basis.

This means that the wavelet coefficients drop off rapidly

and this property is useful in removing noise. The

MATLAB� routine ‘wden’ was used for this method. The

threshold selection rule was based on the principle of

Stein’s unbiased risk. Soft thresholding was performed with

no multiplicative threshold rescaling. Wavelet decomposi-
Žtion was performed at level 3 using the biorthogonal ‘bior

.4.4’ wavelet.

5.10.2 DENOISING USING MALLAT’S
[ ]ALGORITHM 7

Ž .Here Method 10b , using Mallat’s algorithm, the signal

is decomposed into several scales, the detail coefficients

are neglected and the signal is reconstructed using only

the approximation coefficients. This is done because sig-

nificant information about the noise components is con-

tained in the detail coefficients and hence by neglecting

them, we eliminate the noise. A 3 level decomposition was
Ž .performed using Daubechies wavelet ‘db10’ .

6 RESULTS

The denoising methods have been evaluated by apply-

ing them to both simulated and real PD data. To obtain

the simulated PD data, the time of occurrence of partial

discharges is simulated using the stochastic PD model

given in Section 2 and noise is added according to the

model given in Section 3. 20,000 samples of the input sig-

nal are taken, with the separation between any two sam-

ples being 1 �s. Therefore, the sampling rate is 1 MHz.

The methods are characterized on the basis of their mean
Ž .square errors MSEs and the time taken to perform de-

noising. For a particular method, if X denotes the noisy

PD sequence and Y denotes the denoised output se-

quence, the normalized MSE between the input and out-

put sequences is defined as

n
2w xY i � X iŽ . Ž .Ý

is 0
MSEs , 45Ž .2n�n

where n is the number of samples for which X is defined
Ž . 2i.e., the PD pulse region , and � is the total noise power.n

Ž .As can be seen from equation 45 , if the method rejects

all the noise components, the MSE is unity. In other words,

the closer the MSE of a method is to unity, the better the

method is at extracting the PD pulses. We have calculated

the MSE of a particular denoising method as the mean of

the MSEs at four different noise power levels. The results

are shown in Table 4.

It can be seen from Table 4 that the MSEs of the low-
Ž .pass filtering methods Methods 2a-2d and the wavelet

Ž .denoising methods Methods 10a, 10b are closest to unity.

The low-pass filtering methods are also the fastest ones
Ž .on the basis of computation time . These methods,

though, will not perform effectively when low-frequency

noise components are present. We conclude, therefore,

that the wavelet denoising methods are the best in extract-

ing the PD pulses. The performance of the wavelet de-

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 19,2010 at 13:18:14 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Transactions on Dielectrics and Electrical Insulation Vol. 12, No. 6; December 2005 1189

Table 4. Performance of the denoising methods.

Ž .Method MSE Time taken s

1a 0.9502 20.5645
1b 0.9536 20.4195
2a 0.9789 0.3978
2b 1.0045 0.1055
2c 0.9835 0.2428
2d 0.9809 0.7513
3a 2.8618 830.275
3b 1.0421 250.8
4a 1.0202 132.1875
4b 1.1629 788.01
5a 0.9659 5.558
5b 3.5526 5.8008
5c 0.9714 22.9203
5d 0.9669 24.118
5e 0.9652 24.769
5f 0.9484 13.2265
5g 0.9649 12.245
5h 0.9626 12.7538
5i 0.9539 23.6843
5j 2.9626 15.0965
6a 0.8751 8.4895
6b 0.8758 8.2545
6c 0.8735 106.618
7a 1.0600 7.2633
7b 0.9662 16.524
8 1.1772 19.3005

10a 0.9822 1.7298
10b 0.9870 53.885

noising method using Mallat’s algorithm is illustrated in

Figure 3. Methods 3a, 5b and 5j have the worst MSEs and

are hence the worst methods. It is also observed that

Methods 3b and 4b do not recover the sign of the PD

pulses.

Ž .The notch filtering methods Methods 9a-9d are char-

acterized by adding only sinusoidal noise. The perfor-

mance of these methods is shown in Table 5. It is ob-

served that the notch filtering methods using adaptation

ŽFigure 3. PD pulse recovery using wavelet-based denoising Mallat’s
.algorithm .

Table 5. Performance of the notch filters.

Ž .Method MSE Time taken s

9a 0.9648 2.4083
9b 0.6602 2.2080
9c 0.9728 1.3470
9d 0.9693 1.3470

Figure 4. Notch filtering q wavelet-based denoising of real PD
data.

Ž .algorithm 2 refer Section 5.9 , i.e., methods 9c and 9d

perform much better. They also denoise the input signal

faster.

The real PD data is considerably noisy, and it is diffi-

cult to distinguish between partial discharge pulses and
Ž .noise. The notch filters Methods 9c and 9d best extract

the PD pulses. This indicates a high sinusoidal noise con-

tent in the real PD data. As seen in Figure 4, the notch

filter removes the low frequency, high amplitude interfer-
Ž .ence. Additional wavelet denoising Methods 10a, 10b

smoothens the signal, and makes it easier to locate the

PD pulses. With this combined usage of notch filtering

and wavelet denoising, partial discharge pulses are identi-

fied correctly. We conclude, therefore, that this combina-

tion can be used to extract PD pulses due to corona from

a mixture of sinusoidal and white Gaussian noise, effec-

tively.

7 CONCLUSION

In this paper, we looked at the problem of denoising

PD signals caused by corona discharges. Several denoising

methods were evaluated by applying them to both simu-

lated and real PD data. The methods were characterized

on the basis of their mean square errors and the execution

time. It was observed that a combination of notch filtering

and wavelet-based denoising performs well on both simu-

lated and real PD data.
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