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1. Introduction

Unveiled your love shines everywhere, wise man,

You who have a keen insight to see and scan;

Aims to point at the signals and the hidden—

Sometimes by allusion, sometimes boldly written.

If you happen to decode these signals you’ll descry

That here one answer to all these codes does lie:

That there is one only, and none but the one,

It is the sole being– there is no beloved but one.

-Hatef Esfehani (18th century)

The desire for interaction with the environment, and others of our kind lies
within the human nature— a key bottleneck to such an interaction is posed
by our information collection or sensing capabilities. Throughout history, we
have been trying to come up with smart ways to sense our environment. The
modern sensing systems can be categorized as
• Active systems, i.e. sensory systems that work based on probing the

environment with their self-generated energy.
• Passive systems, i.e. sensory systems that rely on detecting the naturally

occurring energy within the environment.
Man-made active sensing systems such as active radar and sonar have been

a vital part of our civilization’s advancement in navigation, defense, meteorol-
ogy, and space exploration. In the animal world, active sensing schemes are
used by bats and dolphins for positioning purposes. Interestingly, man-made
systems employ a set of techniques similar to those used by bats and dolphins
for collecting information (e.g. location and speed) of the targets. An active
radar emits radio waves (referred to as radar signals) toward the targets. A
portion of the transmitted energy is reflected by the targets and is received
by the radar receiver antenna. Thanks to the known speed of electromag-
netic wave, the radar system can estimate the location of the targets simply by
measuring the time difference between the radar signal transmission and the
reception of the reflected signal.

Modern active sensing systems rely heavily on the significant progress in
the science and technology of communications made within the last century.
Not surprising, the fast growing communications technology has changed each
and every aspect of our everyday lives. This thesis is concerned with signal
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design for improving the performance of active sensing and communication

systems: The target detection and estimation performance of the active sensing

systems can be considerably improved by a judicious design of the probing

signals. Similarly, signal design has a crucial role in the implementation and

efficiency of communication systems.

The theoretical and computational results in the field of signal design have

been of interest to both engineers and mathematicians in the last decades. A

signal design problem in active sensing or communications, in most cases,

boils down to the optimization of a signal quality measure. Indeed, signal

optimization for active sensing and communications usually deals with various

measures of quality, namely:

• Correlation and Spectral Metrics

• Signal-to-Noise Ratio (SNR) and Mean-Square Error (MSE)

Performance Metrics

• Information-Theoretic Criteria

• Sparsity-Related Metrics

• Beam-Pattern Matching Metrics

This thesis is organized in five parts each devoted to one of the above met-

ric categories. Moreover, we consider the design problems that include a set

of signal constraints, a challenge that arises in practical transmission scenar-

ios. Typical examples of practical signal constraints include a limited energy,

limited alphabet, or peak-to-average-power ratio constraints. Such a diversity

in design metrics and problems leads to many challenging research works in

signal design— up to this date, there are quite a few open problems in this

research field which are pretty easy to describe but deemed to be very difficult

to tackle!

1.1 Thesis Contributions

A summary of the thesis contributions will be provided in the following.

Part I: Correlation and Spectral Metrics

Chapter 2

Chapter 2 introduces a novel computational framework and a set of associated

algorithms to design (sets of) sequences with given autocorrelation properties.

As constrained (e.g. finite) alphabets are of interest in many applications, we

introduce a modified version of our general framework that can be useful in

these cases. The material in this chapter is based on the journal article
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• M. Soltanalian and P. Stoica, “Computational Design of Sequences with
Good Correlation Properties,” IEEE Transactions on Signal Processing,
vol. 60, no. 5, pp. 2180-2193, 2012.

Chapter 3

In Chapter 3, a fast frequency-domain optimization approach for designing
complementary sequences is proposed. This chapter is based on the journal
publication

• M. Soltanalian, M. M. Naghsh, and P. Stoica, “A Fast Algorithm for
Designing Complementary Sets of Sequences,” Signal Processing, vol.
93, no. 7, pp. 2096-2102, 2013.

Chapter 4

In this chapter, we study the problem of meeting peak periodic or aperiodic
correlation bounds for complex-valued sets of sequences. A theoretical im-
provement upon the well-known Welch bound in the aperiodic correlation case
is proposed. Moreover, a computational framework for meeting peak correla-
tion bounds is devised. The chapter is based on the journal article

• M. Soltanalian, M. M. Naghsh, and P. Stoica,“On Meeting the Peak Cor-
relation Bounds,” IEEE Transactions on Signal Processing, vol. 62, no.
5, pp. 1210-1220, 2014.

and its conference version published as

• M. Soltanalian, M. M. Naghsh, and P. Stoica,“Approaching Peak Corre-
lation Bounds Via Alternating Projections,” IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), Florence,
Italy, 2014.

Chapter 5

Chapter 5 presents a theoretical study of root-of-unity sequences with perfect
periodic correlation. Using the tools developed in this chapter, several contri-
butions are made to the current state-of-knowledge regarding the existence of
such sequences. The material in this chapter is based on the journal publica-
tion

• M. Soltanalian and P. Stoica, “On Prime Root-of-Unity Sequences with
Perfect Periodic Correlation,” IEEE Transactions on Signal Processing,
In press, 2014.

and a conference version published as

• M. Soltanalian and P. Stoica, “Perfect Root-of-Unity Codes with Prime
Size Alphabet,” in IEEE International Conference on Acoustics, Speech
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and Signal Processing (ICASSP). Prague, Czech Republic: IEEE, 2011,
pp. 3136-3139.

Chapter 6

Chapter 6 proposes a computational approach for designing polyphase se-
quences with two key properties; (i) a phase argument which is piecewise
linear, and (ii) an impulse-like autocorrelation. The proposed approach relies
on fast Fourier transform (FFT) operations and thus can be used efficiently to
design sequences with a large length or alphabet size. Chapter 6 is based on
the conference publication

• M. Soltanalian, P. Stoica, M. M. Naghsh and A. De Maio, “Design of
Piecewise Linear Polyphase Sequences with Good Correlation Proper-
ties,” 22nd European Signal Processing Conference (EUSIPCO), Lis-
bon, Portugal, 2014.

Part II: SNR and MSE Performance Metrics

Chapter 7

In this chapter, we have studied quadratic programming over unimodular (i.e.
constant-modulus) vector sets. Such an NP-hard formulation [1] arises quite
frequently in communications and active sensing1— particularly so, in the op-
timization of SNR and MSE performance metrics. A monotonically error-
bound improving technique (MERIT) was developed that can seek for the
global optimum, or the local optimum of the quadratic objective with good
sub-optimality guarantees (that are easily available at each iteration). The pro-
vided sub-optimality guarantees are case-dependent and may outperform the
π/4-approximation guarantee of semidefinite relaxation. As a result, the new
method may have the potential to become an alternative to semidefinite relax-
ation. The chapter is based on the publications

• M. Soltanalian and P. Stoica, “Designing Unimodular Codes Via Quadra-
tic Optimization,” IEEE Transactions on Signal Processing, vol. 62, no.
5, pp. 1221-1234, 2014.

• M. Soltanalian and P. Stoica, “MERIT: A Monotonically Error-Bound
Improving Technique for Unimodular Quadratic Programming,” IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Florence, Italy, 2014.

Chapter 8

Chapter 8 presents a SNR-based design of Doppler robust radar codes in the
presence of clutter. To this end, we approach the problem with both aver-
age and worst-case metric alternatives. We propose several algorithms under

1Please see [2] for several examples.
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two novel frameworks to solve the highly non-convex design problems. This
chapter is based on the publications

• M. M. Naghsh, M. Soltanalian, P. Stoica and M. Hashemi, “Radar Code
Design for Detection of Moving Targets,” IEEE Transactions on Aerospace

and Electronic Systems, In press, 2014.

• M. M. Naghsh, M. Soltanalian, P. Stoica and M. Hashemi, “Radar Code
Optimization for Moving Target Detection,” 21st European Signal Pro-

cessing Conference (EUSIPCO), Marrakech, Morocco, 2013.

Chapter 9

An efficient joint design of transmit and receive codes of active sensing was
proposed. Chapter 9 is based on the journal article

• M. Soltanalian, B. Tang, J. Li, and P. Stoica, “Joint Design of the Re-
ceive Filter and Transmit Sequence for Active Sensing,” IEEE Signal

Processing Letters, vol. 20, no. 5, pp. 423-426, 2013.

Chapter 10

Chapter 10 extends the design problem in Chapter 9 by further considering a
robustness objective with respect to unknown speed of the target (i.e. Doppler
robustness) in the presence of clutter. The chapter is based on the results from

• M. M. Naghsh, M. Soltanalian, P. Stoica, M. Hashemi, A. De Maio and
A. Aubry, “A Doppler Robust Design of Transmit Sequence and Receive
Filter in the Presence of Signal-Dependent Interference,” IEEE Transac-

tions on Signal Processing, vol. 62, no. 4, pp. 772-785, 2014.

• M. M. Naghsh, M. Soltanalian, P. Stoica, M. Hashemi, A. De Maio and
A. Aubry, “A Max-Min Design of Transmit Sequence and Receive Fil-
ter,” IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Florence, Italy, 2014.

Part III: Information-Theoretic Criteria

Chapter 11

A unified framework to handle signal optimization based on several information-
theoretic criteria is proposed in this chapter, which is based on the publications

• M. M. Naghsh, M. Hashemi, S. Shahbazpanahi, M. Soltanalian and P.
Stoica, “Unified Optimization Framework for Multi-Static Radar Code
Design using Information-Theoretic Criteria,” IEEE Transactions on Sig-

nal Processing, vol. 61, no. 21, pp. 5401-5416, 2013.
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• M. M. Naghsh, M. Hashemi, S. Shahbazpanahi, M. Soltanalian and P.
Stoica, “Majorization-Minimization Technique for Multi-Static Radar
Code Design”, 21st European Signal Processing Conference (EUSIPCO),
Marrakech, Morocco, 2013.

Part IV: Sparsity-Related Metrics

Chapter 12

In this chapter, a novel approach to the design of Costas arrays (a certain type
of optimized time-frequency coding pattern for sonar and radar) is devised by
employing sparse representations. Chapter 12 is based on the publication

• M. Soltanalian, P. Stoica and J. Li, “Search for Costas Arrays Via Sparse
Representation,” 22nd European Signal Processing Conference (EU-

SIPCO), Lisbon, Portugal, 2014.

Chapter 13

In Chapter 13, the fast techniques for the design of sequence sets with good
correlation properties are successfully used for a sparsity-aware design of
radar waveforms. This chapter is based on the conference publication

• H. Hu, M. Soltanalian, P. Stoica and X. Zhu, “Sparsity-Aided Radar
Waveform Synthesis,” 22nd European Signal Processing Conference

(EUSIPCO), Lisbon, Portugal, 2014.

Part V: Beam-Pattern Matching Metrics

Chapter 14

In this chapter, a computationally efficient transmit beam pattern design for
MIMO antennas is discussed. Chapter 14 is based on the journal article

• M. Soltanalian, H. Hu and P. Stoica, “Single-Stage Transmit Beamform-
ing Design for MIMO Radar,” Signal Processing, vol. 102, pp. 132-138,
Sep. 2014.

1.2 Other Contributions
In addition to the articles listed above, the author has had the following publi-
cations during the Ph.D. studies:

[J]: Journal, [C]: Conference, [T]: Technical Report

[J] L. Dai, M. Soltanalian and K. Pelckmans, “On the Randomized Kacz-
marz Algorithm”, IEEE Signal Processing Letters, vol. 21, no. 3, pp.
330-333, 2014.

[C] E. Hidayat, M. Soltanalian, A. Medvedev and K. Nordström, “Stimuli
Design for Identification of Spatially Distributed Motion Detectors in
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Biological Vision Systems,” 13th International Conference on Control,

Automation, Robotics and Vision (ICARCV), Marina Bay Sands, Singa-
pore, 2014.

[C] M. M. Naghsh, M. Hashemi, A. Sheikhi, M. Soltanalian and P. Stoica,
“Unimodular Code Design for MIMO Radar Using Bhattacharyya Dis-
tance,” IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Florence, Italy, 2014.

[C] A. Aubry, A. De Maio, M. Piezzo, M. M. Naghsh, M. Soltanalian and
P. Stoica, “Cognitive Radar Waveform Design for Spectral Coexistence
in Signal-Dependent Interference,” IEEE Radar Conference (RADAR-

CON), Cincinnati, OH, USA, 2014.

[C] M. Soltanalian and P. Stoica, “Design of Perfect Phase-Quantized Se-
quences with Low Peak-to-Average-Power Ratio,” European Signal Pro-

cessing Conference (EUSIPCO), Bucharest, Romania, August 2012.

[T] M. Soltanalian and P. Stoica, “A Recursive Method for Enumeration of
Costas Arrays,” available at arXiv:1404.0173, 2014.
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Abstract

In this chpater, we introduce a computational framework based on an iterative twisted approxim-
ation (ITROX) and a set of associated algorithms for various sequence design problems. The
proposed computational framework can be used to obtain sequences (or complementary sets
of sequences) possessing good periodic or aperiodic correlation properties and, in an extended
form, to construct zero (or low) correlation zone sequences. Furthermore, as constrained (e.g.
finite) alphabets are of interest in many applications, we introduce a modified version of our
general framework that can be useful in these cases. Several applications of ITROX are studied
and numerical examples (focusing on the construction of real-valued and binary sequences) are
provided to illustrate the performance of ITROX for each application.

Keywords: Sequence design, finite alphabet, binary sequences, complementary sets, auto-

correlation, zero correlation zone (ZCZ).

2.1 Introduction
Sequences with good correlation properties (used in the formulation of both
discrete and continuous-time waveforms) lie at the core of many active sensing
and communication schemes. Therefore, it is no surprise that the literature on
the topic is extensive (e.g., see [3]-[22], [30]-[38] and the references therein).
The alphabets (Ω) used in the literature are chosen to fit the application. The
most common alphabets are binary, ternary, root-of-unity, unimodular and also
the sets of real-valued or complex-valued numbers.

Let x = (x(1),x(2), · · · ,x(n)) denote a sequence where x(k) ∈ Ω. The pe-
riodic (ck) and aperiodic (rk) autocorrelations of x are defined as

ck =
n

∑
l=1

x(l)x∗(l+ k)mod n, 0≤ k ≤ (n−1) (2.1)

rk =
n−k

∑
l=1

x(l)x∗(l+ k) = r∗−k, 0≤ k ≤ (n−1) (2.2)

The in-phase lag (i.e. k = 0) of both autocorrelations represents the energy
component E of the sequence. The problem of sequence design for good cor-
relation properties usually arises when small out-of-phase (i.e. k 6= 0) auto-
correlation lags are required. Several metrics can be defined to measure the
goodness of such sequences, for example (considering the aperiodic autocor-
relations), the peak sidelobe level

PSL = max{|rk|}n−1
k=1, (2.3)

the integrated sidelobe level

ISL =
n−1

∑
k=1

|rk|2, (2.4)



or the related merit factor,

MF =
|r0|2

2∑n−1
k=1 |rk|2

=
E2

2 ISL
. (2.5)

Note that such metrics can be defined for both aperiodic and periodic autocor-
relations, and also when only a specific subset of lags are to be small.

Sequences with impulse-like periodic correlation (called perfect sequences)
have found interest in pulse compression and wireless communications [8].
They are required in typical code-division multiple-access (CDMA) systems
to handle the multiple access interference and are also used in the synthesis of
orthogonal matrices for source coding as well as complementary coding [10].
While sequences with good periodic and aperiodic correlations have a consid-
erable set of applications, there are also some cases in which solely good ape-
riodic correlation properties are of interest. For example, in synchronization
applications, while sequences with good periodic correlation are used when
the sequence can be transmitted several times in succession, sequences with
good aperiodic correlation are required when the sequence can be used only
once [11]. We note that finding and studying sequences with good aperiodic
correlation properties is usually a harder task than that corresponding to se-
quences with good periodic correlation. In particular, unlike the case of peri-
odic correlations, it is not possible to construct sequences with exact impulsive
aperiodic autocorrelation.

Several variations on the theme of designing sequences with low correlation
lags can be considered. For example, in some CDMA applications such as
quasi-synchronous CDMA (QS-CDMA), the time delay among different users
is restricted and, as a result, zero correlation zone (ZCZ) sequences (with zero
correlations over a smaller range e.g. k≤ T for some maximal time lag T ) can
be used as spreading sequences [12]. Another example is complementary sets
of sequences. A set S = {x1,x2, · · · ,xm} containing m sequences of length n

is called a set of (periodically) complementary sequences when the (periodic)
autocorrelation values of {xk}m

k=1 sum up to zero at any out-of-phase lag. This
property can be formulated as

m

∑
l=1

cl,k = 0, 1≤ k ≤ (n−1) (2.6)

where cl,k represents the kth (periodic) autocorrelation lag of xl . Sets of com-
plementary sequences play an important role in applications such as radar
pulse compression [13], CDMA communications [14], data hiding [15], aper-
ture imaging [16], channel estimation [17], ultra-sonic ranging and ultra wide-
band (UWB) communications [18]. They are also of theoretical importance
in the construction of sequences with zero correlation zone (ZCZ) [19]. The
sets S containing two such sequences are usually referred as complementary
pairs. The case of binary complementary pairs was first considered by Golay
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in [20] [21]. Golay complementary pairs exist for lengths n = 2a10b26c where
a,b,c ∈ N∪{0} [22]. Some non-existence results for Golay complementary
pairs can be found in [23].

In many cases (but not in all) there exist analytical construction methods
for optimal or near-optimal sequences. However, even in such cases, it may
be useful to have computational methods that can yield additional good se-
quences. For example, in multiple access channels (MACs) having more se-
quences with good correlation properties expands the capacity of the commu-
nication system. In addition, active sensing and communication systems work-
ing in hostile environments need hidden spreading sequences that are hard to
find by the adversary (to avoid detection or jamming). Note that the sequences
obtained with known construction methods are rather restricted in number and
usually have a small number of unknown parameters which makes them easy
to guess.

Stochastic search and other optimization design algorithms have been stud-
ied in the literature . However, these algorithms are generally hard to use when
the size of the search space grows large. To avoid this problem, in [5]- [8] sev-
eral cyclic algorithms have been proposed to generate unimodular sequences
with good periodic or aperiodic properties. In this chapter, a general com-
putational framework based on an iterative twisted approximation (ITROX),
to be defined shortly, and a set of associated algorithms are introduced that
can be used to design sequences from a desired alphabet. We believe that
the techniques introduced in this chapter can be adopted in new applications
of sequence design where new alphabets are desired. Note that there is al-
most no prior information available to a foe about the sequences constructed
by computational methods such as ITROX. Furthermore, ITROX does not im-
pose any restrictions on the sequence size in contrast to most known analytical
construction schemes.

The rest of this work is organized as follows. Section 2.2 provides sev-
eral mathematical tools and definitions that are used in Section 2.3 to derive a
general algorithmic form of ITROX. The convergence and the performance of
ITROX with respect to the design metrics are also studied in Section 2.3. Sec-
tion 2.4 is devoted to using ITROX for constrained sequence design. Several
numerical examples are provided in Section 2.5. Finally, Section 2.6 con-
cludes the chapter.

Notation: We use bold lowercase letters for vectors and bold uppercase
letters for matrices. (.)T , (.)∗ and (.)H denote the vector/matrix transpose, the
complex conjugate, and the Hermitian transpose, respectively. 1 and 000 are the
all-one and all-zero vectors/matrices. eeek is the kth standard basis vector in Rn.
‖.‖ denotes an arbitrary norm. ‖x‖n or the ln-norm of the vector x is defined

as (∑k |x(k)|n)
1
n where {x(k)} are the entries of x. ‖.‖max represents the max-

norm of a matrix that is equal to the maximum absolute value of the entries
of the matrix. The Frobenius norm of a matrix XXX (denoted by ‖XXX‖F ) with
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entries {XXX(k, l)} is equal to
(
∑k,l |XXX(k, l)|2

) 1
2 . The symbol ⊙ stands for the

Hadamard element-wise product of matrices. tr(.) is the trace of the square
matrix argument. vec(XXX) is a vector obtained by stacking the columns of XXX

successively. Diag(.) denotes the diagonal matrix formed by the entries of the
vector argument. Sets are designated via uppercase letters while lowercase
letters are used for their elements. N, Z, R and C represent the set of natural,
integer, real and complex numbers, respectively. For any real number x, the
function [x] yields the closest integer to x (the largest is chosen when this
integer is not unique) and {x}= x− [x]. ⌈x⌉ is the smallest integer greater than
or equal to x. Finally, δk is the Kronecker delta function which is equal to one
when k = 0 and to zero otherwise.

2.2 ITROX: The Problem Formulation
In this section, the necessary mathematical tools for the computational frame-
work of ITROX are provided. We begin with the concept of twisted product
and then discuss some useful connections of this vector product with the se-
quence design problem.

Definition 1. The twisted product of two vectors x and yyy (both in Cn×1) is

defined as

x � yyyH =




x(1)yyy∗(1) x(2)yyy∗(2) · · · x(n)yyy∗(n)
x(1)yyy∗(2) x(2)yyy∗(3) · · · x(n)yyy∗(1)

...
...

. . .
...

x(1)yyy∗(n) x(2)yyy∗(1) · · · x(n)yyy∗(n−1)




(2.7)

where x(k) and yyy(k) are the kth entries of x and yyy respectively. The twisted

rank-one approximation of ZZZ ∈Cn×n is equal to x � yyyH if and only if x and yyy

are the solution of the optimization problem:

min
x,yyy∈Cn×1

‖ZZZ−x � yyyH‖F (2.8)

Note that there exists a known permutation matrix P ∈ Cn2×n2
for which

‖ZZZ−x � yyyH‖F = ‖vec(ZZZ)− vec(x� yyyH)‖2

= ‖vec(ZZZ)−P vec(xyyyH)‖2

= ‖PT vec(ZZZ)− vec(xyyyH)‖2

= ‖ZZZ′−xyyyH‖F (2.9)
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Therefore, the solution to the optimization problem in (2.8) is given by the
dominant singular pair of a matrix ZZZ′ obtained by a specific re-ordering of the
entries of ZZZ. In the sequel, we denote this re-ordering by the function F (·)
over the matrices in Cn×n; particularly, in Eq. (2.9) we have ZZZ′ = F (ZZZ).

We formulate the problem of finding sequences with good periodic or ape-
riodic correlation properties using the twisted product.

2.2.1 The Periodic Autocorrelation
A special case of twisted product is that of yyy = x. Interestingly, the periodic
autocorrelation of a vector x can be written as (x � xH)1. x is called a perfect
sequence with energy E if and only if

(x � xH)1 = Eeee1. (2.10)

Remark 1: Due to practical considerations, sequences with low peak-to-

average ratio (PAR),

PAR =
‖x‖2

∞
1
n
‖x‖2

2

, (2.11)

are often required. Note that in order to obtain low PAR sequences from Eq.
(2.10) one should avoid in particular its trivial solutions x∈{

√
E eeek}n

k=1 which
indeed have the highest possible PAR (i.e. PAR = n) in the set of obtainable
sequences. �

Next, let S = {x1,x2, · · · ,xm} be a a set of periodically complementary se-
quences containing m sequences of length n. We have that

m

∑
k=1

(xk � xH
k )1 = Eeee1 (2.12)

where E represents the total energy of {xk}m
k=1.

Suppose XXX ∈ Cn×n is such that the sum of the entries of its rows is E for
the first row and zero otherwise. Let us suppose that F (XXX) has m≤ n nonzero
positive eigenvalues and therefore that F (XXX) can be written as (for xk 6= 000):

F (XXX) =
m

∑
k=1

xkxH
k (2.13)

It follows from (2.13) that XXX = ∑m
k=1 xk � xH

k and as a result

XXX1 =
m

∑
k=1

(xk � xH
k )1 = Eeee1 (2.14)

which implies that the total energy E is distributed over m sequences {xk}m
k=1

that are complementary. Note that the energy of {xk}m
k=1 is determined by the
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corresponding eigenvalues of F (XXX) in (2.13). In particular, if x1 � xH
1 is the

twisted rank-one eigen (i.e. with yyy = x) approximation of XXX and the energy of
x1 is almost equal to E , one could regard x1 as an almost-perfect sequence.

We will study the problem of designing sets of (periodically) complemen-
tary sequences when the desired energy for each sequence is given. It can be
easily seen that designing a single perfect sequence is just a special case of
the latter problem corresponding to choosing only one nonzero energy com-
ponent. As mentioned above, the energy components of the sequences dictate
the eigenvalues of F (XXX). Consider the convex set ΓP(E) (P stands for Peri-

odic) of all matrices F (XXX0) such that XXX01 = Eeee1. Also, suppose the energies
of the sequences are given via the vector ρρρ ∈ (R+ ∪{0})n×1 (whose entries
sum up to E) and consider the set ΛP(ρρρ) of all Hermitian matrices with the
given vector of eigenvalues ρρρ . Using this formulation, Eqs. (2.13) and (2.14)
establish an one-to-one mapping between the solutions of the design problem
and the elements (if any) lying in the intersection of the two sets ΓP(E) and
ΛP(ρρρ).

2.2.2 The Aperiodic Autocorrelation
The proposed computational framework can be extended to the problem of
designing sequences with good aperiodic properties. The extension is based on
the simple idea that for a sequence x of length n, the periodic autocorrelation
lags of

x′ =
(

x

000(n−1)×1

)
(2.15)

are equal to the aperiodic autocorrelation lags of x for 0 ≤ k ≤ n− 1. Re-
member that we defined ΓP(E) as the set of all matrices F (XXX0) such that
XXX01=Eeee1. For the aperiodic case, we replace ΓP(E) with a new set ΓA P(E)
(A P stands for Aperiodic) which contains all matrices F (XXX0) such that





XXX0 ∈ C(2n−1)×(2n−1)

XXX01 = Eeee1

F (XXX0)⊙M = F (XXX0)
(2.16)

where M is a masking matrix defined as

M =

(
1n×n 000n×(n−1)

000(n−1)×n 000(n−1)×(n−1)

)
(2.17)

Let us also replace ΛP(ρρρ) with ΛA P(ρρρ) = ΛP(ρρρ ′) where

ρρρ ′ =
(

ρρρ
000(n−1)×1

)
(2.18)
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With the above definitions, the intersection of the two sets ΓA P(E) and ΛA P(ρρρ)
yields sets of vectors of length 2n− 1 whose last n− 1 entries are zero and
whose first n entries form sequences with good aperiodic correlation proper-
ties.

2.2.3 Zero Correlation Zone (ZCZ)
Zero correlation zone properties can be defined for both periodic and aperi-
odic correlations. For ZCZ sequences zero (or low) correlation values at some
specific lags are required. The proposed framework can be adapted to the ZCZ
requirements by noting that only a given set of specific elements of XXX01 (cor-
responding to the zero correlation zone) should be equal to their corresponding
positions in Eeee1. Let {p1, p2, · · · , pu} be the set of ZCZ lags. Let

SSS = Diag

(
u

∑
k=1

eeepk

)
(2.19)

In lieu of ΓP(E) and ΓA P(E) we form the new sets ΓZ
P(E) and ΓZ

A P(E)
by employing the constraint

SSS(XXX01) = SSS(Eeee1) (2.20)

As a result, the intersection of the sets (ΓZ
P(E),ΛP(ρρρ)) or (ΓZ

A P(E),ΛA P(ρρρ))
can be used to form (sets of) sequences with zero periodic or aperiodic corre-
lation zone, respectively.

2.3 ITROX: The Algorithms
Using the problem formulation of Section 2.2, we propose a general iterative
algorithm that can be used to design sequences with good correlation proper-
ties. The main challenge of such an algorithm is to tune the energy distribu-
tion over the sequences in each iteration while trying to preserve the mutual
property of complementarity. This goal can be achieved using the idea of al-
ternating projections which will be discussed in the following.

2.3.1 The Proposed Algorithms
Let Γ(E) and Λ(ρρρ) denote any of the set pairs defined in Section 2.2. Starting
from an element XXX1 in Γ(E), we find the closest element to XXX1 (for the ‖.‖F

norm) in Λ(ρρρ) denoted by YYY 1 which we call the optimal projection of XXX1 on
Λ(ρρρ). Next, we find the optimal projection of YYY 1 on Γ(E) denoted by XXX2. Re-
peating these projections leads to a method known as alternating projections.
We refer the interested reader to the survey of the rich literature on alternating
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projections in [26]. Note that, as the distance between the chosen points in
the two sets is decreasing at each iteration, the convergence of the method is
guaranteed. However, as Λ(ρρρ) is non-convex, the alternating projections of
ITROX may converge to different points depending on the initialization; this
behavior is related to the multi-modality of the integrated sidelobe level (or
the merit factor) metrics which are regularly used in the design of sequences
with good correlation properties [6]- [9]. Further discussions regarding the
convergence of ITROX are deferred to sub-section 2.3.2.

* Designing Periodically Complementary Sets of Sequences
We begin with finding the orthogonal projection of an element of ΛP(ρρρ)

on ΓP(E).

Theorem 1. Let XXX = YYY⊥ be the optimal projection (for the matrix Frobenius

norm) of YYY ∈ Cn×n on ΓP(E). Then F−1(XXX) can be obtained from F−1(YYY )
by adding a fixed value to each row of F−1(YYY ) such that F−1(YYY )1 = Eeee1;

more precisely,
[
F−1(XXX)

]
k,l

=
[
F−1(YYY )

]
k,l

(2.21)

+
1
n

(
Eδk−1−

n

∑
l′=1

[
F−1(YYY )

]
k,l′

)
.

Proof: Let ααα = (α1,α2, · · · ,αn)
T be a complex-valued vector with a

fixed sum. Using the Cauchy-Schwarz inequality we have that

‖ααα‖2
2 ≥

(1Tααα)2

n
(2.22)

The equality condition for (2.22) implies that from all the vectors whose el-
ements have a constant sum, the one with equal entries attains the minimum
l2-norm. Now let F−1(XXX) = XXX0 and F−1(YYY ) = XXX0 +∆XXX0. We have

‖YYY −XXX‖F = ‖F−1(YYY )−F−1(XXX)‖F (2.23)

= ‖∆XXX0‖F

which implies that ‖∆XXX0‖F should be minimized to find the desired projection.
Note that

∆XXX01 = F−1(YYY )1−XXX01 (2.24)

= F−1(YYY )1−Eeee1.

Therefore, for any given YYY , the sum of the entries in each row of ∆XXX0 is fixed.
This fact implies that for the optimal ∆XXX0, all the rows have identical entries
(as given in (2.21)) which completes the proof. �

Next, we study the orthogonal projection of an element of ΓP(E) on ΛP(ρρρ).
Let XXX⊥ be the orthogonal projection (for the matrix Frobenius norm) of a Her-
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mitian matrix XXX ∈ Cn×n on ΛP(ρρρ). Then XXX⊥ can be represented as

XXX⊥ =UUUDDDUUUH (2.25)

where DDD = Diag(ρρρ) and UUU is a unitary matrix. Suppose XXX has the eigenvalue
decomposition

XXX =VVV DDD′VVV H (2.26)

Therefore, the problem of finding XXX⊥ is equivalent to

min
UUU

‖VVVDDD′VVV H−UUUDDDUUUH‖2
F (2.27)

s.t. UUUUUUH = III

The following two theorems present a matrix inequality (due to von Neumann
[27]) and an inequality for the inner product of re-ordered vectors (due to
Hardy, Littlewood and Polya [28]) that pave the way for finding the closed-
form solution of (2.27).

Theorem 2. Let AAA,BBB ∈Cm×n have the singular value decompositions JJJ∆∆∆1KKKH

and LLL∆∆∆2MMMH . Then

tr(AAAGGGBBBHHHH)≤ tr(∆∆∆1∆∆∆2) (2.28)

where GGG ∈ Cn×n and HHH ∈ Cm×m are unitary matrices, and the equality is

attained when GGG = KKKMMMH and HHH = LLLJJJH .

Theorem 3. Let ααα and βββ be two real-valued vectors which are such that

ααα(1)≥ ααα(2)≥ ·· · ≥ ααα(n) , (2.29)

βββ (1)≥ βββ (2)≥ ·· · ≥ βββ (n) .

For any permutation πk : {1,2, · · · ,n}→ {1,2, · · · ,n},
n

∑
k=1

ααα(k)βββ(n− k+1)≤
n

∑
k=1

ααα(k)βββ(πk)≤
n

∑
k=1

ααα(k)βββ(k). (2.30)

Suppose that the eigenvalues of XXX⊥ and XXX are sorted in the same order. The
next theorem follows from the above results:

Theorem 4. Let XXX ∈ Cn×n be a Hermitian matrix with the eigenvalue de-

composition VVV DDD′VVV H . Then the orthogonal projection of XXX (for the matrix

Frobenius norm) on ΛP(ρρρ) denoted by YYY = XXX⊥ can be obtained from XXX by

replacing DDD′ with DDD (defined in Eq. (2.25)).
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Proof: Note that the objective function in (2.27) can be written as

Q(UUU) = ‖VVV DDD′VVV H−UUUDDDUUUH‖2
F (2.31)

= tr
(
(VVVDDD′VVV H−UUUDDDUUUH)2)

= tr
(
VVV DDD′2VVV H +UUUDDD2UUUH

)

− tr
(
UUUDDDUUUHVVV DDD′VVV H +VVV DDD′VVV HUUUDDDUUUH

)

= const−2 tr(DDDUUUHVVV DDD′VVV HUUU).

Therefore, in order to minimize Q(UUU), one can maximize tr(DDDUUUHVVV DDD′VVV HUUU).
Using Theorem 2,

tr(DDDUUUHVVV DDD′VVV HUUU)≤ tr(DDDDDD′) (2.32)

where equality is attained for UUUHVVV =VVV HUUU = III which implies UUU =VVV . In ad-
dition, Theorem 3 implies that tr(DDDDDD′) attains its maximum when the diagonal
entries of DDD and DDD′ are sorted in the same order. With this observation, the
proof is concluded. �

The proposed alternating projection approach for designing periodically
complementary sets of sequences with a given energy distribution (ρρρ) is sum-
marized in Table 2.1.

Table 2.1. The ITROX-P Algorithm (for designing periodically complementary sets

of sequences)

Step 0: Consider an initial point XXX = F (XXX0) ∈ ΓP (E) for
some XXX0 that satisfies XXX01 = Eeee1.
Step 1: Compute the eigenvalue decomposition XXX =
VVVDDD′VVV H and find YYY = XXX⊥ (the orthogonal projection of XXX

on ΛP(ρρρ)) by replacing DDD′ with DDD (i.e. YYY = VVV DDDVVV H ) as
described in Theorem 4.
Step 2: Compute XXX = YYY⊥ by adding a fixed value to each
row of F−1(YYY ) such that F−1(YYY⊥)1 = Eeee1 according to
Theorem 1.
Step 3: Repeat the projections in steps 1 and 2 until a stop
criterion is satisfied, e.g. ‖XXX−YYY‖F < ε for some given ε >
0.

• Designing Aperiodically Complementary Sets of Sequences:
The projection on ΓA P(E) must have zero entries in known positions

(given by the masking matrix M ) and its nonzero entries must be chosen such
that they minimize the Frobenius norm of the difference between the given
Y ∈ C(2n−1)×(2n−1) and its projection on ΓA P(E). This optimal projection
can be obtained via a result similar to Theorem 1.

33



Theorem 5. Let XXX = YYY⊥ be the optimal projection (for the matrix Frobenius

norm) of YYY ∈ C(2n−1)×(2n−1) on ΓA P(E). Let wk denote the number of ones

in the kth row of F−1(M ). Then

wk =
2n−1

∑
l′=1

[
F−1(M )

]
k,l′ =

{
n− k+1, k ≤ n

k−n, k > n
(2.33)

and the entries of F−1(XXX) are given by

[
F−1(XXX)

]
k,l

=
[
F−1(YYY )

]
k,l

(2.34)

+
1

wk

(
Eδk−1−

2n−1

∑
l′=1

[
F−1(M ⊙YYY )

]
k,l′

)
.

for all (k, l) such that
[
F−1(M )

]
k,l

= 1 and zero otherwise.

Proof: As XXX ∈ ΓA P(E), the positions of nonzero entries of F−1(XXX) are
given by F−1(M ). Using the same observations as in Theorem 1, fixed val-
ues must be added to the nonzero entries of F−1(M )⊙F−1(YYY )=F−1(M ⊙
YYY ) such that its rows sum up to E for the first row and zero otherwise. There-
fore, for any (k, l) such that

[
F−1(M )

]
k,l

= 1, these fixed values are given
by

1
wk

(
Eδk−1−

2n−1

∑
l′=1

[
F−1(M ⊙YYY )

]
k,l′

)
. (2.35)

Considering F−1(M ), the numerical values of {wk} can be easily derived. �
Next note that, for any matrix XXX ∈ ΓA P(E), its eigenvalue decomposition has

the form

XXX =

(
VVV n×n 000n×(n−1)

000(n−1)×n IIIn−1

)(
DDD′n×n 000n×(n−1)

000(n−1)×n 000(n−1)×(n−1)

)

(
VVV ∗n×n 000n×(n−1)

000(n−1)×n IIIn−1

)

(2.36)

where VVV DDD′VVV ∗ is the eigenvalue decomposition of the n× n upper-left sub-
matrix of XXX . This implies that the projection on ΛA P(ρρρ) can be obtained as
before by imposing the desired energy distribution over the n sequences i.e.
replacing the diagonal matrix DDD′ with DDD.

The general form of ITROX for designing complementary sets of sequences
with good aperiodic correlation properties is summarized in Table 2.2.
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Table 2.2. The ITROX-A P algorithm (for designing complementary sets of se-

quences with good aperiodic correlation)

Step 0: Consider an initial point XXX = F (XXX0) ∈ ΓA P (E)
with nonzero entries only in its n× n upper-left sub-matrix
and for which XXX0 that satisfies XXX01 = Eeee1.
Step 1: Compute the eigenvalue decomposition of XXX as in
(2.36) and find YYY = XXX⊥ (the orthogonal projection of XXX on
Λ(ρρρ)) by replacing DDD′ with DDD.
Step 2: Compute XXX = YYY⊥ by adding certain fixed values to
some entires of YYY and by making the others zero, according
to Theorem 5.
Step 3: Repeat the projections in steps 1 and 2 until a stop
criterion is satisfied, e.g. ‖XXX−YYY‖F < ε for some given ε >
0.

•Designing Complementary Sets of Sequences with Zero Correlation Zone:
In order to obtain sequences (or complementary sets of sequences) with

zero correlation zone, the same approach as given in Theorem 1 or 5 can be
used. The only difference is that since now some autocorrelation lags are not
of interest, there is no need to change their corresponding rows in F−1(YYY ).

Theorem 6. Let S = {p1, p2, · · · , pu} be the set of ZCZ lags.

1. Projection on ΓZ
P(E): if XXX =YYY⊥ denotes the optimal projection (for the

matrix Frobenius norm) of a matrix YYY on ΓZ
P(E) then

[
F−1(XXX)

]
k,l

is

given by (2.21) for every k ∈ S and by
[
F−1(YYY )

]
k,l

for all k /∈ S.

2. Projection on ΓZ
A P(E): similarly, if XXX = YYY⊥ represents the optimal

projection (for the matrix Frobenius norm) of a matrix YYY on ΓZ
A P(E),

the entries
[
F−1(XXX)

]
k,l

are given by (2.34) for every (k, l) such that[
F−1(M )

]
k,l

= 1 and k ∈ S, by
[
F−1(YYY )

]
k,l

for every (k, l) such that[
F−1(M )

]
k,l

= 1 and k /∈ S, and by zero otherwise.

Let

(ΓZ (E),Λ(ρρρ)) ∈ {(ΓZ
P(E),ΛP(ρρρ)),(ΓZ

A P(E),ΛA P(ρρρ))} (2.37)

Complementary sets of sequences for any given zero correlation zone can be
generated by the ITROX-Z algorithm in Table 2.3.

Remark 2: If only one sequence is needed, the computational burden of the
proposed algorithms can be reduced significantly. In this case, the Hermitian
matrix XXX ∈ Γ(E) must attain rank-one and therefore a complete eigenvalue de-
composition is not needed. Instead, one can compute the orthogonal projection
on Λ(ρρρ) (for ρρρ = Eeee1) using the power method (note that the convergence of
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Table 2.3. The ITROX-Z algorithm (for designing sets of complementary ZCZ se-

quences)

Step 0: Consider an initial point XXX = F (XXX0) ∈ ΓZ (E) for
some XXX0 such that XXX01 is equal to Eeee1 for the desired lags.
Step 1: Compute the eigenvalue decomposition XXX =
VVVDDD′VVV H and find YYY = XXX⊥ (the orthogonal projection of XXX

on Λ(ρρρ)) by replacing DDD′ with DDD.
Step 2: Compute XXX = YYY⊥ (the orthogonal projection of YYY

onto ΓZ (E)) as described in Theorem 6.
Step 3: Repeat the projections in steps 1 and 2 until a stop
criterion is satisfied, e.g. ‖XXX−YYY‖F < ε for some given ε >
0.

XXX to a rank-one matrix also leads to faster convergence of the power method).
�

2.3.2 Convergence and Design Metrics
As indicated earlier, in any alternating projection-based algorithm, the dis-
tance between the two sets is decreasing. Because the distance is non-negative
(thus lower bounded) and decreasing, it can be concluded that the projections
are convergent in the sense of distance. We also note that as the projections
provided for all (Γ(E),Λ(ρρρ)) are unique, the latter conclusion can be extended
to the convergence of solutions on the two sets.

Definition 2. Consider a pair of sets (T1,T2). A pair of sets (C1,C2) where

C1 ⊆ T1 and C2 ⊆ T2 is called an attraction landscape of (T1,T2) iff starting

from any point in C1 or C2, the alternating projections on T1 and T2 end up in

the same element pair (c1,c2) (c1 ∈C1, c2 ∈C2). Furthermore, for a pair of

sets (T1,T2), an attraction landscape (C1,C2) is said to be complete iff for any

attraction landscape (C′1,C
′
2) such that C1 ⊆C′1 and C2 ⊆C′2, we have C1 =C′1

and C2 =C′2.

In terms of Definition 2, the aim of the alternating projections on Γ(E) and
Λ(ρρρ) is to find the closest points in an attraction landscape of (Γ(E),Λ(ρρρ));
particularly, the number of solutions is characterized by the number of com-
plete attraction landscapes of (Γ(E),Λ(ρρρ)). When it comes to constrained
alphabets (which will be studied in Section 2.4), it is common that the solu-
tions on the two sets XXX ∈ Γ(E) and YYY ∈ Λ(ρρρ) are not identical. Clearly, XXX

and YYY are the closest points in an attraction landscape of (Γ(E),Λ(ρρρ)) but the
two sets may not intersect in the attraction landscape encompassing XXX and YYY .
In these cases, XXX represents an optimal solution in the sense of the desired
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correlation properties which, however, does not satisfy exactly the alphabet
restriction and energy distribution while YYY represents a solution that satisfies
the energy distribution and alphabet restriction but has sub-optimal correlation
properties.

In the following we study the goodness of the sequences obtained by ITROX
for the ISL and PSL metrics. Interestingly, ITROX can be viewed as an ISL
minimization scheme. Indeed, we note that the distance between the two sets
(Γ(E),Λ(ρρρ)) defined using the matrix Frobenius norm is nothing but the ISL
metric. Let us suppose that at the sth iteration of ITROX, the projection on
Λ(ρρρ) gives some sequences such that the sums of their autocorrelations for the

first n lags are
{

c
(s)
k

}n−1

k=0
(for notational simplicity, {ck} are used here to repre-

sent both periodic and aperiodic correlation lags). We let S be the set of all lags
that ITROX tries to make small. Considering S provides a unified approach for
both ZCZ and all correlation lag cases (note that S = {1,2, · · · ,n− 1} repre-
sents the case for which all correlation lags are desired to be small). Let XXX be
the optimal projection of YYY ∈ Λ(ρρρ) on Γ(E) and ∆XXX0 = F−1(YYY )−F−1(XXX)
(as introduced in Theorem 1). We have

‖∆XXX
(s)
0 ‖2

F = ∑
k∈ S∪{0}

n

∣∣∣∣∣
c
(s)
k −δkE

n

∣∣∣∣∣

2

(2.38)

Taking into consideration that any projection on Λ(ρρρ) must satisfy the total
energy constraint (which must be equal to E), we obtain

‖∆XXX
(s)
0 ‖2

F = ∑
k∈S

n

∣∣∣∣∣
c
(s)
k

n

∣∣∣∣∣

2

=
1
n

ISL(s) (2.39)

This shows that the ISL metric is decreasing through the iterations of ITROX

for a non-constrained alphabet.
Sequences obtained by ITROX also have a good performance with respect

to the PSL metric. To explain why this is so, we show that there is an “almost

equivalency" between the projections needed for optimization of the ISL and
the PSL metrics. Note that

PSL(s) = max
{∣∣∣c(s)k

∣∣∣
}

k∈S

≤
√

∑
k∈S

∣∣∣c(s)k

∣∣∣
2
=
√

ISL(s) (2.40)

which implies that if an algorithm makes the ISL metric small (for ITROX
the ISL metric usually achieves practically zero values), it also makes the PSL
metric small. To strengthen the above observation we prove that the projec-
tions that minimize the two metrics are related.
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Lemma 1. Among all complex-valued vectors ααα = (α1,α2, · · · ,αn)
T with a

fixed sum of entries, the one with equal entries has the minimum l∞-norm.

Proof: Let ααα be the vector with minimum l∞-norm for some fixed sum of
entries. If {αk}n

k=1 are not equal, we consider the vector ααα ′=(α ′1,α
′
2, · · · ,α ′n)T

with identical entries

α ′k =
1
n

n

∑
k=1

αk (2.41)

It is straightforward to verify that ‖ααα ′‖∞ < ‖ααα‖∞ which is a contradiction. �

Once again, we draw the attention of the reader to the projections in sub-
section 2.3.1. As explained above, choosing the Frobenius norm to obtain the
optimal projections on the two sets (Γ(E),Λ(ρρρ)) leads to the minimization of
ISL. However, in light of Lemma 1, one observes that using the max-norm
instead of the Frobenius norm leads to the minimization of PSL. Interestingly,
the projection on Γ(E) is exactly the same for both norms. Furthermore, for
∆XXX0 = F−1(YYY )−F−1(XXX) we have:

‖∆XXX
(s)
0 ‖max = max

{∣∣∣∣∣
c
(s)
k −δkE

n

∣∣∣∣∣

}

k∈ S∪{0}
(2.42)

= max

{∣∣∣∣∣
c
(s)
k

n

∣∣∣∣∣

}

k∈S

=
1
n

PSL(s)

On the other hand, the projection on Λ(ρρρ) for the max-norm appears to
be more complicated in general. Therefore, we end this section by showing
that at least for a special case of (2.27) the max-norm and Frobenius norm
projections on Λ(ρρρ) are close to one another. We consider the rank-one form
of (2.27),

min
uuu
‖d′vvvvvvH−duuuuuuH‖max (2.43)

s.t. ‖uuu‖2 = 1

where d, d′ and vvv are given such that d,d′ > 0 and ‖vvv‖2 = 1.

Lemma 2. For two n-length real-valued vectors ααα and βββ whose entries can

be re-arranged as desired, ‖ααα−βββ‖∞ is minimal when the entries of ααα and βββ
are sorted in the same order.

Proof: Let

ααα(1)≥ ααα(2)≥ ·· · ≥ ααα(n) , (2.44)

βββ (1)≥ βββ (2)≥ ·· · ≥ βββ (n) .
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We want to determine the minimal value of max{|ααα(k)−βββ (πk)|}n
k=1 over all

possible permutations πk : {1,2, · · · ,n} → {1,2, · · · ,n}. Let ααα(k)> ααα(l) and
βββ (πk)< βββ (πl); then it can be easily verified that

max{|ααα(k)−βββ (πl)|, |ααα(l)−βββ (πk)|} (2.45)

< max{|ααα(k)−βββ (πk)|, |ααα(l)−βββ (πl)|} .

Therefore, replacing βββ (πk) by βββ (πl) leads to a smaller l∞-norm for ααα − βββ .
We conclude that to attain the minimal ‖ααα −βββ‖∞ we can sort βββ in the same
order as ααα . As an aside remark, note that there exist examples for which no
other arrangement of the entries of βββ can lead to the optimal ‖ααα −βββ‖∞ (e.g.
let βββ (k) = ααα(k)+ t where t ∈ R). �

The optimization problem (2.43) can be studied using the above result.
Suppose that uuu and vvv are real-valued. We note that for any given uuu and any
re-arrangement of its entries, we obtain the same set of entries in the matrix
duuuuuuH . Lemma 2 implies that for all arrangements of the entries in duuuuuuH , the
one sorted in the same order as d′vvvvvvH yields the minimal max-norm. But this
arrangement of entries in duuuuuuH is obtainable if and only if we sort uuu in the
same order as vvv. This implies that there exist a global optimizer of (2.43) such
that it has the same order of entries as vvv. Therefore, vvv lies in a neighborhood
of an optimal solution of (2.43); clearly, the neighborhood is defined by the
difference of sorted entries of vvv and the constraint ‖uuu‖2 = 1. Note that while
uuu = vvv yields the optimal solution of (2.43) for the Frobenius norm, the above
discussion implies that uuu = vvv can be expected to be a good (but probably not
optimal) solution to (2.43).

2.4 Constrained Sequence Design
Besides complex-valued sequences, sequences with real-valued alphabets can
be obtained directly via ITROX as the eigenvalue decomposition is well-defined
in R. However, in some design applications the sequence entries are con-
strained. In particular, due to implementation issues, it can be desirable that
the entries of sequences be restricted to a specific subset of C, a finite or dis-
crete alphabet. In these cases, one generally needs to perform an exhaustive
search to find good sequences. Our goal here is to adapt the ITROX algorithms
such that they can handle constrained alphabets. Namely, we are particularly
interested in binary {−1,+1}, integer Z, unimodular {ζ ∈ C | |ζ | = 1} and
root-of-unity {ζ ∈C | ζ m = 1} (for m≥ 3) alphabets. To tackle such sequence
design problems, we introduce a method which uses the idea of alternating
projections but on a sequence of converging sets:

Definition 3. Consider a function f (t,s) :C×(N∪{0})→C; as an extension,

for every matrix XXX let f (XXX ,s) be a matrix such that [ f (XXX ,s)]k,l = f (XXX(k, l),s).
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Figure 2.1. An example of a converging set. (a-c) show a (non-constrained) compact
set T , the sets T (s), and entries of a (constrained) finite set T † respectively for 0 <
s+ < s++ < ∞.

We say that: (i) f is element-wisely monotonic iff for any t ∈ C, both | f (t,s)|
and arg( f (t,s)) are monotonic in s. (ii) A set T is converging to a set T † under

a function f iff for every t ∈ T ,

{
f (t,0) = t ,
lims→∞ f (t,s) ∈ T † (2.46)

and for every t† ∈ T †, there exists an element t ∈ T such that

lim
s→∞

f (t,s) = t†. (2.47)

(iii) The function f is identity iff for any t ∈ T and t† ∈ T † satisfying (2.47), t†

is the closest element of T † to t, and (iv) the sequence of sets {T (s)}∞
s=0 where

T (s) = { f (t,s) | t ∈ T} is a sequence of converging sets.

An example of a converging set is depicted in Fig. 2.1. Note that in this
example, while T is a compact set, T † is a finite subset of T with 3 elements.
Generally, we need to know both T and T † to propose a suitable identity func-
tion f .

Example. We present examples of f for some constrained alphabets com-

monly used in sequence design:

(a) T = R−{0}, T † = {−1,1} :

f (t,s) = sgn(t) · |t|e−νs
(2.48)

(b) T = R, T † = Z :

f (t,s) = [t]+{t} · e−νs (2.49)

(c) T = C−{0}, T † = {ζ ∈ C | |ζ |= 1} :

f (t,s) = |t|e−νs · e j arg(t) (2.50)
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(d) T = C−{0}, T † = {ζ ∈ C | ζ m = 1} :

f (t,s) = |t|e−νs · e j 2π
m

([
marg(t)

2π

]
+
{

marg(t)
2π

}
·e−νs

)

(2.51)

where ν is a positive real number. In all cases, the monotonic function

e−νs is used to construct the desirable functions which are both element-wisely

monotonic and identity. Note that ν tunes the speed of convergence (as well

as the accuracy of the method described in the following).

Consider the alternating projections on two compact sets T1 and T2. Sup-
pose T1 is converging to a constrained set T †

1 ⊆ T1 under some element-wisely
monotonic identity function f . As discussed before, the aim of the alternating
projections on T1 and T2 is to find the closest two points in an attraction land-
scape of (T1,T2); the closer the obtained points, the better the solution. We
assume that the alternating projections (in an attraction landscape of (T1,T2))
end up at (t1, t2) and that lims→∞ f (t1,s) = t†

1 ∈ T †
1 . The key idea is that t†

1 ∈ T †
1

is a good solution if it has the properties below:
a) Its corresponding projection t1 ∈ T1 is a good solution in T1.
b) t†

1 is close to t1.
Typical alternating projections can provide good solutions t1 ∈T1 and thus a) is
satisfied. To satisfy b) as well, we consider the following modification: at the

sth step of the alternating projections, let t
(s)
1 ∈ T1 be the orthogonal projection

of t
(s)
2 ∈ T2 on T1 and let t ′(s)1 = f (t

(s)
1 ,s) ∈ T

(s)
1 . Now, instead of projecting t

(s)
1

on T2, we project t ′(s)1 on T2 to obtain t
(s+1)
2 .

Fig. 2.2 illustrates the alternating projections with the proposed modifi-

cation. Supposing that lims′→∞ f (t
(s)
1 ,s′) = t†(s)

1 , we comment on two cases
for the goodness of solutions in the constrained set T

†
1 in connection with the

modified projections:

• t†(s)
1 is close to t

(s)
1 : As f is element-wisely monotonic, t

(s)
1 is element-

wisely closer to t ′(s)1 than to t†(s)
1 which implies that ‖t(s)1 −t ′(s)1 ‖< ‖t

(s)
1 −

t†(s)
1 ‖. Therefore, if t†(s)

1 is close to t
(s)
1 we can assume that t ′(s)1 is also

close to t
(s)
1 . In this case, the modified projections approximate well the

typical alternating projections which tend to improve the goodness of

t
(s)
1 ∈ T1.

• t†(s)
1 is far from t

(s)
1 : One could then expect that t ′(s)1 is also far from t

(s)
1 ;

particularly so as s increases. Note that considering t ′(s)1 instead of t
(s)
1

can change the complete attraction landscape. More important, when the

algorithm is converging to a poor solution in T †
1 , where t ′(s)1 is far from

t
(s)
1 , it tries to replace complete attraction landscapes more often than in

the case of good solutions (when t†(s)
1 is close to t

(s)
1 ).
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In sum, knowing the sets T1 and T †
1 we design a convenient function f as de-

scribed in Definition 3. The function f , and as a result, the sets {T (s)
1 }∞

s=0

provide information about the goodness (or closeness) of elements of T
†

1 at
the boundary of the compact set T1. This information can be used to keep the
good solutions and continue looking for other solutions when the obtained so-
lution is not desirable. In the sequel, we consider the benefits of the proposed
modification for alternating projections on some particular sets.

To use the above general ideas in the context of ITROX, suppose that the
entries of sequences {xk} are constrained to an alphabet Ωx. Let

ΩXXX =

{
XXX | XXX = ∑

k

xkxH
k ; xk(l) ∈Ωx

}
(2.52)

The set Λ(ρρρ) in the alternating projections of ITROX will be replaced by ΩXXX

imposing that the projections must have some special structure. Clearly, ΩXXX ⊆
Λ(ρρρ) for some feasible power arrangement ρρρ . Let us suppose that Λ(ρρρ) is
converging to ΩXXX under some identity function f . In this case, the general
form of the modified ITROX algorithms can be summarized as in Table 2.4.

Table 2.4. The general form of the ITROX algorithm for constrained sequence design

Step 0: Consider an initial point XXX = F (XXX0) ∈ Γ(E). Set
the iteration counter (s) to zero.
Step 1: Compute the eigenvalue decomposition XXX =
VVVDDD′VVV H and find YYY = XXX⊥ (the optimal projection of XXX on
Λ(ρρρ)) by replacing DDD′ with DDD (i.e. YYY =VVVDDDVVV H ).
Step 2: Let Λ(ρρρ) converge to ΩXXX under some convenient
function f as described in Definition 3 (a set of examples
are provided after the definition). Compute ỸYY = f (YYY ,s).

Step 3: Compute XXX = ỸYY
⊥

by adding some fixed value to
some given entries of ỸYY , make certain of them zero and
leave the others unchanged (depending on the application,
see sub-section 2.3.1).
Step 4: Increase the iteration counter (s) by one. Repeat
the modified alternating projections (steps 1-3) if the stop
criterion (e.g. either ‖ỸYY −XXX‖F < ε for some given ε > 0 or
ỸYY is sufficiently close to an element of ΩXXX ) is not satisfied.

It is worthwile to note that the proposed modifications do not disturb the
general convergence guarantee of ITROX. To justify this claim, it is sufficient
to show that

lim
s→∞
‖ f (YYY (s),s)− f (YYY (s+1),s+1)‖︸ ︷︷ ︸

Q1(s)

= 0 (2.53)
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Using the triangle inequlity,

Q1(s) ≤ ‖ f (YYY (s+1),s)− f (YYY (s+1),s+1)‖ (2.54)

+ ‖ f (YYY (s),s)− f (YYY (s+1),s)‖︸ ︷︷ ︸
Q2(s)

The first term on the right-hand side of (2.54) is vanishing as s increases. For
the second term we have:

Q2(s) ≤ ‖YYY † (s)− f (YYY (s),s)‖ (2.55)

+ ‖YYY † (s+1)− f (YYY (s+1),s)‖
+ ‖YYY † (s)−YYY † (s+1)‖︸ ︷︷ ︸

Q3(s)

where YYY † (s) , lims′→∞ f (YYY (s),s′) for every s ∈ N∪{0}. Similar to the pre-
vious inequality, the first and second term in the right-hand side of (2.55) are
vanishing in the limit. Therefore, we only need to show that

lim
s→∞

Q3(s) = 0 (2.56)

As f is identity, YYY † (s) can be viewed as the optimal projection of YYY (s) ∈
Λ(ρρρ) on ΩXXX . Therefore, the above calculations imply that the convergence of
ITROX in the modified case is guaranteed by the convergence of projections
in the following scenario: we compute the sequence of successive projections
(SOSP) for the triple of sets (Γ(E),Λ(ρρρ),ΩXXX); i.e. starting from an element
in the 1st set we found its projection on the 2nd set, then the projection of the
2nd point on the 3rd set and next we obtain the projection of the 3rd point on
the 1st set. Performing these projections cyclically, a sequence of projections
is obtained. The convergence of these projections has been shown and studied
in [30] and [31].

2.5 Numerical Examples
In order to show the potential of ITROX to tackle different sequence design
problems, several applications will be considered and numerical examples
will be provided. Due to ease of implementation and optimal PAR, binary
sequences have been commonly used in many applications. Therefore, se-
quences with binary entries are chosen to examine the performance of ITROX
when dealing with constrained alphabets. Real-valued sequences are consid-
ered to illustrate the ITROX performance in the non-constrained case. In all
cases, the algorithms are initialized with a random real-valued sequence.
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2.5.1 Sequences with Good Periodic Correlation
Using the suggestion in Remark 2 we can employ a simplified version of
ITROX-P to find single sequences with good periodic autocorrelation. An
ITROX-P real-valued sequence of length n = 64 and its autocorrelation lev-
els are shown in Fig. 2.3. The computational time for designing the sequence
was about 18 seconds on a standard PC. The autocorrelation levels are nor-
malized and expressed in dB:

autocorrelation level (dB) = 20log10

∣∣∣∣
ck

c0

∣∣∣∣ (2.57)

We note that the out-of-phase autocorrelation lags of the generated sequence
reach levels which are virtually zero.

Next, we consider the case of binary sequences. Unlike the real-valued se-
quences, no perfect binary sequence has been found for lengths n > 4 and it
is widely conjectured that such a sequence does not exist [34]. In addition, it
can be shown that the autocorrelation levels of a binary sequence are congru-
ent to the sequence length (mod 4) [35] and as a result autocorrelation levels
appear with a successive distance of 4. An ITROX binary sequence of length
n = 64 with good periodic correlations is depicted in Fig. 2.4. We have let the
function in (2.48) with ν = 0.0001 operate on the entries of the sequence. The
constructed sequence is optimal with out-of-phase autocorrelation levels of 0
and 4 [36]. A computational time of 13 seconds was required on a standard
PC to accomplish the task.

2.5.2 Periodically Complementary Sets of Sequences
As discussed in Section 2.2, ITROX can be used to construct complementary
sets of sequences for which the number of sequences is at most equal to their
length.

We design a real-valued periodically complementary pair {x1,x2} using
ITROX-P. The resultant sequences and the levels of their autocorrelation
sum are shown in Fig. 2.5. On the other hand, Fig. 2.6 shows a periodically
complementary pair of binary sequences along with their correlation sum. In
the latter case, we have let the function f in (2.48) with ν = 0.0001 operate on
the entries of both sequences x1 and x2 through the iterations. The computa-
tional time for designing the two sequence pairs were 23 and 16 seconds on a
standard PC, respectively.

2.5.3 Sequences with Good Aperiodic Correlation
We use ITROX-A P to design single real-valued or binary sequences of length
n = 64. The resultant sequences and their autocorrelations are shown in Fig.
2.7 and Fig. 2.8 respectively. The autocorrelation levels of the real-valued
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Figure 2.3. Design of a real-valued sequence of length 64 with good periodic auto-
correlation. (a) and (b) depict the entries and the autocorrelation levels (in dB) of the
sequence respectively.
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Figure 2.4. Design of a binary sequence of length 64 with good periodic autocorre-
lation. (a) shows the entries of the resultant sequence (i.e. the sequence provided by
ITROX when stopped) along with the corresponding binary sequence (obtained by
clipping the resultant sequence). The autocorrelation of the binary sequence is shown
in (b).
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Figure 2.5. Design of a real-valued periodically complementary pair of sequences
(both of length 64) using ITROX-P . (a) plots of the sequences with a bias of +3 and
−3 to distinguish the two sequences. (b) plot of the autocorrelation sum levels.
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Figure 2.6. Design of a binary periodically complementary pair of sequences (both
of length 64). (a) plots of the resultant sequences (i.e the sequences provided by
ITROX when stopped) along with their corresponding binary sequences (obtained by
clipping). A bias of +3 and −3 is used to distinguish the sequences. (b) plot of the
autocorrelation sum.
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sequence are normalized as in (2.57). The required time for designing the
real-valued sequence of Fig. 2.7 was about 26 seconds on a standard PC,
whereas it took 16 seconds to design the binary sequence of Fig. 2.8 on the
same PC.

Under the binary constraint, Barker sequences have the lowest achievable
PSL (i.e. PSL= 1). However, the longest known Barker sequence is of length
13. Moreover, finding sequences with optimal PSL requires exhaustive search.
To design binary sequences, we use the function in (2.48) with ν = 0.0001 as
in the previous sub-sections. In this example, the binary sequence achieves
a PSL value of 6 and a MF of 4.67. These values are comparable to those
obtained by stochastic search algorithms [9]. The PSL and the MF of the
sequence are depicted in Fig. 2.9 with respect to the iteration number.

It is shown in [37] that for any function g(n) = o(
√

n), the proportion of bi-
nary sequences of length n which have PSL values larger than g(n) approaches
1 as n increases. Yet, no sequence families are known whose PSL grows like
o(
√

n) or even Θ(
√

n) [38]. We used ITROX-A P to design binary sequences
of length 5≤ n ≤ 69. For each length, we run ITROX-A P 5 times and save
the best PSL. Fig. 2.10 compares our results with the optimal PSL values [39]
and the square root of length.

2.5.4 Sequences With Zero Correlation Zone (ZCZ)
Considering the difficulty of finding sequences with good aperiodic correla-
tion, we generate single real-valued or binary sequences (of length n = 64)
with low aperiodic correlation zone. These sequences are shown in Fig. 2.11
and Fig. 2.12 respectively. In both cases, the lags 1 ≤ |k| ≤ 23 (out of
0 ≤ |k| ≤ 63) define the zone with low correlation. Furthermore, as in the
previous sub-sections, the function f in (2.48) with ν = 0.0001 was used in
the binary case. The computational time for designing the real-valued and
binary sequences were 85 and 57 seconds on a standard PC, respectively.

2.6 Concluding Remarks
A computational approach to the problem of sequence design for good corre-
lation properties has been proposed. A general framework (called ITROX; to
be pronounced “itrocks") and a set of associated algorithms were introduced
to tackle several sequence design problems. The results can be summarized as
follows:
• Using the concept of twisted product (see Definition 1) some basic for-

mulations were provided that led to an alternating projection algorithm
as the core of ITROX.
• Several specialized algorithms were proposed for different applications

of sequence design, namely: (i) ITROX-P for designing (complemen-
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Figure 2.7. Design of a real-valued sequence (of length 64) with good aperiodic auto-
correlation. (a) and (b) show the entries and the autocorrelation levels (in dB) of the
sequence respectively.
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Figure 2.8. Design of a binary sequence (of length 64) with good aperiodic autocor-
relation. (a) depicts the entries of the resultant sequence (i.e. the sequence provided
by ITROX when stopped) along with the corresponding binary sequence (obtained by
clipping the resultant sequence). The autocorrelation of the obtained binary sequence
is shown in (b).
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Figure 2.9. The PSL and MF vs. the iteration number for the binary sequence shown
in Fig. 2.8. The binary sequence achieves a PSL value of 6 and a MF of 4.67.
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For each length, ITROX-A P was used 5 times and from the 5 resultant PSL values,
the best one is shown.
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Figure 2.11. Design of a real-valued sequence (of length 64) with low aperiodic cor-
relation zone: (a) entries of the sequence, (b) plot of the autocorrelation level of
the sequence (in dB). Dashed-lines indicate the low correlation zone i.e. the lags
1≤ |k| ≤ 23.
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Figure 2.12. Design of a binary sequence (of length 64) with low aperiodic correlation
zone: (a) the entries of the resultant sequence (i.e. the sequence provided by ITROX
when stopped) along with the corresponding binary sequence (obtained by clipping),
(b) plot of the autocorrelation of the obtained binary sequence. Dashed-lines indicate
the low correlation zone i.e. the lags 1≤ |k| ≤ 23.
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tary sets of or single) sequences with good periodic correlation proper-
ties, (ii) ITROX-A P for designing (complementary sets of or single)
sequences with good aperiodic correlation properties, and (iii) ITROX-
Z that extends the scope of the latter algorithms to designing (comple-
mentary sets of or single) sequences with zero or low correlation zone.
• The convergence of ITROX algorithms was studied. It was shown that

ITROX is an ISL minimizer (or equivalently a merit factor maximizer)
that can yield several solutions depending on initialization. The effect of
ITROX iterations on the PSL metric was also investigated.
• The ability of ITROX to tackle sequence design problems with con-

strained alphabets was discussed. For these cases, the idea of projections
on converging sets was introduced and used to modify the general form
of ITROX. The convergence of this approach was also studied.
• Numerical examples were provided that confirm the potential of ITROX

to tackle several sequence design problems.
Several research problems remain open. For example: (i) designing criteria

that can “measure" the goodness of a function f (see Definition 2 and the
discussions afterward); (ii) deriving an optimal f for given constrained and
non-constrained sets; and (iii) exploring other possible applications of ITROX
as well as its ability to optimize arbitrary sequence design objectives.
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3. Design of Complementary Sets of
Sequences
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Abstract

We introduce a fast computational frequency-domain approach to designing complementary
sets of sequences. Following the basic idea of CAN-based algorithms, we propose an extension
of the CAN algorithm to complementary sets of sequences (which we call CANARY). More-
over, modified versions of the proposed algorithm are derived to tackle the complementary
set design problems in which low peak-to-average-power ratio (PAR), unimodular or phase-
quantized sequences are of interest. Several numerical examples are provided to show the per-
formance of CANARY.

Keywords: Autocorrelation, binary sequences, complementary sets, cyclic minimization,

peak-to-average-power ratio (PAR), sidelobe level.

3.1 Introduction
An active sensing device, such as a radar system, transmits suitable waveforms
into its surrounding that enable it to measure useful properties (e.g. location
or speed) of peripheral objects. The transmit waveforms are generally formu-
lated by using discrete-time sequences (see, e.g. [4]). Let x = (x(1), ...,x(N))T

represent such a sequence (to be designed). The aperiodic and, respectively,
periodic autocorrelations of x are defined as

r(k) =
N−k

∑
l=1

x(l)x∗(l + k) = r∗(−k), 0≤ k ≤ (N−1), (3.1)

c(k) =
N

∑
l=1

x(l)x∗(l+ k)mod N = c∗(−k), 0≤ k ≤ (N−1). (3.2)

In general, transmit sequences x with small out-of-phase (i.e. k 6= 0) auto-
correlation lags lead to a better performance of an active sensing system. As
a result, there exists a rich literature on designing such sequences (see e.g.
[1]-[22] and the references therein).

In order to avoid non-linear side effects and maximize the efficiency of
power consumption at the transmitter, unimodular sequences (with |x(l)|= 1)
are desirable. Moreover, for cases with more strict implementation demands,
phase-quantized unimodular sequences must be considered. For unimodu-
lar sequences it is not possible to make all {|r(k)|} much smaller than r(0)
(depending on the application, the needed ratio can be around 10−5 or even
smaller). For instance, it can be easily observed that |r(N−1)|= 1, no matter
how we design the sequence x. In contrast with this, unimodular sequences
with zero out-of-phase (i.e. perfect) periodic autocorrelation can be obtained
for example via construction algorithms [8]. However, even by considering
the periodic correlation, finding phase-quantized unimodular sequences with
perfect periodic autocorrelation is a hard task. The difficulties in designing se-
quences with good autocorrelation encouraged the researchers to consider the
idea of complementary sets of sequences (CSS). A set X = {x1,x2, · · · ,xM}



containing M sequences of length N is called complementary iff the autocor-
relations of {xm} sum up to zero at any out-of-phase lag, i.e.

M

∑
m=1

rm(k) = 0, 1≤ |k| ≤ (N−1) (3.3)

where rm(k) represents the kth autocorrelation lag of xm. Consequently, to
measure the complementarity of a sequence set {xm} one can consider the
integrated sidelobe level (ISL) or the peak sidelobe level (PSL) metrics defined
by

ISL =
N−1

∑
k=1

∣∣∣∣∣
M

∑
m=1

rm(k)

∣∣∣∣∣

2

, (3.4)

PSL = max
k

{∣∣∣∣∣
M

∑
m=1

rm(k)

∣∣∣∣∣

}
,

as well as the ISL-related merit factor (MF), i.e.

MF = E2/(2ISL) . (3.5)

where E denotes the sum of the energy of the sequences. Complementary sets
containing M = 2 sequences, which are known as complementary pairs, form
a special case of CSS. Complementary pairs with binary (i.e. ±1) elements
were first studied in [20] and are usually referred to as Golay pairs (GP).

CSS have been applied to radar pulse compression [43], multiple-input
multiple-output (MIMO) radars [44], ultrasonic ranging [45], synthetic aper-
ture imaging [16], and ultrasonography [46]. In addition to active sensing sys-
tems, CSS have applications in code-division multiple-access (CDMA) com-
munication schemes [14], ultra wideband (UWB) communications [18], or-
thogonal frequency-division multiplexing (OFDM) [22] [47], channel estima-
tion [17], and data hiding [48]. Due to such a wide range of applications, the
construction of CSS has been an active area of research during the last decades.
The majority of research results on CSS have been concerned with the analyti-
cal construction of GP or CSS for restricted sequence lengths N. For example,
it is shown in [49] that GPs exist for lengths of the form N = 2α10β 26γ where
α ,β and γ are nonnegative integers. Some conditions on the existence of CSS
can be found in [50] and [51]. Furthermore, [51] considers the extension of
GP to general CSS. A theoretical as well as computational investigation of
feasible GPs of lengths N < 100 is accomplished in [52].

In contrast to analytical constructions, a computational design of CSS does
not impose any restriction on the sequence length N or the set cardinality M.
Furthermore, a computational algorithm for designing CSS can provide plenty
of CSS without the need for user-tuned parameters of analytical constructions.
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Such algorithms can also be used to find almost (i.e. sub-optimal) complemen-
tary sets of sequences for (N,M) values for which no CSS exists. A computa-
tional algorithm (called ITROX) for designing CSS was introduced in [45]. In
this chapter, we propose an extension of the CAN algorithm [6] for designing
complementary sets of sequences (which we call CANARY). The proposed
algorithm works in the frequency domain, and is generally faster than ITROX.
This is due to the fact that ITROX is based on certain eigenvalue decompo-
sitions with O(MN2) complexity, whereas CANARY relies on fast Fourier
transform (FFT) operations with O(MN log(N)) complexity (the difference in
computational burdens between the two algorithms can be clearly observed in
practice when N grows large).

The rest of this work is organized as follows. Section II presents the CA-
NARY algorithm for CSS design. The extension of the CANARY algorithm
to phase-quantized (and other constrained) CSS is studied in Section III. Sec-
tion IV is devoted to numerical examples, whereas Section V concludes the
chapter.

Notation: We use bold lowercase letters for vectors and bold uppercase let-
ters for matrices. (.)T , (.)∗ and (.)H denote the vector/matrix transpose, the
complex conjugate, and the Hermitian transpose, respectively. 1 and 000 are
the all-one and all-zero vectors/matrices. ‖x‖n or the ln-norm of the vector

x is defined as (∑k |x(k)|n)
1
n where {x(k)} are the entries of x. The Frobe-

nius norm of a matrix XXX (denoted by ‖XXX‖F ) with entries {XXX(k, l)} is equal

to
(
∑k,l |XXX(k, l)|2

) 1
2 , whereas the l1-norm of XXX (denoted as ‖XXX‖1) is given by

∑k,l |XXX(k, l)|. The matrix e jXXX is defined element-wisely as
[
e jXXX
]

k,l
= e j[XXX ]k,l .

arg(.) denotes the phase angle (in radians) of the vector/matrix argument. The
symbol⊙ stands for the Hadamard (element-wise) product of matrices. C rep-
resents the set of complex numbers. Finally, δk is the Kronecker delta function
which is equal to one when k = 0 and to zero otherwise.

3.2 CANARY Algorithm
It is well-known that for any sequence x of length N with aperiodic autocorre-
lation lags {r(k)} (see, e.g. [54]),

Φ(ω),

∣∣∣∣∣
N

∑
n=1

x(n)e− jωn

∣∣∣∣∣

2

=
N−1

∑
k=−(N−1)

r(k)e− jωk (3.6)

where Φ(ω) is the “spectrum" of x. Consider a complementary set X =
{x1,x2, · · · ,xM} containing M sequences of length N. It follows from the Par-
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seval equality that

2ISL =
N−1

∑
k=−(N−1)

∣∣∣∣∣
M

∑
m=1

rm(k)−MNδk

∣∣∣∣∣

2

(3.7)

=
1

2N

2N

∑
p=1

[
M

∑
m=1

Φm(ωp)−MN

]2

with Φm(ωp) representing the spectrum of the mth sequence at the angular
frequency ωp = 2pπ/(2N). Therefore, the minimization of the ISL metric
in (3.4) can be accomplished by minimizing the following frequency-domain
metric:

2N

∑
p=1




M

∑
m=1

∣∣∣∣∣
N

∑
n=1

xm(n)e
− jωpn

∣∣∣∣∣

2

−MN




2

. (3.8)

Inspired by the basic idea of the CAN algorithm in [6] that considers (3.8)
with M = 1, we propose a cyclic algorithm (which we call CANARY) for
designing CSS. Let XXX , (x1 x2 · · · xM) and let AAAH represent the 2N× 2N

DFT matrix given by

[AAAH ]p,n =
1√
2N

e− j nωp , (p,n) ∈ {1,2, · · · ,2N}2. (3.9)

The design problem associated with the frequency-domain metric in (3.8) can
be dealt with conveniently via considering the following minimization prob-
lem:

min
ZZZ,SSS

‖AAAHZZZ−SSS‖F (3.10)

s.t. (SSS⊙SSS∗)1M = MN 12N , (3.11)

ZZZ =

(
XXX

000N×M

)
(3.12)

where SSS is an auxiliary matrix variable.
For fixed ZZZ (equivalently fixed XXX), the minimizer SSS of (3.10) can be obtained

as follows. Since the constraint (3.11) is imposed row-wise, we can consider
the optimization of the entries in each row of SSS independently. Suppose that
sssT represents a generic row of AAAHZZZ. Then the goal is to find a vector sss that
solves the optimization problem:

min
sss

‖sss− sss‖2
2 (3.13)

s.t. ‖sss‖2
2 = MN.
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The solution to (3.13) is simply given by

sss =
√

MN
sss

‖sss‖2
. (3.14)

In sum, let sssT
k (k = 1, · · · ,2N) denote the kth row of SSS = AAAHZZZ. Then the mini-

mizer SSS of (3.10) can be obtained as

SSS =
√

MN




sssT
1 /‖sss1‖2

sssT
2 /‖sss2‖2

...
sssT

2N/‖sss2N‖2


 (3.15)

Next we study the optimization of (3.10) with respect to ZZZ. For cases in
which the sequences {xm} are not constrained, the minimizer ZZZ of (3.10) is
given by

[ZZZ]n,m =

{
[AAASSS]n,m 1≤ n≤ N,
0 n > N.

(3.16)

However, in many practical applications, the sequences are constrained (see
the discussion on this aspect in the Introduction). Particularly, we will consider
unimodularity constraints as well as more general peak-to-average-power ra-
tio (PAR) constraints. For unimodular XXX , the minimizer ZZZ of (3.10) can be
expressed as

[ZZZ]n,m =

{
e j arg[AAASSS]n,m 1≤ n≤ N,
0 n > N.

(3.17)

On the other hand, the minimizer ZZZ of (3.10) for PAR constraint set, viz.

PAR(xm) =
‖xm‖2

∞
1
N
‖xm‖2

2

≤ γ , 1≤ m≤M, (3.18)

can be obtained by solving the optimization problem:

min
ZZZ

‖ZZZ−AAASSS‖F (3.19)

s.t. ‖xm‖2
∞ ≤ γ , 1≤ m≤M,

‖xm‖2
2 = N, 1≤ m≤M,

ZZZ =

(
XXX

000N×M

)
.

Interestingly, the problem (3.19) can be tackled using an efficient recursive
algorithm suggested in [26]. Briefly, first we note that (3.19) can be solved via
a separate optimization with respect to the sequences {xm} (i.e. the columns
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of XXX), and that for each sequence xm (3.19) boils down to a “nearest-vector"
problem with PAR constraint. Let xm denote the vector containing the first N

entries of the mth column of AAASSS. If the magnitudes of the entries of xm are
below

√
γ then xm =

√
Nxm/‖xm‖2 is the solution. Otherwise, the entry of xm

corresponding to the entry of xm (say xmax) with maximal magnitude is given
by
√

γe j arg(xmax); and the other entries of xm are obtained solving the same type
of “nearest-vector" problem but with the remaining energy i.e. N− γ .

Based on the previous analysis, the CANARY algorithm for designing CSS
is summarized in Table 3.1. Note that each iteration of CANARY is compu-
tationally efficient as it is based solely on FFT operations. As a result, the
CANARY algorithm can be used for large values of N and M (e.g. MN ∼ 106

or even larger).

Table 3.1. The CANARY Algorithm

Step 0: Initialize ZZZ using a random XXX ∈ CN×M.
Step 1: Compute the minimizer SSS of (3.10) using (3.15).
Step 2: Depending on the constraint imposed on the sequences
{xm}, compute the minimizer ZZZ (equivalently XXX) of (3.10) using
(3.16), (3.17) or (3.19).
Step 3: Repeat steps 1 and 2 until a stop criterion is satisfied, e.g.
‖XXX (l+1) − XXX (l)‖F ≤ ε for some pre-defined ε > 0 (where XXX(l)

denotes the matrix XXX obtained at the lth iteration).

We conclude this section with two remarks.
Remark 1: To make the chapter as concise as possible, we only derived the

CANARY algorithm for aperiodic autocorrelations. However the main ideas
of CANARY can also be used to design CSS with good periodic correlations.
In the latter case, CANARY can be useful when single sequences with per-
fect periodic correlation do not exist (such as in the certain design example

in the next section). Let ÃAA
H

denote the N×N DFT matrix. It is straightfor-
ward to verify that the design of CSS with good periodic correlations can be
formulated as the following optimization problem:

min
XXX ,SSS

‖ÃAAH
XXX−SSS‖F (3.20)

s.t. (SSS⊙SSS∗)1M = MN1N

which can be tackled in the same manner as proposed for (3.10). �

Remark 2: An alternative approach to designing CSS is to use the Weighted
CAN (WeCAN) algorithm in [6]. To see how this can be done, let yyy ,
(xT

1 ,000
T
N−1,x

T
2 ,000

T
N−1, ...,x

T
M ,000T

N−1) be an auxiliary sequence of length M(2N−
1). Note that the first N aperiodic autocorrelation lags of yyy (denoted by {R(k)})
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can be written as

R(k) =
M

∑
m=1

rm(k), 0≤ k ≤ (N−1). (3.21)

Therefore, the sequence set {xm} is complementary if and only if yyy has a
zero correlation zone (ZCZ) for lags in the interval 1 ≤ k ≤ (N− 1). Such
a ZCZ design (with the given sequence structure) can be carried out using
the WeCAN algorithm. However, this approach is computationally expensive
compared to the CANARY algorithm. �

3.3 Phase-Quantized Design
A sequence x of length N is phase-quantized (with phase quantization level L)
iff

arg(x(n)) ∈
{

0,
2π

L
(1), · · · , 2π

L
(L−1)

}
(3.22)

for all 1 ≤ n ≤ N. In particular, x is a phase-quantized unimodular sequence
(with phase quantization level L) iff for any 1≤ n≤ N,

x(n) ∈
{

1,e j 2π
L (1), · · · ,e j 2π

L (L−1)
}
. (3.23)

The CANARY algorithm can be used to try to find (unimodular) phase-quantized
CSS (or sub-optimal CSS whenever a perfect CSS does not exist) for arbitrary
N and M; however a certain modification is needed. Let QL(ϕ) denote the
closest element in the set of quantized levels in (3.22) to a given ϕ . Also
let vn,m = |vn,m|e jϕn,m = [AAASSS]n,m. For unimodular phase-quantized CSS (with
phase quantization level L), the minimizer ZZZ of (3.10) is given by

[ZZZ]n,m =

{
e j QL(ϕn,m) 1≤ n≤ N,
0 n > N,

(3.24)

and for just phase-quantized CSS by

[ZZZ]n,m =

{
|vn,m|cos(ϕn,m−QL(ϕn,m))e j QL(ϕn,m) 1≤ n≤ N,
0 n > N.

(3.25)

However, for small values of L, unimodular (or low PAR) sequences with
practically optimal correlation properties are rare. In addition, we note that
the objective function in (3.10) is highly multi-modal in such cases (i.e. it
may have multiple local optima). Therefore, although using (3.24) (or (3.25))
monotonically decreases the objective function in (3.10), the algorithm might
end up in a poor local optimum. To tackle this issue (which was noted in many
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other publications such as [9], [45] and [8]), we consider a penalized version
of (3.10) in the following.

We relax the unimodularity constraint to a penalization of the distance be-
tween the magnitudes of {xm(n)}m,n and 1. Therefore, consider the optimiza-
tion problem (for λ > 0):

min
XXX ,SSS

‖AAAHZZZ−SSS‖2
F +λ ‖(XXX⊙XXX∗)−1N×M‖1 (3.26)

s.t. (SSS⊙SSS∗)1M = MN 12N,

ZZZ =

(
XXX

000N×M

)
,

all {xm} are phase-quantized as in (3.22).

The solution SSS of (3.26) is identical to that of (3.10). Let v be a generic
element in the N×M upper sub-matrix of AAASSS. To obtain the solution XXX (and
ZZZ) of (3.26), we note that solving (3.26) for XXX can be dealt with in an element-
wise manner, and hence it can be reduced to the optimization problem:

min
x

|x− v|2 +λ
∣∣|x|2−1

∣∣ (3.27)

s.t. x is phase-quantized as in (3.22),

where x denotes a generic entry of XXX . Now let x = |x|e jϕx , v = |v|e jϕv , and
note that the minimizer ϕx of (3.27) is simply given by ϕx = QL(ϕv). Given
ϕx, we can rewrite the criterion in (3.27) as

|x− v|2 +λ
∣∣|x|2−1

∣∣ (3.28)

=
∣∣∣|x|− |v|e j(ϕv−ϕx)

∣∣∣
2
+λ

∣∣|x|2−1
∣∣

= Const1 +(|x|− |v|cos(ϕv−ϕx))
2 +λ

∣∣|x|2−1
∣∣

︸ ︷︷ ︸
f (|x|)

.

Note that f (|x|) is both continuous and lower bounded (by zero), and thus has
at least one global minimum. A global minimum |x| of f (|x|) satisfying |x|> 1
should minimize

f (|x|) = (1+λ )|x|2−2|x||v|cos(ϕv−ϕx)+Const2 (3.29)

which implies that |x| = |v|cos(ϕv−ϕx)/(1+λ ). Otherwise, a minimizer |x|
of f (|x|) satisfying |x|< 1 should minimize

f (|x|) = (1−λ )|x|2−2|x||v|cos(ϕv−ϕx)+Const3 (3.30)

which implies |x| = |v|cos(ϕv− ϕx)/(1− λ ). In sum, the minimization of
(3.27) with respect to |x| yields the following soft-thresholding type of solution
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(see [55] for a similar result):

|x|=





|v|cos(ϕv−ϕx)
1−λ |v|< 1−λ

cos(ϕv−ϕx)
,

1 1−λ
cos(ϕv−ϕx)

≤ |v| ≤ 1+λ
cos(ϕv−ϕx)

,
|v|cos(ϕv−ϕx)

1+λ |v|> 1+λ
cos(ϕv−ϕx)

.

(3.31)

3.4 Numerical Examples
In this section, we provide numerical examples to illustrate the performance of
the CANARY algorithm. The required computational times (on a PC with In-
tel Core i5 2.8GHz CPU, and 8.0GB memory) are reported. We use CANARY
to design unimodular as well as low PAR CSS of length N = 256 with M = 1
(in which case the CSS design becomes a single sequence design), M = 2 (i.e.
a complementary pair), and M = 3. We stopped the algorithm when the stop
criterion was satisfied with ε = 10−15. The computational times for designing
unimodular CSS with M = 1, 2, and 3 were approximately 3, 175, and 254
sec, respectively. The results are shown in Fig. 3.1(a). The autocorrelation
sums are normalized and expressed in dB,

autocorrelation level (dB) = 20log10

∣∣∑M
m=1 rm(k)

∣∣
∑M

m=1 rm(0)
. (3.32)

To examine CANARY when dealing with more general PAR constraints, Fig.
3.1(b) depicts the results of a similar design problem but now the constraint
PAR≤ 2 . The needed computational times were 6, 143, and 78 sec for M = 1,
2, and 3, respectively. As expected, the CSS designed for M ∈ {1,2} and
PAR ≤ 2 have better MF values compared to their corresponding CSS with
PAR= 1 (i.e. unimodular CSS). Note that increasing M provides more degrees
of freedom for CSS design. In particular, it can be observed from the figure
that for M = 3 the autocorrelation sums of the sequences achieve values which
are virtually zero (i.e. MF approaches +∞).

As indicated earlier, CANARY can be used to obtain almost (i.e. sub-
optimal) CSS for cases in which no CSS exists. It is known that there is
no binary GP of length N = 82 [51]. With this in mind, we employ the CA-
NARY algorithm to design a sub-optimal GP for N = 82. Using the relaxed
formulation of CANARY in (3.26) five hundred times (with λ = 0.5), we have
designed real-valued complementary pairs with low PAR. Next we clipped
the resultant sequences to obtain sub-optimal GP and chose the best sequence
pair with respect to the ISL metric. The two sequences obtained in this way
are shown in Fig. 3.2(a). The average autocorrelation of the obtained binary
sequences, viz.

1
2

∣∣∣∣∣
2

∑
m=1

rm(k)

∣∣∣∣∣ , −81≤ k ≤ 81 (3.33)
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Figure 3.1. Unimodular and low PAR CSS design for N = 256 and M ∈ {1,2,3}
with the constraints: (a) PAR = 1 (i.e. unimodular entries), and (b) PAR ≤ 2. The

autocorrelation sums achieve practically zero values as M increases to 3. The MF

values corresponding to M = 1,2,3 in (a) and (b) are given by (15.9,1.0× 106
,4.0×

1029) and (6.0× 104
,9.6× 108

,4.1× 1028), respectively.
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is presented in Fig. 3.2(b). The obtained sub-optimal GP achieves a MF value
of 19.88. A computational time of 41 sec was required on the PC to accom-
plish the task. As another example, we use the same approach to design a
QAM (i.e. with L = 4) almost complementary pair of length N = 82. The
results are shown in Fig. 3.2 (c)-(d). For the convenience of the reader, the re-
sultant sequences of both binary and QAM examples are provided in Table 3.2.
The obtained QAM CSS has a MF equal to 21.08. As expected the MF corre-
sponding to the obtained QAM CSS is larger than that of the binary example;
however, the binary CSS has a smaller PSL. This can be explained by the fact
that CANARY is an ISL minimizer (or equivalently a MF maximizer) and not
a PSL minimizer. The PAR values of the resultant sequences (before clipping)
in the binary and QAM cases are (1.05,1.04) and (1.18,1.15), respectively. As
the inner-product (or the distance) of the sequences in the CSS is of interest
in some applications, we also report the inner-product values achieved for the
above examples. The inner-product metric can be defined as |xH

1 x2|/N, where
x1 and x2 are the sequences in the obtained complementary pairs (both with
energy N). The inner-product metric values corresponding to the binary and
QAM examples above are 0.024 and 0.039, respectively.

Alphabet Sequence pair

Binary -1,1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1, -1,1,-
1,1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,1,1,-1,-1,-1,1,-1,-1,-1,1,1,1,-1,-
1,1,1,1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-1
1,-1,-1,1,1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,
-1,1,1,1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,
-1,1,-1,1,-1,-1,1,-1,1,-1,-1,-1,-1,1

QAM j,-1,j,-1,-j,1,-j,1,1,-1,-j,-1,j,1,j,j,j,1,j,-1,j,1,j,-1,j,1,-j,-1,-j,-1,j,1,j,-1,j,1,j,-1,
-j,1,j,1,j,1,j,1,j,-1,j,-1,-j,1,-j,-1,j,-1,-j,-1,-j,1,-j,-1,-j,-1,j,1,-j,-1,j,-1,j,1,j,1,-
j,1,j,1,-j,1,j,1
j,1,j,1,j,1,j,-1,j,-1,j,-1,-j,-1,j,1,j,-1,j,1,j,-1,-j,1,-j,1,j,-j,-j,-1,j,1,j,1,-j,-1,-j,1,-j,
-1,-j,1,j,-1,j,1,j,1,-j,-1,-j,-1,-j,-1,-j,-1,j,1,j,-1,-j,-1,j,-1,j,1,-j,1,j,-1,-j,-1,-j,1,-j,1,j,-
1,-j,-1,j,1

Table 3.2. The obtained binary and QAM almost complementary pairs.

Finally we provide an example to show that CANARY can find known GPs
in the search space. Specifically, we consider finding a binary GP of length
N = 520. We perturb the entries of the binary GP by zero-mean i.i.d. Gaus-
sian random variables with a standard deviation σ that take values in the set
{0.15,0.25,0.5,0.75,0.85}, and then we use the so-obtained perturbed non-
binary sequences to initialize CANARY; furthermore we will do this for 1000
times to compute the average statistics. Similar to the previous example, we
set λ = 0.5. For each σ , the number of the cases in which CANARY finds the
original GP to the total number of tests (i.e. 1000) can be interpreted as the
empirical probability p of finding the known GP. The results are reported in
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Figure 3.2. Design of a sub-optimal GP and an almost CSS (of length 82) using CA-

NARY. (a) depicts the entries of the binary sequences (shown by ∗) and the resultant

sequences of (3.26). (c) plots the absolute values of the obtained QAM sequences

(shown by ∗) as well as the resultant sequences of (3.26). In both (a) and (c), a bias of

+3 and −3 is used to distinguish the sequences. The average autocorrelations of the

obtained binary/QAM sequences are shown in (b)/(d).
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Table 3.3, and the empirical p decreases apparently gracefully and slowly as
σ increases.

σ 0.15 0.25 0.5 0.75 0.85

p 1 1 1 0.95 0.70

Table 3.3. The empirical probability p of finding the known GP for various perturba-

tion levels σ .

3.5 Concluding Remarks
The problem of CSS design has been formulated and a fast algorithm (called
CANARY) for generating CSS has been proposed. The main results can be
summarized as follows:
• The design of CSS was formulated as a cyclic minimization of (3.10).

Several variations of this minimization problem were proposed for dif-
ferent sequence design constraints (depending on the application). The
discussed cases were: (i) a given PAR, (ii) unimodularity of the entries
of the sequences, (iii) phase-quantized sequences, and (iv) sequences
with unimodular entries and quantized phase values.
• The steps of CANARY are computationally efficient, which enables us-

age for large (N,M). Moreover, as the sequence design problems are
usually solved off-line, the computational efficiency of CANARY can
be leveraged to perform an efficient search of CSS when only a single
set is not enough.
• The formulation in this chapter can be exploited to deal with the CSS

design for good periodic correlation properties as well. Detailed deriva-
tions were not presented for the sake of brevity.
• Numerical examples were provided to examine the performance of CA-

NARY when dealing with different CSS design problems.
We conclude this chapter by returning to the fact that CANARY is a scheme
that attempts to minimize the ISL. We note that one can generally make the
PSL metric “small" by minimizing the ISL. However, a direct minimization of
the PSL metric appears to be more complicated and remains a topic for future
work.
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4. On Meeting the Peak Correlation Bounds
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Abstract

We study the problem of meeting peak periodic or aperiodic correlation bounds for complex-
valued sets of sequences. To this end, the Welch, Levenstein, and Exponential bounds on the
peak inner-product of sequence sets are considered and used to provide compound peak cor-
relation bounds in both periodic and aperiodic cases. The peak aperiodic correlation bound is
further improved by using the intrinsic dimension deficiencies associated with its formulation.
In comparison to the compound bound, the new aperiodic bound contributes an improvement
of more than 35% for some specific values of the sequence length n and set cardinality m. We
study the tightness of the provided bounds by using both analytical and computational tools.
In particular, novel algorithms based on alternating projections are devised to approach a given
peak periodic or aperiodic correlation bound. Several numerical examples are presented to as-
sess the tightness of the provided correlation bounds as well as to illustrate the effectiveness of
the proposed methods for meeting these bounds.

Keywords: Autocorrelation, correlation bound, cross-correlation, peak sidelobe level (PSL),

sequence set, Welch bound.

4.1 Introduction
Sequence sets with impulse-like autocorrelation and small cross-correlation
are required in many communication and active sensing applications. For ex-
ample, such sets are used in asynchronous CDMA to separate different users
while performing a synchronization operation at the same time [56]. As an
active sensing example, such correlation properties of the probing sequences
enable the multi-input multi-output (MIMO) radars to conveniently retrieve
(via matched filters) the received signals from the range bin of interest while
suppressing the probing signals backscattered from other range bins [7].

Let X be a set of m sequences of length n. We assume that the sequences
in X have identical energy1, i.e. ‖x‖2

2 = σ for all x ∈ X . Let xu and xv denote
two sequences from the set X . The periodic {cu,v(k)} and aperiodic {ru,v(k)}
cross-correlations of xu and xv are defined as

cu,v(k) =
n

∑
l=1

xu(l)x
∗
v(l+ k)mod n, (4.1)

ru,v(k) =
n−k

∑
l=1

xu(l)x
∗
v(l+ k) = r∗v,u(−k), (4.2)

for 0≤ k≤ (n−1). The periodic and aperiodic autocorrelations of any xu ∈ X

are obtained from the above definitions by using xv = xu. Moreover, the inner
product of xu and xv is given by xH

v xu = cu,v(0) = ru,v(0).
The Welch bounds [57] are the most well-known theoretical limits on the

collective smallness measures of both inner-products and correlations of se-

1For the sake of generality, an energy of σ is considered for sequences throughout the chapter.
We note that the typical values of σ suggested in the literature are σ = 1 for inner-product
bounds, and σ = n for correlation bounds. However, one can easily verify that by using different
values of σ leads to nothing but a scaling of the inner-product or correlation bounds.



quence sets. Several such measures along with the associated Welch lower
bounds are summarized in Table 4.1. Briefly stated, the main objectives of
this chapter are:
• To update the peak correlation bounds based on the current sate-of-

knowledge on peak inner-product bound, as well as to propose a scheme
for improvement of the aperiodic correlation bound. The proposed scheme
exploits the intrinsic low dimensional properties that appear in deriva-
tion of the peak aperiodic bound. The new aperiodic peak sidelobe level
(PSL) bound can be significantly larger than the previously known ape-
riodic bound (by more than 35% for some (m,n) ∈ [2,1024]× [2,256]).
• To determine how close we can get to the previously known or improved

PSL correlation bounds. In order to achieve this goal, a computational
method is devised to approach any given (feasible) PSL level for both
periodic and aperiodic correlations. To the best of our knowledge, the
provided computational method is the first (non-heuristic) algorithm to
tackle the problem of achieving a given low PSL.

The rest of this chapter is organized as follows. In Section 4.2, the re-
lationship between the inner-product and correlation bounds is studied and
employed to provide a derivation of peak correlation bounds. The tightness of
the provided bounds along with an improvement of the aperiodic correlation
bound are discussed in Section 4.3. In Section 4.4, a general framework is
devised to approach a given (periodic or aperiodic) peak correlation bound.
Section 4.5 is devoted to the numerical examples. Finally, Section 4.6 con-
cludes the chapter.

Notations: We use bold lowercase letters for vectors/sequences and bold
uppercase letters for matrices. (·)T , (·)∗ and (·)H denote the vector/matrix
transpose, the complex conjugate, and the Hermitian transpose, respectively.
1 and 000 are the all-one and all-zero vectors/matrices. ‖x‖n is the ln-norm of

the vector x defined as (∑k |x(k)|n)
1
n where {x(k)} are the entries of x. The

Frobenius norm of a matrix XXX (denoted by ‖XXX‖F ) with entries {XXX(k, l)} is

equal to
(
∑k,l |XXX(k, l)|2

) 1
2 . tr{XXX} denotes the trace of the matrix XXX . ηk(XXX)

and vvvk(XXX) represent the kth dominant eigenvalue and the corresponding eigen-
vector of the Hermitian matrix XXX , respectively. The symbol ⊙ stands for the
Hadamard (element-wise) product of matrices, whereas⊗ stands for the Kro-
necker product of matrices. x⊗n is equal to x⊗x⊗·· ·⊗x︸ ︷︷ ︸

n

. [n] denotes the set

{1,2, · · · ,n}. For any n1,n2 ∈ N, [n1,n2] is equal to [n2]\[n1− 1].
(

n
k

)
, often

read as “n choose k", is the coefficient of the xk-term in the polynomial expan-
sion of the binomial power (1+ x)n. Finally, N, Z, R and C represent the set
of natural, integer, real and complex numbers, respectively.
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4.2 A Study of the Inner-Product and Correlation
Bounds

In the following, a study of the currently known inner-product and correlation
bounds is accomplished. The provided background lays the ground for tight-
ness assessments as well as the bound improvements suggested in the chapter.

4.2.1 Inner-Product Bounds
The collective smallness of the inner products of {xu} can be measured by
using the peak inner-product level metric:

Imax(X) = max
{
|xH

v xu|
}

u 6=v
(4.3)

as well as the root-mean-square (RMS) inner-product level metric,

Irms(X) =

(
1

m(m−1) ∑
u 6=v

|xH
v xu|2

) 1
2

(4.4)

where clearly Imax(X) ≥ Irms(X). In [57], Welch derived lower bounds on
the above collective smallness measures of the inner-product levels associated
with X ; the Welch lower bounds on Imax(X) and Irms(X) are given (assuming
m > n) by

Irms(X)≥ σ

√
m−n

(m−1)n
, W m,n (4.5)

and

Imax(X)≥ max
s: (n+s−1

s )≤m

σ

(
1

m−1

[
m(

n+s−1
s

) −1

]) 1
2s

(4.6)

, Wm,n.

Note that both W m,n and Wm,n are zero for m≤ n.
Knowledge of inner-product bounds is essential to the derivation of both

periodic and aperiodic correlation bounds. Let xH
v xu = σ cos(φu,v) where φu,v

denotes the angle between the two vectors xu and xv. From a geometrical point
of view, the Welch peak inner-product bound provides a lower bound on the
maximum of the angles {φu,v} among the set of m equi-norm vectors {xu} in
Cn. A direct algebraic derivation of the inner-product bound (which appears
to be simpler than that in [57]) is as follows. Let XXX ∈ Cn×m (with m > n)
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represent the matrix whose columns are {xu}. Then we have that

∑
u,v

|xH
v xu|2 = ||XXXHXXX‖2

F =
n

∑
k=1

λ 2
k (4.7)

≥ 1
n

(
n

∑
k=1

λk

)2

=
1
n

(
tr(XXXHXXX)

)2

=
m2σ 2

n

where {λk} are the non-zero eigenvalues of XXXHXXX . As a result,

I1(X) , ∑
u 6=v

|xH
v xu|2 (4.8)

=

(

∑
u,v

|xH
v xu|2

)
−mσ 2 ≥ mσ 2

(m

n
−1
)

which implies

Imax(X)≥
(

I1(X)

m(m−1)

) 1
2

≥ σ

(
1

m−1

(m

n
−1
)) 1

2

. (4.9)

As an aside remark, it is straightforward to verify that for m ≤ n, (4.7)-(4.9)
yield a trivial lower bound i.e. zero.

Next observe that for any s ∈ N, one can verify that (xH
v xu)

s = (x⊗s
v )Hx⊗s

u .
However, even though {x⊗s

u } are of length ns, they lie in a lower dimensional
subspace of Cns

. To see this, we count the number of distinct entries in any
general vector x⊗s. Note that any entry of x⊗s is of the form

(x(1))ν1(x(2))ν2 · · · (x(n))νn (4.10)

where ν1 + ν2 + · · ·+ νn = s, and νl ∈ N∪ {0}. The number of possible
combinations of (ν1,ν2, · · · ,νn) which satisfy this same condition is given by
d =

(
n+s−1

s

)
. Let XXX s denote a matrix whose columns are {x⊗s

u }. Based on the
above argument, there exist a semi-unitary matrix UUU ∈ Cns×d and a rank−d

matrix YYY s ∈ Cd×m such that XXX s = UUUYYY s. By using the same approach as in
(4.7) we have that

∑
u,v

|xH
v xu|2s = ||XXXH

s XXX s‖2
F = ||YYY H

s YYY s‖2
F ≥

m2σ 2s

d
. (4.11)

It follows from (4.11) that

Is(X), ∑
u 6=v

|xH
v xu|2s ≥ mσ 2s

(m

d
−1
)

(4.12)
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which yields

Imax(X)≥ σ

(
1

m−1

(
m(

n+s−1
s

) −1

)) 1
2s

. (4.13)

The above dimension reduction scheme, which lies at the core of the higher
order (i.e. with s> 1) Welch bounds, emphasizes the usefulness of considering
hidden dimension deficiencies of the vector sets. Such dimension deficiencies
play a main role in improving the peak aperiodic correlation bound in Section
4.3.2.

Due to applications in compressive sensing and synchronous CDMA, meet-
ing the Welch bounds on the inner-products associated with sequence sets
(also referred to as measurement matrices [58], codebooks [59]- [61], or Grass-
mannian frames [62] depending on the application) has been studied widely.
It is known that the Welch bound on Irms(X) can be met for many (m,n)
(see, e.g. [56] and the references therein). An X meeting the Welch bound
on Irms is called Welch-bound-equality (WBE) set [56]. On the other hand, se-
quence sets meeting the Welch bound on the peak inner-product level (known
as maximum-Welch-bound-equality (MWBE) sets, see [56]) are hard to ob-
tain either analytically or numerically. Examples of and some conditions for
the existence of MWBE sets for given (m,n) were presented in [62]- [63].
Particularly, if MWBE sets do not exist2 for s = 1 in (4.6), then they do not
exist for any s > 1 [64]. Note that Wm,n in (4.6) associated with s = 1 is
equal to W m,n. These facts not only emphasize the importance of the Welch
peak inner-product level bound for s = 1 but also imply that if the peak inner-
product level of a sequence set meets the Welch bound (i.e. the Welch bound
is tight) then all the inner products among the sequences in the set have the
same absolute value which is equal to W m,n. Furthermore, let the maximum
of the functions in (4.6) occur for s = s0. Then a necessary condition for the
existence of MWBE sets for given (m,n) is [64]

(
n+ s0−1

s0

)
≤ n2. (4.14)

It is also known that the Welch inner-product bound can be tight only if m≤ n2

[63].
Two other bounds on Imax(X) were derived in the literature which are tighter

than Wm,n for some (m,n). The latter bounds, which are not discussed in the
literature as much as the Welch bound, are the Levenstein bound [66] [67],

Lm,n , σ

√
2m−n2−n

(n+1)(m−n)
(4.15)

2Note that MWBE sets exist for s= 1 iff (4.6) is maximized with s= 1 and there exist a sequence
set with peak inner-product Imax(X) equal to the obtained value of Wm,n.
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for m > n(n+1)/2, and the Exponential bound [59],

Em,n , σ(1−2m
−1

n−1 ) (4.16)

for m > 2n−1. The above bounds can be combined with the Welch bound to
yield

Im,n , max{Wm,n,Lm,n,Em,n} (4.17)

that encapsulates the current state-of-knowledge on the lower bounds for the
peak inner-product level. Note that some bounds in (4.17) might not be useful
(i.e. > 0) for a specific (m,n).

4.2.2 Correlation Bounds
Excluding the in-phase (i.e. for k = 0) lags of the autocorrelations of {xu}
(which equal the energy of sequences), one can measure the level of the out-

of-phase correlations of sequences in X by using the integrated sidelobe level

(ISL) metric:

ISLP(X) = ∑
u 6=v;k

|cu,v(k)|2+ ∑
u;k 6=0

|cu,u(k)|2 (4.18)

ISLA P(X) = ∑
u 6=v;k

|ru,v(k)|2+ ∑
u;k 6=0

|ru,u(k)|2 (4.19)

where P and A P stand for periodic and aperiodic correlations, respectively.
Lower bounds on the above ISL metrics are given by [70] [71]

ISLP(X) ≥ σ 2m(m−1), W
P
m,n (4.20)

ISLA P(X) ≥ σ 2m(m−1), W
A P
m,n . (4.21)

Note that the ISL metric can be related to the RMS inner-product level defined
in (4.4). Particularly, similar to Irms(X), the ISL bounds can be (nearly) met
even for sequence sets with constrained alphabet [70] [71].

A different criterion for measuring the collective smallness of the out-of-
phase correlations is the PSL metric:

PSLP(X) = max
(
{|cu,v(k)|}u 6=v;k∪{|cu,u(k)|}u;k 6=0

)
(4.22)

PSLA P(X) = max
(
{|ru,v(k)|}u 6=v;k∪{|ru,u(k)|}u;k 6=0

)
(4.23)

The PSL criteria have a close relationship with the peak inner-product level
metric. In particular, Welch [57] used (4.6) to derive the following lower
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bounds on the periodic, and respectively, aperiodic PSL metrics:

W P
m,n , max

s: (n+s−1
s )≤mn

σ

(
1

mn−1

[
mn(

n+s−1
s

) −1

]) 1
2s

,

W A P
m,n ,

max
s: (2n+s−2

s )≤m(2n−1)
σ

(
1

m(2n−1)−1

[
m(2n−1)(2n+s−2

s

) −1

]) 1
2s

with the bounds being non-trivial for m > 1.
We continue this section noting that the Welch peak correlation bounds are

a direct consequence of the Welch bound on inner-products. To observe this
fact, let {QQQk} be the periodic shifting matrices defined by

QQQk = QQQH
−k ,

(
000(n−k)×k IIIn−k

IIIk 000k×(n−k)

)
. (4.24)

Given a sequence set {xu}m
u=1 with sequences of length n and energy σ , it is

straightforward to verify that the inner-products of the mn sequences {QQQvxu}u,v∈[m]2

become the out-of-phase periodic correlations of the set {xu}m
u=1. Therefore,

by using the Welch inner-product bound we obtain the following lower bound
on PSLP(X):

PSLP(X)≥Wmn,n = W P
m,n (4.25)

The Welch correlation bound in the aperiodic case can be derived by addition-
ally observing that the periodic out-of-phase correlations of {x̃u}m

u=1 where
x̃u = (xT

u 0001×(n−1))
T are identical to the aperiodic out-of-phase correlations of

{xu}m
u=1. As a result,

PSLA P(X) ≥ W P
m,2n−1 (4.26)

= Wm(2n−1),2n−1

= W A P
m,n .

A consequence of the above formulation is the fact that, similar to the case
of inner products, the Welch peak correlation bounds can be met if and only
if all out-of-phase correlation terms possess the same value. As a side conse-
quence, the above formulation implies that the correlation lags compose the set
of inner-products associated with circulant measurement matrices (or frames).
Therefore, any of the obtained correlation bounds can be useful when design-
ing measurement matrices (or frames) with circulant structure. In light of the
above usage of the Welch peak inner-product bound for deriving peak corre-
lation bounds, we can exploit the tighter peak inner-product bound Im,n to
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obtain the following compound peak correlation bounds:

I P
m,n , Imn,n (4.27)

I A P
m,n , I P

m,2n−1 = Im(2n−1),2n−1.

Note that achieving the above PSL bounds is harder (both analytically and
computationally) not only than meeting the ISL bounds in (4.20) but also than
achieving the aforementioned peak inner-product bounds. It is worth pointing
out that for designing sequence sets with constrained alphabet or with other
practical limitations, the above bounds can be modified accordingly. For in-
stance, when employing pth root-of-unity (i.e. p-ary) sequences with prime p

to design sequence sets with low periodic out-of-phase correlations, one can
use the Sidelnikov bound [72] which is usually tighter (although not always)
than the Welch bound. For the binary alphabet, improved lower bounds on
periodic and aperiodic ISL metrics are proposed in [73] and [74], respectively.

The long-standing research problem of finding sequence sets with small
out-of-phase correlations has resulted in several analytical constructions for
specific values of (m,n) (see e.g. [75]- [77]). However, the analytical con-
structions are usually proposed for the periodic correlation case and not for
the aperiodic case which is deemed to be more difficult [71]. As an example,
Kasami family includes sets of binary sequences of length n = 2N−1 and car-
dinality m = 2N/2 where N is an even natural number [75]. The PSLP value
of a Kasami set is given by 1+ 2N/2. In addition, for odd N, Gold binary se-
quence sets can be constructed for (m,n) = (2N +1,2N−1) that have a PSLP

value of 1+
√

2N+1−2 [76]. The Weil family consists of sequence sets with
n = N and m = (N− 1)/2, where N is prime, that possess a PSLP value of
5+2

√
N [77]. Such sets are usually referred to as asymptotically optimal ow-

ing to the fact that their PSL values behave like O(
√

n) as n→∞ similar to the
behavior of Welch peak correlation bounds for s = 1. We refer the interested
reader to [38] for further details on this aspect.

4.3 Correlation Bounds: Tightness and Improvement
By using the analytical tools provided earlier, we provide a tightness assess-
ment of the compound correlation bounds. In order to improve the tightness
condition of the bounds in the aperiodic case, a new improvement of the ape-
riodic bound is discussed and the obtained improvement is evaluated.

4.3.1 Tightness of I P
m,n and I A P

m,n

Our main results regarding the tightness of I P
m,n and I A P

m,n can be briefly
stated as follows. Examples of (m,n) can be provided for which the tightness
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of I P
m,n or I A P

m,n is straightforward to show. However, there exist (m,n) for
which these bounds are not tight. Overall, the theoretical (as well as the com-
putational) evidence suggests that the tightness of the above bounds may be

rather an exception than the rule. The next two propositions (whose proofs are
given in the Appendix) provide examples of cases in which I P

m,n and I A P
m,n

are tight.

Proposition 1. The peak periodic correlation bound I P
m,n is tight for (m,n) =

(2,2).

Proposition 2. The peak aperiodic correlation bound I A P
m,n is tight for (m,n)=

(2,2).

Next we present a simple computational approach to find cases in which the
compound peak correlation bounds are not tight. Specifically, the correlation
bounds I P

m,n and I A P
m,n are not tight if both conditions below hold:

1. The corresponding Welch bound is not tight, viz.
{

PSLP(X)> W P
m,n periodic case,

PSLA P(X)> W A P
m,n aperiodic case

(4.28)

for all sets X including m sequences of length n, and energy σ .
2. The Welch bound dominates both Levestein and Exponential bounds.

Due to the fact that the compound bound is the maximum of Welch,
Levestein and Exponential bounds, the latter condition is equivalent to

{
I P

m,n = W P
m,n Periodic case,

I A P
m,n = W A P

m,n Aperiodic case.
(4.29)

Condition 1) can be verified, for example, by checking the two necessary tight-
ness conditions of the Welch bound given in Introduction, see (4.14) and the
related observations. The second condition makes sure that the compound
bounds are identical to the Welch bounds. Fig. 4.1 depicts the values of
(m,n) ∈ [2,128]× [2,8] for which the use of the above approach shows that
the bounds I P

m,n and I A P
m,n are not tight. The next sub-section shows that, in

general, the (compound) aperiodic correlation bound is loose even more often
than what is suggested by Fig. 4.1.

4.3.2 An Improvement of the Aperiodic Correlation Bound
In this sub-section, we propose an improvement of I A P

m,n . The new bound
relies on the specific structure of aperiodic correlations. More concretely, one
needs to observe that even though the sequence dimensions are increased by
zero-padding (with the goal of deriving the aperiodic bound from the periodic
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(a)

(b)

Figure 4.1. The values of (m,n) ∈ [2,128]× [2,8] (depicted in yellow) for which the
peak correlation bounds I P

m,n and I A P
m,n were found to be loose (by satisfying both

conditions (4.28) and (4.29)): (a) periodic correlation, and (b) aperiodic correlation.

one), the sequences retain their intrinsic low dimensional properties. In partic-
ular, for subsets of sequences lying in lower dimensional subspaces the angles
among the vectors in the set may be smaller— so the inner product may be
larger. In the following, a more precise usage of this observation is proposed.

Let n≥ 2, and consider the sequence set

{QQQvx̃u}u∈[m], v∈[2n−1]. (4.30)

Now let k be a fixed integer such that 0 ≤ k ≤ n− 1. Consider the subset
of sequences in (4.30) whose non-zero entries occur only in their first n +
k locations. It is straightforward to verify that such property holds for any
0 ≤ v ≤ k. As a result, at least m(k+ 1) sequences of (4.30) lie in the n+ k

dimensional space associated with the first n+ k entries of the sequences in
(4.30). This fact implies the following lower bound on the peak aperiodic
correlation:

PSLA P(XXX)≥Im(k+1),n+k. (4.31)

Note that the above observation can be made for any window of length n+
k over the entries of the sequences in (4.30), but does not seem to further
improve the bound in (4.31). However, by using (4.31) for 0 ≤ k ≤ n− 1
yields

PSLA P(XXX)≥ max
0≤k≤n−1

Im(k+1),n+k , N A P
m,n . (4.32)
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Fig. 4.2 compares the new aperiodic correlation bound N A P
m,n with the ape-

riodic bound I A P
m,n . The comparison is accomplished by computing the ratio

N A P
m,n /I A P

m,n for (m,n) ∈ [2,1024]× [2,256]. A considerable improvement
(even by more than 35%) can be observed for some (m,n). As a specific ex-
ample, we consider the case of (m,n) = (450,250). In this case, the maximum
of {Im(k+1),n+k} occurs for k = 11 leading to N A P

m,n = 0.0604σ , whereas
I A P

m,n = 0.0447σ . As a result, we obtain N A P
m,n /I A P

m,n = 1.351.
Finally, we end this section by noting that similar to I A P

m,n , the formulation
of N A P

m,n relies on the inner-product bounds {Im,n} and hence, its growth rate
is determined by {Im,n}.

Figure 4.2. The improvement of the aperiodic correlation bound. The new bound
N A P

m,n is compared to the bound I A P
m,n by computing the ratio N A P

m,n /I A P
m,n . The

contours represent the areas with the indicated minimum level of improvement.

4.4 Approaching A Correlation Bound
In this section, the challenging problem of meeting a correlation bound is ad-
dressed. Particularly, it is of interest to find out how close one can get to a
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given periodic or aperiodic bound. In the following, we provide a general
computational framework (inspired by the formulation of the twisted product
in Chapter 2) that can be used to approach any feasible correlation bound.

4.4.1 Problem Formulation
The twisted product of two vectors x and yyy of length n is defined as x � yyyH ,




x(1)yyy∗(1) x(2)yyy∗(2) · · · x(n)yyy∗(n)
x(1)yyy∗(2) x(2)yyy∗(3) · · · x(n)yyy∗(1)

...
...

. . .
...

x(1)yyy∗(n) x(2)yyy∗(1) · · · x(n)yyy∗(n−1)


 (4.33)

where x(k) and yyy(k) are the kth entries of x and yyy respectively. In a more gen-
eral context, we define the twisted product of two matrices XXX = (x1 x2 · · ·xp)
and YYY = (yyy1 yyy2 · · ·yyyq) as

XXX � YYY H ,




x1 � yyyH
1

...
x1 � yyyH

q

x2 � yyyH
1

...

...
xp � yyyH

q




(4.34)

where all {xk} and {yyyl} are of length n. Interestingly, meeting a PSL bound
can be formulated by using the concept of twisted product for both periodic
and aperiodic correlations. It should be observed that XXX meets a peak periodic
correlation bound BP if and only if the entries of

ccc = (XXX � XXXH)1n×1 (4.35)

satisfy
{

ccc(t) = σ t = l(m+1)n+1, 0≤ l ≤ m−1,
|ccc(t)| ≤BP otherwise

(4.36)

where the first condition corresponds to the energy constraints on {xk}.
Next note that for any two sequences xu,xv ∈Cn the periodic cross-correlations

{c̃u,v(k)} of x̃u = (xT
u 0001×(n−1))

T and x̃v = (xT
v 0001×(n−1))

T are given by

c̃u,v(k) =

{
ru,v(k) 0≤ k ≤ n−1,
r∗u,v(2n− k−1) n≤ k ≤ 2n−2.

(4.37)
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Consequently, a similar approach as in the case of the periodic correlation can
be used to characterize the sequence sets meeting a peak aperiodic correlation
bound BA P . Let

X̃XX =

(
XXX

000(n−1)×m

)
. (4.38)

Now note that XXX meets BA P if and only if the entries of

c̃cc = (X̃XX � X̃XX
H
)1(2n−1)×1 (4.39)

satisfy
{

c̃cc(t) = σ t = l(m+1)(2n−1)+1, 0≤ l ≤ m−1,
|c̃cc(t)| ≤BA P otherwise.

(4.40)

4.4.2 Computational Framework
In the sequel, we devise a computational framework based on alternating pro-
jections to approach the given bounds BP and BA P .
• The Periodic Case: Consider the convex set ΓP

n,m of all matrices ZZZ for
which the entries of ccc = ZZZ1n×1 satisfy the conditions in (4.36). Furthermore,
consider the set

ΛP
n,m =

{
ZZZ | ZZZ = XXX � XXXH , XXX ∈ Cn×m

}
. (4.41)

Let ΨP
m,n(B

P) denote the sequence sets with a peak periodic correlation equal
to BP . As there exists a one-to-one mapping between the two sets ΨP

m,n(B
P)

and ΓP
n,m ∩ΛP

n,m, a natural approach to find the elements of ΨP
m,n(B

P) is to
employ alternating projections onto the two sets ΓP

n,m and ΛP
n,m.

Let vec(XXX) = (xT
1 xT

2 · · ·xT
m)

T . It can be seen that all the entries of XXX � XXXH

occur in vec(XXX)vecH(XXX) exactly one time. Therefore, there exists a unique
re-ordering function that maps the two matrices to one another. We denote
this function by G : Cm2n×n→Cmn×mn which is such that

G (XXX � XXXH) = vec(XXX)vecH(XXX). (4.42)

In words, this mapping defines the (k, l) element of the right-hand side as the
corresponding let us say (k, l) element of the matrix argument. As such, it
can be easily generalized to any arbitrary matrix. The Frobenius norm pro-
jection ZZZΛ

⊥ of any ZZZ ∈ Cm2n×n on ΛP
n,m can be obtained as the solution to the

optimization problem

min
XXX⊥,ZZZΛ

⊥
‖ZZZ−ZZZΛ

⊥‖F (4.43)

s.t. ZZZΛ
⊥ = XXX⊥ � XXXH

⊥
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whose objective function may be recast as:

‖ZZZ−ZZZΛ
⊥‖F = ‖ZZZ−XXX⊥ � XXXH

⊥‖F (4.44)

= ‖G (ZZZ)− vec(XXX⊥)vecH(XXX⊥)‖F .

By using (4.44), the minimizer XXX⊥ of (4.43) can be obtained as vec(XXX⊥) =√
η1(G (ZZZ))vvv1 (G (ZZZ)) , which yields

ZZZΛ
⊥ = XXX⊥ � XXXH

⊥ (4.45)

as the optimal projection on ΛP
n,m.

Remark 1: It is worth noting that for any XXX ∈ ΨP
m,n(B

P), the value of
η1(G (ZZZ)) for the corresponding ZZZ represents the total energy of the sequences
denoted by XXX . Moreover, finding the close points (or the intersection) of
the two sets ΓP

n,m and ΛP
n,m can be roughly interpreted as the maximization

of η1(G (ZZZ)) for ZZZ ∈ ΓP
n,m. As a result, for a feasible PSL bound it can be

practically assumed that η1(G (ZZZ))> 0 throughout the projections. �

Next, we study the Frobenius norm projection ZZZΓ
⊥ of any ZZZ ∈ Cm2n×n on

ΓP
n,m. Such a projection can be obtained by solving the optimization problem

min
ZZZΓ
⊥∈ΓP

n,m

‖ZZZ−ZZZΓ
⊥‖F . (4.46)

We note that the conditions (4.36) on ZZZΓ
⊥ ∈ ΓP

n,m are row-wise. Let zzzT and zzzT
⊥

represent two generic rows of ZZZ and ZZZΓ
⊥, respectively. Therefore, we consider

the nearest-vector problem

min
zzz⊥

‖zzz− zzz⊥‖2 (4.47)

in which zzz⊥ is constrained either to have a given sum n, i.e. zzzT
⊥1 = n, or

the absolute value of its sum is supposed to be upper bounded by BP , viz.
|zzzT
⊥1| ≤BP .
To tackle the above nearest-vector problem, assume zzzT 1=α1e jθ1 and zzzT

⊥1=

α2e jθ2 for some α1,α2 ∈ R+, θ1,θ2 ∈ [0,2π), and let zzzd = zzz− zzz⊥. By using
the Cauchy-Schwarz inequality we have that

‖zzzd‖2
2 ≥
|zzzT

d 1|2
‖1‖2

2

=
|α1e jθ1−α2e jθ2 |2

n
(4.48)

where the equality is attained if and only if all the entries of zzzd are identical:

zzzd(k) =
α1e jθ1−α2e jθ2

n
, 1≤ k ≤ n. (4.49)

Moreover, the equality in (4.48) can be achieved for any given α2 and θ2 via
(4.49). As a result, to minimize ‖zzz− zzz⊥‖2 = ‖zzzd‖2, it is sufficient to minimize
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|α1e jθ1 −α2e jθ2 |2 with respect to α2 and θ2. For any fixed α2, the minimizer
θ2 of the latter criterion is given by θ2 = θ1. On the other hand, the optimal
α2 depends on the constraint imposed on zzz⊥. In particular, for the constraint
zzzT
⊥1 = n then we have the optimum α2 = n. In the case of the constraint
|zzzT
⊥1| ≤BP , the minimizer α2 is given by

α2 =

{
α1 α1 ≤ BP ,
BP α1 > BP .

(4.50)

Table 4.2 summarizes the steps of the proposed algorithm for approaching a
given periodic PSL bound. Note that while the projection on the set ΛP

n,m is
performed by a rank-one approximation, the projection on the set ΓP

n,m has a
closed-form expression which leads to an even smaller computational burden.
• The Aperiodic Case: Similar to the derivations in the periodic case, we

consider the set

ΛA P
n,m =

{
ZZZ | ZZZ = X̃XX � X̃XX

H
, (4.51)

X̃XX =

(
XXX

000(n−1)×m

)
, XXX ∈ Cn×m

}
.

We define the masking matrix MMM as

MMM =




MMM′ · · · MMM′
...

. . .
...

MMM′ · · · MMM′


 , (4.52)

MMM′(2n−1)×(2n−1) =

(
1n×n 000

000 000

)
,

and in addition consider the convex set ΓA P
n,m of all matrices ZZZ such that

ZZZ⊙G−1(MMM) = ZZZ, (4.53)

where G is as defined in the periodic case but with dimension parameter 2n−1
in lieu of n, and for which the entries of c̃cc = ZZZ1(2n−1)×1 satisfy the conditions
in (4.40). Let ΨA P

m,n (BA P) denote the sequence sets with a peak aperiodic
correlation equal to BA P . In the following, we propose an alternating pro-
jection onto the two sets ΓA P

n,m and ΛA P
n,m in order to obtain an element (if any)

of ΨA P
m,n (BA P) = ΓA P

n,m ∩ΛA P
n,m associated with the given aperiodic bound

BA P .
Similar to the case of periodic correlation, we use the Frobenius norm as a

measure of distance between the two sets. The Frobenius norm projection ZZZΛ
⊥

of any ZZZ ∈ Cm2(2n−1)×(2n−1) on ΛA P
n,m can be obtained as the solution to the
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optimization problem

min
XXX⊥,ZZZΛ

⊥
‖ZZZ−ZZZΛ

⊥‖F (4.54)

s.t. ZZZΛ
⊥ = X̃XX⊥ � X̃XX

H

⊥

X̃XX⊥ =

(
XXX⊥

000(n−1)×m

)
.

Note that

‖ZZZ−ZZZΛ
⊥‖F = ‖ZZZ− X̃XX⊥ � X̃XX

H

⊥‖F (4.55)

= ‖G (ZZZ)− vec(X̃XX⊥)vecH(X̃XX⊥)‖F

= ‖M (G (ZZZ))− vec(XXX⊥)vecH(XXX⊥)‖F

+const.

where the operator M (.) collects the entries of the matrix argument corre-
sponding to the non-zero entries of the masking matrix MMM. As a result, the min-
imizer XXX⊥ of (4.54) is given by vec(XXX⊥) =

√
η1(M (G (ZZZ)))vvv1 (M (G (ZZZ))),

which consequently yields

ZZZΛ
⊥ = X̃XX⊥ � X̃XX

H

⊥ (4.56)

as the optimal projection on ΛA P
n,m .

The Frobenius norm projection ZZZΓ
⊥ of any ZZZ ∈ Cm2(2n−1)×(2n−1) on ΓA P

n,m

can be obtained similarly to that of ΓP
n,m with a small modification. Note that

the variables α2 and θ2 can be calculated by using the same arguments as for
ΓP

n,m. However, the number of non-zero entries in the rows of ZZZΓ
⊥ is different.

Particularly, the exact positions of non-zero entries of ZZZΓ
⊥ are given by the

locations of ones in G −1(MMM). Therefore, the entries of zzzd are given by

zzzd(k) =

{
α1e jθ1−α2e jθ2

|µµµT 1| k ∈ supp(µµµ),

0 otherwise.
(4.57)

where µµµ represents the corresponding row in G−1(MMM), and supp(.) denotes
the set of non-zero locations in the vector argument.

Finally, the steps of the proposed alternating projections, in the periodic and
aperiodic cases, are summarized in Table 4.2. Note that in both cases, each it-
eration of the algorithms has a O(m2n2)-complexity. The obtained complexity
measure is a direct consequence of the generally large cardinality (i.e. mn) of
the data that the algorithms should handle as well as the hardness of the orig-
inal problem (with m2n constraints, which should be compared to the fewer
constraints (i.e. m2) for achieving a given peak inner-product level). Due to
the practical interest of constrained sequence design, e.g. with finite-alphabet
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or low-PAR, a modified version of the proposed algorithms that handles such
cases is discussed in the Appendix. However, a more extensive discussion of
the constrained sequence design is beyond the scope of this chapter.

Table 4.2. The Proposed Algorithm for approaching a given periodic/aperiodic PSL

bound

Step 0: Initialize XXX with a random matrix in Cn×m;
(i) in the periodic case: set ZZZΛ

⊥ = XXX � XXXH ,

(ii) in the aperiodic case: set ZZZΛ
⊥ = X̃XX � X̃XX

H
.

Step 1: Compute the optimal projection ZZZΓ
⊥ of ZZZΛ

⊥,
(i) in the periodic case: find ZZZΓ

⊥ ∈ ΓP
n,m by using (4.46)-(4.50).

(ii) in the aperiodic case: find ZZZΓ
⊥ ∈ ΓA P

n,m by using (4.57).
Step 2: Compute the optimal projection ZZZΛ

⊥ of ZZZΓ
⊥,

(i) in the periodic case: find ZZZΛ
⊥ ∈ ΛP

n,m by using (4.45).
(ii) in the aperiodic case: find ZZZΛ

⊥ ∈ ΛA P
n,m by using (4.56).

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is

satisfied, e.g. ‖ZZZΛ
⊥−ZZZΓ

⊥‖F ≤ ξ , or ‖XXX (t+1)
⊥ −XXX

(t)
⊥ ‖F ≤ ξ , for some

ξ > 0, in which t denotes the iteration number.

4.5 Numerical Results
Several numerical examples will be presented to examine the performance of
the proposed algorithms for approaching the peak correlation bounds. A main
goal of these examples is to determine how close one can get to the peak cor-
relation bounds via the proposed computational tools. The obtained sequence
sets are provided online at http://www.anst.uu.se/mojso279/sets.

We employ the suggested algorithm in Table 4.2 for different values of
(n,m). In the case of periodic correlation, we consider the bound I P

m,n in

(4.27). Fig. 4.3 shows the peak periodic correlation (PSLP ) values corre-
sponding to the initializations and the obtained sequence sets along with the
bound I P

m,n, for m ∈ {2,3,4} and n ∈ {2,4,5,7,8,10,12,15,16}. Note that
due to the non-convexity of Λn,m, the problem is multi-modal (i.e. it may have
many convergence points), and hence, many random initial points might be
needed to achieve a certain low peak correlation level. In this example, differ-
ent random initializations are considered for 40 experiments, and the resultant
PSLP of the proposed algorithm (in Table 4.2) represents the best outcome of
the 40 experiments. To examine the sensitivity to choosing the initial set, well-
known sequence sets including Gold, Kasami, and Weil are used as initializing
sets for the (m,n) values for which they exist. Such cases are also reported in
Fig. 4.3. It can be observed that I P

m,n can be practically met in several cases,
e.g. for all n with m = 2. Furthermore, a considerable decrease of the peak
periodic correlation obtained by using the proposed algorithm can be observed
in all cases (even for the cases with well-known sets as initialization).
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As discussed earlier, if the Welch bound can be met for given (m,n), then
the absolute values of all out-of-phase correlations will be identical and have
a value equal to the Welch bound. As an example of such behavior, we study
the correlation properties of the resultant set for (m,n) = (2,32). The absolute
values of periodic correlations {cu,v(k)} are plotted in Fig. 4.4(a)-(c). In this
case, the bound I P

m,n is nothing but the Welch bound W P
m,n corresponding to

s = 1. As expected, all the periodic correlation levels (excluding the in-phase
one) are equal to W P

m,n =
32√
63
≈ 4.03162.

The mixed bound max{N A P
m,n ,I A P

m,n } is used to conduct a similar nu-
merical investigation in the aperiodic case. Fig. 4.5 illustrates the achieved
PSLA P values by using the proposed alternating projections along with the
mixed bound max{N A P

m,n ,I A P
m,n }. As expected, the bound is met for the

case (m,n)= (2,2) (see Proposition 2). For other cases, in which the aperiodic
bound cannot be met exactly, significant reductions in the obtained PSLA P

can be observed compared to the PSLA P values corresponding to the initial
sets.

4.6 Concluding Remarks
Peak correlation bounds have been studied, and the problem of meeting peak
periodic and aperiodic correlation bounds has been addressed. The main re-
sults can be summarized as follows:
• Welch, Levenstein, and Exponential bounds on peak inner-product level

of sequence sets were discussed. Peak correlation bounds were derived
based on the peak inner-product bounds.
• An improvement of the peak aperiodic correlation bound was provided.
• Analytical examples of the tightness of the peak correlation bounds were

provided in both the periodic and aperiodic cases.
• Two novel algorithms were devised to tackle the problem of approaching

a given periodic or aperiodic bound. Numerical examples were provided
to show the potential of the proposed methods. In several cases, particu-
larly in the case of periodic correlation, the considered peak correlation
bound was met by using the proposed methods. In all examples, a signif-
icant decrease in the peak correlations of the designed sets was observed,
compared to the PSL of the initial sequence sets (even for initializations
by well-known sets such as Gold, Kasami and Weil families).

We believe that more studies are needed to achieve a deeper understanding
and formulation of tighter peak correlation bounds. The focus of this work was
on studying and on attempting to achieve peak correlation bounds when no
extra constraints on the sequences were enforced. However, a modification of
the algorithms to handle constrained sequence design was proposed. Extensive
studies concerning constrained sequence set design, e.g. sets containing low
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peak-to-average-power ratio (PAR), unimodular or root-of-unity sequences,
can be interesting topics for future research.

4.7 Appendices
4.7.1 Appendix A: Proof of Proposition 1
First note that I P

2,2 = W P
2,2 with s = 1. We provide the characterization of all

sequence sets meeting the peak periodic bound W P
2,2 . Let

XXX =

(
a1 b1
a2 b2

)
(4.58)

and observe that the out-of-phase periodic correlation levels of the two se-
quences (a1 a2)

T and (b1 b2)
T belong to the set {|2ℜ(a1a∗2)|, |2ℜ(b1b∗2)|, |a1b∗1

+a2b∗2|, |a1b∗2 +a2b∗1|}. The necessary and sufficient conditions for meeting
the Welch peak correlation bound W P

m,n (for s = 1) imply that all the elements
in the latter set should be equal to W P

2,2 = 2√
3
. The structure of XXX for meeting

I P
2,2 can be studied as follows.
By considering the energy constraint as well as the constraint |2ℜ(a1a∗2)|=

2√
3
, we obtain that





a1 =
1
2

(
e jφ1

√
2± 2√

3
+ e jφ0

√
2∓ 2√

3

)

a2 =
1
2

(
e jφ1

√
2± 2√

3
− e jφ0

√
2∓ 2√

3

) (4.59)

for some phase angles φ0 and φ1. In a similar manner, for (b1 b2)
T we have

that




b1 =
1
2

(
e jθ1

√
2∓ 2√

3
+ e jθ0

√
2± 2√

3

)

b2 =
1
2

(
e jθ1

√
2∓ 2√

3
− e jθ0

√
2± 2√

3

) (4.60)

with θ0 and θ1 being auxiliary phase angles. The result in (4.60) is also based
on verifying that the assumption of the same order in “±" signs of a1 and
b1 (as well as a2 and b2) in (4.59) and (4.60) violates the satisfaction of the
following constraints

{
|a1b∗1 +a2b∗2|= 2√

3

|a1b∗2 +a2b∗1|= 2√
3

(4.61)

On the other hand, for a1,a2 as given in (4.59) and b1,b2 as given in (4.60),
the constraints in (4.61) lead to the the following equation

∣∣∣e j(φ1−θ1)
√

4−4/3± e j(φ0−θ0)
√

4−4/3
∣∣∣= 4√

3
(4.62)
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which implies
cos((φ1−θ1)− (φ0−θ0)) = 0. (4.63)

Therefore, ΨP
2,2(S2,2) includes XXX characterized by (4.59) and (4.60), and with

the auxiliary phase angles such that

(φ1−θ1) = (φ0−θ0)+(2k+1)
π

2
, (4.64)

for some k ∈ Z.

4.7.2 Appendix B: Proof of Proposition 2
Observe that I A P

2,2 = W A P
2,2 = 2√

5
(with s = 1) and let

XXX =

(
a1 b1

a2 b2

)
. (4.65)

In what follows, a characterization of XXX that meets the aperiodic bound W A P
2,2

is derived. The set of aperiodic out-of-phase correlation levels {|ru,v(k)|} of
the columns of XXX is given by {|a1a∗2|, |b1b∗2|, |a1b∗1 +a2b∗2|, |a2b∗1|, |a1b∗2|}. By
using the necessary and sufficient conditions for meeting the Welch peak cor-
relation bound, we conclude that

{
|a1|= |b1|
|a2|= |b2|

(4.66)

and that |a1||a2|= 2√
5
. By applying the energy constraint we obtain

|a2|4−2|a2|2 +
4
5
= 0. (4.67)

The solutions to (4.67) are given by |a2|=
√

1±
√

5
5 , which also yields |a1|=

2√
5±
√

5
.

To determine the phase angles of the sequences in XXX , we employ the equa-
tion |a1b∗1 +a2b∗2|= 2√

5
which results in

∣∣∣|a1|2 e j(θ1−φ1)+ |a2|2 e j(θ2−φ2)
∣∣∣= 2√

5
(4.68)

with θ1,θ2,φ1, and φ2 being the phase angles of a1,a2,b1, and b2, respectively.
Eq. (4.68) can be simplified to obtain

cos((θ1−φ1)− (θ2−φ2)) =−1. (4.69)
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Consequently, XXX meeting W A P
2,2 have the structure

XXX =




2√
5±
√

5
e jθ1 2√

5±
√

5
e jφ1

√
1±

√
5

5 e jθ2

√
1±

√
5

5 e jφ2


 (4.70)

such that (θ1−φ1) = (θ2−φ2)+2(k+1)π where k ∈ Z.

4.7.3 Appendix C: Modified Projections for Constrained
Sequence Design

With some modifications, the alternating projections proposed in Section 4.4
can be used for designing constrained sequences such as cases with finite-
alphabet or low PAR. Note that in constrained cases, finding the optimal pro-
jection on the two sets Γn,m and Λn,m could be more complicated. However,
the convergence of the projections is guaranteed if the distance between the
latest projection points on the two sets is decreasing. In the following, we dis-
cuss a set of modifications that can enable the proposed approaches in Section
4.4 to tackle the constrained case.

Let XXX ∈Ωn,m represent the required sequence structure. We revise the defi-
nition of Λn,m by replacing the constraint XXX ∈Cn×m with XXX ∈Ωn,m. Therefore,
finding the projection on Λn,m becomes equivalent to minimizing (4.44) and
(4.55), in the periodic and aperiodic cases, respectively, but for XXX ∈ Ωn,m.
Hereafter, we study the periodic case as the extension to the aperiodic case is
straightforward. Due to the fact that XXX has a fixed power (or Frobenius norm),
minimizing (4.44) is equivalent to:

min
XXX⊥

vecH(XXX⊥)ZZZ′ vec(XXX⊥) (4.71)

s.t. XXX⊥ ∈Ωn,m

where ZZZ′ = λ III +G (ZZZ) is positive-definite. More important, any increase in
the objective function of (4.71) leads to a decrease of (4.44). Interestingly,
increasing quadratic functions such as the one in (4.71), over constrained vec-
tor sets can be dealt with conveniently via the power-method like iterations
proposed in [84] and [85]. Namely, considering the previously known pro-

jection on ΛP
n,m as initialization (XXX (0)

⊥ ), the quadratic function in (4.71) can be
increased monotonically by using the iterations:

min
XXX
(t+1)
⊥ ∈Ωn,m

∥∥∥vec
(

XXX
(t+1)
⊥

)
−ZZZ′ vec

(
XXX

(t)
⊥

)∥∥∥
2

(4.72)

The solution to (4.72) for unimodular or p-ary vector sets can be obtained
analytically. In low-PAR scenarios, (4.72) can be solved using an efficient
recursive algorithm developed in [26].
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(a) (b)

(c)

Figure 4.3. PSLP of the obtained sequence sets by using the algorithm in Table 4.2
(the periodic case), versus sequence length n, and for different set cardinalities m.
Gold, Kasami, and Weil sequence sets are used to initialize the algorithm when they
exist (pinpointed by arrows).
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Figure 4.4. Correlation levels of the obtained sequence set for (m,n) = (2,32): a)
autocorrelation of the first sequence, b) autocorrelation of the second sequence, c)
cross-correlation of the first and the second sequences.
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(a) (b)

(c)

Figure 4.5. PSLA P of the obtained sequence sets by using the algorithm in Table 4.2
(aperiodic case), versus sequence length n, for different set cardinalities m.
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5. On Prime Root-of-Unity Sequences with
Perfect Periodic Correlation
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Abstract

In this chapter, Perfect Root-of-Unity Sequences (PRUS) with entries in αp = {x ∈C | xp = 1}
(where p is a prime) are studied. A lower bound on the number of distinct phases that are used
in PRUS over αp is derived. We show that PRUS of length L ≥ p(p− 1) must use all phases
in αp. Certain conditions on the lengths of PRUS are derived. Showing that the phase values
of PRUS must follow a given difference multiset property, we derive a set of equations (which
we call the principal equations) that give possible lengths of a PRUS over αp together with
their phase distributions. The usefulness of the principal equations is discussed, and guidelines
for efficient construction of PRUS are provided. Through numerical results, also contributions
are made to the current state-of-knowledge regarding the existence of PRUS. In particular, a
combination of the developed ideas allowed us to numerically settle the problem of existence of
PRUS with (L, p) = (28,7) within about two weeks— a problem whose solution (without using
the ideas in this chapter) would likely take more than three million years on a standard PC.

Keywords: Perfect sequences, root-of-unity sequences, periodic autocorrelation, phase dis-

tribution, sequence construction

5.1 Introduction
Perfect Root-of-Unity Sequences (PRUS), also known as perfect N-phase [86],
N-ary [87], or polyphase [88] sequences, are sequences with entries in αN =
{x ∈ C | xN = 1} and the property that all their out-of-phase periodic au-
tocorrelations are equal to zero [39] [91]. These sequences are of interest
in several applications including synchronization [92], fast startup equaliza-
tion and channel estimation [86], as well as communication schemes such
as Direct-Sequence Spread-Spectrum Multiple-Access (DS/SSMA) and Fre-
quency Hopping Spread-Spectrum Multiple-Access (FH/SSMA) [93]. They
can also be used as key probing sequences in active sensing, including for in-
stance, pulse compression for continuous-wave radars [39] [93]. We note that,
while sequences with good periodic correlations have many applications, there
are also cases in which good aperiodic correlation properties are required. For
example, in synchronization applications, sequences with good periodic cor-
relation may be used when the sequence can be transmitted several times in
succession, whereas sequences with good aperiodic correlation are required
when the sequence can be used only once [92]. Interestingly, PRUS can be
shown to have low autocorrelation sidelobes even in some aperiodic scenar-
ios [93].

Note that a larger sequence length, in general, provides more degrees of
freedom that can be used to improve the performance metrics in communi-
cations and sensing applications. On the other hand, sequences with short
lengths can be of interest due to their lower associated costs, or in specific
applications such as short-range active sensing [39] [91]. In cases where a
finite-alphabet is required, the size of the alphabet plays an important role in
the complexity of implementation; the smaller the alphabet size, the easier
the implementation [95]. With this fact in mind, it is interesting to note that
4, 6 and 11 out of the first 8, 16 and 32 natural numbers, respectively, are



prime. The study of PRUS with prime-size alphabets is important not only be-
cause of this relatively high density of prime numbers in small alphabet sizes,
but also because of the role of prime numbers as building blocks of natural
numbers. A similar building block property can be seen in the PRUS case:
let n = mk where m and k are co-prime and assume that there exist PRUS
uuu = (u0, · · · ,um−1) and vvv = (v0, · · · ,vk−1) with alphabet sizes m† and k† re-
spectively; then www = (w0, · · · ,wn−1) where wl = u(l mod m)v(l mod k) is a PRUS
with alphabet size n† = m†k†. This construction is known as Chinese Remain-
der Theorem (CRT) construction or simply as the direct product [96].

A general computational framework for designing sequences with optimal
correlation was proposed in [83]. We note that sequences with unit-modulus
entries, known as unimodular sequences, have been of interest due to their
minimal peak-to-average power ratio (PAR). It is known that for lengths L

that are square-free there exist an infinite number of independent unimodular
sequences with perfect periodic correlation, see [90]. A fast computational
method to find perfect unimodular sequences is proposed in [8]. Construction
of infinite unimodular sequences with perfect correlation is studied in [98].
Algebraic constructions for perfect unimodular sequences of lengths p, 2p,
3p, pp′ and ps (where p and p′ are prime) were introduced and studied in
[99]- [103]. When it comes to root-of-unity sequences (which correspond to
the finite alphabet case of the unimodular sequences), the problem appears
to be more complicated. For example, it is not known whether there exists
none, a few or plenty of PRUS for some lengths or alphabet sizes. Besides
construction methods, some publications (e.g. [86], [104]) have introduced
and used the following necessary condition on PRUS: if x= {xl}L−1

l=0 is a PRUS
of length L then

∣∣∣∣∣
L−1

∑
l=0

xl

∣∣∣∣∣=
√

L (5.1)

This necessary condition follows directly from the fact that the DFT of a PRUS
has a constant magnitude (note that the DFT value at zero frequency is the
sum of the sequence). In [87], several useful results are obtained which can
be combined with the results in this chapter. Namely, it was shown in [87]
that the existence of PRUS of length L = mp (for a prime p) with entries in
αp is connected to the existence of (L, p,L,m)-relative difference sets. Using
some existence results of relative difference sets, the authors in [87] prove for
example that there is no PRUS of length L = ps (for s≥ 3), L = 2ps (for s≥ 1),
and L= pp′ (for prime p′> p) with entries in αp. However, the strongest claim
in the literature regarding the existence (and construction) of PRUS is known
as the Mow’s conjecture [93]:

Mow’s conjecture (for prime p): Let M(L,p) be the total number of PRUS

with length L over αp. Let L = sq2, where s and q are both natural numbers
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and s is square-free. Then

M(L, p) =

{
q!sqΦq(s)pm, pmin = p,
0, otherwise,

(5.2)

where

pmin =

{
2sq, for s even and m odd,
sq, otherwise,

(5.3)

and the Euler totient function Φ(n) shows the number of k ∈ Zn for which k

and n are co-prime, and Φ(1) = 1 by definition. Moreover, all such PRUS can

be constructed using a unified approach, see [93].

Note that a proof of Mow’s conjecture would imply that no PRUS of lengths
other than L = p and L = p2 exists over αp. In this work, PRUS with a prime-
size alphabet are studied. In particular, we study the phase distribution of
such sequences, and introduce a set of principal equations that can yield the
possible phase distributions of PRUS for any given p and L. In general, the
provided phase distributions can significantly reduce the size of search space
for finding PRUS. Based on the obtained phase distributions, we also provide
practical guidelines for construction of PRUS. A combination of the ideas in
this chapter provides us, for example, with the possibility to numerically settle
the problem of the existence of PRUS for (L, p) = (28,7) within two weeks;
a problem for which an exhaustive search of the associated search space is
guaranteed to take more than three million years on a standard PC.

The rest of this chapter is organized as follows. In Section 5.2, the phase
distribution of PRUS over αp is discussed. We show that the phase values of
PRUS over αp must follow a specific difference multiset property. Further-
more, Section 5.2 presents the principal equations. Section 5.3 is devoted to
the study of some special cases. A discussion on the usefulness of the prin-
cipal equations as well as guidelines for an efficient construction of perfect
sequences along with some examples are included in section 5.4. In Section
5.5, we provide our numerical results. Finally, Section 5.6 concludes the chap-
ter.

Notation: We use bold lowercase letters for vectors/sequences and bold up-
percase letters for matrices. See Table 5.1 for other notations used throughout
this chapter.

5.2 Phase Study

Let x =
{

e
j 2π

p kl

}L−1

l=0
be a PRUS over αp. In this section, we study the phase

distribution of PRUS over the alphabet αp of prime size:
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Table 5.1. Notations

x(k): the kth entry of the vector x

xl: the vector containing the same entries as x but in
reversed order

‖x‖n: the ln-norm of the vector x, defined as (∑k |x(k)|n)
1
n

XXX∗: the complex conjugate of a matrix XXX

XXXT : the transpose of a matrix XXX

tr(XXX): the trace of a matrix XXX

‖XXX‖: the Frobenius norm of a matrix XXX

XXX⊙YYY : the Hadamard element-wise product of two matrices
XXX and YYY of the same dimension

000n: the all zero vector of length n

1n: the all one vector of length n

eee
(n)
l : the lth standard basis vector in Rn

N: the set of natural numbers
Z: the set of integer numbers
R: the set of real numbers
C: the set of complex numbers
Zn: the set {0,1, · · · ,n− 1}
[·]: a multiset in which multiplicities of elements are permitted
p: a prime number

Definition 1. Let µk denote the number of times that e
j 2π

p k
(for k ∈Zp) occurs

in x. Then {µk}p−1
k=0 is called the phase distribution of x.

Note that all kl are in Zp, and will be referred to as the integer phases of the
sequence. The periodic autocorrelation of x at any lag u ∈ ZL is defined as

Ru =
L−1

∑
l=0

e
j 2π

p (kl−kl+u)

=

{
L u = 0
0 u ∈ ZL−{0} (5.4)

where the indices of {kl} are used in a periodic manner (i.e. mod L). It is
interesting to note that Ru is a summation of terms which are also in αp. Theo-
rem 1 paves the way for using this observation (see Appendix 5.7.1 for a short
proof):

Theorem 1. If ∑
p−1
k=0 ake

j 2π
p k = 0 for some ak ∈Z, then all ak must be identical.

Corollary 1. If there exists a PRUS of length L over αp then p|L.

Proof: Let u ∈ ZL−{0}. Then it follows from (5.4) and Theorem 1 that

Ru = m∑
p−1
k=0 e

j 2π
p k = 0 where m = L/p must be an integer. �
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The fact pointed out in Corollary 1 is already known in the literature, see

e.g. [87]. However, it is worthwhile to comment on the more general case of
PRUS of length L over αN . From a number theory perspective, the authors
of [106] study the vanishing sums of roots-of-unity, viz. q1 + q2 + · · ·qT = 0
with ql ∈ αN (for all l), and general N ∈ N. In particular, they show that if
N = p

a1
1 · · · par

r (with p1 < · · · < pr) represent the prime factorization of N

then a vanishing sum of T root-of-unity numbers {ql} (with ql ∈ αN) can
occur only if there exist non-negative integers {tk} such that T can be written
as T = t1 p1 + · · ·+ tr pr. Interestingly, we can use this result in the context of
PRUS. Namely, the autocorrelation sums similar to that in (5.4) may become
zero only if L can be written as

L = t1 p1 + · · ·+ tr pr (5.5)

where {tk} are non-negative integers. Therefore, satisfying (5.5) is a necessary
condition for a PRUS of length L over αN . Considering (5.5), also typically
known as the Frobenius coin problem [107]- [109], can be particularly use-
ful for showing the non-existence of PRUS when L is rather small. On the
contrary, it can be shown that if L ≥ (p1−1)(p2−1) then (5.5) always has a
solution.

In the sequel, we use the notation L = mp, m ∈ N, for the length of PRUS
over αp.

Corollary 2. Let x =
{

e
j 2π

p kl

}mp−1

l=0
be a PRUS of length L = mp over αp.

Then for every s ∈ Zp and u ∈ ZL−{0}, there exist exactly m distinct integers

{l} such that kl ≡ kl+u + s (mod p).

Proof: We only need to observe that, according to Theorem 1, all sums

in (5.4) for {Ru}u∈ZL−{0} must have exactly m terms equal to e
j 2π

p s for every
s ∈ Zp . �

We note that in light of the above results, a general difference set structure
is obtained [110], [111].

Definition 2. Let D = [d0,d1, · · · ,ds−1] be a multiset over a group G of order

v. D is a (v,s,λ )-difference multiset over G iff the multiset ∆D = [dk−dl : k, l ∈
Zs, k 6= l] contains each element of G (0 included) exactly λ times.

By this definition, the multiset of integer phases [k0,k1, · · · ,kL−1] of a PRUS
of length L =mp over αp is a (p,mp,m)-difference multiset. Such an observa-
tion will enable us to study in detail the phase distribution of PRUS via Theo-
rems 2-4. We note that there exist several construction methods for PRUS with
length L = p; see Section 5.3 for details. Moreover, the case of L = p presents
some unique properties (see sub-section 5.2.1) that makes its study relevant.
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We also study the PRUS of length L = mp, m > 1, and present our general
results about them in sub-section 5.2.2. The next two definitions appear to be
essential in order to continue our study.

Definition 3. Let ξ0, · · · ,ξt−1 be real numbers whose sum is a constant C.

From the Cauchy-Schwarz inequality we have that

‖ξξξ‖2
2 ≥

(
1T

t ξξξ
)2
/t (5.6)

where ξξξ is the vector with entries {ξk}. Therefore, ∑t−1
k=0 ξ 2

k attains its mini-

mum value when the sum is uniformly distributed over {ξk}. We define

Γ(C, t),

{
C2/t t > 0
0 otherwise

(5.7)

as the minimum value of the sum of squares of t real variables with sum C.

Definition 4. We let ΦΦΦx be the circulant matrix made from the integer phases

{kl} of the sequence x, viz.

ΦΦΦx ,




k0 k1 · · · kmp−1

kmp−1 k0 · · · kmp−2
...

...
. . .

...

k1 k2 · · · k0


 . (5.8)

For the lth column of ΦΦΦx, consider the location of the entries which are equal

to kl (l = 0, · · · ,mp− 1). Considering these locations for all columns, we

build an mp×mp equivalence matrix ΦΦΦe of x whose entries in the mentioned

locations are 1; otherwise they are 0. We also extend the definition of ΦΦΦe to

ΦΦΦ
(s)
e (with ΦΦΦ

(0)
e = ΦΦΦe), for s ∈ Zp as follows: by finding the locations of the

entries kl′ in the lth column of ΦΦΦx such that kl′ ≡ kl + s (mod p), we represent

these locations in ΦΦΦ
(s)
e by 1, and by 0 otherwise.

The interested reader can find more details on the element-wise construc-
tion of {ΦΦΦ(s)

e } in Section 5.4— see particularly (5.38), and the related discus-
sions.

5.2.1 The case of L = p (corresponding to m = 1)
Based on the above discussions, the integer phases of PRUS with length L =
p over αp have a (p, p,1)-difference multiset structure. Such PRUS are in
close connection with prime-length binary sequences with optimal periodic
correlation. A detailed discussion revealing such close relationship is provided
in Appendix 5.7.2. Theorem 2 studies the phase distribution of PRUS in this
case.
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Theorem 2. A PRUS of length L= p > 2 over αp has exactly 1
2(p+1) distinct

phases. Even more precisely, such PRUS consists of a singleton and 1
2(p−1)

equi-phase pairs.

Proof: Note that due to the (p, p,1)-difference multiset structure, all
rows of ΦΦΦe (in this case) have exactly one 1 except the first row whose all
entries are 1. Now let {µk} represent the phase distribution of the sequence,
and let us assume that t of {µk} are nonzero. We have

p−1

∑
k=0

µk = p. (5.9)

As discussed above, by considering the rows of ΦΦΦe, we conclude that there are
(2p− 1) ones in ΦΦΦe. On the other hand, since for every integer phase k ∈ Zp

we have µk columns with µk ones in each of them, the number of ones in ΦΦΦe

is equal to ∑
p−1
k=0 µ2

k ; hence

p−1

∑
k=0

µ2
k = 2p−1. (5.10)

Since the sum of µk is constant, we have

2p−1 =
p−1

∑
k=0

µ2
k ≥ Γ(p, t) =

p2

t
, (5.11)

and as a result

t ≥
⌈

p2

2p−1

⌉
=

⌈
1
2
(p−1)+

3p−1
4p−2

⌉
=

1
2
(p+1) (5.12)

where ⌈x⌉ denotes the smallest integer greater than or equal to x. Now let us
suppose that t ≥1

2(p+ 1)+ 1 = 1
2(p+ 3). Also let v1 be the number of {µk}

which are equal to one. Therefore

p =
p−1

∑
k=0

µk ≥ v1 +2(t− v1) = 2t− v1. (5.13)

Note that (5.13) implies v1 ≥ 2t − p ≥ 3. This leads to a contradiction for
p = 3 as all phases should be different; i.e. µ0 = µ1 = µ2 = 1 which yields
∑

p−1
k=0 µ2

k 6= 2(3)−1. Next we consider the case of p≥ 5. Note that

p−1

∑
k=0

µ2
k ≥ v1 +Γ

(
p− v1,

p+3
2
− v1

)
. (5.14)
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By substituting (5.10) in (5.13) we get v1 ≤ 3 and as a result v1 = 3. Now let
µk∗ ≥ 2 for some k∗ ∈ Zp; then

p−1

∑
k=0

µ2
k ≥ 3+µ2

k∗+Γ

(
p−3−µ2

k∗,
p+3

2
−4

)
. (5.15)

Again by substituting (5.10) in (5.15) we obtain µk∗ ≤ 3. This shows that
except for µk = 1, the only possible values of µk are 2 and 3. Let us denote the
number of them by v2 and v3, respectively. Then:

{
3+2v2+3v3 = p

3+4v2+9v3 = 2p−1
(5.16)

which is not feasible for integer numbers v2 and v3. Thanks to the latter contra-
diction, we conclude that the number of distinct phases is equal to t = 1

2(p+1).
In order to obtain a complete picture of the phase distribution of x, let vk denote
the number of {µk} which are equal to k, for all k ∈ Zp. Using the inequality
in (5.13) we have that v1 ≥ 2t− p≥ 1. On the other hand,

p−1

∑
k=0

µ2
k ≥ v1 +Γ

(
p− v1,

p+1
2
− v1

)
(5.17)

which implies v1 ≤ 1, and as a result v1 = 1. If µk∗ ≥ 2 for some k∗ ∈ Zp then

p−1

∑
k=0

µ2
k ≥ 1+µ2

k∗+Γ

(
p−1−µ2

k∗,
p+1

2
−2

)
. (5.18)

As before, by substituting (5.10) in (5.18) we obtain µk∗ ≤ 2, and hence µk∗ =
2. This implies that v2 =

1
2(p− 1) and vk = 0 for k > 2 which completes the

proof. �

5.2.2 The case of L = mp (general case)
As indicated earlier, the integer phases of a PRUS of length L = mp over αp

build a (p,mp,m)-difference multiset, which implies that for every u ∈ ZL−
{0}, there exist exactly m distinct integers {l} such that kl = kl+u. Therefore,
for an mp×mp matrix ΦΦΦe built as in Definition 4, the number of ones is equal
to mp+m(mp−1). Let {µk} represent the phase distribution of the sequence.
Then we have that

p−1

∑
k=0

µk = mp, (5.19)

p−1

∑
k=0

µ2
k = mp+m(mp−1). (5.20)
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We assume t of {µk} are nonzero, which implies

m2 p+m(p−1) =
p−1

∑
k=0

µ2
k

≥ Γ(mp, t) =
(mp)2

t
, (5.21)

and as a result

t ≥ mp2

(m+1)p−1
. (5.22)

The above lower bound shows that as m increases, a larger number of phases
from αp might be needed to build a PRUS of length L = mp. For sufficiently
large values of m we need all phases:

Theorem 3. For m≥ p−1, all phase values must be used in a PRUS.

Proof: This is a direct consequence of the lower bound in (5.22). �

Now, for every s ∈ Zp−{0} we consider the matrix ΦΦΦ
(s)
e built as in Def-

inition 4. Based on the difference multiset property, for every u ∈ ZL−{0},
there exist exactly m distinct integers {l} such that kl+u ≡ kl + s (mod p).

Therefore, the matrix ΦΦΦ
(s)
e has exactly m ones in each of its rows except for

the first row which is all zero. This implies that ΦΦΦ
(s)
e has m(mp−1) ones. On

the other hand, the number of ones in ΦΦΦ
(s)
e is equal to ∑

p−1
k=0 µkµk+s as it equals

the number of all pairs with the property kl+u ≡ kl + s (mod p). Therefore, the
out-of-phase correlations of the sequence {µk} are given by

p−1

∑
k=0

µkµk+s = m(mp−1), s ∈ Zp−{0}. (5.23)

Based on (5.19), (5.20) and (5.23), we conclude the following.

Theorem 4. Let {µk} denote the phase distribution of a PRUS with length

L = mp over αp. If we define rk , µk−m, then {rk} satisfy the following set

of principal equations:





∑
p−1
k=0 rk = 0

∑
p−1
k=0 r2

k = m(p−1)

∑
p−1
k=0 rkrk+s =−m, s ∈ Zp−{0}.

(5.24)

Solving the principal equations indicate the possible PRUS phase distribu-
tions for given L and p. It is interesting to note that if {rk} is a solution to
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(5.24), then {−rk}, {r−k} and {rk+l} where l ∈ Zp are also valid solutions to
(5.24). In other words, the set of principal equations induces a certain type
of equivalence class on its solutions. We note that the unimodular perfect se-
quences enjoy a similar set of equivalence properties: let x be a unimodular
perfect sequence, then x∗ and e jφ x (where φ can be chosen arbitrarily) are
also unimodular perfect sequences. This shows that given a solution {rk} to
the principal equations, the solutions {r−k} and {rk+l} do not lead to new
PRUS. In contrast, the solution {−rk} might lead to new sequences. As an
aside remark, note that the second equation of (5.24) can be viewed as a sum

of squares problem, which has been widely studied for many years. More de-
tails on this aspect are deferred to Appendix 5.7.3. The following discussion
is devoted to a geometrical study of the problem.

Let rrr0 = (r0, · · · ,rp−1)
T and also let rrrk represent the circularly shifted ver-

sion of rrr0 by k ∈ Zp. The principal equations can be rephrased as follows over
the vectors {rrrk}:





1T
p rrrk = 0

‖rrrk‖2 =
√

m(p−1)
rrrT

k rrrl =−m, k 6= l

(5.25)

The angle between each pair of vectors {(rrrk,rrrl)}k 6=l is given by

θ = arccos

(
rrrT

k rrrl

‖rrrk‖2‖rrrl‖2

)
= arccos

( −1
p−1

)
(5.26)

Therefore, {rrrk}k∈Zp , form a set of p vectors lying in a (p− 1)-dimensional
space which is the hyperplane orthogonal to 1p and the angle between each
pair of them is the value given in (5.26). We further note that the structure
made by connecting all vertices pointed by {rrrk} is a known multi-dimensional
object called a regular simplex [112]. Such structures are shown in Fig. 5.1

for one, two and three dimensions. The reference [112] suggests {eee(p)
k } (i.e.

the standard basis) as vertices of a regular simplex of edge
√

2 lying in the
hyperplane 1T

p x = 1. It can be easily verified that

r̃rr0 =

(
(p−1)

√
m

p
,−
√

m

p
, · · · ,−

√
m

p

)T

∈ Rp (5.27)

together with its circularly shifted versions (denoted by {r̃rrk}) satisfy the prin-
cipal equations. It is also straightforward to verify that these points can be

obtained from the vectors {eee(p)
k } by a scaling and a translation. As every two

regular simplexes with their center at 000p can be obtained from each other by
a set of rotations, we can find the vectors {rrrk} by rotations of {r̃rrk} such that
their end lie at the integral lattice. Note that as the regular simplex made by
{r̃rrk} is in a (p−1)-dimensional space, its rotation could be parametrized with
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Figure 5.1. (a-c) Regular simplexes in one, two and three dimensional space. In n

dimensions they can be characterized with n+ 1 vectors with the same l2-norm and
also the same angle between them as described in Eq. (5.26).

(p−2) angles ψ0, · · · ,ψp−3 and as a result the vectors {rrrk} could be written as
a function of sinψk and cosψk for k ∈Zp−2. Taking into consideration the fact
that {rrrk} are integral, this gives a closed form solution for m (and as a result a
closed form solution for the sequence length) as well as the phase distribution.
We give an example of the usage of such a geometrical approach in Section
5.3. Nevertheless, for large values of L and p, an efficient numerical approach
to tackle the principal equations is discussed in Appendix 5.7.4.

5.3 Special Cases
This section not only considers special cases associated with the principal
equations but also aims to establish the connections between the results in
Section 5.2 and the existing literature on PRUS. Several special cases for m

and p are discussed. The cases m = 1 and m = p are discussed because of
the well-known constructions which give sequences for these values. Addi-
tionally, we study the case of m = h2m′ where a solution for the principal
equations can be found for length L′ = m′p. The special cases p = 2 and p = 3
are also discussed to give closed form solutions for the length and phase dis-
tribution of PRUS. The case p = 3 can be considered as an example of using
the geometrical approach based on the regular simplex to solve the principal
equations.
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5.3.1 Special Cases of m

• m = 1 and m = p: Sequences with m = 1 (i.e. length L = p) can be
constructed for example by Zadoff, Chu, Golomb polyphase, P3 and P4
methods [39]. These methods are all based on quadratic integer phases
and it is easy to verify that all of them follow the distribution given in
Section 5.2.1. Examples of construction methods for m = p (i.e. length
L = p2) include Frank and P1 methods [39]. Sequences of this length
contain all phase values, see Theorem 3.

• m = h2m′: Let {r(m
′)

k } be a solution of the principal equations for length

L′ = m′p over αp. Then, one can verify that {r(m)
k }= {hr

(m′)
k } is a solu-

tion of the principal equations for the length L = mp. Interestingly, the
Mow’s conjecture suggests that the latter consruction of solutions for the
principal equations cannot lead to new PRUS. Nevertheless, existence of
such PRUS is not disproved by the principal equations.

5.3.2 Special Cases of p

• p = 2: Solving the principal equations, viz.

µ2
0 +µ2

1 = 2m2 +m (5.28)

2µ0µ1 = 2m2−m (5.29)

for this case (which is the case of perfect binary sequences) yields µ0 =
1
2

(
2m±

√
2m
)

and µ1 = 1
2

(
2m∓

√
2m
)
. Therefore m must be of the

form 2h2 and as a result µ0 = 2h2±h and µ1 = 2h2∓h. This enumera-
tion of +1 and −1 in perfect binary sequences can be obtained also by
the necessary condition (5.1) and is mentioned in several publications
including [113].
• p = 3: Here we use the geometrical approach discussed in Section 5.2.2

to solve the principal equations. For 3-phase perfect sequences, the vec-
tors {rrrk} make a two dimensional regular simplex orthogonal to 13,
which has 3 vectors and each two of them have an angle of 2π

3 . The
structure of this regular simplex is shown in Fig. 5.1(b). Let RRR13

be the

unitary rotation matrix which maps 13 to
√

3eee
(3)
3 . Also let

rrr′k =
√

2m




cos
(

2kπ
3 +ψ

)

sin
(

2kπ
3 +ψ

)

0


 (5.30)
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for k ∈ Z3 and ψ ∈ [0,2π). Therefore, rrrk is equal to RRR−1
13

rrr′k for some ψ .

This implies that rrrk ∈ Z3 is of the form

√
2m




√
2

2 cos
(

2kπ
3 +ψ

)
−
√

6
6 sin

(
2kπ

3 +ψ
)

√
6

3 sin
(

2kπ
3 +ψ

)

−
√

2
2 cos

(
2kπ

3 +ψ
)
−
√

6
6 sin

(
2kπ

3 +ψ
)




for k ∈ Z3. As {rrrk} are the circularly shifted versions of each other,
it is sufficient to study one of them. For k = 0, we infer that both h1 =
2
√

m
3 sinψ (which is the second entry of rrr0) and h2 = 2

√
mcosψ (which

is the difference between the first and the third entry of rrr0) must be
integers. We conclude that 3h2

1 +h2
2 = 4m and

rrr0 =
1
2




(h2−h1)
2h1

−(h2 +h1)


 . (5.31)

Therefore, the sequence length must be of the form

L =
1
4

(
9h2

1 +3h2
2

)
(5.32)

while its phase distribution is given by

1
4

(
3h2

1 +h2
2

)
13 +

1
2




(h2−h1)
2h1

−(h2 +h1)


 , (5.33)

for integers h1 and h2.

5.4 PRUS: From Phase Distributions to Construction
In this section, we discuss the use of the ideas introduced earlier for an efficient
search or construction of PRUS.

5.4.1 Are the Principal Equations Useful?
First we show that if {rk} satisfy the principal equations, then the necessary
condition in (5.1) will be satisfied; i.e. the principal equations are more infor-
mative than (5.1). Let S be the sum of entries of the PRUS:

S ,
mp−1

∑
l=0

e
j 2π

p kl =
p−1

∑
k=0

µke
j 2π

p k. (5.34)
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For {rk} satisfying the principal equations:

p−1

∑
k=0

rkrk+s =

(
p−1

∑
k=0

r2
k

)
−mp =−m, s ∈ Zp−{0}. (5.35)

Therefore,

|S|2 =

∣∣∣∣∣
p−1

∑
k=0

µke
j 2π

p k

∣∣∣∣∣

2

=

∣∣∣∣∣
p−1

∑
k=0

rke
j 2π

p k

∣∣∣∣∣

2

=
p−1

∑
s=0

(
p−1

∑
k=0

rkrk+s

)
e

j 2π
p s = mp

which implies the satisfaction of (5.1).
It is worth emphasizing that satisfaction of the principal equations is nec-

essary but not sufficient for a PRUS. The necessity induced by the princi-
pal equations guarantees that if a sequence exists over αp then it will have a
specific length and phase distribution; particularly, the number of sequences
which are needed to be checked for enumeration of PRUS of length L over αp

reduces from

pL = ∑
{µk≥0}p−1

k=0 : ∑
p−1
k=0 µk=L

(
L

µ0,µ1, · · · ,µp−1

)
(5.36)

to

∑
{µk}p−1

k=0 ∈ Ω

(
L

µ0,µ1, · · · ,µp−1

)
(5.37)

where Ω represents the set of feasible phase distributions. Note that the ex-
pression (5.37) typically contains only a few out of

(
L+p−1

p−1

)
summation terms

of Eq. (5.36). Therefore, the principal equations can be used to show the im-
possibility of some lengths (in cases for which no feasible phase distribution
exists) and to significantly reduce the size of search space of PRUS in general;
see Section 5.5 for some numerical evidence on this aspect.

5.4.2 PRUS Construction: Guidelines and Examples
Once we have obtained the length and phase distribution of a PRUS, an effi-
cient method for its construction (or further elimination of non-suitable cases)
is needed. Hereafter, we aim to explain how a PRUS could be constructed

using the {ΦΦΦ(s)
e } matrices introduced in Section 5.2. Examples of such a con-

struction for different scenarios are also provided.
For the ΦΦΦe matrix (built based on the equality of phases) we need an all

one first row and exactly m ones in any other row. On the other hand, the

111



matrices {ΦΦΦ(s)
e }s6=0 (built based on the inequality of phases) contain no ones

in the first row and exactly m ones in the other rows. It is an important ob-
servation that this condition is equivalent to the perfectness of the sequence

and as a result all we need is to check whether assigning different phases to
indices in the sequence preserves this condition. Let us assume that the vector
χχχk = (χk(0), · · · ,χk(µk−1))T contains the indices that are assigned to the kth

phase, i.e. e
j 2π

p k. As an example, the configuration of the matrix ΦΦΦx and the
corresponding vectors {χχχk} are shown in Fig. 5.2 for the Frank sequence of
length 9. As the ΦΦΦx matrix has a circulant structure, we can observe that rows

Figure 5.2. Configuration of ΦΦΦx and the vectors {χχχk} for the Frank sequence of length
9.

of {ΦΦΦ(s)
e } with a one in the χk(l)

th position are given by

(χk(l)− χk(1))1µ(k+s)
+ χχχ

l
(k+s)

. (5.38)

Fig. 5.3 depicts the construction of the matrices {ΦΦΦ(s)
e } for the Frank sequence

of length 9 based on (5.38).
According to the above discussion, instead of the classical method based

on calculation of the autocorrelation for all sequences, one can make updates

of the matrices {ΦΦΦ(s)
e } for each assignment of indices to phases in αp respec-

tively, and check whether for each assignment the number of nonzero entries

in each row (except the first row) of the updated matrices {ΦΦΦ(s)
e } does not ex-

ceed m. Note that since the matrices {ΦΦΦ(s)
e } represent all distinct differences

(s ∈ Zp where s = 0 denotes the case of phase equality), they can be viewed
as complementary binary matrices; i.e. (i) there exists no common positions

for ones in the matrices {ΦΦΦ(s)
e } (equivalently ΦΦΦ

(s1)
e ⊙ΦΦΦ

(s2)
e is an all zero matrix

for any s1 6= s2, where s1,s2 ∈ Zp), and (ii) the sum of matrices {ΦΦΦ(s)
e }s∈Zp
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is an all one matrix. Therefore, if by assigning all indices to elements of αp,
there still exists no row violating the above condition, then this shows that the

number of ones in all rows of {ΦΦΦ(s)
e } (except the first row) is equal to m.

It is important to note that by using the discussed idea, still we need to
check all

(
L

µ0,µ1, · · · ,µp−1

)
(5.39)

possible arrangements of entries of PRUS (with given phase distribution {µk}).
But the proposed method is also sensitive to unsuitable partial assignments of
phases. A suitable phase arrangement is as shown in Fig. 5.2 corresponding
to the Frank sequence of length 9. The method assigns χχχ0 = (0,1,2,3,6)T ,
χχχ1 = (5,7)T and χχχ2 = (4,8)T one after another and none of the matrices

{ΦΦΦ(s)
e } violates the above rule about the number of ones in their rows. On

the other hand, there are unsuitable phase arrangements which coincide with
the phase configuration of the Frank sequence. For example, suppose that the
method already has assigned χχχ0 = (0,1,2,3,6)T . Now if the method assigns

χχχ1 = (4,5)T then by updating the matrices {ΦΦΦ(s)
e } (as depicted in Fig. 5.4), it

appears that such a partial phase arrangement violates the expected number of

ones in rows of {ΦΦΦ(s)
e }.

Note that by recognizing any partial assignment of phases as unsuitable,
the proposed construction approach avoids testing lots of sequences and thus
is considerably more efficient than the classical approach. The proposed ap-
proach is summarized in Table 5.2. We refer the interested reader to a further
efficiency analysis of the proposed construction method in Appendix 5.7.5.

Table 5.2. Algorithm for efficient verification of PRUS

Input: A sequence of length L = mp with entries in αp, whose
phase distribution satisfies the principal equations in (5.24).

Step 0: Construct the vectors {χχχk}. Set k to zero.

Step 1: Update the matrices {ΦΦΦe} and {ΦΦΦ(s)
e }s 6=0 based on χχχk,

using the positions given by (5.38).
Step 2: If the number of nonzero entries in each row (except the

first row) of the updated matrices {ΦΦΦ(s)
e } does not exceed m:

• Step 1-1: If k < p: increase k by one, and goto step 1.
• Step 2-2: If k = p: the sequence is a PRUS.

Else: stop the loop. The sequence is not a PRUS.

5.5 Numerical Results
We provide several numerical results that rely on the ideas discussed in the
chapter. Table 5.3 presents all feasible lengths (less than or equal to 500) along
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with their corresponding phase distributions for p = 5 and 7. Using the equiv-
alence properties of PRUS, the {µk} sequences are circularly shifted such that
µ0 take the maximum value among all {µk}. The non-existence results of [87]
are used to omit some cases of (L, p) wihtout solving the principal equations.
Note that by providing the phase distributions we are able to significantly re-
duce the size of the search space in all cases. The search space cardinality
reduction induced by using the principal equations is also reported in Table
5.3.

In order to contribute to the current state-of-knowledge regarding the exis-
tence of PRUS, next we consider the unsolved cases of PRUS of length L≤ 50
in [87]; which are also shown in Table 5.4. As in the previous example, the
size reduction of the PRUS search space is reported when the phase distribu-
tions were derived by solving the principal equations. Nevertheless, even after
using the principal equations, the size of the search spaces appears to be pro-
hibitive for an exhaustive search. To help the interpretation of the results in
Table 5.4, and to see how expensive tackling such search problems can be, we
consider the following analysis for the case (L, p) = (28,7):
• The initial size of the search space is 728 ≈ 4.60×1023. Supposing that

a standard PC can handle 5×109 simple math operations per second, we
can see that a search for PRUS in this case would take more than

728

(3600×24×365)(5×109)
years (5.40)

i.e. approximately 3 million years.
• Using the principal equations, we reduce the size of the search space by

a factor of 5.33× 104. On the same standard PC, an exhaustive search
of PRUS for (L, p) = (28,7) in this case will take more than

8.63×1018

(3600×24×365)(5×109)
years (5.41)

i.e. approximately 55 years.
• By employing the construction guidelines provided in Section 5.4, we

developed a MATLAB code1 to search for PRUS with (L, p) = (28,7).
We used two standard PCs, which dealt with the two possible phase dis-
tribtuions of the case (L, p) = (28,7) (see Table 5.4), in parallel. Using
this approach, we were able to confirm the non-existence of PRUS with
(L, p) = (28,7) in about 2 weeks.

Note that due to the exponential growth in the size of search space, the ques-
tions regarding the existence of PRUS for (L, p)= (33,11) and (L, p)= (39,13)
remain open.

1The MATLAB code associated with this experiment is provided online:
http://www.it.uu.se/katalog/mojso279/test-p7.rar
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Although the study of PRUS over general root-of-unity alphabet (i.e. αN

with general N ∈ N) is beyond the scope of this chapter, it can be interesting
to study the length/alphabet restrictions imposed by (5.5) and the remarks after
Corollary 1. The eliminated cases of (L,N) via (5.5) are plotted in Fig. 5.5 for
2 ≤ L,N ≤ 100. Interestingly, the prime values of N appear to support rather
smaller numbers of lengths L than the nonprime values do. Via the results
of Fig. 5.5 we prove the non-existence of PRUS for 3443 cases of (L,N) for
2≤ L,N ≤ 100.

5.6 Concluding Remarks
Perfect root-of-unity sequences with prime-size alphabets have been studied.
The results can be summarized as follows:
• The phase distribution of p-length PRUS over αp was given for p > 2:

it was shown that such sequences have 1
2(p+ 1) distinct phases with

1
2(p−1) of them appearing in pairs and one of them being a singleton.
• A lower bound on the number of distinct phases which must be used in

a PRUS over αp was derived. The lower bound was used to show that
for PRUS of length L≥ p(p−1) (i.e. m≥ p−1) over αp, the sequence
must use all phase values.
• Guidelines to find possible lengths (L) of PRUS over αp were given. It

was shown that integer phases of the sequence must follow a specific
difference multiset property and there should exist a sequence of {µk}
(introduced in Section 5.2) satisfying the principal equations. For a pos-
sible length, the phase distribution is then given by {µk}p−1

k=0 .
• A geometrical analytical method to solve the principal equations was

introduced for a specific p using the regular simplex. In particular, it
was shown using the geometrical approach that if there exists a perfect
sequence over α3 (i.e. a 3-phase perfect sequence), its length must be of
the form L = 1

4

(
9h2

1 +3h2
2

)
for (h1,h2) ∈ Z2 and the phase distribution

of the sequence was also derived.
• The usefulness of the principal equations was discussed. Given the phase

distribution, guidelines for efficient construction of PRUS (in compari-
son to the exhaustive search) along with some examples were provided.
• Numerical evidence was provided to show the potential of using the prin-

cipal equations and the construction guidelines of Section 5.4 in practice.
Through numerical examples, new contributions were made to the cur-
rent state of knowledge regarding the existence of PRUS.

We conclude the chapter with two remarks. First of all, while Theorem
1 shows that a uniform distribution of phases leads to perfect sequences, for
almost-perfect sequences we may focus on almost-uniform distributions. A
clear possibility here can be outlined as follows: in cases for which a perfect
sequence does not exist, one can try to build sequences with a phase distribu-
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tion which approximately satisfies the principal equations and approximately

preserves the construction conditions for {ΦΦΦ(s)
e } in Section 5.7.4. Finally, we

would like to emphasize the possible connections between the study of PRUS
and the Szemerédi theorem and related results which study the minimal size
and properties of subsets of Zn containing specific length arithmetic progres-
sions (see Appendix 5.7.5). These results might be usable to further examine
the existence as well as the construction for PRUS over αp.

5.7 Appendices
5.7.1 Appendix A: Proof of Theorem 1
We prove a more general form of the theorem by using some results from
the theory of algebraic numbers and minimal polynomials: a number is called
algebraic iff it is a root of a polynomial with rational coefficients. The minimal
polynomial Pmin(x) of an algebraic number x0 is the polynomial with rational
coefficients, minimum degree and the leading coefficient equal to 1 which
satisfies Pmin(x0) = 0. It is known [117] that the minimal polynomial of the

primitive nth root of unity (e j 2π
n ) is of degree d = φ(n) where φ (the Euler’s

totient function) shows the number of k ∈ Zn for which k and n are co-prime.
For n = p, p prime, the minimal polynomial is of the unique form ∑

p−1
k=0 xk

[118]. We conclude that if P(e j 2π
p ) = 0 for a polynomial P(x) with rational

coefficients and degree d = p− 1 then P(x) must be equal to w∑
p−1
k=0 xk for

some rational scalar w. This implies that all coefficients of P(x) must be equal,
which completes the proof.

5.7.2 Appendix B: Connections Between PRUS of Length L = p

over αp and Binary Sequences with Optimal Periodic
Correlation

Let x be a PRUS of length p over αp. Let µk represent the number of times

for which e
j 2π

p k occurs in x. It is shown in Section 5.3.2 that the distribution
of {µk} is given by





(p−1)/2, µk = 0
1, µk = 1
(p−1)/2, µk = 2

(5.42)

Since x is perfect, it has a constant magnitude of
√

p in the discrete Fourier
domain. Note that the value of the discrete Fourier domain, at the frequency

zero, represents the sum of the sequence x; hence, for x =
{

e
j 2π

p kl

}p−1

l=0
we
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have that ∣∣∣∣∣
p−1

∑
l=0

e
j 2π

p kl

∣∣∣∣∣=
√

p, (5.43)

or equivalently
∣∣∣∣∣

p−1

∑
k=0

µke
j 2π

p k

∣∣∣∣∣=
√

p. (5.44)

Now let rk = µk−1. Therefore, (5.44) can be rewritten based on {rk} as
∣∣∣∣∣

p−1

∑
k=0

rke
j 2π

p k

∣∣∣∣∣=
√

p. (5.45)

The latter equality implies that
p−1

∑
k=0

(
p−1

∑
l=0

rlrl+k

)
e

j 2π
p k = p. (5.46)

By applying the result of Theorem 1 to (5.46), we obtain:
(

p−1

∑
l=0

r2
l

)
− p =

p−1

∑
l=0

rlrl+1 = · · · =
p−1

∑
l=0

rlrl+p−1. (5.47)

On the other hand, it is interesting to note that
p−1

∑
l=0

r2
l =

p−1

∑
l=0

(µl−1)2 = p−1. (5.48)

Therefore, the sequence {rk} has in-phase autocorrelation of p− 1, and re-
spectively, a constant out-of-phase autocorrelation of −1. Moreover, the dis-
tribution of {rk} is given by





(p−1)/2, rk =−1
1, rk = 0
(p−1)/2, rk =+1

(5.49)

which implies that {rk} is a balanced [119] punctured [120] binary sequence
with only one zero. Note that replacing the zero element of the sequence with
+1 or −1 can change the out-of-phase correlation lags by 0, 2 or−2. We also
note that all correlation values are congruent to the length of the sequence (i.e.
p) modulo 4. Therefore, the out-of-phase correlation lags would turn to −1
for p≡ 3, and to {1,−3} for p≡ 1 (mod 4).

The discussed idea of constructing binary sequences with optimal periodic
correlation from PRUS is summarized in Table 5.5. As indicated earlier, there
are several methods to construct a PRUS of length p over αp. However, we
do not limit our statements to the known construction methods as it is not
yet proven that the currently known construction methods cover all possible
PRUS.
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Table 5.5. Construction of prime-length binary sequences with optimal periodic cor-

relation from PRUS

Step 0: Consider a PRUS of length L = p over αp.

Step 1: Let µk represent the number of times for which e
j 2π

p
k oc-

curs in the considered PRUS. Form the sequence rk = µk−1.
Step 2: Replace the only zero element in {rk} with +1 or −1.

5.7.3 Appendix C: Study of the Principal Equations in (5.24)
Using the Sum of Squares Problem

We note that the second equality in (5.24) may be viewed as a sum of squares
problem. This approach can be applied in particular to the case of p = 3. For
p = 3, Gauss showed that a natural number can be represented as the sum of
three squares iff it is not of the form 4k(8l−1), (k, l) ∈ Z2 [121]. For p > 3,
one may note that according to a theorem by Lagrange every natural number
can be represented as the sum of four squares [121]. The latter result implies
that every natural number can be written as sum of p > 3 squares. We refer
the interested reader to [122]- [125] for additional information on cases p = 5,
7, 11, and 13.

5.7.4 Appendix D: Efficient Test Method for Specific Lengths
Herein we propose an efficient method for testing if a PRUS of a specific
length might exist over αp and for determining its phase distribution. This test
method is useful for cases in which the length of the needed sequence is fixed
or the derivation of closed form solutions of the principal equations for the
sequence length and phase distribution over a desired alphabet is deemed to
be expensive. Our test method is based on two approaches to reduce the size of
search space for {rk}: (i) imposing adaptive bounds on {rk} and (ii) assigning
{rk} to certain classes of residues for different integer values. A preliminary
bound on {rk} is given by the following lemma:

Lemma 1. Let r0, · · · ,rp−1 be a solution to the principal equations; then

|rk| ≤ (p−1)
√

m

p
, k ∈ Zp. (5.50)

Also if rk∗ has the maximum absolute value among all {rk}, then

|rk∗ | ≥
(√

p−1
)√m

p
. (5.51)
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Proof: From the principal equations we have rk =−∑l∈Zp−{k} rl, and as
a result |rk| ≤ ∑l∈Zp−{k} |rl|. Therefore,

m(p−1) =
p−1

∑
l=0

r2
l = r2

k + ∑
l∈Zp−{k}

r2
l

≥ r2
k +Γ


 ∑

l∈Zp−{k}
|rl|, p−1




≥ r2
k +Γ(|rk|, p−1)

=

(
p

p−1

)
r2

k (5.52)

which yields the inequality (5.50). Next, note that

m(p−1) =
p−1

∑
k=0

r2
k ≤ pr2

k∗ (5.53)

which implies the inequality (5.51). �

Interestingly, similar bounds on {rk} could also be established in the case
that some of {rk} are known. Let us assume that we know the values of
{rk}k∈Zq and let

{
S1 = ∑

q−1
k=0 rk

S2 = ∑
q−1
k=0 r2

k

(5.54)

Therefore, for every k ∈ Zp−Zq,

rk =−S1− ∑
l∈(Zp−Zq)−{k}

rl (5.55)

and as a result

m(p−1)−S2 = r2
k + ∑

l∈(Zp−Zq)−{k}
r2

l

≥ r2
k +Γ(rk +S1, p−q−1) . (5.56)

The above quadratic inequality implies that such an arrangement of {rk}k∈Zq

might be possible only if

S2
1

p−q
+S2 ≤ m(p−1), (5.57)

and that {rk}k∈Zp−Zq are bounded by

b± =
−S1±

√
(p−q−1)

(
(p−q)(m(p−1)−S2)−S2

1

)

(p−q)
. (5.58)
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The above adaptive bounds help us make convenient successive selections of
rk.

In the following, we propose another useful idea to reduce the size of
the search space, inspired by Minkowski-Hasse principle for quadratic forms
[121]:

Minkowski-Hasse Principle. A quadratic form

Q(r0, · · · ,rn−1) = ∑
(k,l)∈Z2

n

Qklrkrl (5.59)

of rank n with integral coefficients represents zero over the rationals iff for

any g ∈ Z−{0}, the congruence Q(r0, · · · ,rn−1)≡ 0 (mod g) has a primitive

solution and in addition Q represents zero over the reals, i.e. it is indefinite.

Let




∑
p−1
k=0 rk ≡ 0

∑
p−1
k=0 r2

k ≡ m(p−1)

∑
p−1
k=0 rkrk+s ≡−m, s ∈ Zp−{0}

(5.60)

be a set of congruence mod g∈N. Note that the second and third term of (5.60)
are quadratic. It is also interesting to note that, as {rk} are bounded according
to Lemma 1 and all other values are known and finite, the necessity and suffi-
ciency of the congruence are obvious. In fact, choosing a sufficiently large g

turns the congruence into an equality by adding an integral constant to rk. The
second fact we need to take into consideration is that the sum ∑

p−1
k=0 rk, rk ∈Zg,

gets all the residue values in Zg exactly gp−1 times. Therefore, by searching
over all rk ∈ Zg, the congruence set (5.60) must reduce the search space at
least by a factor of g. Starting from a small g (say g = 2), we can omit at least
(g− 1)/g of the search space elements by testing at most gp elements. But,
since many of these elements are redundant for different g, it turns out that for
sufficiently large values of g the number of newly omitted elements is less that
the number of tested elements. Therefore, a combination of this method and
the adaptive bounds in (5.58) appears to be more useful. Our proposed method
can be described as follows:
• 0: Consider the integral search space Ω bounded by the inequality (5.50).

Without loss of generality, we assume that r0 has the maximum value
among {rk} and is bounded as in (5.51). Also let g = 2.
• 1: Solve the congruence set in (5.60) for g. This can be done by a brute-

force search over Zg.
• 2: Reduce the size of Ω by omiting elements which belong to residue

classes not feasible for the congruence set in (5.60). Let ∆g represent the
number of omitted elements. If ∆g > gp, increase g by one and goto 1.
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• 3: Consider all possible values of r0 in Ω and update S1 and S2 for
each of them. By considering all k = 1, · · · , p− 1, respectively, do the
following:

– 3.0: Establish the bounds b± as in (5.58).
– 3.1: Consider all possible rk in Ω that follow the bounds b± and

their absolute value is at most equal to r0.
– 3.2: Update S1 and S2 for each rk considered in 3.1.

• 4: Check whether the obtained {rk} satisfy the third part of the principal
equations (i.e. all out-of-phase correlations of {rk} are −m).

5.7.5 Appendix E: Further Efficiency Assessment of the
Proposed Construction in Section 5.4.2

To explain in more detail how the proposed approach contributes an efficient
construction scheme, consider the following: let 1+ ad(χχχk) be the length of
the longest arithmetic progression with common difference d in χχχk. For a
PRUS, we must have that

p−1

∑
k=0

ad(χχχk)≤ m. (5.61)

On the other hand, {ad(χχχk)} are not independent for different values of d as
it can be checked (by construction) that

aqd(χχχk)≥
⌊

1
q

ad(χχχk)

⌋
(5.62)

for every q ∈ Zad(χχχk)
−{0}. This immediately shows that a large ad(χχχk∗)

(for a k∗ ∈ Zp) limits not only ad(χχχk) where k ∈ Zp−{k∗} but also ad(χχχk)
for some other values of d. A preliminary result from (5.61) is that none of
{χχχk} has an arithmetic progression of length greater than m+ 1. However,
the number of elements of the set (A×) of sequences for which the assigned
vectors χχχ0, · · · ,χχχ l (l ∈ Zp) are not feasible according to (5.61) and (5.62) is
significantly larger than the number of sequences for which at least one of
the elements of the set {χχχ0, · · · ,χχχ l} has an arithmetic progression of length
greater than m+ 1. We further note that A× is a subset of all sequences that
the proposed construction approach identifies as unsuitable for PRUS before
assigning all {χχχk}k∈Zp .
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The authors are grateful to Prof. Matthew Geoffrey Parker for his detailed
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(a) (b)

(c)

Figure 5.3. (a-c) Construction of the matrices {ΦΦΦ(s)
e } for the Frank sequence of length

9 and integer phase differences equal to s = 0 (i.e. equality of phases), 1 and 2 re-
spectively. The positions of 1s are shown by the corresponding phases that satisfy the
difference s.
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(a) (b)

(c)

Figure 5.4. (a-c) Updated matrices {ΦΦΦ(s)
e } for an unsuitable phase arrangement which

coincides with the phase configuration of the Frank sequence (integer phase differ-
ences are equal to s = 0, 1 and 2 for (a), (b) and (c) respectively). The positions of 1s
are shown by the corresponding phases that satisfy the difference s. χχχ1 = (4,5)T is
assigned after considering χχχ0 = (0,1,2,3,6)T and as a result the number of 1s in the
second and ninth row of (a) are more than m = 3.
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6. Design of Piecewise Linear Polyphase
Sequences with Good Correlation
Properties
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Abstract

We devise a computational approach for designing polyphase sequences with two key proper-
ties; (i) a phase argument which is piecewise linear, and (ii) an impulse-like autocorrelation.
The proposed approach relies on fast Fourier transform (FFT) operations and thus can be used
efficiently to design sequences with a large length or alphabet size. Moreover, using the sug-
gested method, one can construct many new such polyphase sequences which were not known
and/or could not be constructed by the previous formulations in the literature. Several numerical
examples are provided to show the performance of the proposed design framework in different
scenarios.

Keywords: Autocorrelation, peak-to-average-power ratio (PAR), polyphase sequences, radar

codes, waveform design

6.1 Introduction
A judicious approach to sequence design for active sensing and communica-
tion systems is to seek for sequences with small out-of-phase autocorrelations,
also referred to as good correlation properties [89], [91]. The periodic (ck) and
aperiodic (rk) autocorrelations of a sequence x ∈ CN are defined as

ck ,
N

∑
l=1

x(l)x∗(l+ k)mod N , 0≤ k ≤ (N−1) (6.1)

rk ,
N−k

∑
l=1

x(l)x∗(l+ k) = r∗−k, 0≤ k ≤ (N−1) (6.2)

where in both cases, the lag k = 0 represents the energy of x, and the out-of-
phase lags are those with k 6= 0.

We note that, in many applications, the sequences x with good correlation
properties are not only constrained to have low peak-to-average power ratio

(PAR),

PAR ,
‖x‖2

∞
1
N
‖x‖2

2

, (6.3)

but are also assumed to be finite-alphabet. In terms of PAR, the best squences
are those with unimodular entries (i.e. |x(l)| = 1, ∀ l). As a result, the con-
struction of finite-alphabet unimodular sequences has been studied widely in
the literature. In particular, several (analytical) constructions are available in
this case: such sequences for any given length can be constructed for example
by Zadoff, Chu, Golomb polyphase, P3 and P4 methods [39]. Other construc-
tions include Frank, P1, P2, Px, and PAT methods that work only when the
length is a perfect square (N = M2) [39], [129]. Note that the latter construc-
tions present a unique property in their phase values, namely that their phase
argument is piecewise linear. A generic piecewise linear polyphase sequence



Figure 6.1. The phase values of the Frank sequence {x(k)}N
k=1 of length N = 25 [39],

illustrated based on the formulation in (6.4)-(6.6) with φm,1 = 0 and ηm = 2π(m−
1)/5, 1≤ m≤ 5.

of length N = MK can be formulated as follows [129]. Let the matrix

ΦΦΦ =




ϕ1,1 ϕ1,2 · · · ϕ1,K
ϕ2,1 ϕ2,2 · · · ϕ2,K

...
...

. . .
...

ϕM,1 ϕM,2 · · · ϕM,K


 (6.4)

include the phase values of a unimodular sequence x via the identity

x = e j (vec(ΦΦΦT )). (6.5)

Then x is a piecewise linear polyphase sequence (with parameters M and K)
iff

ηm , ηm,k = ϕm,k+1−ϕm,k (6.6)

is a fixed constant for 1≤ k ≤ K−1. Note that piecewise linear polyphase se-
quences are beneficial to practical implementations owing to the smaller num-
ber of variables involved in their construction, as well as their simple structure.
As an example, Fig. 6.1 illustrates the phase values of the Frank sequence of
length N = 25, with M = K = 5.

In this chapter, a fast computational method for designing piecewise lin-
ear polyphase sequences with good correlation is proposed. Particularly, we
discuss in detail the sequence design for desirable aperiodic correlation. The
reasons for choosing aperiodic correlation (and not its periodic counterpart)
are the following; (i) piecewise linear polyphase sequences with optimal pe-
riodic correlation are already known in the literature (for instance the Frank
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sequence), and (ii) the aperiodic autocorrelations are of specific interest due to
the higher difficulty of the associated design problem, see e.g. [83]. We also
note that a modification of the proposed formulations to tackle the periodic
case is straightforward. The contributions of this work can be summarized as
follows:
• The analytical construction methods yield polyphase sequences with

limited alphabet sizes. As a result, the proposed method can lead to
considerable improvements upon the currently known piecewise linear
polyphase sequences by alphabet size enlargement.
• The suggested formulation provides the possibility of designing piece-

wise linear polyphase sequences for lengths N = MK which are not per-

fect square, i.e. for scenarios in which (M,K) 6= (
√

N,
√

N).
Consequently, using the proposed method, one can construct a new set of

piecewise linear polyphase sequences with good correlation properties; a set
with large cardinality whose majority of elements are not known and/or cannot
be constructed with currently known formulations. See Section 3 for some
numerical examples.

Notation: We use bold lowercase letters for vectors and bold uppercase
letters for matrices. (.)T , (.)∗ and (.)H denote the vector/matrix transpose, the
complex conjugate, and the Hermitian transpose, respectively. 1 and 000 are
the all-one and all-zero vectors/matrices. ‖x‖n or the ln-norm of the vector x

is defined as (∑k |x(k)|n)
1
n where {x(k)} are the entries of x. The symbol ⊙

stands for the Hadamard element-wise product of matrices. vec(XXX) is a vector
obtained by stacking the columns of XXX successively. Finally, ZQ denotes the
set {0,1, · · · ,Q−1}.

6.2 The Proposed Method
Let N = MK represent a twin factorization of N. Based on the formulation in
Section 6.1, a piecewise-linear polyphase sequence x can be written as

x =




e jϕ1x1

e jϕ2x2
...

e jϕM xM


 ; xm =




1
e jηm

...
e j(K−1)ηm


 ,∀m, (6.7)

where ϕm = ϕm,1. Note that, depending on the factorization of N, the param-
eter M (which denotes the number of linear segments in the phase argument)
can attain different values ranging from 1 to N; particularly, the case of M = 1
leads to a structure that resembles the steering vectors associated with uni-
form linear arrays, while M = N corresponds to a sequence design with no
piecewise-linearity constraint at all. We assume that the elements of x belong
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to the Q-ary alphabet ΩQ =
{

e j2kπ/Q : k ∈ ZQ

}
. Accordingly, we assume that

{ϕm} and {ηm} are of the form 2πk/Q, with k ∈ ZQ.
In the following, we employ the CAN computational framework introduced

in [6]. From an intuitive point of view, a sequence with zero out-of-phase pe-
riodic correlation has a flat spectrum in the frequency domain— in particular,
the more flat the spectrum, the smaller the out-of-phase periodic correlations.
The CAN algorithm in [6] (see also [89]) provides the mathematical formal-
ism that confirms such observations. Namely, the periodic out-of-phase cor-
relations of a sequence x can be minimized conveniently via the optimization
problem:

min
x,vvv

∥∥AAAHx− vvv
∥∥2

2 (6.8)

s.t. vvv is unimodular,

where x is constrained, e.g. as in (6.7), and AAA denotes the N×N (inverse) DFT
matrix, whose (l, p)-element is given by

[A]l,p =
1√
N

e j2πl p/N , l, p = 1, . . . ,N. (6.9)

Note that the aperiodic correlations of x are given by the periodic correlations
of the sequence

x̃ =

(
x

000N−1

)
. (6.10)

Therefore, CAN considers the following frequency-domain design problem to
minimize the aperiodic out-of-phase correlations of x:

min
x̃,ṽvv

∥∥∥ÃAA
H

x̃− ṽvv

∥∥∥
2

2
(6.11)

s.t. ṽvv is unimodular,

in which x is constrained as described earlier, and ÃAA denotes the (2N− 1)×
(2N− 1) (inverse) DFT matrix. For given x̃, the minimization of (6.11) with
respect to ṽvv is straightforward, viz.

ṽvv = e j arg(ÃAA
H

x̃). (6.12)

Due to the various constraints on x including the piecewise linearity and a
given phase alphabet, the optimization of (6.11) with respect to x̃ (or equiv-
alently x) appears to be more complicated. However, to achieve a monoton-
ically decreasing objective function, one can simply employ a separate opti-
mization of (6.11) with respect to the variables {ϕm} and {ηm}. In order to
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obtain the minimizer {ϕm} of (6.11) for fixed ṽvv and {ηm}, we note that the
objective function can be rewritten as

∥∥∥ÃAA
H

x̃− ṽvv

∥∥∥
2

2
=
∥∥∥x̃− ÃAAṽvv

∥∥∥
2

2
(6.13)

=

∥∥∥∥∥∥∥∥∥




e jϕ1x1

e jϕ2x2
...

e jϕM xM


−




v̂vv1

v̂vv2
...

v̂vvM




∥∥∥∥∥∥∥∥∥

2

2
+const1

=

∥∥∥∥∥∥∥∥∥




e jϕ11K

e jϕ21K

...
e jϕM 1K


−




v̂vv1⊙x∗1
v̂vv2⊙x∗2

...
v̂vvM⊙x∗M




∥∥∥∥∥∥∥∥∥

2

2
+const1

where v̂vvm denotes the column vector consisting of the mth K-tuple in the vec-
tor ÃAAṽvv. Let uuum = v̂vvm⊙ x∗m for 1 ≤ m ≤ M. Then it is easy to verify that
the minimization of (6.13) may be decoupled for different {ϕm}; namely, the
minimizer ϕm , 2πgm/Q of (6.13) is given by the solution to the following
optimization problem:

min
gm∈ZQ

∑K
k=1

∣∣e jϕm−uuum(k)
∣∣2 . (6.14)

Consequently, the minimizer ϕm of (6.13) becomes

ϕm = ΨQ

(
arg

(
K

∑
k=1

uuum(k)

))
, 1≤ m≤M, (6.15)

where ΨQ(.) yields the closest phase value to the argument in the Q-ary al-
phabet. Now suppose {ϕm} and ṽvv (equivalently {v̂vvm}) are given. According to
(6.13), the minimization of (6.11) with respect to {ηm} may be accomplished
using the optimization problems

min
xm

∥∥xm− e− jϕm v̂vvm

∥∥2
2 (6.16)

s.t. xm has the structure in (6.7),
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Table 6.1. The Proposed Algorithm for Designing Piecewise-Linear Polyphase Se-

quences with Good Correlation

Input parameters: sequence length= N, alphabet size= Q,
twin factorization of N into (M,K).

Step 0: Initialize the variables {ϕm} and {ηm} of the form
2πk/Q (k ∈ ZQ) randomly (or set the values by a previously
known sequence).
Step 1: Form the sequence x using (6.7), based on the current
values of {ϕm} and {ηm}.
Step 2: Compute ṽvv using (6.12).
Step 3: Compute {ϕm} using (6.15).
Step 4: Compute {ηm} using (6.17).

Step 5: Let ε =
∥∥∥ÃAA

H
x̃− ṽvv

∥∥∥
2
. Repeat the steps 1-4 until

ε(s) = ε(s−1),

where s denotes the iteration number.

for 1≤m≤M. Let ηm , 2πhm/Q, and note that one can restate the objective
function of (6.16) as

∥∥xm− e− jϕm v̂vvm

∥∥2
2

=
K

∑
k=1

∣∣∣e j2πhm(k−1)/Q− e− jϕm v̂vvm(k)
∣∣∣
2

= const2−2ℜ

{
K

∑
k=1

(e− jϕm v̂vvm(k))e
− j2πhm(k−1)/Q

}
.

Hence, the optimization problem in (6.16) is equivalent to

max
hm∈ZQ

ℜ
{

∑K
k=1(e

− jϕm v̂vvm(k))e− j2πhm(k−1)/Q
}
.

(6.17)

Interestingly, the solution to (6.17) can be obtained efficiently using an FFT
operation due to the fact that the objective function represents the real-part of
the Q-point DFT sequence associated with {e− jϕm v̂vvm(k)}K

k=1.
Finally, the steps of the proposed method are summarized in Table 6.1. We

note that the approach proposed in this work relies on FFT operations and
hence can be used efficiently for large lengths N, or phase alphabet sizes Q.
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6.3 Numerical Results and Discussions
We provide several numerical examples to show the performance of the pro-
posed method. As discussed earlier, the method can be employed to design
piecewise linear polyphase sequences of non-square length. We use the pro-
posed approach to design a piecewise linear polyphase sequence of length
N = 128 with (M,K) = (16,8) and Q = 128. The obtained sequence along
with its normalized autocorrelation level,

autocorrelation level (dB) , 20log10

∣∣∣∣
rk

r0

∣∣∣∣ (6.18)

are presented in Fig. 6.2. The correlation peak sidelobe level (PSL), viz.

PSL , max{|rk|}N−1
k=1 , (6.19)

of the sequences obtained during the iterations of the proposed algorithm is
shown in Fig. 6.3. A significant reduction in the PSL of the sequences vs.
iteration number can be observed. We note that CAN minimizes an upper
bound on the PSL metric, and hence, the resultant PSL values in Fig. 3 are
not monotonically decreasing; see [6] and [83] for more details related to this
observation.

Next, we consider improving upon a certain piecewise linear polyphase se-
quence with good correlation. As an example, we use the PAT sequence [129]
of length N = 256 in order to initialize the algorithm in Table 1. PAT sequences
were proposed recently, and have a PSL value which is the minimum of those
of Frank, P1, P2, and Px. While improving the correlation properties of a PAT
sequence by using numerical methods is not simple, the said properties can be
enhanced by considering an alphabet size Q larger than that used by the PAT
sequences which is 2

√
N. In order to show the potential of such an approach

in enhancing the correlation properties, we choose a large alphabet size by set-
ting Q to 216. Fig. 6.4 depicts the normalized autocorrelation level of the PAT
sequence, as well as the level corresponding to the proposed method. The PSL
value corresponding to the initial PAT sequence is equal to 11.3086, while the
obtained sequence has a PSL value of 5.6359.

Finally, it can be interesting to examine how the factorization of N into
(M,K) affects the correlation properties of the obtained sequences. To study
this aspect, we consider N = 22×32×5 = 180, and Q = N. For all 18 divisors
of N = 180, we use the proposed algorithm 15 times with different random
initializations. Fig. 6.5 plots the best PSL values for each case, obtained in
the 15 trials . A considerable reduction in the obtained PSL values can be seen
as M grows large. To explain this behavior, we note that the number of free
variables, i.e. degrees of freedom (DOFs) of the problem, is determined by
the number of variables {ϕm} and {ηm}:

#DOFs =

{
2M M ≤ N/2,
M M = N.

(6.20)
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As a result, the number of DOFs is increasing with M, which lays the ground
for a better performance of the method in terms of the correlation PSL. How-
ever, increasing M might increase the complexity of implementing the se-
quences in practice— a trade off which should be dealt with wisely.
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Figure 6.2. Design of a piecewise linear polyphase sequence (of length N = 128)
with good aperiodic autocorrelation, and parameters (M,k) = (16,8), Q = 128: (a)
the integer phases (, phase values×Q/(2π)) of the sequence; (b) the autocorrelation
levels of the sequence.
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Figure 6.4. Enhancement of the aperiodic correlation properties of the PAT sequence
of length N = 256 via alphabet size enlargement. The figure shows the normalized
autocorrelation level of the initial PAT sequence, along with that of the enhanced se-
quence obtained by the proposed method.
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7. Design of Unimodular Codes via Quadratic
Optimization
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Abstract

The NP-hard problem of optimizing a quadratic form over the unimodular vector set arises in
radar code design scenarios as well as other active sensing and communication applications.
To tackle this problem (which we call unimodular quadratic program (UQP)), several compu-
tational approaches are devised and studied. Power method-like iterations are introduced for
local optimization of UQP. Furthermore, a monotonically error-bound improving technique
(MERIT) is proposed to obtain the global optimum or a local optimum of UQP with good sub-
optimality guarantees. The provided sub-optimality guarantees are case-dependent and may
outperform the π/4 approximation guarantee of semi-definite relaxation. Several numerical ex-
amples are presented to illustrate the performance of the proposed method. The examples show
that for several cases, including rank-deficient matrices, the proposed methods can solve UQPs
efficiently in the sense of sub-optimality guarantee and computational time.

Keywords: Code design, radar codes, unimodular codes, quadratic programming, peak-to-

average-power ratio (PAR)

7.1 Introduction
Unimodular codes are used in many active sensing and communication sys-
tems mainly as a result of the their optimal (i.e. unity) peak-to-average-power
ratio (PAR). The design of such codes can be often formulated as the opti-
mization of a quadratic form (see sub-section 7.1.1 for examples). Therefore,
we will study the problem

UQP: max
sss∈Ωn

sssHRRRsss (7.1)

where RRR ∈ Cn×n is a given Hermitian matrix, Ω represents the unit circle,
i.e. Ω = {s ∈ C : |s| = 1} and UQP stands for Unimodular Quadratic Pro-
gram(ming).

Notation: We use bold lowercase letters for vectors/sequences and bold
uppercase letters for matrices. (·)T , (·)∗ and (·)H denote the vector/matrix
transpose, the complex conjugate, and the Hermitian transpose, respectively.
1 and 000 are the all-one and all-zero vectors/matrices. eeek is the kth standard ba-

sis vector in Cn. ‖x‖n or the ln-norm of the vector x is defined as (∑k |x(k)|n)
1
n

where {x(k)} are the entries of x. The Frobenius norm of a matrix XXX (denoted

by ‖XXX‖F ) with entries {XXX(k, l)} is equal to
(
∑k,l |XXX(k, l)|2

) 1
2 . We use ℜ(XXX)

and ℑ(XXX) to denote the matrices obtained by collecting the real parts, and re-
spectively, the imaginary parts of the entries of XXX . The matrix e jXXX is defined
element-wisely as

[
e jXXX
]

k,l
= e j[XXX]k,l . arg(.) denotes the phase angle (in radi-

ans) of the vector/matrix argument. E[.] stands for the expectation operator.
Diag(.) denotes the diagonal matrix formed by the entries of the vector argu-
ment, whereas diag(.) denotes the vector formed by collecting the diagonal
entries of the matrix argument. σk(XXX) represents the kth maximal eigenvalue
of XXX . The symbol ⊙ stands for the Hadamard (element-wise) product of ma-
trices. The operator notation ⊕ stands for the Minkowski sum of the two sets.
Finally, R and C represent the set of real and complex numbers, respectively.



7.1.1 Motivating Applications
To motivate the UQP formulation considered above, we present four scenarios
in which a design problem in active sensing or communication boils down to
an UQP.
• Designing codes that optimize the SNR or the CRLB: We consider a

monostatic radar which transmits a linearly encoded burst of pulses. The ob-
served backscattered signal vvv can be written as (see, e.g. [131]):

vvv = a(ccc⊙ ppp)+www, (7.2)

where a represents channel propagation and backscattering effects, www is the
disturbance/noise component, ccc is the unimodular vector containing the code
elements, ppp = (1,e j2π fdTr , · · · ,e j2π(n−1) fdTr)T is the temporal steering vector
with fd and Tr being the target Doppler frequency and pulse repetition time,
respectively.

Under the assumption that www is a zero-mean complex-valued circular Gaus-
sian vector with known positive definite covariance matrix E[wwwwwwH ] = MMM, the
signal-to-noise ratio (SNR) is given by [132]

SNR = |a|2cccHRRRccc (7.3)

where RRR = MMM−1⊙ (ppppppH)∗. Therefore, the problem of designing codes opti-
mizing the SNR of the radar system can be formulated directly as an UQP.
Additionally, the Cramer-Rao lower bound (CRLB) for the target Doppler fre-
quency estimation (which yields a lower bound on the variance of any unbi-
ased target Doppler frequency estimator) is given by [132]

CRLB =
(
2|a|2(ccc⊙ ppp⊙uuu)HMMM−1(ccc⊙ ppp⊙uuu)

)−1
(7.4)

=
(
2|a|2cccHRRR′ccc

)−1

where uuu = (0, j2πTr, · · · , j2π(n− 1)Tr)
T and RRR′ = MMM−1⊙ (ppppppH)∗⊙ (uuuuuuH)∗.

Therefore the minimization of CRLB can also be formulated as an UQP. For
the simultaneous optimization of SNR and CRLB see [132].

• Synthesizing cross ambiguity functions (CAFs): The ambiguity function
(which is widely used in active sensing applications [4] [39]) represents the
two-dimensional response of the matched filter to a signal with time delay τ
and Doppler frequency shift f . The more general concept of cross ambiguity
function occurs when the matched filter is replaced by a mismatched filter.
The cross ambiguity function (CAF) is defined as

χ(τ , f ) =
∫ ∞

−∞
u(t)v∗(t + τ)e j2π f tdt (7.5)

where u(t) and v(t) are the transmit signal and the receiver filter, respectively
(the ambiguity function is obtained from (7.5) with v(t) = u(t)). In several
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applications u(t) and v(t) are given by:

u(t) =
n

∑
k=1

xk pk(t), v(t) =
n

∑
k=1

yk pk(t) (7.6)

where {pk(t)} are pulse-shaping functions (with the rectangular pulse as a
common example), and

x = (x1 · · ·xn)
T , yyy = (y1 · · ·yn)

T (7.7)

are the code and, respectively, the filter vectors. The design problem of syn-
thesizing a desired CAF has a small number of free variables (i.e. the entries
of the vectors x and yyy) compared to the large number of constraints arising
from two-dimensional matching criteria (to a given |χ(τ , f )|). Therefore, the
problem is generally considered to be difficult and there are not many methods
to synthesize a desired (cross) ambiguity function. Below, we describe briefly
the cyclic approach of [133] for CAF design.

The problem of matching a desired |χ(τ , f )| = d(τ , f ) can be formulated
as the minimization of the criterion [133]

g(x,yyy,φ) = (7.8)
∫ ∞

−∞

∫ ∞

−∞
w(τ , f )

∣∣∣d(τ , f )e jφ(τ , f )− yyyHJJJ(τ , f )x
∣∣∣
2

dτd f

where JJJ(τ , f ) ∈ Cn×n is given, w(τ , f ) is a weighting function that specifies
the CAF area which needs to be emphasized and φ(τ , f ) represent auxiliary
phase variables. It is not difficult to see that for fixed x and yyy, the minimizer
φ(τ , f ) is given by φ(τ , f ) = arg{yyyHJJJ(τ , f )x}. For fixed φ(τ , f ) and x, the
criterion g can be written as

g(yyy) = yyyHDDD1yyy− yyyHBBBHx−xHBBByyy+ const1 (7.9)

= (yyy−DDD−1
1 BBBHx)HDDD1(yyy−DDD−1

1 BBBHx)+ const2

where BBB and DDD1 are given matrices in Cn×n [133]. Due to practical considera-
tions, the transmit coefficients {xk} must have low PAR values. However, the
receiver coefficients {yk} need not be constrained in such a way. Therefore,
the minimizer yyy of g(yyy) is given by yyy = DDD−1

1 BBBHx. Similarly, for fixed φ(τ , f )
and yyy, the criterion g can be written as

g(x) = xHDDD2x−xHBBByyy− yyyHBBBHx+ const3 (7.10)

where DDD2 ∈Cn×n is given [133]. If a unimodular code vector x is desired then
the optimization of g(x) is an UQP as g(x) can be written as

g(x) =

(
e jϕx

e jϕ

)H(
DDD2 −BBByyy

−(BBByyy)H 0

)(
e jϕx

e jϕ

)
(7.11)

+const3
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where ϕ ∈ [0,2π) is a free phase variable.

• Steering vector estimation in adaptive beamforming: Consider a linear
array with n antennas. The output of the array at time instant k can be ex-
pressed as [134]

xk = skaaa+nnnk (7.12)

with {sk} being the signal waveform, aaa the associated steering vector (with
|[aaa]l| = 1, 1 ≤ l ≤ n), and nnnk the vector accounting for all independent inter-
ferences.

The true steering vector is usually unknown in practice, and it can therefore
be considered as an unimodular vector to be determined [135]. Define the
sample covariance matrix of {xk} as R̂RR = 1

T ∑T
k=1 xkxH

k where T is the number
of training data samples. Assuming some prior knowledge on aaa (which can
be represented by arg(aaa) being in a given sector Θ), the problem of estimating
the steering vector can be formulated as [136]

min
aaa

aaaHR̂RR
−1

aaa (7.13)

s.t. arg(aaa) ∈Θ,

hence an UQP-type problem. Such problems can be tackled using general lo-
cal optimization techniques or the optimization scheme introduced in Section
7.3.
• Maximum likelihood (ML) detection of unimodular codes: Assume the

linear model

yyy = QQQsss+nnn (7.14)

where QQQ represents a multiple-input multiple-output (MIMO) channel, yyy is
the received signal, nnn is the additive white Gaussian noise and sss contains the
unimodular symbols which are to be estimated. The ML detection of sss may
be stated as

ŝssML = arg min
sss∈Ωn
‖yyy−QQQsss‖2 (7.15)

It is straightforward to verify that the above optimization problem is equivalent
to the UQP [138]:

min
sss∈Ωn+1

sssHRRRsss (7.16)

where

RRR =

(
QQQHQQQ −QQQHyyy

−yyyHQQQ 0

)
, sss =

(
e jϕsss

e jϕ

)
(7.17)

and where ϕ ∈ [0,2π) is a free phase variable.
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7.1.2 Related Work
In [139], the NP-hardness of UQP is proven by employing a reduction from an
NP-complete matrix partitioning problem. The UQP in (7.1) is often studied
along with the following (also NP-hard) related problem in which the decision
variables are discrete:

m-UQP: max
sss∈Ωn

m

sssHRRRsss (7.18)

where Ωm = {1,e j 2π
m , · · · ,e j 2π

m (m−1)}. Note that the latter problem coincides
with the UQP in (7.1) as m→∞. The authors of [140] show that when the ma-
trix RRR is rank-deficient (more precisely, when d =rank(RRR) behaves like O(1)
with respect to the problem dimension) the m-UQP problem can be solved
in polynomial-time and they propose a O((mn/2)2d)-complexity algorithm to
solve (7.18). However, such algorithms are not applicable to the UQP which
corresponds to m→ ∞.

Studies on polynomial-time (or efficient) algorithms for UQP (and m-UQP)
have been extensive (e.g. see [137]-[152] and the references therein). In
particular, the semi-definite relaxation (SDR) technique has been one of the
most appealing approaches to the researchers. To derive an SDR, we note that
sssHRRRsss = tr(sssHRRRsss) = tr(RRRssssssH). Hence, the UQP can be rewritten as

max
SSS

tr(RRRSSS) (7.19)

s.t. SSS = ssssssH , sss ∈ Ωn.

If we relax (7.19) by removing the rank constraint on SSS then the result is a
semi-definite program:

SDP: max
SSS

tr(RRRSSS) (7.20)

s.t. [SSS]k,k = 1, 1≤ k ≤ n,

SSS is positive semi-definite.

The above SDP can be solved in polynomial time using interior-point methods
[145]. The approximation of the UQP solution based on the SDP solution can
be accomplished in several ways. For example, we can approximate the phase
values of the solution sss using a rank-one approximation of SSS. A more effective
approach for guessing sss is based on randomized approximations (see [139],
[146] and [147]). A detailed guideline for randomized approximation of the
UQP solution can be found in [147]. In addition, we refer the interested reader
to the survey of the rich literature on SDR in [2].

In order to formalize the quality assessment of the UQP solutions, let sss

be the approximate solution to a given UQP. We assume that RRR is positive
semidefinite (such an assumption can be made without loss of generality, see
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Section 7.2.1). Then the approximation ratio (δ ) associated with sss is given by

δ ,
sssHRRRsss

maxsss′∈Ωn sss′HRRRsss′
. (7.21)

The approximation ratio is usually unknown, because the global optimum of
the problem is not known. However, an optimization method may offer a sub-

optimality guarantee (γ), i.e. a lower bound on the quality of the approximate
solution:

δ ≥ γ . (7.22)

Herein, we present the existing (analytically derived) sub-optimality guar-
antee for SDR. Let vSDR be the expected value of the UQP objective at the ob-
tained randomized solution. Let vopt represent the optimal value of the UQP
objective. We have

γvopt ≤ vSDR ≤ vopt (7.23)

with the sub-optimality guarantee coefficient γ = π/4 [139] [148]. Note that
the sub-optimality coefficient of the solution obtained by SDR can be arbitrar-
ily close to π/4 (e.g., see [148]). For the sake of brevity, in the sequel the
abbreviation SDR will be used for semidefinite relaxations followed by the
randomization procedure.

7.1.3 Contributions of this Work
Besides SDR, the literature does not offer many other numerical approaches
to tackle UQP. In this chapter, a specialized local optimization scheme for
UQP is proposed. The proposed computationally efficient local optimization
approach can be used to tackle UQP as well as improve upon the solutions
obtained by other methods such as SDR. Furthermore, a monotonically error-
bound improving technique (called MERIT) is introduced to obtain the global
optimum or a local optimum of UQP with good sub-optimality guarantees.
Note that:
• MERIT provides real-time case-dependent sub-optimality guarantees (γ)

during its iterations. To the best of our knowledge, such guarantees
for UQP were not known prior to this work. Using MERIT one may
obtain better performance guarantees compared to the analytical worst-
case guarantees (such as γ = π/4 for SDR).
• The provided case-dependent sub-optimality guarantees are of practical

importance in decision making scenarios. For instance in some cases the
UQP solution obtained by SDR (or other optimization methods) might
achieve good objective values, and equivalently good approximation ra-
tios δ (this is indeed the case for some practical examples, see Section
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7.6). However, unless the goodness of the obtained solution is known
(which can be determined using the proposed bounds), the solution can-
not be trusted.
• Using MERIT, numerical evidence is provided to show that several UQPs

(particularly those with low rank) can be solved efficiently without sac-
rificing the solution accuracy.

Finally, we believe that the general ideas of this work can be adopted to
tackle m-UQP as the finite alphabet case of UQP. However, a detailed study of
m-UQP is beyond the scope of this chapter.

The rest of this work is organized as follows. Section 7.2 discusses sev-
eral properties of UQP. Section 7.3 introduces a specialized local optimization
method that resembles the well-known power method. Section 7.4 presents a
cone approximation that is used in Section 7.5 to derive the algorithmic form
of MERIT for UQP. Several numerical examples are provided in section 7.6.
Finally, Section 7.7 concludes the chapter.

7.2 Some Properties of UQP
In this section, we study several properties of UQP. The discussed properties
lay the grounds for a better understanding of UQP as well as the tools proposed
to tackle it in the following sections.

7.2.1 Basic Properties
The UQP formulation in (7.1) covers both maximization and minimization of
quadratic forms (one can obtain the minimization of the quadratic form in (7.1)
by considering −RRR in lieu of RRR). In addition, without loss of generality, the
Hermitian matrix RRR can be assumed to be positive (semi)definite. If RRR is not
positive (semi)definite, we can make it so using the diagonal loading technique
(i.e. RRR← RRR+λ III where λ ≥−σn(RRR)). Note that such a diagonal loading does
not change the solution of UQP as sssH(RRR+λ III)sss = sssHRRRsss+λn. Next, we note
that if s̃ss is a solution to UQP then e jφ s̃ss (for any φ ∈ [0,2π)) is also a valid
solution. To establish connections among different UQPs, Theorem 1 presents
a bijection among the set of matrices leading to the same solution.

Theorem 1. Let K (sss) represent the set of matrices RRR for which a given sss∈Ωn

is the global optimizer of UQP. Then

1. K (sss) is a convex cone.

2. For any two vectors sss1,sss2 ∈ Ωn, the one-to-one mapping (where sss0 =
sss∗1⊙ sss2)

RRR ∈K (sss1)⇐⇒ RRR⊙ (sss0sssH
0 ) ∈K (sss2) (7.24)

holds among the matrices in K (sss1) and K (sss2).
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Proof: See the Appendix. �

It is interesting to note that in light of the above result, the characterization
of the cone K (sss) for any given sss = s̃ss leads to a complete characterization
of all K (sss), sss ∈ Ωn, and thus solving any UQP. However, the NP-hardness
of UQP suggests that such a tractable characterization cannot be expected.
Further discussions regarding the characterization of K (sss) are deferred to
Section 7.4.

7.2.2 Analytical Solutions to UQP
There exist cases for which the analytical global optima of UQP are easy to
obtain. In this sub-section, we consider two such cases which will be used in
Section 7.4 to provide an approximate characterization of K (sss). A special
example is the case in which e j arg(RRR) (see the notation definition in the Intro-
duction) is a rank-one matrix. More precisely, let RRR = RRR1⊙ (̃sss̃sss

H) where RRR1 is
a real-valued Hermitian matrix with non-negative entries and s̃ss ∈ Ωn. A sim-
ple special case of this example is when RRR is a rank-one matrix itself. In this
case, it can be easily verified that RRR1 ∈K (1n×1). Therefore, using Theorem
1 one concludes that RRR ∈K (̃sss) i.e. sss = s̃ss yields the global optimum of UQP.
As another example, Theorem 2 considers the case for which the matrix RRR has
a repeated largest eigenvalue.

Theorem 2. Let RRR be a Hermitian matrix with eigenvalue decomposition RRR =
UUUΣΣΣUUUH . Suppose ΣΣΣ is of the form

ΣΣΣ = Diag([σ1 · · · σ1︸ ︷︷ ︸
m times

σ2 · · · σn−m+1]
T ) (7.25)

σ1 > σ2 ≥ ·· · ≥ σn−m+1

and let UUUm be the matrix made from the first m columns of UUU. Now suppose

s̃ss ∈ Ωn lies in the linear space spanned by the columns of UUUm, i.e. there exists

a vector ααα ∈ Cm such that

s̃ss =UUUmααα. (7.26)

Then s̃ss is a global optimizer of UQP.

Proof: If s̃ss satisfies (24), then it belongs to the span of the m dominant
eigenvectors of RRR, and hence it is also a dominant eigenvector of RRR. This
fact implies that s̃ss is the global optimizer of the quadratic optimization (even
without the unimodularity constraint) which completes the proof. �

We end this section by noting that the solution to an UQP is not necessarily
unique. For any set of unimodular vectors {sss1,sss2, · · · ,sssk}, k ≤ n, we can use
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the Gram-Schmidt process to obtain a unitary matrix UUU the first k columns
of which span the same linear space as sss1,sss2, · · · ,sssk. In this case, Theorem 2
suggests a method to construct a matrix RRR (by choosing a ΣΣΣ with k identical
largest eigenvalues) for which all sss1,sss2, · · · ,sssk are global optimizers of the
corresponding UQP.

7.3 Power Method for UQP
Due to its NP-hard nature, UQP has in general a highly multi-modal optimiza-
tion objective. Finding the local optima of UQP is not only useful to tackle
the problem itself (particularly for UQP-related problems such as (7.13)), but
also to improve the UQP approximate solutions obtained by SDR or other
optimization techniques. In this section, we introduce a computationally effi-
cient procedure (to obtain a local optimum of UQP) which resembles the well-
known power method for computing the dominant eigenvalue/vector pairs of
matrices.

Assume that RRR is positive definite and let {sss(t+1)}∞
t=0 be a sequence of uni-

modular codes where sss(t+1) is the minimizer of the following criterion:

min
sss(t+1)∈Ωn

‖sss(t+1)−RRRsss(t)‖2 (7.27)

The minimizing vector sss(t+1) of (7.27) is simply given by the following power

method-like iteration:

sss(t+1) = e j arg(RRRsss(t)) (7.28)

Note that

‖sss(t+1)−RRRsss(t)‖2
2 = const−2ℜ{sss(t+1)HRRRsss(t)} (7.29)

As a result, sss(t+1) is equivalently the maximizer of the criterion ℜ{sss(t+1)HRRRsss(t)}.
Moreover, if sss(t+1) 6= sss(t) we have that

(sss(t+1)− sss(t))HRRR(sss(t+1)− sss(t))> 0 (7.30)

which implies

sss(t+1)HRRRsss(t+1) > 2ℜ{sss(t+1)HRRRsss(t)}− sss(t)HRRRsss(t)

> sss(t)HRRRsss(t) (7.31)

as ℜ{sss(t+1)HRRRsss(t)} > sss(t)HRRRsss(t). Therefore, the UQP objective is increasing
through the power method-like iterations in (7.28). On the other hand, the
UQP objective is upper bounded by ∑k,l |RRR(k, l)|, and thus the said iterations
are convergent in the sense of the UQP objective value. We further note that
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the increase in the UQP objective is lower bounded (within a multiplicative
constant) by the l2-norm of the difference of the unimodular codes in succes-
sive iterations, viz.

sss(t+1)HRRRsss(t+1)− sss(t)HRRRsss(t) (7.32)

= (sss(t+1)− sss(t))HRRR(sss(t+1)− sss(t))

+2ℜ{sss(t+1)HRRRsss(t)}−2sss(t)HRRRsss(t)

> (sss(t+1)− sss(t))HRRR(sss(t+1)− sss(t))

≥ σn(RRR)‖sss(t+1)− sss(t)‖2
2

Due to the fact that the sequence {sss(t)HRRRsss(t)} is convergent, (7.32) implies
that ‖sss(t+1)− sss(t)‖2 is also converging to zero through the iterations in (7.28).

It is also important to observe that the power method-like iterations do not
stop before reaching a local optimum or saddle point of UQP. A limit point s̃ss

of (7.28) can be characterized by the equation

RRRs̃ss = vvv⊙ s̃ss (7.33)

where vvv is real-valued and non-negative. On the other hand, the stationary
points s̃ss of UQP (associated with RRR) may be characterized as RRRs̃ss= vvv⊙ s̃ss, where
vvv is real-valued (see Appendix 7.8.2 for a detailed derivation). Therefore,
the limit points of (7.28) form a subset of the stationary points of UQP. We
refer to the subset of UQP stationary points satisfying (7.33) as the stable

points of UQP. A characterization of the UQP optima can also be found in
Appendix 7.8.2. Namely, sss is a local maximum of UQP if and only if VVV ≥ RRR,
where VVV = Diag(vvv). Due to the positive definiteness of RRR, the latter condition
implies that for any local maximum of UQP vvv is non-negative. As a result,
the set of the local maxima of UQP (including its global optima) is simply a
subset of the stable points of UQP.

Remark 1: The application of the power method-like iterations introduced
above is not limited to the optimization of quadratic forms over the unimodular
vector set. If one can minimize the criterion in (7.27) for a particular constraint
on sss(t+1), say sss(t+1) ∈ Ψ, then all the arguments accompanying (7.27)-(7.32)
are valid and they yield an optimization of quadratic forms over Ψ. An inter-
esting practical example is the more general problem of quadratic optimization
over PAR constrained codes (see e.g. [147] and [150]) that can be cast as

max
sss

sssHRRRsss (7.34)

s.t. |sss(k)| ≤ √γ, ∀k,

‖sss‖2
2 = n.
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where γ denotes the maximal tolerable PAR value. The related power method-
like iterations, namely

min
sss(t+1)

‖sss(t+1)−RRRsss(t)‖2 (7.35)

s.t. |sss(t+1)(k)| ≤ √γ, ∀k,

‖sss(t+1)‖2
2 = n.

are nearest-vector problems that can be solved efficiently via an algorithm
devised in [26]. �

7.4 Results on the cone K (s)
While a complete tractable characterization of K (sss) cannot be expected (due
to the NP-hardness of UQP), approximate characterizations of K (sss) are pos-
sible. The goal of this section is to provide an approximate characterization of
the cone K (sss) which can be used to tackle the UQP problem.

Theorem 3. For any given sss = (e jφ1, · · · ,e jφn)T ∈Ωn, let C (VVV sss) represent the

convex cone of matrices VVV sss =DDD⊙(ssssssH) where DDD is any real-valued symmetric

matrix with non-negative off-diagonal entries. Also let Csss represent the convex

cone of matrices with sss being their dominant eigenvector (i.e the eigenvector

corresponding to the maximal eigenvalue). Then for any RRR ∈ K (sss), there

exists α0 ≥ 0 such that for all α ≥ α0,

RRR+αssssssH ∈ C (VVV sss)⊕Csss. (7.36)

The proof of Theorem 3 will be presented in several steps (Theorems 4-
7 and thereafter). As indicated earlier, a global optimum of UQP is also a
stable point of UQP. In what follows, we prove Theorem 3 by proving a more
general result, namely that (7.36) is also satisfied if sss is a stable point of UQP
(characterized by (7.33)). However, since sss is the global optimum of UQP for
all matrices in Csss and C (VVV sss), the case of α0 = 0 can occur only when sss is
a global optimum of UQP associated with RRR. An intuitive illustration of the
result in Theorem 3 is shown in Fig. 7.1.

Suppose sss is a stable point of UQP associated with a given positive definite
matrix RRR, and let θk,l = [arg(RRR)]k,l . We define the matrix RRRsss

+ as

RRRsss
+(k, l)=

{
|RRR(k, l)|cos(θk,l− (φk−φl)) (k, l)∈Θ,
0 otherwise

(7.37)

where Θ represents the set of all (k, l) such that |θk,l− (φk−φl)|< π/2. Now,
let ρ be a positive real number such that

ρ > max
(k,l)/∈Θ

{
|RRR(k, l)cos(θk,l− (φk−φl))|

}
(7.38)
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Figure 7.1. An illustration of the result in Theorem 3. Kh(sss) denotes the convex cone
of matrices with sss as a stable point of the associated UQPs.

and consider the sequence of matrices {RRR(t)} defined (in an iterative manner)
by RRR(0) = RRR, and

RRR(t+1) = RRR(t)− (RRR
sss (t)
+ −ρ1n×n)⊙ (ssssssH) (7.39)

for t ≥ 0. The next two theorems (whose proofs are given in the Appendix)
study some useful properties of the sequence {RRR(t)}.

Theorem 4. {RRR(t)} is convergent in at most two iterations:

RRR(t) = RRR(2), ∀ t ≥ 2. (7.40)

Theorem 5. RRR(t) is a function of ρ . Let ρ and ρ ′ both satisfy the criterion

(7.38). At the convergence of {RRR(t)} (which is attained for t = 2) we have:

RRR(2)(ρ ′) = RRR(2)(ρ)+(ρ ′−ρ)(ssssssH). (7.41)

Using the above results, Theorems 6 (whose proof is given in the Appendix)
and 7 pave the way for a constructive proof of Theorem 3.

Theorem 6. If sss is a stable point of the UQP associated with RRR(0) = RRR then it

is also a stable point of the UQPs associated with RRR(1) and RRR(2). Furthermore,

sss is an eigenvector of RRR(2) corresponding to the eigenvalue nρ .
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Theorem 7. If sss is a stable point of UQP for RRR(0) = RRR then it will be the

dominant eigenvector of RRR(2) if ρ is sufficiently large. In particular, let µ be

the largest eigenvalue of RRR(2) which belongs to an eigenvector other than sss.

Then for any ρ ≥ µ/n, sss is a dominant eigenvector of RRR(2).

Proof: We know from Theorem 6 that sss is an eigenvector of RRR(2) corre-
sponding to the eigenvalue nρ . However, if sss is not the dominant eigenvector
of RRR(2), Theorem 5 implies that increasing ρ would not change any of the
eigenvalues/vectors of RRR(2) except that it increases the eigenvalue correspond-
ing to sss. As a result, for sss to be the dominant eigenvector of RRR(2) we only need
ρ to satisfy nρ ≥ µ or equivalently ρ ≥ µ/n, which concludes the proof. �
Returning to Theorem 3, note that RRR can be written as

RRR = RRR(0) (7.42)

= RRR(2)+(RRR
sss (0)
+ +RRR

sss (1)
+ )⊙ (ssssssH)−2ρssssssH .

For sufficiently large ρ (satisfying both (7.38) and the condition of Theorem
7) we have that

RRR+2ρssssssH = RRR(2)+(RRR
sss (0)
+ +RRR

sss (1)
+ )⊙ (ssssssH) (7.43)

where RRR(2) ∈ Csss and (RRR
sss (0)
+ +RRR

sss (1)
+ )⊙ (ssssssH) ∈ C (VVV sss). Theorem 3 can thus

be directly satisfied using Eq. (7.43) with α0 = 2ρ .
We conclude this section with two remarks. First of all, the above proof of

Theorem 3 does not attempt to derive the minimal α0. In the following section
we study a computational method to obtain an α0 which is as small as possible.
Secondly, we can use C (VVV sss)⊕Csss as an approximate characterization of K (sss)
noting that the accuracy of such a characterization can be measured by the
minimal value of α0. An explicit formulation of a sub-optimality guarantee
for a solution of UQP based on the above K (sss) approximation is derived in
the following section.

7.5 MERIT for UQP
Using the previous results, namely the one-to-one mapping introduced in The-
orem 1 and the approximation of K (sss) derived in Section 7.4, we build a
sequence of matrices (for which the UQP global optima are known) whose
distance from a given matrix is decreasing. The proposed iterative approach
can be used to solve for the global optimum of UQP or at least to obtain a
local optimum (with an upper bound on the sub-optimality of the solution).
The sub-optimality guarantees are derived noting that the proposed method
decreases an upper bound on the sub-optimality of the obtained UQP solution
in each iteration.
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We know from Theorem 3 that if sss is a stable point of the UQP associated
with RRR then there exist matrices QQQsss ∈Csss, PPPsss ∈C (VVV sss) and a scalar α0≥ 0 such
that

RRR+α0ssssssH = QQQsss +PPPsss. (7.44)

Eq. (7.44) can be rewritten as

RRR+α0ssssssH = (QQQ1 +PPP1)⊙ (ssssssH) (7.45)

where QQQ1 ∈ C1, PPP1 ∈ C (VVV 1). We first consider the case of α0 = 0 which
corresponds to the global optimality of sss.

7.5.1 Global Optimization of UQP (the Case of α0 = 0)
Consider the optimization problem:

min
sss∈Ωn,QQQ1∈C1,PPP1∈C (VVV 1)

‖RRR− (QQQ1 +PPP1)⊙ (ssssssH)‖F (7.46)

Note that, as C1⊕C (VVV 1) is a convex cone, the global optimizers QQQ1 and PPP1

of (7.46) for any given sss can be easily found. On the other hand, the problem
of finding an optimal sss for fixed RRR1 = QQQ1 +PPP1 is non-convex and hence more
difficult to solve globally (see below for details).

We will assume that RRR1 is a positive definite matrix. To justify this assump-
tion let RRR = RRR⊙(ssssssH)∗ and note that the eigenvalues of RRR are exactly the same
as those of RRR, hence RRR is positive definite. Suppose that we have

{
xHRRRx > ε , ∀ unit-norm x ∈ Cn×1

‖RRR−RRR1‖F ≤ ε
(7.47)

for some ε ≥ 0. It follows from (7.47) that

xHRRR1x ≥ xHRRRx−|xHRRRx−xHRRR1x| (7.48)

> ε−|xH(RRR−RRR1)x|
≥ ε−|σ1(RRR−RRR1)|
≥ ε−‖RRR−RRR1‖F ≥ 0

which implies that RRR1 is also a positive definite matrix. The conditions in
(7.47) can be met as follows. By considering the partial minimization of
(7.46) only with respect to the component of RRR1 in C (VVV 1) (namely PPP1) we
observe that any positive (i.e. with λ > 0) diagonal loading of RRR, which
leads to the same diagonal loading of RRR (as RRR + λ III = RRR⊙ (ssssssH)∗ + λ III =
(RRR+ λ III)⊙ (ssssssH)∗), will be absorbed1 in PPP1. Therefore, a positive diagonal

1i.e. the optimal PPP1 will be the same as before but with the same diagonal loading.
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loading of RRR does not change ‖RRR−RRR1‖F but increases xHRRRx by λ . We also
note that due to ‖RRR−RRR1‖F being monotonically decreasing through the itera-
tions of the method, if the conditions in (7.47) hold for the solution obtained
in any iteration, it will hold for all the iterations afterward.

In the following, we study a suitable diagonal loading of RRR that ensures
meeting the conditions in (7.47). Next the optimization of the function in
(7.46) is discussed through a separate optimization over the three variables of
the problem.
• Diagonal loading of RRR: As will be explained later, we can compute QQQ1 and
PPP1, (hence RRR1 = QQQ1 +PPP1) for any initialization of sss. In order to guarantee the
positive definiteness of RRR1, define

ε0 , ‖RRR−RRR1‖F . (7.49)

Then we suggest to diagonally load RRR with λ > λ0 =−σn(RRR)+ ε0:

RRR← RRR+λ III. (7.50)

• Optimization with respect to QQQ1: We restate the objective function of (7.46)
as

‖RRR− (QQQ1 +PPP1)⊙ (ssssssH)‖F (7.51)

= ‖
(
RRR⊙ (ssssssH)∗−PPP1

)
︸ ︷︷ ︸

RRRQ

−QQQ1‖F .

Given RRRQ, the partial minimization of (7.46) with respect to QQQ1 can be written
as

min
QQQ1∈C1

‖RRRQ−QQQ1‖F . (7.52)

which is equivalent to

min
QQQ1,ρ
‖RRRQ−QQQ1‖F (7.53)

s.t. QQQ11 = ρ1,

σ1(QQQ1) = ρ .

In [?], the authors have derived an explicit solution for the optimization prob-
lem

min
QQQ1

‖RRRQ−QQQ1‖F (7.54)

s.t. QQQ11 = ρ1. (ρ =given)

The explicit solution of (7.54) is given by

QQQ1(ρ) (7.55)

= ρIIIn +(IIIn−
1n×n

n
)(RRRQ−ρIIIn)(IIIn−

1n×n

n
)

= RRRQ +
ρ

n
1n×n−

2
n
(RRRQ1n×n)+

1
n2 (1n×nRRRQ1n×n)
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Note that

QQQ1(ρ
′)−QQQ1(ρ) = (ρ ′−ρ)(1n×1/

√
n)(1n×1/

√
n)T (7.56)

which implies that except for the eigenpair (1n×1/
√

n,ρ), all other eigen-
value/vectors are independent of ρ . Let ρ0 represent the maximal eigenvalue
of QQQ1(0) corresponding to an eigenvector other than 1n×1/

√
n. More interest-

ing, the set of the optimal solutions of (7.54) for different ρ form a line in Cn2

described as in (7.56). Therefore, (7.52) is equivalent to

min
ρ
‖RRRQ−QQQ1(ρ)‖F (7.57)

s.t. ρ ≥ ρ0.

It follows from (7.55) that

‖RRRQ−QQQ1(ρ)‖2
F =

n

∑
k=1

n

∣∣∣∣
ρ

n
− 2Gk

n
+

H

n2

∣∣∣∣
2

(7.58)

where Gk and H are the sum of the kth row and, respectively, the sum of all
entries of RRRQ. The ρ that minimizes (7.58) is given by

ρ =
1
n

n

∑
k=1

ℜ

(
2Gk−

H

n

)
=

H

n
(7.59)

which implies that the minimizer ρ = ρ⋆ of (7.57) is equal to

ρ⋆ =

{
H
n

H
n
≥ ρ0,

ρ0 otherwise.
(7.60)

Finally, the optimal solution QQQ1 to (7.52) is given by

QQQ1 = QQQ1(ρ⋆). (7.61)

• Optimization with respect to PPP1: Similar to the previous case, (7.46) can be
rephrased as

min
QQQ1∈C (VVV 1)

‖RRRP−PPP1‖F (7.62)

where RRRP = RRR⊙ (ssssssH)∗−QQQ1. The solution of (7.62) is simply given by

PPP1(k, l) =

{
RRR′P(k, l) RRR′P(k, l)≥ 0 or k = l,
0 otherwise

(7.63)

where RRR′P = ℜ{RRRP}.
• Optimization with respect to sss: Suppose that QQQ1 and PPP1 are given and that
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RRR1 = QQQ1 +PPP1 is a positive definite matrix (see the discussion on this aspect
following Eq. (7.46)). Then we have

‖RRR−RRR1⊙ (ssssssH)‖2
F (7.64)

= ‖RRR−Diag(sss)RRR1 Diag(sss∗)‖2
F

= tr(RRR2)+ tr(RRR2
1)−2ℜ{tr(RRR Diag(sss)RRR1 Diag(sss∗))}.

Note that only the third term of (7.64) is a function of sss. Moreover, it can be
verified that [151]

tr(RRR Diag(sss)RRR1 Diag(sss∗)) = sssH(RRR⊙RRRT
1 )sss. (7.65)

As RRR⊙RRRT
1 is positive definite, we can employ the power method-like itera-

tions introduced in (7.28) to decrease the criterion in (7.46), i.e. starting from
the current sss = sss(0), a local optimum of the problem can be obtained by the
iterations

sss(t+1) = e j arg((RRR⊙RRRT
1 )sss

(t)). (7.66)

Remark 2: Note that the ability of using more general constraints (e.g. the
PAR constraint) in the power method-like iterations means that MERIT can
deal with such generalized constraints. This is basically due to the fact that
the optimization of the MERIT criterion with respect to sss is accomplished via
the power method-like iterations. �

Finally, the proposed algorithmic optimization of (7.46) based on the above
results is summarized in Table 7.1-A.

7.5.2 Achieving a Local Optimum of UQP (the Case of α0 > 0)
There exist examples for which the objective function in (7.46) does not con-
verge to zero. As a result, the proposed method cannot obtain a global op-
timum of UQP in such cases. However, it is still possible to obtain a local
optimum of UQP for some α0 > 0. To do so, we solve the optimization prob-
lem,

min
sss∈Ω,QQQ1∈C1,PPP1∈C (VVV 1)

‖RRR′− (QQQ1 +PPP1)⊙ (ssssssH)‖F (7.67)

with RRR′ = RRR+α0ssssssH , for increasing α0. It is worth pointing out that achieving
a zero value for the criterion in (7.67) implies RRR+α0ssssssH ∈K (sss). As a result,
there exists a non-negative vvv ∈ Rn such that

(RRR+α0ssssssH)sss = vvv⊙ sss. (7.68)

Consequently,

RRRsss = (vvv−nα01)⊙ sss (7.69)

158



Table 7.1. The MERIT Algorithm

(A) The case of α0 = 0

Step 0: Initialize the variables QQQ1 and PPP1 with III. Let sss be a
random vector in Ωn.
Step 1: Perform the diagonal loading of RRR as in (7.49)-
(7.50) (note that this diagonal loading is sufficient to keep
RRR1 = QQQ1 +PPP1 always positive definite).
Step 2: Obtain the minimum of (7.46) with respect to QQQ1 as
in (7.61).
Step 3: Obtain the minimum of (7.46) with respect to PPP1

using (7.63).
Step 4: Minimize (7.46) with respect to sss using (7.66).
Step 5: Goto step 2 until a stop criterion is satisfied, e.g.
‖RRR− (QQQ1 +PPP1)⊙ (ssssssH)‖F ≤ ε0 (or if the number of itera-
tions exceeded a predefined maximum number).

(B) The case of α0 > 0

Step 0: Initialize the variables (sss,QQQ1,PPP1) using the results
obtained by the optimization of (7.46) as in Table 7.1-A.
Step 1: Set δ (the step size for increasing α0 in each itera-
tion). Let δ0 be the minimal δ to be considered and α0 = 0.
Step 2: Let α pre

0 = α0, αnew
0 = α0 + δ and RRR′ = RRR +

αnew
0 ssssssH .

Step 3: Solve (7.67) using the steps 2-5 in Table 7.1-A (par-
ticularly step 4 must be applied to (7.71)).
Step 4: If ‖RRR′− (QQQ1 +PPP1)⊙ (ssssssH)‖F ≤ ε0 do:

• Step 4-1: If δ ≥ δ0, let δ ← δ/2 and initialize (7.67)
with the previously obtained variables (sss,QQQ1,PPP1) for
α0 = α pre

0 . Goto step 2.
• Step 4-2: If δ < δ0, stop.

Else, let α0 = αnew
0 and goto step 2.
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which implies sss is a stationary point of the UQP associated with RRR.
The optimization problem in (7.67) can be tackled using the same tools as

proposed for (7.46). In particular, note that increasing α0 decreases (7.67).
To observe this, suppose that the solution (sss,QQQ1,PPP1) of (7.67) is given for an
α0 ≥ 0. The minimization of (7.67) with respect to QQQ1 for αnew

0 = α0 + δ

(δ > 0) yields Q̃QQ1 ∈ C1 such that

‖RRR+αnew
0 ssssssH− (Q̃QQ1 +PPP1)⊙ (ssssssH)‖F (7.70)

≤ ‖RRR+αnew
0 ssssssH− ((QQQ1 +δ11T )+PPP1)⊙ (ssssssH)‖F

= ‖RRR+α0ssssssH − (QQQ1 +PPP1)⊙ (ssssssH)‖F

where QQQ1 + δ11T ∈ C1. The optimization of (7.67) with respect to PPP1 can
be dealt with as before (see (7.46)) and it leads to a further decrease of the
objective function. Furthermore,

‖RRR+α0ssssssH− (QQQ1 +PPP1)⊙ (ssssssH)‖F (7.71)

= ‖RRR+λ ′III− (QQQ1 +PPP1−α011T +λ ′III)⊙ (ssssssH)‖F

which implies that a solution sss of (7.67) can be obtained via optimizing (7.71)
with respect to sss in a similar way as we described for (7.46) provided that
λ ′ ≥ 0 is such that QQQ1 +PPP1−α011T +λ ′III is positive definite. Finally, note
that the obtained solution (sss,QQQ1,PPP1) of (7.46) can be used to initialize the
corresponding variables in (7.67). In effect, the solution of (7.67) for any α0
can be used for the initialization of (7.67) with an increased α0.

Based on the above discussion and the fact that small values of α0 are of
interest, a bisection approach can be used to obtain α0. The proposed method
for obtaining a local optimum of UQP along with the corresponding α0 is
described in Table 7.1-B. Using the proposed algorithm, the task of finding
the minimal α0 can be accomplished within finite number of steps, see Ap-
pendix 7.8.6.

7.5.3 Sub-Optimality Analysis
In this sub-section, we show how the proposed method can provide real-time
sub-optimality guarantees and bounds during its iterations. Let α0 = 0 (as a
result RRR′ = RRR) and define

EEE , RRR′− (QQQ1 +PPP1)⊙ (ssssssH)︸ ︷︷ ︸
RRRsss

(7.72)
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where QQQ1 ∈ C1 and PPP1 ∈ C (VVV 1). By construction, the global optimum of the
UQP associated with RRRsss is sss. We have that

max
sss′∈Ωn

sss′HRRRsss′ ≤ max
sss′∈Ωn

sss′HRRRssssss
′+ max

sss′∈Ωn
sss′HEEEsss′ (7.73)

≤ max
sss′∈Ωn

sss′HRRRssssss
′+nσ1(EEE)

= sssHRRRssssss+nσ1(EEE)

Furthermore,

max
sss′∈Ωn

sss′HRRRsss′ ≥ max
sss′∈Ωn

sss′HRRRssssss
′+ min

sss′∈Ωn
sss′HEEEsss′ (7.74)

≥ max
sss′∈Ωn

sss′HRRRssssss
′+nσn(EEE)

= sssHRRRssssss+nσn(EEE)

As a result, an upper bound and a lower bound on the objective function for
the global optimum of (7.46) can be obtained at each iteration. In accordance
to what discussed earlier, as

|σ1(EEE)| ≤ ‖EEE‖F , |σn(EEE)| ≤ ‖EEE‖F (7.75)

if ‖EEE‖F converges to zero we conclude from (7.73) and (7.74) that

max
sss′∈Ωn

sss′HRRRsss′ = sssHRRRssssss = sssHRRRsss (7.76)

and hence sss is the global optimum of the UQP associated with RRR (i.e. a sub-
optimality guarantee of γ = 1 is achieved).

Next, suppose that we have to increase α0 in order to obtain the conver-
gence of ‖EEE‖F to zero. In such a case, we have that RRR = RRRsss−α0ssssssH and as
a result, maxsss′∈Ωn sss′HRRRssssss

′ −α0n2 ≤ maxsss′∈Ωn sss′HRRRsss′ ≤ maxsss′∈Ωn sss′HRRRssssss
′ or

equivalently,

sssHRRRssssss−α0n2 ≤ max
sss′∈Ωn

sss′HRRRsss′ ≤ sssHRRRssssss. (7.77)

The provided case-dependent sub-optimality guarantee is thus given by

γ =
sssHRRRsss

sssHRRRssssss
= 1− α0n2

sssHRRRssssss
=

sssHRRRsss

sssHRRRsss+α0n2 . (7.78)

The following section provides empirical evidence to the fact that (7.78)
can yield tighter sub-optimality guarantees than the currently known approxi-
mation guarantee of π/4 for SDR.

7.6 Numerical Examples
In order to examine the performance of the proposed method, several numer-
ical examples will be presented. Random Hermitian matrices RRR are generated
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using the formula

RRR =
n

∑
k=1

xkxH
k (7.79)

where {xk} are random vectors in Cn whose real-part and imaginary-part el-
ements are i.i.d. with a standard Gaussian distribution N (0,1). In all cases,
we stopped the iterations when ‖EEE‖F ≤ 10−9.

We use the MERIT algorithm to solve the UQP for a random positive def-
inite matrix of size n = 16. The obtained values of the UQP objective for the
true matrix RRR and the approximated matrix RRRsss as well as the sub-optimality
bounds (derived in (7.73) and (7.74)) are depicted in Fig. 7.2 versus the itera-
tion number. In this example, a sub-optimality guarantee of γ = 1 is achieved
which implies that the method has successfully obtained the global optimum
of the considered UQP. A computational time of 3.653 sec was required to
accomplish the task on a standard PC. For the sake of comparison, we also
use the power method-like iterations discussed in Section 7.3, and MERIT, as
well as the curvilinear search of [137] with Barzilai-Borwein (BB) step size, to
solve an UQP (n= 10) based on the same initialization. The resultant UQP ob-
jectives along with required times (in sec) versus iteration number are plotted
in Fig. 7.3. It can be observed that the power method-like iterations approx-
imate the UQP solution much faster than the curvilinear search of [137]. On
the other hand, both methods are much faster than MERIT. This type of be-
havior, which is not unexpected, is due to the fact that MERIT is not designed
solely for local optimization; indeed, MERIT relies on a considerable over-
parametrization in its formulation which is the cost paid for easily derivable
sub-optimality guarantees. In general, one may employ the power method-like
iterations to obtain a fast approximation of the UQP solution (e.g. by using
several initializations), whereas for obtaining sub-optimality guarantees one
can resort to MERIT.

Next, we approximate the UQP solutions for 20 full-rank random positive
definite matrices of sizes n ∈ {8,16,32,64}. Inspired by [140] and [152],
we also consider rank-deficient matrices RRR = ∑d

k=1 xkxH
k where {xk} are as in

(7.79), but d ≪ n. The performance of MERIT for different values of d is
shown in Table 7.2. Interestingly, the solution of UQP for rank-deficient ma-
trices appears to be more efficiently obtained than for full-rank matrices. We
also employ SDR [147] to solve the same UQPs. Note also that given the solu-
tions obtained by MERIT and SDR as well as the sub-optimality guarantee of
MERIT, a case-dependent sub-optimality guarantee for SDR can be computed
as

γSDR , γMERIT

(
vSDR

vMERIT

)
. (7.80)

This can be used to examine the goodness of the solutions obtained by SDR. In
this example, we continue the randomization procedure of SDR until reaching
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the same UQP objective as for MERIT. The results can be found in Table 7.2.
The results imply that, although the average SDR time is less than MERIT in
some cases, the average MERIT time appears to outperform that of SDR for
larger dimensions n or lower matrix ranks d.

As discussed earlier, the UQP formulation occurs in different code design
scenarios. An interesting code design problem arises when synthesizing wave-
forms that have good resolution properties in range and Doppler [3]-[5],[28]-
[90]. In the following, we consider the design of a thumbtack CAF (see the
definitions in Section 7.1.1):

d(τ , f ) =

{
n (τ , f ) = (0,0),
0 otherwise.

(7.81)

Suppose n = 53, let T be the time duration of the total waveform, and let
tp = T/n represent the time duration of each sub-pulse. Define the weighting
function as

w(τ , f ) =

{
1 (τ , f ) ∈Ψ\Ψml,
0 otherwise,

(7.82)

where Ψ = [−10tp,10tp]× [−2/T,2/T ] is the region of interest and Ψml =
([−tp, tp]\{0})× ([−1/T,1/T]
\{0}) is the mainlobe area which is excluded due to the sharp changes near the
origin of d(τ , f ). Note that the time delay τ and the Doppler frequency f are
typically normalized by T and 1/T , respectively, and as a result the value of tp

can be chosen freely without changing the performance of CAF design. The
synthesis of the desired CAF is accomplished via the cyclic minimization of
(7.8) with respect to x and yyy (see Section 7.1.1). In particular, we use MERIT
to obtain a unimodular x in each iteration. A Björck code is used to initialize
both vectors x and yyy. The Björck code of length n = p (where p is a prime

number for which p≡ 1 (mod 4)) is given by bbb(k)= e
j( k

p )arccos(1/(1+
√

p)), 0≤
k < p, with ( k

p
) denoting the Legendre symbol. Fig. 7.4 depicts the normalized

CAF modulus of the Björck code (i.e. the initial CAF) and the obtained CAF
using the UQP formulation in (7.11) and the proposed method. Despite the
fact that designing CAF with a unimodular transmit vector x is a rather difficult
problem, MERIT is able to efficiently suppress the CAF sidelobes in the region
of interest.

7.7 Concluding Remarks
A computational approach to the NP-hard problem of optimizing a quadratic
form over the unimodular vector set (called UQP) has been introduced. The
main results can be summarized as follows:
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Figure 7.4. The normalized CAF modulus for (a) the Björck code of length n = 53
(i.e. the initial CAF), and (b) the UQP formulation in (7.11) and MERIT.
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• Power method-like iterations were devised for local optimization. The
proposed method was shown to be useful not only for the quadratic op-
timization over unimodular codes but also for some other types of code
constraints. The particular example of PAR constrained code design was
discussed in some detail.
• It was shown that the set of matrices K (sss) leading to the same solution sss

as the global optimum of UQP is a convex cone. An one-to-one mapping
between any two such convex cones was introduced and an approximate
characterization of K (sss) was proposed.
• Using the approximate characterization of K (sss), an iterative approach

(called MERIT) to the UQP was proposed. It was shown that MERIT
provides real-time case-dependent sub-optimality guarantees during its
iterations. The available numerical evidence shows that the sub-optimality
guarantees obtained by MERIT may be better than the currently known
approximation guarantee of π/4 for SDR.

We note that more rigorous efficiency assessments of the method would be
useful. It is clear that C (VVV sss)⊕Csss ⊂K (sss). A possible approach would be
to determine how large is the part of K (sss) that is “covered" by C (VVV sss)⊕Csss;
a research problem which is left for future work. Furthermore, a study of
m-UQP using the ideas in this chapter will be the subject of a future research.

7.8 Appendices
7.8.1 Appendix A: Proof of Theorem 1
In order to verify the first part of the theorem, consider any two matrices
RRR1,RRR2 ∈K (̃sss). For any two non-negative scalars γ1,γ2 we have that

sssH(γ1RRR1 + γ2RRR2)sss = γ1sssHRRR1sss+ γ2sssHRRR2sss. (7.83)

Clearly, if some sss = s̃ss is the global maximizer of both sssHRRR1sss and sssHRRR2sss then
it is the global maximizer of sssH(γ1RRR1 + γ2RRR2)sss which implies γ1RRR1 + γ2RRR2 ∈
K (̃sss).

The second part of the theorem can be shown noting that

sssH
2 (RRR⊙ (sss0sssH

0 ))sss2 = (sss∗0⊙ sss2)
HRRR(sss∗0⊙ sss2) (7.84)

= sssH
1 RRRsss1

for all sss1,sss2 ∈Ωn and sss0 = sss∗1⊙sss2. Therefore, if RRR∈K (̃sss1) then RRR⊙ (̃sss0s̃ss
H
0 )∈

K (̃sss2) (for s̃ss0 = s̃ss
∗
1⊙ s̃ss2) and vice versa.
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7.8.2 Appendix B: Characterization of the Stationary Points and
Optima of UQP

Let sss = (e jφ1 , · · · ,e jφn)T and note that

L = sssHRRRsss = ∑
k,l

RRR(k, l)e j(φl−φk) (7.85)

=
1
2

(

∑
k,l

RRR(k, l)e j(φl−φk)+∑
k,l

RRR(l,k)e j(φk−φl)

)
.

To obtain the stationary points of UQP (associated with RRR) one can write the
following partial derivative equations for all 1≤ k0 ≤ n:

∂L

∂φk0

=
1
2

(
− j∑

l

RRR(k0, l)e
j(φl−φk0

) (7.86)

+ j∑
l

RRR(l,k0)e
j(φk0

−φl)

)

= ℑ

{
e
− jφk0

(

∑
l

RRR(k0, l)e
jφl

)}
= 0

which implies that there exist vk0 ∈ R such that

∑
l

RRR(k0, l)e
jφl = vk0e

jφk0 . (7.87)

Considering the above set of equations for all 1≤ k0 ≤ n yields the character-
ization of the stationary points of L as

RRRs̃ss = vvv⊙ s̃ss (7.88)

where vvv ∈Rn. Based on the latter characterization of the stationary points, we
study the optima of UQP by employing the second derivatives of L. For any
l0 6= k0 we have that

∂ 2L

∂φk0∂φl0

=
1
2

(
− j( j)RRR(k0, l0)e

j(φl0
−φk0

) (7.89)

+ j(− j)RRR(l0,k0)e
j(φk0

−φl0
)
)

= ℜ{RRR(k0, l0)e
j(φl0
−φk0

)}.
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For l0 = k0 we can write

∂ 2L

∂φ 2
k0

=
1
2

(
− j(− j) ∑

l 6=k0

RRR(k0, l)e
j(φl−φk0

) (7.90)

+ j( j) ∑
l 6=k0

RRR(l,k0)e
j(φk0

−φl)

)

= ℜ{RRR(k0,k0)− vk0}.

Therefore, the Hessian matrix associated with L is given by HHH = ℜ{RRR⊙
(ssssssH)∗−VVV} where VVV = Diag(vvv). As a direct consequence, sss is a local maxi-
mum of UQP iff HHH ≤ 0, or equivalently VVV ≥ RRR.

7.8.3 Appendix C: Proof of Theorem 4

It is worthwhile to observe that the convergence rate of {RRR(t)} is not depen-
dent on the problem dimension (n), as each entry of {RRR(t)} is treated inde-
pendently from the other entries (i.e. all the operations are element-wise).
Therefore, without loss of generality we study the convergence of one entry
(say {RRR(t)(k, l)}= {rte

jθt}) in the following.
Note that in cases for which |θt− (φk−φl)|> π/2, the next element of the

sequence {rte
jθt} can be written as

rt+1e jθt+1 = rte
jθt +ρe j(φk−φl) (7.91)

which implies that the proposed operation tends to make θt closer to (φk−φl)
in each iteration, and finally puts θt within the π/2 distance from (φk−φl).

Let us suppose that |θ0−(φk−φl)|> π/2, and that the latter phase criterion
remains satisfied for all θt , t < T . We have that

rT e jθT = r0e jθ0 +Tρe j(φk−φl) (7.92)

which yields

rT cos(θT − (φk−φl)) = r0 cos(θ0− (φk−φl))+Tρ . (7.93)

Therefore it takes only T = ⌈−r0 cos(θ0− (φk−φl))/ρ⌉= 1 iteration for θt to
stand within the π/2 distance from (φk−φl).

Now, suppose that |θ0− (φk−φl)| ≤ π/2. For every t ≥ 1 we can write that

rt+1e jθt+1 = rte
jθt +ρe j(φk−φl) (7.94)

−rt cos(θt− (φk−φl))e
j(φk−φl)

= e j(φk−φl) (ρ + jrt sin(θt− (φk−φl))) .
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Let δt+1 = rt+1e jθt+1− rte
jθt . The first equality in (7.94) implies that

δt+1 = e j(φk−φl)(ρ− rt cos(θt− (φk−φl))). (7.95)

On the other hand, the second equality in (7.94) implies that

δt+1 = e j(φk−φl) (ρ + jrt sin(θt− (φk−φl))) (7.96)

−e j(φk−φl) (ρ + jrt−1 sin(θt−1− (φk−φl)))

= je j(φk−φl)(rt sin(θt− (φk−φl))

−rt−1 sin(θt−1− (φk−φl)))

for all t ≥ 1. Note that in (7.95) and (7.96), δt+1 is a complex number having
different phases. We conclude

δt+1 = 0, ∀ t ≥ 1 (7.97)

which shows that the sequence {rte
jθt} is convergent in one iteration. In sum,

every entry of the matrix R will converge in at most two iterations (i.e. at most
one to achieve a phase value within the π/2 distance from (φk−φl), and one
iteration thereafter).

7.8.4 Appendix D: Proof of Theorem 5
We use the same notations as in the proof of Theorem 4. If |θ0− (φk−φl)| ≤
π/2 then

r2e jθ2 = r1e jθ1 (7.98)

= r0e jθ0 +ρe j(φk−φl)

− r0 cos(θ0− (φk−φl))e
j(φk−φl).

On the other hand, if |θ0− (φk− φl)| > π/2 we have that r1e jθ1 = r0e jθ0 +
ρe j(φk−φl). As a result, r1 cos(θ1− (φk − φl)) = ρ + r0 cos(θ0− (φk − φl))
which implies

r2e jθ2 = r1e jθ1 +ρe j(φk−φl) (7.99)

−r1 cos(θ1− (φk−φl))e
j(φk−φl)

= r0e jθ0 +ρe j(φk−φl)

︸ ︷︷ ︸
r1e jθ1

+ρe j(φk−φl)

−(ρ + r0 cos(θ0− (φk−φl)))︸ ︷︷ ︸
r1 cos(θ1−(φk−φl))

e j(φk−φl)

= r0e jθ0 +ρe j(φk−φl)

−r0 cos(θ0− (φk−φl))e
j(φk−φl).

Now, it is easy to verify that (7.41) follows directly from (7.98) and (7.99).
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7.8.5 Appendix E: Proof of Theorem 6

If sss is a stable point of UQP associated with RRR(0) = RRR then we have that
arg(sss) = arg(RRRsss). Let RRRsss = vvv⊙ sss where vvv is a non-negative real-valued vector
in Rn. It follows that

vvv(k)e jφk =
n

∑
l=1

|RRR(k, l)|e jθk,l e jφl (7.100)

or equivalently

vvv(k) =
n

∑
l=1

|RRR(k, l)|e j(θk,l−(φk−φl)) (7.101)

which implies that
{

∑n
l=1 |RRR(k, l)|cos(θk,l− (φk−φl))≥ 0

∑n
l=1 |RRR(k, l)|sin(θk,l− (φk−φl)) = 0

(7.102)

for all 1≤ k ≤ n. Now, note that the recursive formula of the sequence {RRR(t)}
can be rewritten as

RRR(t+1) = RRR(t)−Diag(sss) (RRR
sss (t)
+ −ρ1n×n) Diag(sss∗) (7.103)

and as a result,

RRR(t+1)sss = RRR(t)sss−Diag(sss) (RRR
sss (t)
+ −ρ1n×n) 1n×1. (7.104)

It follows from (7.104) that if sss is a stable point of the UQP associated with RRR(t)

(which implies the existence of non-negative real-valued vector vvv(t) such that
RRR(t)sss = vvv(t)⊙ sss), then there exists vvv(t+1) ∈ Rn for which RRR(t+1)sss = vvv(t+1)⊙ sss

and therefore,

vvv(t+1)(k)e jφk =
n

∑
l=1

|RRR(t)(k, l)|e jθk,le jφl (7.105)

−
((

n

∑
l=1

RRR
sss(t)
+ (k, l)

)
−nρ

)
e jφk .

Eq. (7.105) can be rewritten as

vvv(t+1)(k) =
n

∑
l=1

|RRR(t)(k, l)|e j(θk,l−(φk−φl)) (7.106)

−
(

n

∑
l=1

RRR
sss(t)
+ (k, l)

)
+nρ
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As indicated earlier, sss being a stable point for RRR(0) assures that the imaginary
part of (7.106) is zero. To show that sss is a stable point of the UQP associated
with RRR(t+1), we only need to verify that vvv(t+1)(k)≥ 0:

vvv(t+1)(k) =
n

∑
l=1

|RRR(t)(k, l)|cos(θk,l− (φk−φl)) (7.107)

−
(

n

∑
l=1

RRR
sss(t)
+ (k, l)

)
+nρ

= nρ

+ ∑
l: (k,l)/∈Θ

|RRR(t)(k, l)|cos(θk,l− (φk−φl))

Now note that the positivity of vvv(t+1)(k) is concluded from (7.38). In partic-
ular, based on the discussions in the proof of Theorem 4, for t = 1, there is
no θk,l such that |θk,l − (φk− φl)| ≥ π/2 and therefore vvv(2)(k) = nρ for all
1≤ k ≤ n. As a result,

RRR(2)sss = nρsss (7.108)

which implies that sss is an eigenvector of RRR(2) corresponding to the eigenvalue
nρ .

7.8.6 Appendix F: Finding the Minimal α0 in Table 7.1-B (Case
of α0 > 0) Requires a Finite Number of Steps

The results of Section 7.4 provide a theoretical upper bound on the minimal
α0 for which RRR+α0ssssssH ∈ C (VVV sss)⊕Csss. Note that C (VVV sss)⊕Csss is a convex
cone, implying that any such α0 (for which RRR+α0ssssssH ∈ C (VVV sss)⊕Csss) would
easily set the objective function of (7.67) to zero. Eq. (7.43) suggests that any
α0≥ 2ρ can serve as the upper bound for the minimal α0. Theorem 7 suggests
that any ρ ≥ µ/n, where µ is the largest eigenvalue of RRR(2) belonging to an
eigenvector other than sss, can be used to construct such an upper bound on the
minimal α0. Using the results of Theorems 5 and 6 along with (7.43) implies
that it is sufficient to consider

ρ = σ1

(
RRR(2)(0)

)
/n (7.109)

= σ1

(
RRR− (RRR

sss (0)
+ +RRR

sss (1)
+ )⊙ (ssssssH)

)
/n

≤ 3
n
‖RRR‖F

due to the definition of RRRsss
+ in (7.37). As a result, it is sufficient to consider

α0 = 2ρ ≤ 6
n
‖RRR‖F (7.110)
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as an upper bound on the values of α0 for which the objective function of
(7.67) attains zero. It was shown in (7.70) that the objective function of (7.67)
is monotonically decreasing with respect to α0. Considering a step size δ for
increasing α0, it takes at most

η1 =

⌈(
6
n
‖RRR‖F

)
/δ

⌉
(7.111)

steps to achieve f (αnew
0 ) , ‖RRR′− (QQQ1 +PPP1)⊙ (ssssssH)‖F ≤ ε0 in Step 4 of Ta-

ble 7.1-B, where the bisection procedure starts. In each bisection, the step
size δ will be divided by 2, until reaching a priori given precision (δ0) of
the obtained α0. More precisely, let us suppose (α pre

0 ,αnew
0 ) = (α0,α0 + δ )

where f (αnew
0 ) = f (α0+δ )≤ ε0. At the next step, the bisection approach uses

the new pair (α pre
0 ,αnew

0 ) = (α0,α0 + δ/2) to check whether f (α0 + δ/2) ≤
ε0. If f (α0 + δ/2) ≤ ε0 then the bisection approach will be recursively ap-
plied for (α pre

0 ,αnew
0 ) = (α0,α0 + δ/2). Otherwise, the algorithm considers

(α
pre
0 ,αnew

0 ) = (α0 + δ/2,α0 + δ ) as the new candidate for applying the bi-
section procedure. Therefore, the number of steps required to obtain α0 with
a fixed precision δ0 is given by

η2 = ⌈log2(δ/δ0)⌉ . (7.112)

The latter result proves the finiteness of required number of steps for finding
the minimal α0— thanks to the upper bound η1 +η2 on the required steps.
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8. Radar Code Design for Detection of
Moving Targets
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Abstract

In this chapter, we study the problem of pulsed-radar transmit code design for detection of

moving targets in the presence of signal-dependent clutter. For unknown target Doppler shift,

the optimal detector does not lead to a closed-form expression. Therefore, we resort to average

and worst-case performance metrics of the optimal detector for code design. We propose several

algorithms under two novel frameworks to solve highly non-convex design problems. We also

consider low-peak-to-average-power ratio code design.

Keywords: Clutter, code design, moving target detection, optimal detector,
peak-to-average-power ratio.

8.1 Introduction
Radars as well as many other active sensing systems face the simultaneous ef-
fects of signal-dependent and independent interferences. The signal-dependent
interference, usually known as clutter, is the echo of the transmitted signals
produced by uninteresting obstacles. On the other hand, the signal-independent
interferences include various types of noise, jamming, and other unwanted
emissions. Due to the difference between the target velocity and motions of
the clutter scatteres, Doppler shifts of the moving targets play an important
role in distinguishing the targets from clutter background. However, the tar-
get Doppler shift is usually unknown at the transmitter. Considering such an
ambiguity along with the presence of clutter, and the practical implementation
demands for low peak-to-average-power ratio (PAR) make the transmit code
design a challenging task.

The signal design for radar performance improvement has been an active
area of research in the last decades; however, the majority of previous works
have considered either stationary target or clutter-free scenarios. The effect
of clutter has been considered in early studies for stationary targets, or tar-
gets with known Doppler shifts (see e.g. [155–159]). In [160] a solution
for the case of a stationary target with no clutter motion was derived; more
concretely, [160] proposed a method for obtaining the spectrum of the opti-
mal transmit signal, which is later used for the code’s approximate synthe-
sis. A related problem to that of [160] has been considered in [161] with
a discrete-time model and PAR constraint (see also [162, 163]). In [164],
two signal design approaches based on mutual information (MI) and signal-
to-interference-plus noise ratio (SINR) metrics have been considered for sta-
tionary extended target recognition. Signal design for detection performance
improvement of multiple-input multiple-output (MIMO) radars has been stud-
ied in [165] and [166] for stationary targets in the absence of clutter motion
(see also [167]). Moreover, [168] considers stationary target classification for
MIMO radars in white noise background. Some clutter-free scenarios are dis-
cussed in [169–171]. The unknown Doppler shift of the target has been taken
into account in [172] and [173]. The reference [172] considers the worst-case



code design problem for clutter-free cases under a similarity constraint to a
given code. The ideas of [172] are generalized in [173] where the PAR con-
straint is included.

In this chapter, we study the problem of radar signal design for detection
of a moving target in the presence of clutter. Two different design methodolo-
gies including average and worst-case approaches are considered to handle
the fact that the Doppler shift of the target is often unknown at the transmit
side. The corresponding optimization problems are highly non-convex. To
tackle these problems, we propose several novel algorithms under two frame-
works for unconstrained and constrained design. Particularly, we introduce
the Convexification via Reparametrization (CoRe) framework which consid-
ers a relaxation of the original design problem to a core semi-definite program
(SDP), that we call CSDP. The CSDP is then followed by a code synthesis
stage. Moreover, another framework based on a Cyclic Algorithm for Direct
COde DEsign (which we call CADCODE) is proposed to carry out a direct
code design via cyclic minimization. The key contributions of this chapter are:
• The simultaneous presence of clutter (i.e. the signal-dependent interfer-

ence) and the unknown Doppler shift of the moving targets is considered.
To the best of our knowledge, designing codes for improving detection
performance in such cases has not been addressed in the literature prior
to this work.
• To deal with the unknown Doppler shift of the target, both average and

worst-case performance metrics of the optimal detector (with known
Doppler shift) are considered for code design. The connections be-
tween the considered metrics and the detection performance are also
addressed. As a result, the proposed code design schemes enable the
user with the possibility to choose the desired performance guarantees
(at any occurred scenario) freely.
• The PAR constraint is taken into account in the code design. Several ex-

tensions of the proposed methods are derived to handle such constrained
code design problems.
• Using the CSDP solution in the CoRe framework, computational upper

bounds on the achievable values of the average and worst-case perfor-
mance metrics are provided. The obtained upper bounds can be used as
benchmarks to examine the goodness of codes obtained by different code
design methods. In addition, they provide the system designers with a
better insight into the optimal system performance in various scenarios.

The rest of this chapter is organized as follows. In Section II, we present the
data modeling and derive the optimal detectors for both known and unknown
target Doppler shift. The average design is studied in Section III. This section
also includes a presentation of the CoRe and CADCODE frameworks. Section
IV is dedicated to the worst-case code design. The PAR constrained code
design is considered in Section V. Several numerical examples are provided in
Section VI. Finally, Section VII concludes the chapter.

177



Notation: We use bold lowercase letters for vectors and bold uppercase let-
ters for matrices. (·)T , (·)∗ and (·)H denote the vector/matrix transpose, the
complex conjugate, and the Hermitian transpose, respectively. IIIN represents
the identity matrix in CN×N . 1 and 000 are the all-one and the all-zero vec-
tors/matrices. eeek is the kth standard basis vector in CN . The Frobenius norm

of a matrix XXX (denoted by ‖XXX‖F) with entries {Xk,l} is equal to
(
∑k,l |Xk,l|2

) 1
2 .

The l2-norm of a vector x is denoted by ‖x‖. The symbol ⊙ stands for the
Hadamard (element-wise) product of matrices. tr(·) is the trace of a square
matrix argument. The notations λmax(·) and λmin(·) indicate the principal and
the minor eigenvalues of a Hermitian matrix, respectively. Diag(·) denotes the
diagonal matrix formed by the entries of the vector argument, whereas diag(·)
denotes the vector formed by collecting the diagonal entries of the matrix ar-
gument. E{·} stands for the statistical expectation operator. We write AAA � BBB

iff AAA−BBB is positive semi-definite, and AAA ≻ BBB iff AAA−BBB is positive-definite.
Finally, ℜ(·) and arg(·) denote the real-part and the phase angle (in radians)
of the complex-valued argument.

8.2 Data Modeling and Optimal Detector
8.2.1 Data Modeling
We consider a narrow-band pulsed-radar system using a train of pulses. The
baseband transmit signal can be formulated as

s(t) =
N−1

∑
n=0

an φ(t−nTPRI) (8.1)

where φ(.) is the basic unit-energy transmit pulse (with time duration τp), TPRI

is the pulse repetition interval (TPRI ≫ τp), and {an}N−1
n=0 are the weights that

are to be optimally designed.
At the transmitter, the baseband signal is modulated by a carrier frequency

ωc. The backscattered signal from a point-like moving target can be expressed
as

r(t) = αts(t− τ)e j(ωc+ν)(t−τ)+ c(t)+w(t) (8.2)

where αt is the amplitude of the target echo (accounting for target reflectiv-
ity and channel effects), τ and ν denote the target delay and Doppler shift,
respectively, c(t) is the clutter component, and w(t) represents the signal-
independent interferences.

We assume that both c(t) and w(t) are Gaussian random processes. In par-
ticular, we assume that the clutter component is the signal echo produced by
many individual point scatterers (distributed across the delay and Doppler do-
mains) which are statistically independent. Under such an assumption, c(t)
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can be formulated as [156]

c(t) =
Nct

∑
k=1

Ncd

∑
l=1

ρkls(t− τk)e
j(ωc+ωl)(t−τk) (8.3)

where Nct and Ncd are the number of clutter scatterers in the delay and Doppler
domains1, respectively, and ρkl is the amplitude of a specific clutter scatterer
at time delay τk and Doppler shift ωl (due to the clutter motion).

Note that in radar applications, the pulse φ(t) and its time-shifted versions
can be used as an orthonormal basis for signal recovery at the receiver. More
precisely, the matched filter φ ∗(−t) is usually applied to the downconverted
received signal (i.e. r(t)e− jωct ) and the output of the matched filter is then
sampled at the time delays corresponding to the range-cell under test, i.e. t =
nTPRI +τ for 0≤ n≤N−1. The discrete-time received signal rrr for the range-
cell corresponding to the time delay τ can be written as (see Appendix A for
a derivation)

rrr = α aaa⊙ ppp+aaa⊙ ccc+www (8.4)

where α = αte
− jωcτ , aaa , [a0 a1 . . . aN−1]

T is the code vector (to be de-
signed), ppp , [1 e jω . . . e j(N−1)ω ]T with ω being the normalized Doppler
shift of the target, ccc is the vector corresponding to the clutter component, and
the vector www represents the signal-independent interferences2. A detailed con-
struction of ccc and www from the continuous variables c(t) and w(t) can also be
found in Appendix 8.8.1. Herein we remark on the fact that (8.4) refers to the
cases with unambiguous clutter scatterers.

Using (8.4), the target detection problem can be cast as the following binary
hypothesis test: {

H0 : rrr = aaa⊙ ccc+www

H1 : rrr = αaaa⊙ ppp+aaa⊙ ccc+www
(8.5)

Note that the covariance matrices of ccc and www (denoted by CCC and MMM) can be
assumed to be priori known (e.g. they can be obtained by using geographical,
meteorological, or pre-scan information) [177] [176]. As to the target, we
assume α is a zero-mean complex Gaussian random variable with variance
σ 2

T (i.e. Swerling-I model).

8.2.2 Optimal Detector for A Priori Known Doppler Shift
Let x = DDD−1/2rrr with DDD = MMM+AAACCCAAAH , and AAA = Diag(aaa) (that is referred to as
code matrix in the sequel). The detection problem in (8.5) can equivalently be

1It is assumed that the number of the independent scatterers is sufficiently large such that the
central limit theorem holds and the Gaussian distribution for c(t) can be justified (see e.g., [156]
[174] [175]).
2Note that in the data model (8.4) we neglect the effects of the antenna pattern; however, the
results can be straightforwardly extended to include these effects (see e.g. [176]).
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expressed in terms of x. More precisely, for a known target Doppler shift, the
problem in (8.5) is equivalent to:

{
H0 : x∼ C N (000, III)

H1 : x∼ C N (000,SSS+ III)
(8.6)

where SSS = σ 2
T DDD−1/2(aaa⊙ ppp)(aaa⊙ ppp)HDDD−1/2. The optimal detector compares

the likelihood-ratio associated with the above problem, i.e. the ratio of the pdf
of x under H1 over that of H0, with a detection threshold. According to (8.6),
the likelihood-ratio for the problem is given by

L (x) =
1

det(SSS+ III)

(
exp
(
−xH(SSS+ III)−1x

)

exp(−xHx)

)
. (8.7)

By taking logarithm and removing the constants, the following expression is
obtained for the optimal detector:

|rrrH
(
MMM+AAACCCAAAH

)−1
(aaa⊙ ppp)|2

H0
≶
H1

η (8.8)

where η is the detection threshold. Note that the above detector is nothing but
a whitening process, a matched filtering, and a square-law detection. The per-
formance of the above detector depends on the following SNR [178, Chapter
8]

λ = σ 2
T (aaa⊙ ppp)H

(
MMM+AAACCCAAAH

)−1
(aaa⊙ ppp). (8.9)

It is interesting to observe that the above performance metric is invariant to
a phase-shift of the code vector aaa, i.e. the code vectors aaa and e jϕaaa (for any
ϕ ∈ [0,2π]) result in the same value of the SNR.

8.2.3 Optimal Detector for an Unknown Doppler Shift
The target Doppler shift ω is usually unknown at the transmitter. In such
cases, the detector of (8.8) does not hold true anymore. The optimal detector
for the detection problem in (8.5) in cases where ω is unknown is obtained
by considering the pdf of ω . The distribution of the vector rrr (and x) are no
longer Gaussian under H1 and the optimal detector does not lead to a closed-
form expression. More precisely, let f (ω) denote the pdf of ω . The optimal
detector is obtained by considering the average likelihood-ratio [178]:

L (x) =
∫

Ω
L (x|ω) f (ω)dω (8.10)

which results in the following detector [179]
∫

Ω

1
1+λ

exp

(
σ 2

T rrrHDDD−1(aaa⊙ ppp)(aaa⊙ ppp)HDDD−1rrr

1+λ

)
f (ω)dω

H0
≶
H1

η ′ (8.11)
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where Ω= [ωl ,ωu] denotes the considered interval for the target Doppler shift3

ω and λ is given by (8.9). It is worth mentioning that the values of ωl and ωu

and the pdf of ω can be obtained in practice using prior knowledge about the
type of target (e.g. knowing if the target is an airplane, a ship, or a missile),
rough estimates of the target Doppler shift obtained by pre-scan procedures,
and employing cognitive methods [177] [180]. Usually, a uniform distribution
for ω is considered over Ω to model the uncertainty of the target Doppler
shift [176].

8.3 Code Design in Average Sense
Code design to improve the detection performance of the system for a known
target Doppler shift ω can be accomplished by the maximization of the fol-
lowing performance metric4 for a given ω :

(aaa⊙ ppp)H
(
MMM+AAACCCAAAH

)−1
(aaa⊙ ppp) (8.12)

= tr
{

AAAH(MMM+AAACCCAAAH)−1AAAppppppH
}

= tr
{(

(AAAHMMM−1AAA)−1 +CCC
)−1

ppppppH
}
.

In cases where target Doppler shift is unknown, the expressions for the cor-
responding optimal detector and its performance metrics are too complicated
to be used for code design (see also [181] [182]). In such a circumstance, we
consider the following design metric (referred to as average metric):

tr
{(

AAA−1MMMAAA−H +CCC
)−1

WWW
}

(8.13)

where WWW = E{ppppppH}. The mathematical background for selection of such
metric is as follows: It can be shown (see below) that maximizing the above
metric results in maximization of a lower bound on the J-divergence [183] as-
sociated with the detection problem in (8.5) for unknown ω . Furthermore, for
large SNR regimes, maximization of the above metric approximates well the
maximization of the J-divergence. More precisely, the J-divergence associated
with the binary hypothesis test is given by [181]

J = E{log(L (x))|H1}−E{log(L (x))|H0}. (8.14)

Therefore, for the detection problem in (8.5) in cases where ω is unknown we
can write

J = E{J |ω}. (8.15)

3Note that Ω can also be the union of several intervals.
4In what follows, we assume that all the code elements are non-zero.
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For a given ω , the detection problems in (8.5) and (8.6) are equivalent, and
hence J |ω can be derived considering (8.6) as:

J |ω =

(
− log(1+λ )+

λ 2 +λ

1+λ

)
−
(
− log(1+λ )+

λ

1+λ

)
=

λ 2

1+λ
(8.16)

where λ is defined in (8.9). Now observe that g(x) = x2/(1+ x) is a convex
function. Consequently, using Jensen inequality we conclude

J = E

{
λ 2

1+λ

}
≥ (E{λ})2

1+E{λ}︸ ︷︷ ︸
JLB

. (8.17)

Furthermore, g(x) = x2/(1+ x) is a monotonically increasing function. As
a result, maximization of the E{λ} leads to maximization of the JLB in the
above inequality. Owing to the fact that the considered metric in (8.13) is
equal to E{λ}, the maximization of the average metric leads to maximization
of the lower bound JLB on the J-divergence J . An analysis of the tightness
of the bound JLB is presented in Appendix 8.8.2. The J-divergence has an
asymptotic relationship with the detection performance of a hypothesis test
and can also be considered as a bound on the detection performance [184]
[183].

Remark 1: Note that J = E
{

λ −1+ 1
λ+1

}
and hence for large SNR, i.e.

large λ , we have J ≈ E{λ}− 1. As a result, in such cases, maximization
of the considered average metric approximates well the maximization of the
J-divergence. A similar approximation has also been used in [184] for radar
signal design. With similar calculations, for small λ , it can be shown that max-
imization of the average metric is approximately equivalent to maximization
of the Mutual Information associated with the problem (8.5) (that is given by
E{log(1+λ )}). For known ω , the average metric is identical to the perfor-
mance metric in (8.12) and directly determines the performance of the optimal
detector. �

To optimize the detection performance, the average metric (8.13) can be
maximized under an energy constraint:

max
AAA

tr
{(

AAA−1MMMAAA−H +CCC
)−1

WWW
}

(8.18)

subject to tr
{

AAAAAAH
}
≤ e

where e denotes the maximum energy that can be used for transmission. Note
that if AAA is claimed to be a solution to (8.18) with tr{AAAAAAH} < e, then γAAA

(for some γ > 1 such that γ tr{AAAAAAH} = e) is feasible but leads to a larger
value of the objective function. Therefore, the energy constraint in (8.18) is
active. In the following, we propose two different frameworks to tackle the
code optimization problem in (8.18).
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8.3.1 Convexification via Reparametrization (CoRe)
First, we introduce the CoRe framework which is based on a relaxation of the
optimization problem in (8.18). In particular, we show that a relaxed version
of the code design problem in (8.18) can be formulated as an SDP. Let

XXX , AAAHMMM−1AAA (8.19)

and observe that XXX ≻ 000. The energy constraint of (8.18) can be rewritten noting
that

tr{XXX}= tr{AAAHMMM−1AAA}=
N

∑
k=1

mkk|ak|2 (8.20)

where {mkk}N
k=1 are the diagonal entries of the positive-definite matrix MMM−1.

Using (8.20), the energy of the code can be alternatively written as

tr{AAAHAAA}= tr{XXXGGG} (8.21)

where GGG, (MMM−1⊙III)−1 is a diagonal matrix with diagonal entries {1/mkk}N
k=1.

Next, we reformulate (8.18) as a convex optimization problem w.r.t. XXX .
Note that there exists BBB ∈ CN×N such that CCC = BBBBBBH . Using the matrix inver-
sion lemma we have that

(XXX−1 +CCC)−1 = XXX−XXXBBB(III+BBBHXXXBBB)−1BBBHXXX . (8.22)

Let δ = rank(WWW ), and let WWW = ∑δ
k=1 wwwkwwwH

k . As a result,

tr
{(

AAA−1MMMAAA−H +CCC
)−1

WWW
}
= tr

{
(XXX−1 +CCC)−1WWW

}
(8.23)

= ∑δ
k=1

{
wwwH

k XXXwwwk−wwwH
k XXXBBB(III+BBBHXXXBBB)−1BBBHXXXwwwk

}
.

To maximize (8.23), each term in the latter summation can be dealt with by
means of a linear matrix inequality (LMI) using auxiliary variables {βk}:

βk ≥−wwwH
k XXXwwwk +wwwH

k XXXBBB(III +BBBHXXXBBB)−1BBBHXXXwwwk (8.24)

⇔
[

βk +wwwH
k XXXwwwk wwwH

k XXXBBB

BBBHXXXwwwk III +BBBHXXXBBB

]
� 000.

In light of Eqs. (8.21) and (8.23), and the LMIs introduced in (8.24), the
optimization problem (8.18) boils down (in a relaxed form) to the following
core SDP (CSDP):

CSDP: min
XXX ,{βk}δk=1

δ

∑
k=1

βk (8.25)

subject to [
βk +wwwH

k XXXwwwk wwwH
k XXXBBB

BBBHXXXwwwk III +BBBHXXXBBB

]
� 000, ∀ k,

tr{XXXGGG} ≤ e,

XXX ≻ 000.
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Note that the above CSDP can be solved in polynomial-time (e.g. see [185]
in which an O(N3.5)-complexity algorithm is introduced to solve such SDPs).
The global optimum XXX of the above CSDP can be used to synthesize the code
matrix AAA. To obtain AAA such that AAAHMMM−1AAA∼= XXX , we consider the optimization
problem

min
AAA,QQQ

‖XXX1/2QQQ−AAAHMMM−1/2‖2
F (8.26)

subject to QQQQQQH = III

where QQQ is an auxiliary matrix. In the following, we propose an efficient cyclic
algorithm for solving (8.26). For any fixed code matrix AAA, (8.26) leads to the
maximization problem:

max
QQQ

ℜ
(

tr
{

XXX1/2QQQMMM−1/2AAA
})

(8.27)

subject to QQQQQQH = III.

Interestingly, a similar problem to (8.27) has been studied in [186] where an
explicit solution was derived. Let VVV 1SSSVVV H

2 represent the singular value decom-
position (SVD) of MMM−1/2AAAXXX1/2. Then the explicit solution of (8.27) is given
by VVV 2VVV H

1 (see [186] for details). Furthermore, for fixed QQQ, the solution of
(8.26) w.r.t. the code matrix AAA can be obtained solving the problem:

min
AAA

tr
{

AAAHMMM−1AAA
}
−2ℜ

(
tr
{

XXX1/2QQQMMM−1/2AAA
})

(8.28)

which can be rewritten (in vectorized form) as

min
aaa

aaaH(MMM−1⊙ III)aaa−2ℜ(bbbHaaa) (8.29)

with bbb , diag(XXX1/2QQQ∗MMM−1/2). The solution aaa of (8.29) is given by

aaa = (MMM−1⊙ III)−1bbb = GGGbbb. (8.30)

Remark 2: Note that the aim of the synthesis problem (8.26) is to provide
AAA such that AAAHMMM−1AAA∼= XXX , and also that an energy constraint has already been
imposed when obtaining the XXX (see (8.25)). Therefore, in (8.26), we do not
consider the energy constraint, as it has been implicitly imposed. However,
one might be interested to explicitly consider the energy constraint in (8.26).
In this case, the optimization problem for fixed QQQ is convex w.r.t. AAA and hence
can be solved efficiently (but (8.30) does not hold). Note that it was numeri-
cally observed that the difference between explicitly imposing the energy con-
straint in (8.26) and the considered synthesis problem in the chapter is very
minor. �

The steps of the CoRe framework are summarized in Table 8.1. It is worth
mentioning that as the solution XXX to the CSDP does not necessarily possess

184



the desired structure in (8.19), some degradation of the metric in (8.13) can be
expected at the synthesis stage. In other words, the CSDP solution in (8.25)
provides an upper bound on the average metric. This upper bound can be used
to assess the quality of code design methods as well as the system performance
in various scenarios.

Table 8.1. CoRe for Optimal Code Design Using the Average Metric

Step 1: Solve the CSDP of (8.25) to obtain its global optimum
XXX .
Step 2 (The synthesis stage): Initialize aaa with a random vector in
CN .

Step 2-1: Compute QQQ =VVV 2VVV H
1 where VVV 1SSSVVV H

2
represents the SVD of MMM−1/2AAAXXX1/2.
Step 2-2: Compute aaa = GGG diag(XXX1/2(QQQ∗)MMM−1/2).
Step 2-3: Repeat steps 2-1 and 2-2 until a pre-defined
stop criterion is satisfied, e.g. ‖aaa(k+1)−aaa(k)‖ ≤ ε for some
ε > 0, where the superscript k denotes the iteration number.

8.3.2 Cyclic Algorithm for Direct COde DEsign (CADCODE)
In this sub-section, we propose the CADCODE framework for solving (8.18)
directly w.r.t. the code matrix AAA.

We begin by noting that as WWW � 000 there must exist a full column-rank matrix
VVV ∈ CN×δ such that WWW = VVVVVV H (particularly observe that VVV = [www1 www2 ... wwwδ ]
yields such decomposition of WWW ). As a result,

tr
{(

(AAAHMMM−1AAA)−1 +CCC
)

WWW
}

= tr
{

AAAH(MMM+AAACCCAAAH)−1AAAWWW
}

(8.31)

= tr
{

VVV HAAAH(MMM+AAACCCAAAH)−1AAAVVV
}
.

Let ΘΘΘ , θ III−VVV HAAAH(MMM +AAACCCAAAH)−1AAAVVV with a sufficiently large θ such that
ΘΘΘ≻ 000 (a detailed calculation of the diagonal loading parameter θ can be found
in Appendix 8.8.3). Note that the optimization problem (8.18) is equivalent to
the minimization problem

min
AAA

tr{ΘΘΘ} (8.32)

subject to tr{AAAHAAA} ≤ e.

Now define

RRR ,

[
θ III VVV HAAAH

AAAVVV MMM+AAACCCAAAH

]
(8.33)

and observe that for UUU , [IIIδ 000N×δ ]
T we have

UUUHRRR−1UUU = ΘΘΘ−1. (8.34)
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To tackle (8.32) let g(AAA,YYY ) , tr{YYY HRRRYYY} (with YYY being an auxiliary vari-
able), and consider the following minimization problem:

min
AAA,YYY

g(AAA,YYY ) (8.35)

subject to YYY HUUU = III

tr{AAAHAAA} ≤ e.

For fixed AAA, the minimizer YYY of (8.35) can be obtained using Result 35 in [187,
p. 354] as

YYY = RRR−1UUU(UUUHRRR−1UUU)−1. (8.36)

On the other hand, for fixed YYY , the minimization of g(YYY ,AAA) w.r.t. AAA yields the
following convex quadratically-constrained quadratic program (QCQP):

min
aaa

aaaH
(
(YYY 2YYY H

2 )⊙CCCT
)

aaa+2ℜ(dddHaaa) (8.37)

subject to aaaHaaa≤ e

where YYY , [YYY 1 δ×δ YYY 2 N×δ ]
T and ddd , diag(VVV ∗YYY ∗1YYY T

2 ). Note that the positive
semi-definiteness of (YYY 2YYY H

2 )⊙CCCT guarantees the convexity of (8.37). The
QCQP in (8.37) can be solved efficiently using the Lagrange multiplier method
(see Appendix 8.8.4).

It is straightforward to verify that at the minimizer YYY of (8.35),

g(YYY ,AAA) = tr{ΘΘΘ}. (8.38)

From this property, we conclude that each step of the cyclic minimization of
(8.35) leads to a decrease of tr{ΘΘΘ}. Indeed, let f (AAA) = tr{ΘΘΘ} and note that

f
(

AAA(k+1)
)

= g
(

YYY (k+2),AAA(k+1)
)

(8.39)

≤ g
(

YYY (k+1),AAA(k+1)
)

≤ g
(

YYY (k+1),AAA(k)
)
= f

(
AAA(k)

)

where the superscript k denotes the iteration number. The first and the second
inequality in (8.39) hold true due to the minimization of g(AAA,YYY ) w.r.t. YYY and
AAA, respectively. As a result, CADCODE converges to a stationary point of

(8.18). It is worth noting that the minimization steps of CADCODE (which
are summarized in Table 8.2) are solved either analytically or using standard
interior-point methods [188].

8.4 Code Design in Worst-Case Sense
Following the optimization schemes proposed for code design in the average-
sense, we extend our derivations in order to handle the unknown Doppler shift
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Table 8.2. CADCODE for Optimal Code Design Using the Average Metric

Step 0: Initialize the code vector aaa using a random vector in CN ,
and form RRR as defined in (8.33).
Step 1: Compute YYY = RRR−1UUU(UUUHRRR−1UUU)−1.
Step 2: Solve the optimization problem (8.37) to obtain the code
vector aaa.
Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion
is satisfied, e.g. ‖aaa(k+1) − aaa(k)‖ ≤ ε for some ε > 0, where k

denotes the iteration number.

of the target in a worst-case scenario. The worst-case approach has been con-
sidered in [172] and [173] for clutter-free scenarios. These works also address
the connection between the worst-case metric and the detection performance
(see also [128] for a related problem). Considering the performance metric of
the detector (8.8), the worst-case metric (for an unknown Doppler shift in the
interval [ωl,ωu]) is defined as

min
ωl≤ω≤ωu

tr
{(

(AAAHMMM−1AAA)−1 +CCC
)−1

ppppppH
}
. (8.40)

The maximization of the worst-case metric boils down to the max-min prob-
lem:

max
AAA

min
ωl≤ω≤ωu

tr
{(

(AAAHMMM−1AAA)−1+CCC
)−1

ppppppH
}

(8.41)

subject to tr
{

AAAHAAA
}
≤ e

which can be rewritten (using a slack variable t) as

max
AAA,t

{t} (8.42)

subject to

tr
{(

(AAAHMMM−1AAA)−1 +CCC
)−1

ppppppH
}
− t ≥ 0, ∀ ω ∈ [ωl,ωu],

tr
{

AAAHAAA
}
≤ e.

Note that (8.42) is a non-convex optimization problem with infinitely many
nonlinear constraints. In the following, we make use of an extension of the
CoRe framework to tackle (8.42).

Using a new variable ZZZ =
(
(AAAHMMM−1AAA)−1 +CCC

)−1
, one can recast (8.42) (in

a relaxed form) as

max
ZZZ,t

{t} (8.43)

subject to

pppHZZZppp− t ≥ 0, ∀ ω ∈ [ωl,ωu], (8.44)

tr
{
(ZZZ−1−CCC)−1GGG

}
≤ e. (8.45)
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Observe that for any ω ∈ [ωl ,ωu], the constraint (8.44) is equivalent to

h(ω), z0− t +2ℜ

(
N−1

∑
k=1

zke− jkω

)
≥ 0 (8.46)

where

zk ,
N−k

∑
i=1

Zi+k,i, 0≤ k ≤ N−1. (8.47)

We use Theorem 3.2 of [189] (which is stated as Theorem 1 below) to obtain
an SDP representation of (8.46).

Theorem 1. The trigonometric polynomial h̃(ω) = z0+2ℜ
(
∑N−1

k=1 zke− jkω
)

is

non-negative for any ω ∈ [ω0−ω1,ω0 +ω1] (with 0 < ω1 < π) iff there exist

an N×N Hermitian matrix ZZZ1� 000 and an (N−1)×(N−1) Hermitian matrix

ZZZ2 � 000 such that

zzz = FFFH
1

(
diag(FFF1ZZZ1FFFH

1 )+qqq⊙diag(FFF2ZZZ2FFFH
2 )
)

(8.48)

where zzz = [z0 z1 ... zN−1]
T , qqq = [q0 q1 ... qn−1]

T with qk = cos(2πk/n−ω0)−
cos(ω1), FFF1 = [f0 ... fN−1] and FFF2 = [f0 ... fN−2] in which fk = [1 e− jkθ ...
e− j(n−1)kθ ]T with θ = 2π/n, and n≥ 2N−1.

Note that the SDP representation of (8.46) can be derived by employing the
above results with n = 2N−1, ω0 = (ωl +ωu)/2, and ω1 = ω0−ωl .

Next we obtain an LMI representation for the constraint (8.45). Let GGG =
Diag([G1 G2 ... GN ]) = ∑N

m=1 gggmgggH
m (where gggm =

√
Gmeeem), and note that

tr
{
(ZZZ−1−CCC)−1GGG

}
=

N

∑
m=1

{
gggH

mZZZgggm +gggH
mZZZBBB(III−BBBHZZZBBB)−1BBBHZZZgggm

}
. (8.49)

Similar to the derivation of CoRe in the average-sense code design, we con-
sider the following LMI characterization:

gggH
mZZZgggm +gggH

mZZZBBB(III−BBBHZZZBBB)−1BBBHZZZgggm ≤ γm (8.50)

⇔
[

γm−gggH
mZZZgggm gggH

mZZZBBB

BBBHZZZgggm III−BBBHZZZBBB

]
� 0
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where {γm} are auxiliary variables. Therefore, the SDP related to the worst-
case code design can be expressed as5:

CSDP: max
t,ZZZ,ZZZ1,ZZZ2,{γm}Nm=1

{t} (8.51)

subject to

zzz = teee1 +FFFH
1

(
diag(FFF1ZZZ1FFFH

1 )+qqq⊙diag(FFF2ZZZ2FFFH
2 )
)
,

[
γm−gggH

mZZZgggm gggH
mZZZBBB

BBBHZZZgggm III−BBBHZZZBBB

]
� 000, ∀ m,

N

∑
m=1

γm ≤ e,

III−BBBHZZZBBB≻ 000,

ZZZ ≻ 000, ZZZ1 � 000, ZZZ2 � 000.

To synthesize the code matrix AAA from the CSDP solution ZZZ of (8.51), we
will consider a synthesis stage similar to that of the average-sense code design
in sub-section 8.3.1 (observe that (ZZZ−1−CCC)−1 = XXX). The CoRe framework
for obtaining optimized codes using the worst-case metric is summarized in
Table 8.3. Although solving (8.51) yields a global optimum of the CSDP,
the further synthesis step leads to an approximate solution AAA of the original
problem in (8.42). Therefore, the CSDP solution of (8.51) provides an upper
bound on the possible values of the worst-case metric. Note that the results
can be straightforwardly extended to the case in which Ω is a union of several
intervals.

Table 8.3. CoRe for Optimal Code Design Using the Worst-Case Metric

Step 1: Solve CSDP in (8.51) to obtain its global optimum ZZZ.
Step 2 (The synthesis stage): Initialize the code vector aaa with a
random vector in CN .

Step 2-1: Compute QQQ =VVV 2VVV H
1 where VVV 1SSSVVV H

2 represents
the SVD of MMM−1/2AAA(ZZZ−1−CCC)−1/2.
Step 2-2: Compute the code vector as

aaa = GGG diag
(
(ZZZ−1−CCC)−1/2QQQ∗MMM−1/2

)
.

Step 2-3: Repeat steps 2-1 and 2-2 until a pre-defined
stop criterion is satisfied, e.g. ‖aaa(k+1)−aaa(k)‖ ≤ ε for some
ε > 0, where k denotes the iteration number.

Remark 3: The reader might observe the fact that the code synthesis stage is
meaningful only if ZZZ≺CCC−1, and hence might be willing to add such constraint

5We have also included the constraint III−BBBHZZZBBB≻ 000 in the CSDP (8.51) to ensure a meaningful
synthesis stage (see Remark 3 below).
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to the constraint set of (8.51). To clarify this issue, note that using the matrix
inversion lemma we have

(ZZZ−1−CCC)−1 = ZZZ +ZZZBBB(III−BBBHZZZBBB)−1BBBHZZZ. (8.52)

As ZZZ of (8.51) is a positive-definite matrix, and the constraint set in (8.51)
implies III−BBBHZZZBBB≻ 000, we conclude from (8.52) that ZZZ−1−CCC≻ 000. Therefore,
the constraint ZZZ ≺ CCC−1 is already taken into account via the constraints in
(8.51). Moreover, adding the constraint ZZZ ≺CCC−1 separately would limit our
design to the case of a non-singular CCC. �

8.5 Constrained Code Design
In order to use the power resources efficiently and to avoid non-linear effects
at the transmitter, sequences with low PAR values are of practical interest in
many applications [126] [173]. In this section, we consider code design via
CoRe and CADCODE frameworks under an arbitrary PAR constraint, viz.

PAR(aaa) =
max

m
{|am|2}

1
N
‖aaa‖2

≤ ζ . (8.53)

It is possible to synthesize low-PAR codes from the CSDP solution of the
CoRe framework. To keep the chapter concise, we only use the CoRe for-
mulation in an average sense (note that for a worst-case scenario we have
(ZZZ−1−CCC)−1 = XXX). In this case, the optimization problem (8.26) can be refor-
mulated as

min
AAA,QQQ

‖XXX1/2QQQ−AAAHMMM−1/2‖2
F (8.54)

subject to QQQQQQH = III

PAR(aaa)≤ ζ .

Therefore, for fixed QQQ we have the code synthesis problem:

max
aaa

aaaH(MMM−1⊙ III)aaa−2ℜ
(

bbbHaaa
)

(8.55)

subject to max
m=0,···,N−1

{|am|2} ≤ ζ ,

‖aaa‖2 = N.

On the other hand, the low-PAR code design using the CADCODE framework
can be handled in a similar manner. The minimization of g(YYY ,AAA) in (8.35)
w.r.t. a low-PAR code vector aaa can be accomplished using the optimization
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problem

min
aaa

aaaH
(
(YYY 2YYY H

2 )⊙CCCT
)

aaa+2ℜ(dddHaaa) (8.56)

subject to max
m=0,···,N−1

{|am|2} ≤ ζ ,

‖aaa‖2 = N.

We note that both (8.55) and (8.56) are non-convex QCQPs with PAR con-
straint and known to be NP-hard in general [173]. In the following, we con-
sider the formulation of (8.55) (without loss of generality). The optimization
problem in (8.55) is equivalent to

min
aaa

ãaa
H

JJJ ãaa (8.57)

subject to max
m=0,···,N−1

{|am|2} ≤ ζ ,

‖aaa‖2 = N

where ãaa = [aaa 1]T , and

JJJ =

[
MMM−1⊙ III −bbb

−bbbH 0

]
.

For any µ > λmax(JJJ) we can reformulate the latter problem as

max
aaa

ãaa
H

KKK ãaa (8.58)

subject to max
m=0,···,N−1

{|am|2} ≤ ζ ,

‖aaa‖2 = N

with KKK = µIIIN+1− JJJ. Interestingly, derivation of the power-method like iter-
ations in [84] [190] can be extended to the case of PAR-constrained aaa. As a
result, the discussed iterations can be applied (after a small modification) to
obtain a local optimum of (8.58). More precisely, the code vector aaa of the
(l+1)th iteration (denoted by aaa(l+1)) can be obtained from the last estimate of
aaa, i.e. aaa(l), via solving the optimization problem

max
aaa(l+1)

‖aaa(l+1)− âaa
(l)‖ (8.59)

subject to max
m=0,···,N−1

{|a(l+1)
m |2} ≤ ζ ,

‖aaa(l+1)‖2 = N

where âaa
(l) represents the vector containing the first N entries of KKK ãaa

(l). The op-
timization problem (8.59) is a “nearest-vector" problem with PAR constraint.
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Such PAR constrained problems can be tackled using a recursive algorithm
proposed in [191] that can be described briefly as follows: for cases in which
the magnitudes of the entries of âaa

(l) are below
√

ζ , one can easily observe

that aaa(l+1) =
√

Nâaa
(l)/‖âaa(l)‖ is the solution. Otherwise, let â0 denote the entry

of âaa
(l) with maximum absolute value. Then the entry of aaa(l+1) correspond-

ing to â0 is given by
√

ζe j arg(â0). Recursively, the other entries of aaa(l+1) can
be obtained solving the same type of “nearest-vector" problem but with the
remaining energy i.e. N−ζ .

Finally, we note that as a scaling does not affect the PAR metric (see (8.53)),
the low-PAR codes obtained by CoRe or the CADCODE framework can be
scaled to fit any desired level of energy. The steps of CoRe and CADCODE
presented in Table I and Table II should be modified for designing low-PAR
codes. More precisely, the optimization problems in (8.55) in step 2-2 of CoRe
(average design) and (8.56) in step 2 of CADCODE are solved via the power
method-like iterations provided above.

Remark 4 (unimodular code design): In case of unimodular code design,
i.e. ζ = 1, we have

tr
{

AAAHMMM−1AAA
}
= aaaH(MMM−1⊙ III)aaa (8.60)

= N tr
{

MMM−1⊙ III
}
= N tr

{
GGG−1}

and hence the optimization problem in (8.55) is equivalent to:

max
aaa

ℜ(bbbHaaa) (8.61)

subject to |am|= 1, 0≤ m≤ N−1

where bbb = diag(XXX1/2QQQ∗MMM−1/2). The maximizer aaa of (8.61) is simply given
by aaa = exp( j arg(bbb)). As to the CADCODE framework, unimodular codes
can alternatively be obtained by defining

RRR ,

[
θ III VVV H

VVV (AAAHMMM−1AAA)−1+CCC

]
(8.62)

with sufficiently large θ (see Appendix C). Note that for g(YYY ,AAA) = tr{YYY HRRRYYY}
with above RRR, eqs. (8.34) and (8.38) hold true. Therefore, for fixed YYY the min-
imization of g(YYY ,AAA) w.r.t. AAA can be simplified as the following homogeneous
QCQP:

min
AAA

tr
{

YYY 2YYY H
2 AAAHMMMAAA

}
(8.63)

subject to |am|= 1, 0≤ m≤ N−1

where YYY = [YYY 1 δ×δ YYY 2 N×δ ]. The unimodular quadratic programm in (8.63)
is NP-hard in general and can be tackled via a technique similar to that of
(8.58). �
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8.6 Numerical Examples
Numerical results will be provided to examine the performance of the pro-
posed methods. Several code design examples for the average metric and the
worst-case metric in both constrained and unconstrained cases are included. In
particular, we provide a comparison between the code designs in the average
and worst-case scenarios using SNR defined in (8.9).

Throughout the numerical examples, we assume that the signal-independent
interference can be modeled as a first-order auto-regressive process with pa-
rameters ρint = 0.5 and pint, as well as a white noise at the receiver with the
variance σ 2

n :

Mm,n = σ 2
n δ [m−n]+ pintρ

|m−n|
int , 1≤ m,n ≤ N (8.64)

with δ [m−n] being the discrete-time Kronecker delta function. Furthermore,
for clutter we let

Cm,n = σ 2
c ρ(m−n)2

, 1≤ m,n ≤ N (8.65)

with ρ = 0.8. Note that the model in (8.65) can be used for many natural clutter
sources [192]. In this section, we consider σ 2

c = 1,σ 2
n = 0.01, and pint = 1

unless otherwise explicitly stated. As to the unknown target Doppler shift, we
assume ω is uniformly distributed over Ω. The CVX package has been used to
solve the convex problems in the various approaches of this chapter [193]. The
extensions of the CoRe and CADCODE frameworks to the case of unimodular
code design (ζ = 1) are referred to as CoRe-U and CADCODE-U, respectively
(for CoRe and CADCODE without suffix “U" we do not consider the PAR
constraint).

8.6.1 Average Sense Design
Herein we consider an example of code design for a Doppler shift interval
of [ωl,ωu] = [−1,1]. We use the proposed algorithms (both CoRe and CAD-
CODE frameworks) to design optimal codes of length N = 16. The results
are shown in Fig. 8.1(a). The goodness of the resultant codes is investigated
using two benchmarks: (i) the upper bound on the average metric obtained by
solving the CSDP in (8.25), and (ii) the average metric corresponding to the
uncoded system (using the transmit code aaa =

√
e
N

1).
It can be observed from Fig. 8.1(a) that, as expected, a coded system em-

ploying CoRe, CoRe-U, CADCODE, or CADCODE-U outperforms the un-
coded system. It is also practically observed that the performance obtained
by the randomly generated codes is similar to that of the all-one code used in
the uncoded system. We also note that, compared to CoRe, the CADCODE
framework leads to slightly larger values of the average metric. This behaviour
can be explained noting that CADCODE presumably circumvents the optimal-
ity losses arising in the synthesis stage of CoRe. In other words, CADCODE
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directly converges to a stationary point of the design problem and there is no
synthesis loss associated with the provided code; whereas, the obtained code
via CoRe is associated with some synthesis loss. Moreover, Fig. 8.1(a) reveals
that the quality of the codes obtained via constrained designs is very similar
to that of unconstrained designs. However, there are minor degradations due
to imposing the constraints. We also observe the saturation phenomenon in
Fig. 8.1(a). More precisely, for sufficiently large values of the transmit energy
(i.e. e), the increase in the average metric is negligible. Note that, the value of
the average metric (for non-singular CCC) asymptotically converges to:

lim
e→∞

tr
{(

(AAAHMMM−1AAA)−1 +CCC
)−1

WWW
}
= tr{CCC−1WWW}. (8.66)

Next we study the performance of the proposed algorithms w.r.t. the detec-
tion performance of the optimal detector (for unknown Doppler shift) stated
in (8.11). To this end, we consider the target with σ 2

T = 10, transmit energy
e = 10, and use 100000 sets of random generated data to simulate receiver op-
erating characteristic (ROC). The optimal detector in (8.11) is implemented by
numerically evaluating the associated integral. ROCs corresponding to CoRe
and CADCODE algorithms (constrained and unconstrained case) as well as
to the uncoded system are depicted in Fig. 8.1(b). As expected, the detection
performance obtained by devised methods outperforms that of the uncoded
system. Minor differences can be observed between ROCs associated with
various algorithms. The practical implementation of the optimal detector in
(8.11) might be hard. Therefore, we also consider a conventional GLR detec-
tor that well approximates the behavior of the optimal detector ( [194] [180]):

max
ω∈Ω

|rrrH
(
MMM+AAACCCAAAH

)−1
(aaa⊙ ppp)|2

(aaa⊙ ppp)H
(
MMM+AAACCCAAAH

)−1
(aaa⊙ ppp)

H0
≶
H1

η ′′ (8.67)

In practical situations, a discrete set of target Doppler shifts in Ω is considered
in lieu of Ω for the maximization. Fig. 8.1(c), plots the detection performance
of the above detector for the coded and uncoded systems (employing 50 points
in the Ω for the maximization). As expected, there exist minor degradations in
the detection performance of the systems as compared with the performance
of the optimal detector shown in Fig. 8.1(b). This figure corresponds to CAD-
CODE but similar performances were observed for the other proposed meth-
ods.

The effect of the code length N on the value of the average metric is il-
lustrated in Fig. 8.2 for a fixed transmit energy e = 10. It can be seen that
as N grows large, the quality of the proposed coding schemes improves sub-
stantially (compared to the uncoded system). This is due to the fact that for a
large N the code design problem has more degrees of freedom. It can also be
observed in Fig. 8.2 that for any fixed length, CoRe and CADCODE provide
similar results.
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The detection performance of the system depends on the energy of the clut-
ter and interference. To investigate the effects of the aforementioned param-
eters on the system performance, we define the clutter-to-noise ratio (CNR)
and the interference-to-noise ratio (INR):

CNR =
σ 2

c e

σ 2
n

INR =
pint

σ 2
n

To measure the performance improvement in different scenarios, we consider
the improvement of the average metric (8.13) (i.e., metricimp) and the relative
increment of the detection probability associated with the optimal detector
(8.11) (i.e., Pinc

d ) w.r.t. the uncoded system:

metricimp =
average metriccoded

average metricuncoded

Pinc
d = Pcoded

d −Puncoded
d

The values of metricimp and Pinc
d for different CNRs have been shown in Ta-

ble 8.4. The reported values are associated with e = 5, INR = 20 dB, σ 2
T = 5

and are obtained via changing σ 2
c . Note that these values correspond to CAD-

CODE but similar behaviors were observed for the other methods. As to the
Pinc

d , the ROC of the optimal detector (8.11) is considered for Pf a = 10−3. It is
observed that Pinc

d is an increasing function of metricimp. This can be explained
via considering the mathematical reasoning for using the average metric (see
section III). Furthermore, as expected, increasing the energy of clutter leads
to the decreasing of metricimp (and so Pinc

d ). Indeed, for sufficiently large val-
ues of CNR, the term AAA−1MMMAAA−H can be neglected as compared with CCC in
(8.13); therefore, the effect of the code matrix AAA on the detection performance
is minor (see the similar discussion on the saturation phenomenon).

Table 8.4. The values of metricimp and Pinc
d for different CNRs (CADCODE).

CNR 10 dB 15 dB 20 dB 25 dB 30 dB
metricimp 6.65 dB 6.1 dB 5.3 dB 3.9 dB 2.2 dB

Pinc
d 0.32 0.31 0.28 0.23 0.15

Next we perform a similar analysis to probe the detection performance of
the system for different values of INR. Herein we consider e = 5, CNR = 20
dB, σ 2

T = 5 and report the values of metricimp and Pinc
d associated with CAD-

CODE in Table 8.5 (by changing pint). It is observed that in low INRs, the
performance improvement is minor; this can be explained by noting the fact
that such situations refer to clutter-limited cases. By increasing the energy of

195



interference (i.e., going from clutter-limited conditions to interference-limited
conditions), the performance improvement increases. This observation is re-
lated to the fact that the the proposed methods have better ability for reducing
the effects of the signal-independent interference (as compared with the signal-
dependent clutter). Also, it is expected that for large enough values of INR,
the detection probabilities of both coded and uncoded systems significantly
reduce; hence Pinc

d becomes small.

Table 8.5. The values of metricimp and Pinc
d for different INRs (CADCODE).

INR 10 dB 15 dB 20 dB 25 dB 30 dB
metricimp 2.2 dB 3.9 dB 5.3 dB 6.2 dB 6.6 dB

Pinc
d 0.08 0.13 0.28 0.42 0.42

8.6.2 Worst-Case Sense Design
We consider a worst-case design example with code length N = 16, transmit
energy e = 10, and the Doppler shift interval Ω = [−1.5,−0.5]∪ [0.5,1.5].
The assessment of the codes in the worst-case design is performed using: (i)
the CSDP solution of (8.51) which leads to an upper bound on the worst-
case metric, and (ii) the worst-case metric values associated with the uncoded
system.

The SNR corresponding to i) and ii) above and to the coded system using
CoRe as well as CoRe-U are shown in Fig. 8.3(a) versus the target Doppler
shift ω for σ 2

T = 1. The optimized CoRe and CoRe-U codes outperform the
uncoded system significantly. Moreover, a minor difference between the low-
est SNR of the optimized codes can be observed. Note that near ω = 0, all the
curves show worse values as compared to other values of ω . This is due to the
overlapping of the target and clutter in the frequency domain.

The detection probability can be used to obtain further insights into the
behaviour of the worst-case metric for code optimization. We consider the
worst-case detection probabilities w.r.t. the Doppler shift of the target. Let ω̃
denote the Doppler shift corresponding to the smallest achievable performance
metric w.r.t ω , viz.

ω̃ = argmin
ωl≤ω≤ωu

tr
{(

(AAAHMMM−1AAA)−1 +CCC
)−1

ppppppH
}
. (8.68)

The values of ω̃ were computed via the Newton method. The worst-case de-
tection probability is calculated via results of [173] as

Pd,worst = exp

(
log(Pf a)

1+ λ̃

)
(8.69)
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where Pf a denotes probability of false alarm and λ̃ is the value of λ for ω̃ .
Using the obtained ω̃ and (8.69), Fig. 8.3(b) shows the worst-case detection
probabilities for the CSDP solution and the CoRe code versus target strength
σ 2

T for Pf a = 10−6. Using CoRe and CoRe-U, a substantial improvement of
Pd,worst is evident compared to the uncoded system. Due to the unimodularity
constraint, CoRe-U yields a slightly lower worst-case detection probability
compared to CoRe.

8.6.3 Comparison of the Average and Worst-Case Designs
The average and worst-case metrics are independent of the target Doppler
shift; however, one can use the SNR (for various ω) to compare the average
and the worst-case designs. To compare the two designs, we consider a code
length of N = 16, transmit energy e = 10, σ 2

T = 1, and two different Doppler
shift intervals [−2,−1]∪ [1,2] and [−2,−0.5]∪ [0.5,2]. Fig. 8.4(a)-(b) plot
the SNRs corresponding to the CSDP solution in (8.25), the code obtained by
CoRe for the average design, the CSDP solution in (8.51) and the code ob-
tained by CoRe for the worst-case design. These sub-figures also show the
SNR corresponding to the case in which the target Doppler shift is known.
Note that for the aforementioned case, the optimized code is obtained via the
maximization of (8.12) for each Doppler and hence various target Doppler
shifts lead to various optimal codes. The SNR associated with the known
Doppler case always has the largest values compared with other feasible codes.
However, the CSDP solution (8.51) possesses larger minimum SNR values
when compared to other curves; but the optimized code corresponding to the
CSDP solution (8.51) is associated with a certain synthesis loss that leads to
slightly lower minimum value as compared to the known Doppler case. The
codes obtained via the worst-case design provide better minimum SNR val-
ues whereas the codes obtained via the average design possess larger average
SNR values. Furthermore, there exist nulls near ω = 0 due to the overlapping
of the target and clutter spectra. In addition, the CSDP solution of the worst-
case design can be considered to be rather “conservative" when compared to
that of the average design. Herein we remark on the fact that the worst-case
design does not require the p.d.f of the target Doppler shift on the desired in-
terval Ω; whereas, the average design depends on the aforementioned p.d.f.
Fig. 8.4(c)-(d) depict the detection probabilities corresponding to sub-figures
Fig. 8.4(a)-(b). The values of detection probability are obtained via consider-
ing (8.69) with Pf a = 10−6 and σ 2

T = 10. Observations similar to those about
sub-figures Fig. 8.4(a)-(b) can be made from these sub-figures as well.
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8.7 Concluding Remarks
The problem of radar code design for moving target detection in the presence
of clutter was considered. Several algorithms were proposed using two novel
frameworks for unconstrained or constrained code design in such scenarios.
The main results can be summarized as follows:
• A new discrete-time formulation was introduced in (8.4) for moving tar-

get detection using pulsed-radars in the presence of clutter (considering
motions of the clutter scatterers). The optimal detectors for both known
Doppler shift and unknown Doppler shifts are presented. To handle the
unknown Doppler shift of the target, the code design problem was con-
sidered using both average and worst-case performance metrics of the
optimal detector for known Doppler shifts. The connection between the
considered metrics and the detection performance are addressed.
• The Convexification via Reparametrization (CoRe) framework was pro-

posed to deal with the highly non-convex design problems. CoRe is
based on a relaxation (reparametrization) of the metric optimization prob-
lems followed by a synthesis stage. The CoRe framework was used to
develop two separate algorithms for obtaining optimal codes in both av-
erage and worst-case designs.
• The CoRe framework is based on a core SDP (called CSDP) which can

be solved efficiently (in polynomial-time). The CSDP solution of CoRe
was used to synthesize the optimal codes w.r.t. the original design prob-
lem. The code synthesis was accomplished using a cyclic optimization
of a similarity criterion. The CSDP solution provides an upper bound on
the average metric in different design scenarios.
• A Cyclic Algorithm for Direct COde DEsign, namely the CADCODE

framework, was suggested to tackle the average code design problem
directly. In CADCODE, the code design objective function is iteratively
minimized via a cyclic minimization of an auxiliary function of the code
matrix. The convergence of CADCODE was studied. It was shown that
each step of CADCODE can be performed either using the available
analytical solutions or solving a convex QCQP.
• The design problems when PAR constrained codes are of interest were

also considered. The derivations of CoRe and CADCODE were ex-
tended to tackle such constrained problems.
• Several numerical examples were provided to show the potential of the

proposed algorithms. It was observed that the codes obtained by CAD-
CODE generally have slightly larger metrics in comparison to those ob-
tained using the synthesis stage of CoRe. The CSDP solution of the
worst-case design appears to be rather “conservative" when compared to
that of the average design.

Finally we note that, in this chapter, the covariance matrices of the clutter
and interference assumed to be a priori known. However, in practice, the ma-
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trices are not exactly known and need to be estimated. The code design prob-
lem considering uncertainty of the prior knowledge about statistics of clutter
and interference can be an interesting topic for future research.

8.8 Appendices
8.8.1 Appendix A: Derivation of the Discrete-Time Model
It follows from (8.1) and (8.2) that the nth lag of the receiver filter output
sampled at t = nTPRI + τ can be written as

rn = (r(t)e− jωct)⋆φ ∗(−t)
∣∣∣
t=nTPRI+τ

(8.70)

=
∫ +∞

−∞
r(x)e− jωcxφ ∗(x−nTPRI− τ)dx

=
∫ +∞

−∞
αte
− j(ωc+ν)τ

N−1

∑
m=0

amφ(x−mTPRI− τ)e jνxφ ∗(x−nTPRI− τ)dx

+
∫ +∞

−∞

Nct

∑
k=1

Ncd

∑
l=1

N−1

∑
m=0

e− j(ωc+ωl)τk ρklamφ(x−mTPRI− τk)e
jωlx

φ ∗(x−nTPRI− τ)dx

+

∫ +∞

−∞
w(x)e− jωcxφ ∗(x−nTPRI− τ)dx

where ⋆ denotes the convolution operator. For the first term at the right-hand
side (RHS) of (8.70) we have that

αt

N−1

∑
m=0

ame− jωcτe jνmTPRI (8.71)

×
∫ +∞

−∞
φ(x−mTPRI− τ)φ ∗(x−nTPRI− τ)e jν(x−mTPRI−τ)dx

= αe jnω
N−1

∑
m=0

amΨm,n(0,ν)

where α ,αte
− jωcτ , ω , νTPRI , and Ψm,n(td,ωd) is the cross-ambiguity func-

tion of φ(t−mTPRI) and φ(t−nTPRI) at td = 0 and Doppler shift ωd , which is
generally defined as

Ψm,n(td,ωd) =
∫ +∞

−∞
φ(x−mTPRI)φ

∗(x−nTPRI− td)e
jωd(x−mTPRI)dx. (8.72)

Note that φ(t−mTPRI) and φ(t− nTPRI) are non-overlapping for any n 6= m.
As Ψn,n(., .) is not dependent on n, we exploit the notation brevity Ψ(., .) =
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Ψn,n(., .) and further assume Ψ(0,ν)≈ 1 (this assumption implies the Doppler
tolerable property [192] for the basic pulse φ(.) and has also been considered
in several other publications, e.g., [173] [176] and references therein). There-
fore, (8.71) becomes

αane jnωΨ(0,ν) (8.73)

The second term at the RHS of (8.70) can be rewritten as

Nct

∑
k=1

Ncd

∑
l=1

ρkle
− j(ωc+ωl)τk

N−1

∑
m=0

am (8.74)

×
∫ +∞

−∞
φ(x−mTPRI− τk)e

jωlxφ ∗(x−nTPRI− τ)dx

=
Nct

∑
k=1

Ncd

∑
l=1

ρkle
− jωcτk

N−1

∑
m=0

ame jωlmTPRI Ψm,n(τ− τk,ωl)

For unambiguous-range clutter scatterers we have |τ − τk| < TPRI − τp and
hence it is observed that φ(x−mTPRI − τk) and φ ∗(x− nTPRI − τ) are non-
overlapping for n 6= m. Hence for any n 6= m we have that Ψm,n(τ−τk,ωl) = 0
and as a result, (8.74) can be simplified as

an

(
Nct

∑
k=1

Ncd

∑
l=1

ρkle
− jωcτk e jnωlTPRI Ψ(τ− τk,ωl)

)

︸ ︷︷ ︸
cn

(8.75)

= ancn

Finally, we denote the last term at the RHS of (8.70) by wn to obtain the
discrete-time signal model as

rrr = αaaa⊙ ppp+aaa⊙ ccc+www (8.76)

where rrr , [r0 r1 . . . rN−1]
T , ppp , [1 e jω . . . e j(N−1)ω ]T , and www , [w0 w1 . . .

wN−1]
T .

The covariance matrices of Gaussian random vectors www and ccc are required
for the proposed code design algorithms. Let

E
{

wwwwwwH
}
, MMM, E

{
ccccccH

}
,CCC. (8.77)

To compute the entries of MMM one can write

Mm,n = E{wmw∗n} (8.78)

=
∫ +∞

−∞

∫ +∞

−∞
E{w(x)w∗(y)}e− jωc(x−y)

×φ ∗(x−mTPRI− τ)φ(y−nTPRI− τ) dxdy

=
∫ +∞

−∞

∫ +∞

−∞
Rw(x,y)e

− jωc(x−y)

×φ ∗(x−mTPRI− τ)φ(y−nTPRI− τ) dxdy
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where Rw(x,y) is the statistical auto-correlation function of the random pro-
cess6 w(t). In particular, it is interesting to derive the entries of CCC as it provides
useful insights into the importance of the ambiguity function of φ(.) as well
as the other parameters that form CCC. The entries of CCC can be computed as

Cm,n = E{cmc∗n} (8.79)

= ∑
k

∑
l

∑
p

∑
q

E{ρklρ
∗
pq}E{

(
e− jωcτk e jmωlTPRI Ψ(|τ− τk|,ωl)

)

×
(
e jωcτpe− jnωqTPRI Ψ∗(|τ− τp|,ωq)

)
}

= ∑
k

∑
l

E{|ρkl|2}E{|Ψ(|τ− τk|,ωl)|2e j(m−n)ωlTPRI}

where E{ρkl} is assumed to be zero (without loss of generality). It is worth
noting that Cm,n is dependent on the variances of {ρkl}, the ambiguity function
of φ(.) (i.e. Ψ(., .)), as well as the statistical distributions of τk and ωl .

8.8.2 Appendix B: Tightness Assessment of the Lower Bound
JLB on the J-Divergence

We define the following relative error to measure the tightness of the lower
bound JLB on the J-divergence:

E ,
J −JLB

JLB
. (8.80)

Let λ0 = E{λ}. Note that using (8.17), we have

J = E

{
λ −1+

1
λ +1

}
(8.81)

and hence, the numerator of the relative error E can be simplified as:

J −JLB = E

{
λ −1+

1
λ +1

}
−
{

λ0−1+
1

λ0 +1

}
(8.82)

= E

{
1

1+λ

}
− 1

1+λ0
.

Note that there exists λ1 ≥ 0 for which λ ≥ λ1, for all ω . Therefore, we have

E
{

1
1+λ

}
≤ 1

1+λ1
. Consequently, E can be upper bounded as:

E ≤ λ0−λ1

λ0
2(1+λ1)

≤ 1
λ0

. (8.83)

6Note that in the case of white noise, Mm,n is zero for m 6= n and Mn,n is equal to the variance
of the noise.
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The above analysis shows that for sufficiently large values of λ0 the value
of relative error E approaches zero. Hereafter, a numerical study of the tight-
ness of the JLB is provided. We first evaluate the relative error E for various
intervals of ω . We consider e = 16, σ 2

T = 1, and other parameters as those of
Section VI. The value of the J-divergence is calculated by numerically evalu-
ating the integral. Fig. 8.5(a) depicts two dimensional curve of the average of
the E for 1000 random code vectors aaa versus ω ′ and ω ′′. Each point of the
curve is associated with the Doppler shift interval [min(ω ′,ω ′′),max(ω ′,ω ′′)].
It is observed that the average E is significantly small. Moreover, as expected,
average E is zero when ω ′ = ω ′′ (which corresponds to known Doppler shift
equal to ω ′). Next we investigate the behavior of the relative error with respect
to the transmit energy e and target strength σ 2

T . The results are illustrated in
Fig. 8.5(b) by considering 1000 random code vectors aaa and Ω = [−.75,1.95]
(corresponds to a peak of E in Fig. 8.5(a)). Small values of the average rel-
ative error can be seen in the figure. Furthermore, by increasing e or σ 2, the
average E decreases. This observation is also compatible with the behavior of
the E upper bound in (8.83).

8.8.3 Appendix C: Derivation of the Variable θ

We note that θ should be sufficiently large such that Θ in (8.32) becomes
positive definite. Particularly, θ should satisfy the matrix inequality

θ III−VVV H(AAA−1MMMAAA−H +CCC)−1VVV ≻ 000 (8.84)

or equivalently θ > λmax

(
VVV H(AAA−1MMMAAA−H +CCC)−1VVV

)
. Note that

λmax

(
VVV H(AAA−1MMMAAA−H +CCC)−1VVV

)
≤ λmax

(
(AAA−1MMMAAA−H +CCC)−1)λmax(WWW ).(8.85)

Furthermore, one can verify that

λmin(AAA
−1MMMAAA−H) = min

‖x‖=1

(
(AAA−Hx)HMMM(AAA−Hx)

)
(8.86)

≥
(

min
m

{
|am|−1})2

(
min
‖x‖=1

xHMMMx

)

≥ 1
e

λmin(MMM)

which implies

λmin(AAA
−1MMMAAA−H +CCC) ≥ λmin(AAA

−1MMMAAA−H)+λmin(CCC) (8.87)

≥ 1
e

λmin(MMM)+λmin(CCC).

As a result, setting

θ =
λmax(WWW )

1
e
λmin(MMM)+λmin(CCC)

(8.88)

202



ensures Θ≻ 000.
In the case of unimodular code design, we have that |am| = 1 (for all m).

Therefore, in order to guarantee the positive definiteness of RRR in (8.62), it is
sufficient to set

θ =
λmax(WWW )

λmin(MMM)+λmin(CCC)
. (8.89)

8.8.4 Appendix D: Solution to the QCQP in (8.37)
The convex QCQP in (8.37) can be solved using the Lagrange multiplier
method . Let

h(aaa,µ) = aaaH
(
YYY 2YYY H

2 ⊙CCCT
)

aaa+2ℜ
(

dddHaaa
)
+µ(aaaHaaa− e) (8.90)

represent the Lagrangian function with µ being the non-negative Lagrange
multiplier associated with the energy constraint (such that (YYY 2YYY H

2 )⊙CCCT +
µIII ≻ 000). For fixed µ , the unconstrained minimizer aaa of h(aaa,µ) is given by

aaaµ =−(YYY 2YYY H
2 ⊙CCCT +µIII)−1ddd. (8.91)

It is straightforward to derive that

h(aaaµ ,µ) =−dddH(YYY 2YYY H
2 ⊙CCCT +µIII)−1ddd−µe (8.92)

The h(aaaµ ,µ) is a concave function w.r.t. µ ≥ 0 and hence the maximizer µ of
(8.92) is immediate by imposing the criterion ∂

∂ µ h(aaaµ ,µ) = 0 which implies

dddH(YYY 2YYY H
2 ⊙CCCT +µIII)−2ddd = e. (8.93)

Moreover, note that

∂

∂ µ

(
dddH(YYY 2YYY H

2 ⊙CCCT +µIII)−2ddd
)
=−2dddH(YYY 2YYY H

2 ⊙CCCT +µIII)−3ddd < 0.

(8.94)
Therefore, the left hand side of (8.93) is a monotonically decreasing function
of µ and hence the solution µ of (8.93) can be obtained efficiently via, for ex-
ample, the Newton method. Once (8.93) is solved, the optimum aaa is calculated
using (8.91).
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Figure 8.1. The design of optimized codes of length N = 16 using the average metric.

(a) depicts the average metric for different methods as well as the uncoded system

vs. the transmit energy. (b) plots the ROC of the optimal detector associated with the

same codes (as in sub-figure (a)) with σ
2
T = 10 and e = 10. (c) depicts the ROC of the

GLR detector (8.67) for the coded system (CADCODE) and uncoded one.
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Figure 8.4. Comparison of the average and worst-case code design approaches for

N = 16, e = 10, and two different normalized target Doppler shift intervals Ω: (a)

the SNR for [−2,−1]∪ [1,2] (σ2
T = 1), (b) the SNR for [−2,−0.5]∪ [0.5,2] (σ2

T =
1), (c) the detection probability for [−2,−1]∪ [1,2] (σ2

T = 10), and (d) the detection

probability for [−2,−0.5]∪ [0.5,2] (σ2
T = 10).
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9. Joint Design of the Receive Filter and
Transmit Sequence for Active Sensing
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Abstract

Due to its long-standing importance, the problem of designing the receive filter and transmit
sequence for clutter/interference rejection in active sensing has been studied widely in the last
decades. In this letter, we propose a cyclic optimization of the transmit sequence and the re-
ceive filter. The proposed approach can handle arbitrary peak-to-average-power ratio (PAR)
constraints on the transmit sequence, and can be used for large dimension designs (with ∼ 103

variables) even on an ordinary PC.

Keywords: Clutter rejection, peak-to-average-power ratio (PAR), probing signal, receive

filter.

9.1 Introduction and Problem Formulation
A key design problem in cognitive active sensing is to jointly optimize the
probing sequence and the receive filter (using apriori knowledge on clut-
ter/interference) in order to minimize the estimation error of the target pa-
rameters. Let sss = (s1 s2 · · · sN)

T denote the transmit sequence which is used
to modulate the train of pulses [39]. In the following, we adopt the discrete
model in [196] to formulate the problem. Particularly, we assume that the
received baseband signal satisfies the following equation:

yyy = AAAHααα + εεε (9.1)

with

AH =




s1 0 · · · 0 sN sN−1 · · · s2

s2 s1
... 0 sN

...
...

...
. . . 0

...
...

. . . sN

sN sN−1 · · · s1 0 0 · · · 0


 , (9.2)

ααα = (α0 α1 · · · αN−1 α−(N−1) · · · α−1)
T (9.3)

where {αk} are the scattering coefficients of different range cells, and εεε de-
notes the signal independent interference. We also assume that

E{εεεεεεH}= ΓΓΓ, (9.4)

E{|αk|2}= β , k 6= 0

where the interference covariance matrix ΓΓΓ, and the average clutter power β
are given (e.g. they are obtained by some pre-scan procedures [197]), and that
εεε and {αk} have zero mean and are independent of each other. The estimation
of the scattering coefficient of current interest α0 can be accomplished using a
matched filter. However, an estimate of α0 with generally smaller mean square
error (MSE) can be obtained via a suitable mismatched filtering (MMF) of the
received data. The MMF estimate of α0 is given by α̂0 = (wwwHyyy)/(wwwHsss) where



www ∈ CN is the MMF vector. The MSE of the above estimate of α0 can be
expressed as

MSE(α̂0) = E

{∣∣∣∣
wwwHyyy

wwwHsss
−α0

∣∣∣∣
2
}

=
wwwHRRRwww

|wwwHsss|2 (9.5)

where

RRR = β ∑
0<|k|≤(N−1)

JJJkssssssHJJJH
k +ΓΓΓ (9.6)

and {JJJk} are the shifting matrices defined by

[JJJk]l,m = [JJJH
−k]l,m , δm−l−k. (9.7)

where δ(.) denotes the Kronecker delta function. The principal objective of the
cognitive receiver and waveform (CREW) design of www and sss is to minimize
the MSE of α̂0 (see e.g. [196] for a review of the relevant literature of this
design). In the following section, a new approach to CREW is presented.

9.2 CREW(cyclic)
In this section, we propose a cyclic minimization of the MSE criterion in (9.5).
For fixed sss, the minimization of (9.5) with respect to (w.r.t.) www results in the
closed-form expression:

www = RRR−1sss (9.8)

to within a multiplicative constant. For fixed www, the minimizing transmit code
sss of (9.5) can be obtained as follows. Note that

wwwHRRRwww = wwwH

(
β ∑

0<|k|≤(N−1)

JJJkssssssHJJJH
k +ΓΓΓ

)
www (9.9)

= sssH

(
β ∑

0<|k|≤(N−1)

JJJH
k wwwwwwHJJJk

)

︸ ︷︷ ︸
QQQ

sss+wwwHΓΓΓwww︸ ︷︷ ︸
µ

.

As a result, the design metric in (9.5) can be rewritten as

MSE(α̂0) =
wwwHRRRwww

|wwwHsss|2 =
sssHQQQsss+µ

sssHWWW sss
(9.10)

where WWW = wwwwwwH . We observe that both the numerator and denominator of
(9.10) are quadratic in sss. To deal with the minimization of (9.10), we exploit
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the idea of fractional programming [198]. Let a(sss) = sssHQQQsss+µ , b(sss) = sssHWWW sss,
and note that for MSE to be finite we must have b(sss)> 0. Moreover, let f (sss) =
MSE(α̂0) = a(sss)/b(sss) and suppose that sss⋆ denotes the current value of sss. We
define g(sss) , a(sss)− f (sss⋆)b(sss), and sss† , argminsss g(sss). It is straightforward
to verify that g(sss†) ≤ g(sss⋆) = 0. Consequently, we have that g(sss†) = a(sss†)−
f (sss⋆)b(sss†)≤ 0 which implies

f (sss†)≤ f (sss⋆) (9.11)

as b(sss†) > 0. Therefore, sss† can be considered as a new vector sss which de-
creases f (sss). Note that for (9.11) to hold, sss† does not necessarily have to be a
minimizer of g(s); indeed, it is enough if sss† is such that g(sss†)≤ g(sss⋆).

For a given MMF vector www, and any sss⋆ of the minimizer sss of (9.10) we have
(assuming ‖sss‖2

2 = N):

g(sss) = sssH(QQQ+(µ/N)III− f (sss⋆)WWW )sss = sssHTTT sss (9.12)

where TTT , QQQ+(µ/N)III− f (sss⋆)WWW . Now, let λ be a real number larger than the
maximum eigenvalue of TTT . Then the minimization of (9.10) w.r.t. unimodular
sss can be cast as the following unimodular quadratic program (UQP) [84]:

max
sss

sssH T̃TTsss (9.13)

s.t. |sk|= 1, 1≤ k ≤ N,

in which T̃TT , λ III−TTT is positive definite. Note that (9.13) is NP-hard in general
(see, e.g. [139]). A possible approach to deal with (9.13) is to employ the
semi-definite relaxation (SDR) method which is widely used in the literature.
However, SDR is based on a core semi-definite program (SDP) which makes
it computationally expensive as N grows large. To tackle (9.13) efficiently,
in [84] a set of power method-like iterations was introduced that can be used to
monotonically increase the criterion in (9.13) (or equivalently decrease f (sss));
namely, the vector sss is updated using the nearest-vector problem

min
sss(t+1)

∥∥∥sss(t+1)− T̃TTsss(t)
∥∥∥

2
(9.14)

s.t.
∣∣∣s(t+1)

k

∣∣∣= 1, 1≤ k ≤ N.

The solution of (9.14) is simply given by sss(t+1)= e j arg(T̃TT sss(t)). A proof of mono-
tonically increasing behavior of the associated UQP objective function through
the above power method-like iterations is presented in Appendix A.

In many applications, unimodularity (i.e. unit PAR) is not required for the
transmit sequence sss. As a result, one can consider a more general PAR con-
straint, viz. PAR = ‖sss‖2

∞/(
1
N
‖sss‖2

2) ≤ γ for designing sss. In such a situation,
a similar formulation as in the case of unimodular sss can be used. More con-
cretely, a decrease of the MSE criterion in (9.10) for a PAR constrained sss can
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be achieved via increasing the objective function of the following optimization
problem:

max
sss

sssH T̃TTsss (9.15)

s.t. |sk| ≤
√

γ, 1≤ k ≤ N,

‖sss‖2
2 = N

where T̃TT is defined as in (9.13). To this end, we note that the derivation of
the power method-like iterations in [84] can be conveniently generalized to
the case with a PAR constraint. In particular, one can increase the objective
function of (9.15) by updating sss using the nearest-vector problem

min
sss(t+1)

∥∥∥sss(t+1)− T̃TTsss(t)
∥∥∥

2
(9.16)

s.t.
∣∣∣s(t+1)

k

∣∣∣≤√γ , 1≤ k ≤ N,
∥∥∥sss(t+1)

∥∥∥
2

2
= N

which can be solved efficiently via a recursive algorithm suggested in [26].
The CREW(cyclic) algorithm derived above is summarized in Table 9.1.

Note that the matrices RRR and QQQ can be computed efficiently by employing
fast Fourier transform (FFT) operations. We refer the interested reader to Ap-
pendix B for the derivation of such an efficient computational scheme.

Table 9.1. CREW(cyclic)

Step 0: Initialize the transmit sequence sss with a unimodular
(or low PAR) vector in CN .
Step 1: Compute the matrix RRR, and find the optimal MMF
vector www using (9.8).
Step 2 Compute the scalar µ , and the matrices QQQ and WWW .
Use t as the internal iteration counter of step 2, and while
f (sss(t))− f (sss(t+1))> δ (for some fixed δ > 0) do:

Step 2-1: Form the matrix T̃TT (as defined in (9.13)) using
the

current vector sss.
Step 2-2: Employ the power method-like iterations fol-

lowing
(9.14) or (9.16) (depending on the code constraint) to up-

date sss;
until convergence.

Step 3: Repeat steps 1 and 2 until a stop criterion is satisfied,

e.g.
∣∣∣MSE(v+1)−MSE(v)

∣∣∣< ε for some given ε > 0, where

v denotes the outer loop iteration number.
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9.3 Discussion and Numerical Examples
In this section, we examine the performance of CREW(cyclic) by compar-
ing it with three methods previously devised in [196]; namely CAN-MMF,
CREW(gra) and CREW(fre). The CAN-MMF method employs the CAN al-
gorithm in [6] to design a transmit sequence with good correlation properties.
As a result, the design of the transmit waveform is independent of the re-
ceive filter. The receive filter of CAN-MMF is obtained by (9.8). Note that
no prior knowledge of interference is used in the waveform design of CAN-
MMF. CREW(gra) is a gradient based algorithm for minimizing (9.5) which
can only deal with the unimodularity constraint. Moreover, a large number
of iterations is needed by CREW(gra) until convergence and, in each itera-
tion, the update of the gradient vector is time consuming. CREW(fre) is a
frequency-based approach that yields globally optimal values of the spectrum
of the transmit waveform as well as the receive filter for a relaxed version of
the original waveform design problem, and hence in general does not provide
an optimal solution to the latter problem. Like CAN-MMF, CREW(fre) can
handle both unimodularity and PAR constraints. Moreover, it can be used to
design relatively long sequences due to the leveraged FFT operations.

We adopt the same simulation examples as in [196]. Particularly, we con-
sider the following interference covariance matrix:

ΓΓΓ = σ 2
J ΓΓΓJ +σ 2III (9.17)

where σ 2
J = 100 and σ 2 = 0.1 are the jamming and noise powers, respec-

tively, and the jamming covariance matrix ΓΓΓJ is given by [ΓΓΓJ]k,l = qk−l where(
q0 q1 · · · qN−1 q−(N−1) · · · q−1

)
can be obtained by an inverse FFT (IFFT)

of the jamming power spectrum {ηp} at frequencies (p− 1)/(2N− 1), p =
1, · · · ,2N− 1. We set the average clutter power to β = 1. Furthermore, the
Golomb sequence is used to initialize the transmit code sss for all the algorithms.

As the first example, we consider a spot jamming located at a normalized
frequency f0 = 0.2, with a power spectrum given by

ηp =

{
1, p = ⌊(2N−1) f0⌋
0, elsewhere,

p = 1, · · · ,2N−1. (9.18)

Fig. 9.1(a) shows the MSE values corresponding to CAN-MMF, CREW(fre),
CREW(gra), and CREW(cyclic), under the unimodularity constraint, for var-
ious sequence lengths. In order to include the CREW(gra) algorithm in the
comparison, we show its MSE only for N ≤ 300 since CREW(gra) is compu-
tationally prohibitive for N > 300 on an ordinary PC. Fig. 9.1(b) depicts the
MSE values obtained by the different algorithms under the constraint PAR≤ 2
on the transmit sequence. One can observe that CREW(cyclic) provides the
smallest MSE values for all sequence lengths. In particular, CREW(cyclic)
outperforms CAN-MMF and CREW(fre) under both constraints. Due to the
fact that both CREW(gra) and CREW(cyclic) are MSE optimizers, the per-
formances of the two methods are almost identical under the unimodularity
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constraint for N ≤ 300. On the other hand, compared to CREW(gra), the
CREW(cyclic) algorithm can be used to design longer sequences (even more
than N ∼ 1000) owing to its relatively small computational burden. Further-
more, CREW(cyclic) can handle not only the unimodularity constraint but also
more general PAR constraints.

Next we consider a barrage jamming located in the normalized frequency
band [ f1, f2] = [0.2,0.3], and with a power spectrum given by

ηp =

{
1, ⌊(2N−1) f1⌋ ≤ p≤ ⌊(2N−1) f2⌋
0, elsewhere,

p = 1, · · · ,2N−1. (9.19)

Fig. 9.2(a) plots the MSE values obtained by CAN-MMF, CREW(fre), CREW
(gra) and CREW(cyclic) under the unimodularity constraint. Similar to the
previous example, the performances of CREW(gra) and CREW(cyclic) are al-
most identical for N ≤ 300, and the CREW(cyclic) algorithm outperforms the
other algorithms for all the sequence lengths. Fig. 9.2(b) presents the MSE
values provided by CAN-MMF, CREW(fre) and CREW(cyclic) for the con-
straint PAR≤ 2 on the transmit sequence. It can be observed that CREW(cyclic)
yields a lower MSE than the other algorithms for all lengths.

According to Fig. 9.3, although an iteration of CREW(fre) is more compu-
tationally efficient than an iteration of CREW(cyclic), the overall CPU time
of CREW(fre) until convergence is comparable to that of CREW(cyclic) due
to the fact that CREW(fre) generally needs more iterations than cyclic CREW
until convergence. The results leading to Fig. 9.3 were obtained using a PC
with Intel Core 2 Duo T5250 1.5GHz CPU, and 1.5GB memory.

9.4 Appendices
9.4.1 Appendix A: Effectiveness of the Power Method-like

Iterations in (9.14) and (9.16)
We show that the power method-like iterations in (9.14) and (9.16) yield a
monotonic increase of the objective functions of the associated UQPs. Let
sss(t+1) be an update of the vector s obtained by the aforementioned power
method-like iterations. Note that for fixed sss(t), the update vector sss(t+1) is the
minimizer of the criterion

∥∥∥sss(t+1)− T̃TTsss(t)
∥∥∥

2

2
= const−2ℜ{sss(t+1)H T̃TTsss(t)} (9.20)

or, equivalently, the maximizer of the criterion ℜ{sss(t+1)H T̃TT sss(t)} in the search
space satisfying the constraints. We have that

(sss(t+1)− sss(t))H T̃TT (sss(t+1)− sss(t))≥ 0 (9.21)
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Figure 9.1. MSE values obtained by the different design algorithms for a spot jamming

with normalized frequency f0 = 0.2, and the following PAR constraints on the transmit

sequence: (a) PAR= 1 (unimodularity constraint), (b) PAR ≤ 2.
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Figure 9.2. MSE values obtained by the different design algorithms for a barrage

jamming in the normalized frequency interval [ f1, f2] = [0.2,0.3] and the following

constraints on the transmit sequence: (a) PAR= 1 (unimodularity constraint), (b) PAR

≤ 2.
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Figure 9.3. CPU time of CREW(fre) and CREW(cyclic) for the barrage jamming, and

various sequence lengths N, under the constraint of PAR ≤ 2.

which implies

sss(t+1)HT̃TT sss(t+1) ≥ 2ℜ{sss(t+1)H T̃TT sss(t)}− sss(t)H T̃TT sss(t) (9.22)

≥ sss(t)H T̃TTsss(t)

as ℜ{sss(t+1)H T̃TTsss} ≥ sss(t)H T̃TT sss(t).

9.4.2 Appendix B: Efficient Computation of R and Q

We have that

RRR+β ssssssH = β ∑
0≤|k|≤(N−1)

JJJkssssssHJJJH
k = βAAAHAAA. (9.23)

The entries of AAAHAAA are nothing but the aperiodic autocorrelations of sss:

[AHA]l,m = rl−m (9.24)

where

rk =
N

∑
l=k+1

sls
∗
l−k = r∗−k (9.25)
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for 0≤ k ≤ N−1. Note that the aperiodic autocorrelations {rk} of sss are iden-
tical to the periodic autocorrelations of the sequence s̃ss = (sssT 000T

N−1)
T where 000

denotes the all-zero vector. As a result, one can obtain {rk} by calculating the
Inverse FFT (IFFT) of {|vk|2}, where the sequence {vk} is the FFT of s̃ss. Once
{rk} are calculated, the matrix RRR can be obtained using (9.23)-(9.24).

In order to compute the matrix QQQ, we note that

QQQ = β ∑
0<|k|≤(N−1)

JJJH
k wwwwwwHJJJk (9.26)

= β ∑
0<|k|≤(N−1)

JJJkwwwwwwHJJJH
k

which implies that by using the variable www in lieu of sss, the matrix QQQ can be
obtained via the same technique as devised above for the computation of RRR.
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10. Joint Doppler-Robust Design of the
Receive Filter and Transmit Sequence in
the Presence of Signal-Dependent
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Abstract

In this chapter, we study the joint design of Doppler robust transmit sequence and receive filter
to improve the performance of an active sensing system dealing with signal-dependent inter-
ference. The signal-to-noise-plus-interference (SINR) of the filter output is considered as the
performance measure of the system. The design problem is cast as a max-min optimization
problem to robustify the system SINR with respect to the unknown Doppler shifts of the tar-
gets. To tackle the design problem, which belongs to a class of NP-hard problems, we devise
a novel method (which we call DESIDE) to obtain optimized pairs of transmit sequence and
receive filter sharing the desired robustness property. The proposed method is based on a cyclic
maximization of SINR expressions with relaxed rank-one constraints, and is followed by a
novel synthesis stage. We devise synthesis algorithms to obtain high quality pairs of transmit
sequence and receive filter that well approximate the behavior of the optimal SINR (of the re-
laxed problem) with respect to target Doppler shift. Several numerical examples are provided
to analyze the performance obtained by DESIDE.

Keywords: Code design, Doppler shift, interference, receive filter, robust design, synthesis,

transmit sequence

10.1 Introduction
The performance of an active sensing system can be significantly improved by
judiciously designing its transmit sequence and receive filter. Such a design
usually deals with several challenges including the fact that Doppler shifts
of moving targets are often unknown at the transmit side, the existence of
signal-dependent interference as well as signal-independent interference at the
receive side, and practical constraints such as similarity to a given code.

Joint design of the transmit sequence and the receive filter has been con-
sidered in a large number of studies during the last decades. Most of the
works have been concerned with either stationary targets or targets with known
Doppler shifts (see e.g. [155–159, 165, 199, 200]). In [160], considering a sta-
tionary target, a frequency domain approach has been employed to obtain an
optimal receive filter and corresponding optimal energy spectral density of the
transmit signal; then a synthesis procedure has been used to approximately
provide the time domain signal. The works of [161] and [190] consider a
related problem to that of [160] under a peak-to-average power ratio (PAR)
constraint. The reference [176] deals with joint design of transmit sequence
and receive filter under a similarity constraint in cases where the Doppler shift
of the target is known. In [162], constant-modulus transmit sequences are
considered in a framework similar to that of [176]. Several researches con-
sider signal-independent clutter scenarios (see e.g. [170, 172, 173, 201, 202]).
The unknown Doppler shift of the target has been taken into account in [172]
and [173]. The reference [172] considers Doppler robust code design problem
for signal-independent clutter cases under a similarity constraint. The ideas
of [172] are generalized in [173] where the PAR constraint is also imposed.

In this chapter, we devise a novel method for Doppler robust joint design of
transmit sequence and receive filter (which we call DESIDE) in the presence



of clutter. We focus on radar systems but the design methodology can be use-
ful for other active sensing systems such as sonar, seismic exploration, etc. We
consider the SINR at the output of the receive filter as the performance mea-
sure. Besides an energy constraint, a similarity constraint is imposed on the
transmit sequence to control certain characteristics of the transmit waveform.
The design problem is cast as a max-min optimization and shown to belong
to a class of NP-hard problems. We devise a cyclic maximization to tackle a
relaxed version of the design problem. Furthermore, we propose a synthesis
stage to obtain optimized pairs of transmit sequences and receive filters which
possess the desired Doppler robustness.

The rest of this chapter is organized as follows. The data modeling and
problem formulation are presented in Section 10.2. Section 10.3 contains the
steps for the derivation of the cyclic approach to tackle the relaxed problem.
The required synthesis stage is discussed in Section 10.4. Numerical results
are provided in Section 10.5. Finally, conclusions are drawn in Section 10.6.

Notation: We use bold lowercase letters for vectors and bold uppercase let-
ters for matrices. (·)T , (·)∗ and (·)H denote the vector/matrix transpose, the
complex conjugate, and the Hermitian transpose, respectively. III represents
the identity matrix in CN×N . 1 and 000 are the all-one and the all-zero vec-
tors/matrices. eeek is the kth standard basis vector in CN . The l2-norm of a vector
x is denoted by ‖x‖. The symbol ⊙ stands for the Hadamard (element-wise)
product of matrices. tr(·) is the trace of a square matrix argument. The nota-
tions λmax(·) and λmin(·) indicate the principal and the minor eigenvalues of a
Hermitian matrix, respectively. Diag(·) denotes the diagonal matrix formed by
the entries of the vector argument, whereas diag(·) denotes the vector formed
by collecting the diagonal entries of the matrix argument. We write AAA � BBB

iff AAA−BBB is positive semi-definite, and AAA ≻ BBB iff AAA−BBB is positive-definite.
ℜ(·) and arg(·) denote the real-part and the phase angle (in radians) of the
complex-valued argument. Finally, N, R and C represent the set of natural,
real and complex numbers, respectively.

10.2 Problem Formulation
We consider a radar system with (slow-time) transmit sequence x ∈ CN and
receive filter www ∈ CN . The discrete-time received signal backscattered from a
moving target corresponding to the range-azimuth cell under the test can be
modeled as (see, e.g. [162, 176], and [201]):

rrr = αT x⊙ ppp(ν)+ ccc+nnn, (10.1)

where αT is a complex parameter associated with backscattering effects of
the target as well as propagation effects, ppp(ν) = [1,e jν , . . . ,e j(N−1)ν ]T with ν
being the normalized target Doppler shift (expressed in radians), ccc is the N-
dimensional column vector containing clutter (signal-dependent interference)
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samples, and nnn is the N-dimensional column vector of (signal-independent)
interference samples. The vector ccc is the superposition of the returns from
different uncorrelated scatterers located at various range-azimuth bins and can
be expressed as [176]

ccc =
Nc−1

∑
k=0

L−1

∑
i=0

α(k,i)JJJk

(
sss⊙ ppp(νd(k,i)

)
)

where Nc ≤ N is the number of range rings1 that interfere with the range-
azimuth bin of interest (0,0), L is the number of discrete azimuth sectors,
α(k,i) and νd(k,i)

denote the echo and the normalized Doppler shift, respectively,
of the scatterer in the range-azimuth bin (k, i), and JJJk denotes the aperiodic
shifting matrix for 0≤ k ≤ Nc−1, viz.

JJJk(l,m) =

{
1 if l−m = k

0 if l−m 6= k
(l,m) ∈ {1, . . . ,N}2

with JJJ−k = JJJT
k .

The SINR at the output of the receive filter can be formulated as

SINR(ν) =
|αT |2

∣∣wwwH (x⊙ ppp(ν))
∣∣2

wwwHΣΣΣccc (x)www+wwwHMMMwww
(10.2)

where MMM , E{nnnnnnH} and ΣΣΣccc (x) is the covariance matrix of ccc given by [176]

ΣΣΣccc (x) =
Nc−1

∑
k=0

L−1

∑
i=0

σ 2
(k,i)JJJkΓΓΓ(x,(k, i))JJJT

k (10.3)

with σ 2
(k,i) = E

[
|α(k,i)|2

]
being the mean interfering power associated with the

clutter patch located at the (k, i)th range-azimuth bin whose Doppler shift is

supposed to be uniformly distributed in the interval Ωc =
(

ν̄d(k,i)
− ε(k,i)

2 , ν̄d(k,i)
+

ε(k,i)
2

)
[201]. Herein ΓΓΓ(x,(k, i))=Diag(x)ΦΦΦ

ν̄d(k,i)
ε(k,i)

Diag(x)H where ΦΦΦ
ν̄d(k,i)
ε(k,i)

(l,m)

is the covariance matrix of ppp(νd(k,i)
) [176], viz.

ΦΦΦ
ν̄d(k,i)
ε(k,i)

(l,m) =





1 if l = m

e

(
j(l−m)ν̄d(k,i)

)
sin[0.5(l−m)ε(k,i)]

[0.5(l−m)ε(k,i)]
if l 6= m

,

(l,m) ∈ {1, . . . ,N}2. (10.4)

1Note that the model considers the general case of range ambiguous clutter and reduces to
unambiguous range scenario for Nc = 1. See [176] and [201] for justifications of the employed
model and several examples of scenes that can be modeled in this way.
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Note that the expression for ΦΦΦ
ν̄d(k,i)
ε(k,i)

(l,m) can be modified to consider cases
with an arbitrary statistical distribution of the Doppler shifts of the clutter
scatterers.

In this study we assume that the parameters of clutter and signal-independent
interference are known at the transmit side by using cognitive (knowledge-
aided) methods [176] [177]. We consider the SINR in (10.2) as the perfor-
mance measure of the system [176] [201] and aim to find a robust design
of the transmit sequence and the receive filter with respect to the unknown
Doppler shift of the target2. In addition to an energy constraint, a similarity
constraint is imposed on the transmit sequence [203] [176] [204]:

‖x−x0‖2 ≤ δ , (10.5)

where the parameter δ ≥ 0 rules the size of the similarity region and x0 is a
given sequence. There are several reasons that justify the use of a similarity
constraint in the design of a radar sequence. The unconstrained optimization
of SINR can lead to signals with significant modulus variations, poor range
resolution, high peak sidelobe levels, and more generally with an undesired
ambiguity function behavior. These drawbacks can be partially circumvented
imposing the similarity constraint (10.5) on the sought radar code [176] [203]
[204]. Comprehensive simulations have been performed in [176] [172] [203]
and [205] to illustrate how the properties of the ambiguity function (e.g. range
resolution, sidelobe levels, etc.) and modulus variations associated with the
optimized code can be controlled via the value of δ in the similarity constraint.
By doing so, it is required that the solution be similar to a known sequence x0

which has some good properties such as constant modulus, reasonable range
resolution, and peak sidelobe level.

The problem of Doppler robust joint design of transmit sequence x and
receive filter www under the similarity constraint can be cast as the following
max-min optimization problem

P





max
x,www

min
ν

∣∣wwwH (x⊙ ppp(ν))
∣∣2

wwwHΣΣΣccc (x)www+wwwHMMMwww
subject to ‖x‖2 = e

‖x−x0‖2 ≤ δ
ν ∈Ω

(10.6)

where Ω = [νl,νu] ⊆ [−π,π] denotes a given interval of the target Doppler
shift ν and e denotes the maximum available transmit energy. Note that for

2The target Doppler shift can be estimated at the receiver, e.g. via a bank of filters matched
to different Doppler frequencies [180]; however, the Doppler shifts of the targets are usually
unknown at the transmit side and hence we consider a robust design with respect to the target
Doppler shift. The design approach can also be useful for a robust confirmation process, so as
to account for target Doppler estimation errors.
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a priori known target Doppler shift ν̃ (i.e. Ω = [ν̃, ν̃ ]), the problem P boils
down to the considered problem in [176].

Remark 1: Note that a similar discrete-time data modeling and problem
formulation applies to fast-time coding systems. In that case, the entries of x

denote (complex) weights of the sub-pulses within a transmit pulse. Moreover,
the normalized target Doppler shift ν is proportional to the system bandwidth
(as opposed to the slow-time scheme for which ν is proportional to the pulse
repetition frequency of the system); hence in such a case, the Doppler ro-
bust design would be concerned with high speed moving targets. As to the
expressions, the formulation of the covariance matrix ΣΣΣccc (x) in (10.3) should
be modified. More precisely, for fast-time coding scenarios, the summation
over k in (10.3) should be performed for 0 < |k| ≤ N−1. We refer interested
readers to the references [161] and [180] for more details on this aspect. �

To realize the hardness of the above problem, let z′ and x̄⋆ denote a slack
variable and an optimal solution x to the problem P, respectively. The optimal
www is obtained via solving the following optimization problem:





max
www,z′

z′

wwwHΣΣΣccc (x̄⋆)www+wwwHMMMwww
subject to wwwH

(
x̄⋆x̄H

⋆ ⊙ ppp(ν)ppp(ν)H
)

www≥ z′

∀ν ∈Ω.

(10.7)

The above quadratic fractional program can be recast equivalently as (see
Lemma 2 below and [206]):

PNP





max
www,z′

z′

subject to wwwH (ΣΣΣccc (x̄⋆)+MMM)www≤ 1
wwwH
(
x̄⋆x̄H

⋆ ⊙ ppp(ν)ppp(ν)H
)

www≥ z′

∀ν ∈Ω.

(10.8)

The optimization problem PNP is a quadratically constrained quadratic pro-
gram (QCQP) with infinitely many non-convex constraints. This class of QC-
QPs is known to be NP-hard in general [172] [207, Chapter 4] [208]. Note
that solving the optimization problem P with respect to (www,x,ν) is at least as
hard as solving the problem PNP.

The following lemma helps tackling the optimization problem P via pro-
viding two alternative expressions for the objective function in problem P.

Lemma 1. Let XXX = xxH and WWW = wwwwwwH . The SINR(ν) can be alternatively

expressed with respect to XXX and WWW as follows:

SINR(ν) =
|αT |2 ppp(ν)H (WWW ⊙XXX∗) ppp(ν)

tr{(ΣΣΣccc (XXX)+MMM)WWW} (10.9)

=
|αT |2 ppp(ν)H (WWW ⊙XXX∗) ppp(ν)

tr
{(

ΘΘΘccc(WWW )+(β
e
)III
)

XXX
} (10.10)
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where β = tr{MMMWWW}, and

ΣΣΣccc (XXX) =
Nc−1

∑
k=0

L−1

∑
i=0

σ 2
(k,i)JJJk

(
XXX⊙ΦΦΦ

ν̄d(k,i)
ε(k,i)

)
JJJT

k , (10.11)

ΘΘΘccc (WWW ) =
Nc−1

∑
k=0

L−1

∑
i=0

σ 2
(k,i)

((
JJJT

k WWW JJJk

)
⊙
(

ΦΦΦ
ν̄d(k,i)
ε(k,i)

)∗)
. (10.12)

Proof: See Appendix 10.7.1. �
To deal with the design problem P, consider the following optimization

problem:

P ′





max
XXX ,WWW

min
ν

ppp(ν)H (WWW ⊙XXX∗) ppp(ν)

tr{(ΣΣΣccc (XXX)+MMM)WWW}
subject to tr{XXX}= e

tr{XXXXXX0} ≥ εδ

rank(XXX) = 1
rank(WWW ) = 1
XXX � 000
WWW � 000
ν ∈Ω

(10.13)

where XXX0 = x0xH
0 and εδ = ((2e− δ )/2)2. Let (WWW ,XXX) denote an optimal

solution to the above problem. Using Lemma 1 and the results of [203], it can
be easily verified that an optimal solution to P is given by (www,xe j arg(xH x0))
with WWW = wwwwwwH and XXX = xxH .

Now observe that both the objective function and the rank constraints in P ′

are non-convex. In addition, ppp(ν) belongs to a non-convex set for ν ∈ Ω. In
the sequel, we relax the rank-one constraints on XXX and WWW in P ′ to obtain the
relaxed problem P1:

P1





max
XXX ,WWW

min
ν

ppp(ν)H (WWW ⊙XXX∗) ppp(ν)

tr{(ΣΣΣccc (XXX)+MMM)WWW}
subject to tr{XXX}= e

tr{XXXXXX0} ≥ εδ

XXX � 000
WWW � 000
ν ∈Ω.

(10.14)

The expression |αT |2 ppp(ν)H(WWW⊙XXX∗)ppp(ν)
tr{(ΣΣΣccc(XXX)+MMM)WWW} for rank-one XXX and WWW (i.e., XXX = xxH

and WWW = wwwwwwH ) is equal to SINR(ν) (see Lemma 1). When the rank con-
straints are omitted (i.e., for arbitrary XXX � 000 and WWW � 000), the expression
|αT |2 ppp(ν)H(WWW⊙XXX∗)ppp(ν)

tr{(ΣΣΣccc(XXX)+MMM)WWW} may be used in lieu of SINR(ν) and it will be denoted

by S̃INRrelax(ν) in the following. SINR(ν) is the restriction of S̃INRrelax(ν)
over the space of the rank-one positive semi-definite matrices XXX and WWW (due
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to the relaxation of the rank-one constraints on XXX and WWW ). The optimization
problem P1 is still non-convex and will be discussed in the next section.

10.3 The Proposed Method to Tackle the Relaxed
Problem P1

In this section, we devise a novel cyclic algorithm (which we call DESIDE-
R as it deals with the relaxed version of the original problem) to tackle the
non-convex optimization problem P1. In a cyclic algorithm, the optimiza-
tion variables are partitioned into two parts; then, by starting from an initial
point, optimization is cyclically performed with respect to each part (while the
another part is fixed) [209]. In the following, we consider the maximization
problem P1 with respect to (XXX,WWW ) where XXX and WWW are the two partitions.
The obtained pair (WWW ⋆,XXX⋆) which maximizes S̃INRrelax(ν) will be used later
to synthesize the optimized transmit sequence/receive filter pair (x⋆,www⋆). The
synthesis stage is addressed in Section 10.4.
• Optimal XXX for fixed WWW :
Let t̃ ∈ R denote a slack variable. For fixed WWW , the optimization in (10.14)

is equivalent to the following maximization problem:

PX





max
XXX ,̃t

t̃

tr
{(

ΘΘΘccc(WWW )+(β
e
)III
)

XXX
}

subject to ppp(ν)H (WWW ⊙XXX∗) ppp(ν)≥ t̃, ∀ ν ∈Ω
tr{XXX}= e

tr{XXXXXX0} ≥ εδ

XXX � 000.

(10.15)

Note that the above problem is feasible and has a finite-valued objective func-
tion over the constraint set (see eq. (10.29)). Moreover, problem PX is a
linear-fractional maximization problem with infinitely many constraints (see
the first constraint in (10.15)). Inspired by Charnes-Cooper transform for tack-
ling linear fractional programs [210], we let YYY = sXXX , t = s t̃ for an auxiliary
variable s≥ 0, and consider the following optimization problem:

P ′
X





max
YYY ,t,s

t

subject to tr
{(

ΘΘΘccc(WWW )+(β
e
)III
)

YYY
}
= 1

ppp(ν)H (WWW ⊙YYY ∗) ppp(ν)≥ t, ∀ ν ∈Ω
tr{YYY}= es

tr{YYY XXX0} ≥ εδ s

YYY � 000
s≥ 0.

(10.16)
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Lemma 2. The optimization problems PX and P ′
X are equivalent. More pre-

cisely, they share the same optimal values and their corresponding solutions

can be uniquely obtained from each other.

Proof: Let (XXX⋆, t̃⋆) and v(PX) denote an optimal solution and the opti-

mal value of the problem PX , respectively. Note that tr
{(

ΘΘΘccc(WWW )+(β
e
)III
)

YYY
}
>

0 because β > 0. It is straightforward to verify that

(YYY , t,s) =


 XXX⋆

tr
{(

ΘΘΘccc(WWW )+(β
e
)III
)

XXX⋆

} , t̃⋆

tr
{(

ΘΘΘccc(WWW )+(β
e
)III
)

XXX⋆

} , (10.17)

1

tr
{(

ΘΘΘccc(WWW )+(β
e
)III
)

XXX⋆

}




is feasible for the problem P ′
X . Also observe that the value of the objective

function of P ′
X for (YYY , t,s) in (10.17) is given by

t⋆

tr
{(

ΘΘΘccc(WWW )+(β
e
)III
)

XXX⋆

} (10.18)

and note that (10.18) is equal to v(PX). Therefore, for the optimal value of
the problem P ′

X , i.e. v(P ′
X), we have

v(P ′
X)≥ v(PX). (10.19)

Next let (YYY ⋆, t⋆,s⋆) denote an optimal solution to the problem P ′
X . Note that

s⋆ 6= 0 because s⋆ = 0 leads to YYY ⋆ = 000 (a contradiction, see the first constraint
in P ′

X ). One can check that (YYY ⋆/s⋆, t⋆/s⋆) is feasible for the problem PX with
corresponding objective value equal to t⋆. Owing to the fact that v(P ′

X ) = t⋆,
the following inequality holds between v(P ′

X) and v(PX):

v(P ′
X)≤ v(PX). (10.20)

Finally, eqs. (10.19) and (10.20) yield v(P ′
X) = v(PX) and the proof is con-

cluded. �
Now observe that P ′

X is a convex problem with infinitely many constraints.
To deal with the constraint set, we note that the constraint ppp(ν)H (WWW ⊙YYY ∗) ppp(ν)≥
t, ∀ν ∈ Ω implies the non-negativity of a trigonometric polynomial of ν over
the interval Ω. More specifically, let

zk ,
N−k

∑
i=1

Zi+k,i, 0≤ k ≤ N−1, (10.21)
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and zzz = [z0,z1, . . . ,zN−1]
T with ZZZ =WWW ⊙YYY ∗. It is straightforward to verify that

for any ν ∈Ω, the aforementioned constraint is equivalent to

h(ν), z0− t +2ℜ

(
N−1

∑
k=1

zke− jkν

)
≥ 0. (10.22)

Interestingly, a semidefinite representation of the constraint (10.22) can be
obtained via Theorem 3.4 in [189] which we quote below.

Theorem 2. The trigonometric polynomial h̃(ν) = z̃0 +2ℜ
(
∑N−1

k=1 z̃ke− jkν
)

is

non-negative for any ν ∈ [ν0−ν1,ν0 +ν1] (with 0 < ν1 < π) iff there exist an

N×N Hermitian matrix ZZZ1 � 000 and an (N− 1)× (N− 1) Hermitian matrix

ZZZ2 � 000 such that

z̃zz = FFFH
1

(
diag(FFF1ZZZ1FFFH

1 )+qqq⊙diag(FFF2ZZZ2FFFH
2 )
)

(10.23)

where z̃zz = [z̃0, z̃1, . . . , z̃N−1]
T , qqq = [q0,q1, . . . ,qn−1]

T with qk = cos(2πk/n−
ν0)−cos(ν1), FFF1 = [f0, . . . , fN−1] and FFF2 = [f0, . . . , fN−2] in which fk = [1,e− jkθ ,
. . . ,e− j(n−1)kθ ]T with θ = 2π/n, and n≥ 2N−1.

Note that an SDP representation of (10.22) is immediate by employing the
above results with z̃zz = zzz, n = 2N − 1, ν0 = (νl + νu)/2, and ν1 = ν0− νl .
Consequently, P ′

X is equivalent to the following SDP:

S DPX





max
YYY ,ZZZ1,ZZZ2,t,s

t

subject to tr
{(

ΘΘΘccc(WWW )+(β
e
)III
)

YYY
}
= 1

zzz = teee1 +FFFH
1

(
diag(FFF1ZZZ1FFFH

1 )+qqq⊙diag(FFF2ZZZ2FFFH
2 )
)

tr{YYY}= es

tr{YYY XXX0} ≥ εδ s

YYY � 000
ZZZ1 � 000
ZZZ2 � 000
s≥ 0.

(10.24)
Remark 2: The derivation of S DPX can be extended to deal with cases

where Ω is a union of several (non-overlapping) sub-intervals of [−π,π]. More
precisely, for each of such sub-intervals, the SDP representation associated
with the corresponding constraint (obtained via Theorem 1) can be added to
the constraint set of S DPX . �

Let (YYY ,ZZZ1,ZZZ2, t,s) denote an optimal solution to S DPX . The correspond-
ing optimal XXX (i.e., an optimal solution to PX ) for fixed WWW is given by YYY/s

(see Lemma 2).
• Optimal WWW for fixed XXX :
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Using Lemma 1, P1 can be recast into the following equivalent form for
fixed XXX :

PW





max
WWW ,t̆

t̆

tr{(ΣΣΣccc (XXX)+MMM)WWW}
subject to ppp(ν)H (WWW ⊙XXX∗) ppp(ν)≥ t̆, ∀ ν ∈Ω

WWW � 000

(10.25)

where t̆ denotes a slack variable. The above problem can be tackled in a way
similar to the case of obtaining XXX for fixed WWW . In particular, using Lemma 2
as well as Theorem 1, we obtain the following SDP:

S DPW





max
WWW ,ZZZ′1,ZZZ

′
2,t̆

t̆

subject to tr{(ΣΣΣccc (XXX)+MMM)WWW}= 1
zzz′ = t̆eee1 +FFFH

1

(
diag(FFF1ZZZ′1FFFH

1 )+qqq⊙diag(FFF2ZZZ′2FFFH
2 )
)

WWW � 000
ZZZ′1 � 000
ZZZ′2 � 000

(10.26)
where zzz′ is given by

z′k =
N−k

∑
i=1

Z′i+k,i, 0≤ k ≤ N−1, (10.27)

with ZZZ′ =WWW ⊙XXX∗.
Remark 3: It might be interesting in practice to control the shape of the

cross-ambiguity function of the transmit sequence x and the receive filter www.
An approach would then be to require that the variables www and x are suffi-
ciently similar to given www0 and x0, respectively, which possess desirable cross-
ambiguity properties. The Doppler robust design for controlling the shape of
the cross-ambiguity function could therefore be cast as the following optimiza-
tion problem:

Pcross





max
x,www

min
ν

∣∣wwwH (x⊙ ppp(ν))
∣∣2

wwwHΣΣΣccc (x)www+wwwHMMMwww
subject to ‖x−x0‖2 ≤ δ

‖www−www0‖2 ≤ δw

‖x‖2 = e

ν ∈Ω

(10.28)

where δw rules the size of the similarity region for the receive filter. The
problem Pcross can be tackled in a way similar to (10.6). �

The steps of DESIDE-R are summarized in Table 10.1. Each iteration of
the proposed method is handled via solving two SDPs, i.e., S DPW and
S DPX . The complexity of solving the SDPs with accuracy of εa is given by
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O(N3.5 log(ε−1
a )) [185]. A synthesis stage is proposed in the next section to

compute high quality transmit sequence/receive filter pairs (www⋆,x⋆) from the
solutions (WWW ⋆,XXX⋆) obtained herein.

Table 10.1. DESIDE-R method for solving the relaxed problem P1

Step 0: Initialize XXX with xxH where x is a random vector in CN .
Step 1: Solve the problem S DPW in (10.26) to obtain WWW .
Step 2: Solve the problem S DPX in (10.24) to obtain XXX .
Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied,
e.g. |minν∈Ω S̃INRrelax(ν)

(κ+1)−minν∈Ω S̃INRrelax(ν)
(κ)| ≤ µ for a given

µ > 0.

• Convergence and the S̃INRrelax metric:
By cyclically solving S DPX and S DPW in DESIDE-R, it can be easily

verified that the resulting {minν∈Ω S̃INR
(κ)

relax(ν)}κ∈N is a monotonically in-
creasing sequence [209]. Furthermore, minν∈Ω S̃INRrelax(ν) is bounded from
above; indeed we have that

min
ν∈Ω

S̃INRrelax(ν) ≤
ppp(ν)H (WWW ⊙XXX∗) ppp(ν)

tr{WWW (ΣΣΣccc(x)+MMM)}

≤ ‖ppp(ν)‖2λmax(WWW ⊙XXX∗)
tr{MMMWWW}

≤ N tr{WWW} tr{XXX}
tr{MMMWWW}

≤ N e

λmin(MMM)
. (10.29)

The third inequality above holds true because tr{WWW⊙XXX∗}≤ tr{WWW} tr{XXX}; and
for the last inequality we have used the fact that tr{MMMWWW} ≥ λmin(MMM) tr{WWW}
[211]. Eq. (10.29) along with the increasing property of {minν∈Ω S̃INR

(κ)

relax(ν)}κ∈N
ensure the convergence of the sequence of the objective function values.

10.4 The Synthesis Stage
As discussed earlier, a judicious synthesis of the optimized transmit sequence
x⋆ and receive filter www⋆ from the obtained (WWW ⋆,XXX⋆) is required to maintain
the Doppler robustness. If WWW ⋆ is rank-one, www⋆ is available via considering
WWW ⋆ = www⋆wwwH

⋆ ; whereas if XXX⋆ = xxH , for x⋆ we have x⋆ = xe j arg(xHx0). The
rank behavior of SDP solutions, tightness of the semidefinite relaxation, and
synthesis methods have been investigated in the literature (see e.g. [212–214],

231



and references therein). For example, it is known that for a solvable3 SDP
with M constraints, there exists an optimal solution of rank at most equal to√

M [212]. However, the result does not ensure the existence of rank-one so-
lutions for the case considered in this chapter due to the fact that S DPX and
S DPW have N + 3 and N + 1 constraints, respectively. Herein we remark
on the fact that the ranks of WWW ⋆ and XXX⋆ depend on the employed starting point
in addition to the parameters of the design problem. In cases where the rank
of either WWW ⋆ or XXX⋆ is larger than one, the synthesis of www⋆ or x⋆ is more com-
plicated. To tackle this problem, this section initially considers the rank-one
decomposition method [215]. Then we devise novel synthesis algorithms to
design pairs of (www⋆,x⋆) possessing the desired robustness.

10.4.1 The Rank-One Decomposition Method
The main result of the rank-one decomposition method can be summarized as
follows [215]:

Theorem 3. Let XXX be a non-zero N×N complex Hermitian positive semidef-

inite matrix (with N ≥ 3) and {AAA1,AAA2,AAA3,AAA4} be Hermitian matrices. Sup-

pose that (tr{YYYAAA1} , tr{YYY AAA2} , tr{YYYAAA3}, tr{YYY AAA4}) 6= (0,0,0,0) for any non-

zero complex Hermitian positive semidefinite matrix YYY of size N×N. Then,

• if rank(XXX)≥ 3, one can find, in polynomial time, a rank-one matrix xxH

such that x (synthetically denoted as x =D1(XXX ,AAA1,AAA2,AAA3,AAA4) ) is in the

range(XXX), and

xHAAAix = tr{XXXAAAi} , i = 1,2,3,4;

• if rank(XXX) = 2, for any zzz not in the range space of XXX, one can find a rank-

one matrix xxH such that x (synthetically denoted as x=D2(XXX ,AAA1,AAA2,AAA3,
AAA4) ) is in the linear subspace spanned by {zzz}∪ range(XXX), and

xHAAAix = tr{XXXAAAi} , i = 1,2,3,4.

Proof: see [215, Theorem 2.3]. �
Let (WWW ⋆,XXX⋆) denote an optimal solution to P1, and let

ν⋆ = argminν∈Ω ppp(ν)H(WWW ⋆⊙XXX∗⋆)ppp(ν). (10.30)

Considering Theorem 3 and the problem PW , a suitable rank-one matrix
www⋆wwwH

⋆ can be found such that

tr{(ΣΣΣc(XXX⋆)+MMM)︸ ︷︷ ︸
QQQ1

WWW ⋆}= wwwH
⋆ QQQ1www⋆ (10.31)

3Meaning that the SDP is feasible, bounded, and its optimal value is attained (see [185] for
more details).
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and that




tr{
(
XXX⋆⊙ (ppp(ν⋆)ppp(ν⋆)

H)
)

︸ ︷︷ ︸
QQQ2

WWW ⋆}= wwwH
⋆ QQQ2www⋆

tr{
(
XXX⋆⊙ (ppp(ν ′)ppp(ν ′)H)

)
︸ ︷︷ ︸

QQQ3

WWW ⋆}= wwwH
⋆ QQQ3www⋆

tr{
(
XXX⋆⊙ (ppp(ν ′′)ppp(ν ′′)H)

)
︸ ︷︷ ︸

QQQ4

WWW ⋆}= wwwH
⋆ QQQ4www⋆

(10.32)

where ν ′ and ν ′′ are two arbitrary Doppler shifts in Ω. The equations in (10.32)
have been written using the identity

ppp(ν)H (WWW ⋆⊙XXX∗⋆) ppp(ν) = tr{
(
XXX⋆⊙ (ppp(ν)ppp(ν)H)

)
WWW ⋆}. (10.33)

Note that Theorem 2 lays the ground for considering two more Doppler fre-
quencies (i.e. ν ′ and ν ′′) other than ν⋆. This leads to a receive filter www⋆ with
a behavior more similar to that of WWW ⋆ with respect to target Doppler shift
ν . Consequently, www⋆ is obtained via www⋆ = D1(WWW ⋆,QQQ1,QQQ2,QQQ3,QQQ4) or www⋆ =
D2(WWW ⋆,QQQ1,QQQ2,QQQ3,QQQ4) for cases where rank(WWW ⋆)≥ 3 or rank(WWW ⋆) = 2 , re-
spectively. Note that the condition (tr(YYY QQQ1) , tr(YYYQQQ2) , tr(YYY QQQ3), tr(YYY QQQ4)) 6=
(0,0,0,0) on the matrices QQQ1,QQQ2,QQQ3, and QQQ4 in Theorem 3 is satisfied; more
precisely, there exists (a1,a2,a3,a4) ∈ R4

+ such that a1QQQ1 + a2QQQ2 + a3QQQ3 +
a4QQQ4 ≻ 000 (see [216]).

The x⋆ can be obtained in a similar way; particularly,

x⋆ = Dζ (XXX⋆,RRR1,RRR2,XXX0, III) (10.34)

(ζ = 1 or 2 depending on the rank of XXX⋆) where

RRR1 = ΘΘΘc(WWW ⋆)+(β/e)III (10.35)

RRR2 = WWW ⋆⊙
(
(ppp(ν⋆)ppp(ν⋆)

H
)∗
. (10.36)

10.4.2 New Algorithms for Synthesis Stage
As explained earlier, the rank-one decomposition method can deal with at most
four trace equalities for the synthesis of the receive filter and the transmit se-
quence. This ability allows for considering the values of the S̃INRrelax(ν) at
three Doppler shifts ν for the receive filter synthesis (and one Doppler shift for
synthesis of the transmit sequence). However, the pair (www⋆,x⋆) obtained by ap-
plying Theorem 2 can lead to SINR(ν) whose behavior with respect to target
Doppler shift is not “sufficiently” close to the behavior of the S̃INRrelax(ν).
It means that the SINR(ν) can have significantly lower minimum value with
respect to ν . In this subsection, we devise novel algorithms to synthesize high
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quality www⋆ and x⋆ from the solutions to the problem P1, i.e. WWW ⋆ and XXX⋆. The
idea is to consider the values of ppp(ν)H (WWW ⋆⊙XXX∗⋆) ppp(ν) as the optimal energy
spectral density (ESD) associated with the transmit sequence and the receive
filter. The sought receive filter www⋆ and transmit sequence x⋆ are obtained to
approximate well the behavior of the optimal ESD with respect to ν . Due to
the fact that S̃INRrelax(ν) (of (WWW ⋆,XXX⋆)) is a scaled version of the optimal ESD
(see (10.9)), we deal with the denominator of the S̃INRrelax(ν) by imposing
constraints in the synthesis problems.

Let {ν1,ν2, · · ·,νK} denote a discrete set of target Doppler shifts “uniformly
distributed" over Ω, and consider the following quantities:

gk , pppH
k (WWW ⋆⊙XXX∗⋆) pppk ∈ R+, 1≤ k ≤ K (10.37)

where pppk = ppp(νk). We define the vector g = [g1,g2, · · ·,gK ]
T as the optimal

ESD.
• Receive filter synthesis: Herein the aim is to synthesize the optimized

receive filter for given (WWW ⋆,XXX⋆). Observe that

pppH
k

(
wwwwwwH ⊙XXX∗⋆

)
pppk = wwwH

(
pppk pppH

k ⊙XXX⋆

)
︸ ︷︷ ︸

TTT k

www. (10.38)

Note also that TTT k � 000 for all k and so that there must exist VVV k (of rank dk) such
that TTT k =VVV kVVV

H
k . Moreover, considering wwwHVVV kVVV

H
k www≈ gk, we can write

VVV H
k www≈√gkuuuk, 1≤ k ≤ K, (10.39)

where all uuuk ∈Cdk are unit-norm. Therefore, the receive filter www⋆ can be found
as the minimizer of the following metric:

‖AAAwww−uuu⊙bbb‖2 (10.40)

where AAAH = [VVV 1,VVV 2, · · ·,VVV K ], uuu= [uuuT
1 ,uuu

T
2 , · · ·,uuuT

K ]
T , and bbb= [

√
g11T,

√
g21T, · ·

·,√gK1T]T. Note that the optimal S̃INRrelax(ν) (corresponding to (WWW ⋆,XXX⋆))
is a scaled version of the optimal ESD for given (WWW ⋆,XXX⋆) (see (10.9)). As a re-
sult, to obtain the receive filter that yields SINR(ν) values close to S̃INRrelax(ν),
we should also take into account the denominator of the S̃INRrelax(ν), viz.

γ = tr{(ΣΣΣccc (XXX⋆)+MMM)WWW ⋆}. (10.41)

Consequently, we consider the following optimization problem to obtain www⋆:

Psynt
w





min
www,uuu

‖AAAwww−uuu⊙bbb‖2

subject to wwwHGGGwww≤ γ
‖uuuk‖2 = 1, 1≤ k ≤ K

(10.42)

with GGG = ΣΣΣccc (XXX⋆)+MMM. In the sequel, we propose a cyclic minimization to
tackle the non-convex problem Psynt

w .
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For fixed www, the problem Psynt
w boils down to the non-convex problem:





min
uuu

∥∥∥∥∥∥∥∥∥∥




aaa1

aaa2

·
·

aaaK



−




√
g1uuu1√
g2uuu2

·
·√

gKuuuK




∥∥∥∥∥∥∥∥∥∥

2

subject to ‖uuuk‖2 = 1, 1≤ k ≤ K

(10.43)

where aaak contains the entries of AAAwww corresponding to uuuk for 1 ≤ k ≤ K. The
above minimization can be decoupled into K minimization problems of the
following form: {

min
uuuk

‖aaak−
√

gkuuuk‖2

subject to ‖uuuk‖2 = 1.
(10.44)

The solution to the above nearest-vector problem is simply given by

uuuk =
aaak

‖aaak‖
. (10.45)

For fixed uuu, the problem Psynt
w is equivalent to the following QCQP:

{
min

www
wwwHAAAHAAAwww−2ℜ{(uuu⊙bbb)HAAAwww}

subject to wwwHGGGwww≤ γ .
(10.46)

Note that the positive definiteness of the matrices AAAHAAA and GGG ensures the
convexity of the above QCQP. As a result, this QCQP can be solved efficiently
via interior point methods or Lagrange multipliers [195].

• Transmit sequence synthesis: A technique similar to the above one can be
used for transmit sequence synthesis. More precisely, we have

pppH
k

(
(xxH)∗⊙WWW ⋆

)
pppk = xH

(
(pppk pppH

k )
∗⊙WWW ⋆

)
︸ ︷︷ ︸

T̃TT k

x. (10.47)

Therefore, minimization of the following metric can be employed for transmit
sequence synthesis:

‖ÃAAx− ũuu⊙bbb‖2 (10.48)

where T̃TT k = ṼVV kṼVV
H

k , ÃAA
H
= [ṼVV 1,ṼVV 2, · · ·,ṼVV K ] and ũuu,bbb are defined similarly to the

case of receive filter design (ũuuk ∈ Cd̃k with d̃k being the rank of ṼVV k). Note that
for transmit sequence synthesis, the similarity and energy constraints should
be taken into account in addition to the denominator of the S̃INRrelax(ν). Con-
sequently, we consider the following optimization problem to synthesize the
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sought transmit sequence:

Psynt
x





min
x,ũuu

‖ÃAAx− ũuu⊙bbb‖2

subject to xHΘΘΘccc(WWW ⋆)x≤ ζ
‖x‖2 ≤ e

ℜ{xHx0} ≥ ε
‖ũuuk‖2 = 1, 1≤ k ≤ K

(10.49)

where ζ = tr{XXX⋆ΘΘΘccc(WWW ⋆)} and ε = e− δ/2. Let x̄ denote the optimal solu-
tion x to the above problem. Note that x⋆ =

√
e x̄
‖x̄‖ is such that ‖x⋆‖2 = e,

and ℜ{xH
⋆ x0} ≥ ε . Therefore, one can consider x⋆ as the optimized transmit

sequence x⋆ which lies in the desired similarity region and is feasible for the
problem P.

The non-convex optimization problem Psynt
x can be dealt with via a cyclic

minimization similar to that used for Psynt
w . For fixed x, the solution to the kth

resulting nearest-vector problem is given by

ũuuk =
ãaak

‖ãaak‖
(10.50)

where ãaak includes the entries of ÃAAx corresponding to ũuuk for 1 ≤ k ≤ K. On
the other hand, the case of fixed uuu is handled by solving the following convex
QCQP:





min
x

xH
(

ÃAA
H

ÃAA
)

x−2ℜ{(ũuu⊙bbb)H ÃAAx}
subject to xHΘΘΘccc(WWW ⋆)x≤ ζ

‖x‖2 ≤ e

ℜ{xHx0} ≥ ε .

(10.51)

Remark 4: Note that the x⋆ synthesized via the rank-one decomposition is a
feasible point for the above convex QCQP. Indeed, the output of the rank-one
decomposition procedure in Section IV-A can be used as a feasible starting
point for the proposed cyclic minimization to obtain the transmit sequence.
This can also be done for the receive filter synthesis. �

The steps of DESIDE can be summarized as in Table 10.2. The first step
consists of applying DESIDE-R to the relaxed problem P1 (see Table 10.1).
Steps 2 and 3 aim to synthesize high quality receive filters and transmit se-
quences, respectively. The cyclic minimizations in step 2 is terminated when
a pre-defined stop criterion is satisfied; e.g. ‖www(i+1)−www(i)‖ ≤ ξ for a given
ξ > 0 where i denotes the iteration number. A similar criterion can be used
to terminate the algorithm in the step 3. Note that the obtained x after sat-
isfying the stop criterion in the step 3 is scaled to obtain x⋆ with energy e.
The complexity of DESIDE can be addressed considering DESIDE-R and the
synthesis stage. The complexity of each iteration of DESIDE-R is O(N3.5)
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(see the discussion above Table I). The complexity of each iteration of the
proposed synthesis stage is determined by the complexity of solving the QC-
QPs in eqs. (10.46) and (10.51). These QCQPs can be solved via described
methods in [185] with O(N3) complexity.

Table 10.2. The DESIDE Method for obtaining Doppler robust pair of transmit se-

quence and receive filter

Step 1 (Solving the relaxed problem): Apply DESIDE-R method to the op-
timization problem P1 to obtain the pair of (WWW ⋆,XXX⋆).
Step 2 (Receive filter synthesis): If WWW ⋆ is rank-one, perform an eigen-
decomposition WWW ⋆ = www⋆wwwH

⋆ to obtain www⋆. Otherwise, initialize www with a
random vector in CN and do the following operations until a pre-defined stop
criterion is satisfied:

• Obtain uuu by solving the optimization problem in (10.43) using
(10.45).

• Solve the convex QCQP in (10.46) to obtain www.

Step 3 (Transmit sequence synthesis): If XXX⋆ is rank-one, perform an eigen-
decomposition XXX⋆ = xxH to obtain x⋆ = xe j arg (xH x0). Otherwise, initialize
x with a random vector in CN and do the following operations until a pre-
defined stop criterion is satisfied:

• Obtain ũuu by solving the optimization problem in (10.49) for fixed x

using (10.50).
• Solve the convex QCQP in (10.51) to obtain x.

10.5 Numerical Examples
In this section we provide several numerical examples to examine the effec-
tiveness of DESIDE method. Throughout the simulations, unless otherwise
explicitly stated, we consider a code length4 N = 20, number of interfering
range rings Nc = 2, and number azimuth sectors L = 100. The interfering
signals backscattered from various azimuth sectors are weighted according to
the azimuth beam-pattern characteristic of a typical linear array (see [176] for
details). A uniformly distributed clutter is assumed with σ 2

(k,i) = σ 2 = 100 for
all (k, i). In addition, we let the Doppler shifts of the clutter scatterers be uni-
formly distributed over the interval Ωc = [ν̄d− ε

2 , ν̄d +
ε
2 ] = [−0.1,0.1] [192].

As to the target, we set αT = 1. Concerning the covariance matrix MMM of the
signal-independent interference, it is assumed that MMMm,n = ρ |m−n| with param-
eter ρ . Regarding the similarity constraint, the generalized Barker code is used

4It is expected that the output SINR of the receive filter increases by increasing N due to the
increase in the number of degrees of freedom for the design problem (see e.g. [217]) and the
longer coherent processing interval [192].
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for sequence x0 [218]. This is a constant modulus sequence which has good
correlation properties [176]. The size of the similarity region is controlled
by δ0 = δ/e. The total transmit energy e is supposed to be equal to the se-
quence length N. The convex optimization problems are solved via the CVX
toolbox [193].

10.5.1 The Effect of the Design Parameters
• The width of Ω and the correlations between the interference samples

The performance of the system generally depends on the width of target
Doppler shift interval Ω and the correlations between the interference samples
(controlled by the parameter ρ). Herein the non-robust design (i.e., with a
priori known target Doppler shift ν̃) of the transmit sequence and receive filter
(with a similarity constraint) [176], i.e. the solution to the following problem:





max
x,www

SINR(ν̃)

subject to ‖x‖2 = e

‖x−x0‖2 ≤ δ

(10.52)

is considered as a benchmark for comparisons. The effects of the width of
interval Ω and the value of ρ are investigated in Fig. 10.1, where the values
of SINR(ν) obtained by DESIDE (with µ = 10−3 and δ0 = 0.5) are compared
with those of the non-robust design for two intervals Ω = [1,3], Ω = [1.5,2.5]
and for ρ ∈ {0,0.2,0.5}. For the non-robust design, we reasonably set ν̃ equal
to νl+νu

2 with Ω = [νl,νu]. In all examples, it is observed that DESIDE pro-
vides a robust SINR(ν) over the considered interval Ω of target Doppler shifts.
The minimum value of SINR(ν) obtained by DESIDE outperforms that of the
non-robust design significantly. The superiority of DESIDE is highlighted
by observing that for a considerable range of the target Doppler shift ν , the
SINR(ν) obtained by DESIDE is around 10 dB larger than that of the non-
robust design. Furthermore, for any fixed ρ , the minimum value of SINR(ν)
in the interval Ω = [1,3] is less than that for Ω = [1.5,2.5]. As expected, the
wider range of target Doppler shift leads to a more restricted design. Another
observation is that for a fixed interval Ω, the minimum values of SINR(ν) in-
crease as ρ increases. The observation is compatible with the behavior of the
upper bound on the minν∈Ω S̃INRrelax(ν) in (10.29)- by increasing the value
of ρ , the value of λmin(MMM) decreases and the upper bound on the S̃INRrelax(ν)
becomes larger. Note that in these examples, the ranks of the optimal WWW ⋆ and
XXX⋆ were equal to one (see section 10.5.4) and hence the obtained pairs of the
transmit sequence and the receive filter are optimal for the problem P.
• Size of the similarity region

Examples for the robust design of transmit sequences and receive filters
with various sizes of similarity region are now provided. The values of SINR(ν)
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obtained by DESIDE for different δ0 in {0.01,0.2,0.4,0.8} are depicted in
Fig. 10.2. The robustness property with respect to the target Doppler shift ν is
observed in all examples. As expected, the larger the δ0, the larger the worst
value of the SINR(ν). This is due to a larger feasibility set for the optimization
problem S DPX and the fact that the optimal WWW ⋆ and XXX⋆ are rank-one.

10.5.2 Convergence of DESIDE-R
Examples of the convergence of DESIDE-R are depicted in Fig. 10.3. This fig-
ure shows the values of the objective function (in the maximization problem
P1) obtained through the iterations κ ∈N (with κ denoting the iteration num-
ber) for ρ = 0.2, δ0 = 0.5, as well as two intervals Ω= [1,3] and Ω= [1.5,2.5].
As expected, the cyclic maximization approach which is devised to tackle P1

leads to a monotonically increasing objective function minν∈Ω S̃INRrelax(ν).
The values of the objective function for Ω = [1.5,2.5] are larger than those for
Ω = [1,3] (see the discussions associated with Fig. 10.1). Note that both WWW ⋆

and XXX⋆ are rank-one here, and as a result, the obtained pairs of the transmit
sequence and receive filter are optimal for the original design problem P.

10.5.3 A Fast-Time Coding Example
As mentioned earlier (see Remark 1), the problem formulation and the de-
sign method can also be applied to fast-time coding systems. We present an
example of such an application by considering N = 32 and Nc = N. The tar-
get Doppler shift ν is assumed to be in the interval Ω = [−0.1,0.1]. The
considered maximum target Doppler shift corresponds to a target with an ap-
proximate velocity of Mach 4 illuminating by an L-band radar of sampling
frequency 1 MHz. Owing to the fact that normalized Doppler shift in this case
is proportional to the system bandwidth, we neglect the effect of the Doppler
shifts of clutter scatterers. Fig. 10.4 shows the obtained SINR(ν) by DESIDE
as well as the results for the non-robust design, for σ 2 = 10, δ0 = 1, and ρ = 0.
It is observed that employing DESIDE leads to performance robustness of the
system. In this example, the result obtained by DESIDE outperforms that of
the non-robust design for |ν | ≥ 0.035. Moreover, the obtained WWW ⋆ and XXX⋆

were rank-one too, similar to the examples presented earlier.

10.5.4 The Synthesis Algorithms
The performance analysis of the synthesis algorithms is performed by consid-
ering cases where the ranks of the solutions to the relaxed problem P1 are
larger than one. We consider 20 random starting points for the synthesis algo-
rithms (with ξ = 10−3) and report the best result. In the first example, we as-
sume Ω= [1,2], Ωc = [−0.25,0.25], σ 2 = 100, δ0 = 0.1. For a random initial-
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ization, DESIDE-R provides (WWW ⋆,XXX⋆) with rank(WWW ⋆) = 2 and rank(XXX⋆) = 1
(it was numerically observed that as long as Ω∩Ωc = ∅, the rank of W∗ is
equal to one for most of the employed random initial points). The optimal
ESD corresponding to the pair (WWW ⋆,XXX⋆) is shown in Fig. 10.5(a). The values
of SINR(ν) for the synthesized www⋆ and x⋆ are shown in Fig. 10.5(b). This fig-
ure also includes the optimal S̃INRrelax(ν) (corresponding to (WWW ⋆,XXX⋆)) and
the result of applying the rank-one decomposition method. For the latter
method, the best result is obtained with ν⋆ = 1.71, ν ′ = 1.3, and ν ′′ = 1.5.
It is observed that using the proposed synthesis algorithm leads to values of
SINR(ν) that are close to the optimal ones. Fig. 10.5(c) shows the optimal
S̃INRrelax(ν), SINR(ν) for (www⋆,x⋆) synthesized via the proposed algorithm
and the result of rank-one decomposition method for another case in which
Ω = [1,3]. The performance of the rank-one decomposition method is de-
graded considerably whereas the difference between the results of the pro-
posed algorithm and S̃INRrelax(ν) is minor. This can be explained by noting
that the rank-one decomposition method can consider the values of the optimal
S̃INRrelax(ν) at up to three points, i.e., ν⋆,ν

′, and ν ′′. On the other hand, the
proposed method considers a constrained synthesis problem to approximate
the values of optimal S̃INRrelax(ν) for an arbitrary set of discrete ν . To mea-
sure the goodness of the synthesis algorithms, we define the following loss
metric:

L , 10log

(
minν∈Ω SINR(ν)

minν∈Ω S̃INRrelax(ν)

)
. (10.53)

In this example, the loss metric L for the proposed method and the rank-one
decomposition method are equal to−0.25 dB and−4.1 dB, respectively. Next
we study the effect of the number of optimal ESD samples, i.e. K, on the per-
formance of the proposed synthesis stage. The results for a transmit sequence
synthesis example are illustrated in Fig. 10.5(d). For this example, we have
Ω = [0,2],Ωc = [−0.125,0.125], and δ0 = 0.3. Note that it was numerically
observed that the rank of XXX⋆ is equal to one as long as Ω∩Ωc =∅. The figure
shows the absolute values of loss metric L versus K. It is seen that the per-
formance improvement for K ≥ 50 is negligible. Another observation is that
there is about −2 dB loss even for sufficiently large values of K. This might
be due to imposing more constraints in the sequence synthesis as compared
to the case of filter synthesis. In the example of Fig. 10.5(d), the loss of the
rank-decomposition method is around−13 dB; here the latter method can take
into account just one point of the optimal S̃INRrelax(ν), i.e., ν⋆.

10.6 Concluding Remarks
A joint robust design of the transmit sequence and receive filter was consid-
ered for cases where the Doppler shift of the target is unknown. A novel
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method (called DESIDE) was proposed to tackle the design problem under
the similarity constraint. The main results can be summarized as follows:
• The robust design problem was cast as a max-min problem by using the

model which considers the effects of the interfering clutter scatterers at
various range-azimuth bins and internal Doppler shifts of these scatter-
ers. It was shown that for a given optimal transmit sequence, the problem
can equivalently be written as a QCQP with infinitely many non-convex
constraints and hence the design problem in general belongs to a class
of NP-hard problems.
• DESIDE was devised to tackle the design problem. The method consists

of solving a relaxed version of the design problem (via DESIDE-R) as
well as a synthesis stage:

– DESIDE-R was based on a reformulation of SINR(ν) by consider-
ing WWW = wwwwwwH and XXX = xxH , relaxation of the rank-one constraints
on the aforementioned matrices, and cyclic maximization of the re-
laxed problem. For fixed receive filter, the relaxed optimization
problem was equivalently expressed as an SDP by using a transfor-
mation (inspired by Charnes-Cooper transform) and an SDP rep-
resentation of the infinitely many affine constraints. Using a simi-
lar technique, an SDP was obtained in the fixed transmit sequence
case.

– New algorithms were devised to synthesize the receive filters and
transmit sequences from the solutions to the relaxed problem. The
synthesis algorithms aim to fit the S̃INRrelax(ν) values associated
with the solutions provided by DESIDE-R. The synthesis stage is
cast as constrained non-convex problems which were dealt with via
cyclic minimization.

• The effectiveness of the devised methods was illustrated by providing
several numerical examples. It was shown that the DESIDE system per-
formance possesses a considerable robustness with respect to the target
Doppler shift. The numerical analysis of the proposed synthesis algo-
rithms confirms that high quality pairs of receive filter and transmit se-
quence can be synthesized from the solutions to the relaxed problem.

The design problem considered in this chapter is based on known parame-
ters of clutter and signal-independent interference. Robust design of transmit
sequences and receive filters with respect to uncertainties in clutter and inter-
ference parameters in addition to the target Doppler shift is a possible topic
for future research.
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10.7 Appendix

10.7.1 Appendix A: Proof of Lemma 1

Note that the numerator of SINR(ν) in (10.2) can be rewritten as

|αT |
2
∣

∣wwwH (x⊙ ppp(ν))
∣

∣

2
= |αT |

2wwwH(x⊙ ppp(ν))(x⊙ ppp(ν))Hwww (10.54)

= |αT |
2(x⊙ ppp(ν))HwwwwwwH(x⊙ ppp(ν))

= |αT |
2 ppp(ν)H

(

wwwwwwH ⊙
(

xx
H
)∗
)

ppp(ν)

where in the last equality we have used standard properties of the Hadamard

product [211]. As to the denominator of SINR(ν) in (10.2), it is straightfor-

ward to verify that, for all (k, i),

ΓΓΓ(x,(k, i)) = Diag(x)ΦΦΦ
ν̄d(k,i)
ε(k,i)

Diag(x)H (10.55)

= xx
H ⊙ΦΦΦ

ν̄d(k,i)
ε(k,i)

.

Using the matrix variable XXX = xx
H and substituting the above identity in (10.3)

we obtain that

ΣΣΣccc (XXX), ΣΣΣccc (x) =
Nc−1

∑
k=0

L−1

∑
i=0

σ 2
(k,i)JJJk

(

XXX ⊙ΦΦΦ
ν̄d(k,i)
ε(k,i)

)

JJJT
k . (10.56)

As a result, eq. (10.54) and (10.56) yield the expression of SINR(ν) in (10.9).

To derive the alternative expression of SINR(ν) in (10.10), we begin by

considering the result of the Lemma 3.1 in [176] which implies

wwwHΣΣΣccc (x)www =
Nc

∑
k=0

L−1

∑
k=0

σ 2
(k,i)x

T Diag(JJJ−kwww∗)ΦΦΦ
ν̄d(k,i)
ε(k,i)

Diag(JJJ−kwww)x∗.
(10.57)

Note also that

Diag(JJJ−kwww∗)ΦΦΦ
ν̄d(k,i)
ε(k,i)

Diag(JJJ−kwww) = (JJJ−kwww∗wwwT JJJT
−k)⊙ΦΦΦ

ν̄d(k,i)
ε(k,i)

, ∀k. (10.58)

Therefore, using (10.58) as well as the fact that the covariance matrix ΣΣΣccc (x)�
000, we can write

wwwHΣΣΣccc (x)www = x
HΘΘΘccc (WWW )x (10.59)

where WWW = wwwwwwH and

ΘΘΘccc (WWW ) =
Nc−1

∑
k=0

L−1

∑
i=0

σ 2
(k,i)

(

(

JJJT
k WWW JJJk

)

⊙

(

ΦΦΦ
ν̄d(k,i)
ε(k,i)

)∗)

. (10.60)

Now let β = wwwHMMMwww, and observe that

wwwHΣΣΣccc (x)www+wwwHMMMwww = tr

{(

ΘΘΘccc(WWW )+

(

β

e

)

III

)

XXX

}

. (10.61)
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The above identity and eq. (10.54) prove the validity of the alternative expres-
sion of SINR(ν) in (10.10). �
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(a) (b)

(c) (d)

(e) (f)

Figure 10.1. Design examples for various target Doppler shift intervals Ω and various
ρ : (a) Ω= [1,3] and ρ = 0.5, (b) Ω= [1.5,2.5] and ρ = 0.5, (c) Ω= [1,3] and ρ = 0.2,
(d) Ω = [1.5,2.5] and ρ = 0.2, (e) Ω = [1,3] and ρ = 0, (f) Ω = [1.5,2.5] and ρ = 0.
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Figure 10.2. Design examples for various sizes of the similarity region: SINR(ν)
obtained by DESIDE versus target Doppler shift ν for δ0 = 0.01,0.2,0.4, and 0.8.

Figure 10.3. The values of minν∈Ω S̃INRrelax(ν) obtained at different iterations of
DESIDE-R for ρ = 0.2, δ = 0.5 as well as two intervals Ω = [1,3] and Ω = [1.5,2.5].
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Figure 10.4. Design example for a fast-time coding system.
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Figure 10.5. Results obtained with the proposed synthesis algorithms: (a) an optimal
ESD, (b) results of the filter synthesis corresponding to part (a), (c) another filter
synthesis example, (d) absolute value of the loss metric L of the transmit sequence
synthesis versus the number of ESD samples K for the considered transmit sequence
synthesis example. The zoomed areas in (b) and (c) show the values of the optimal
S̃INRrelax(ν) and SINR(ν) of the proposed synthesis method in the neighborhoods of
their minimum values.
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Part III:
Information-Theoretic Criteria





11. Unified Optimization Framework for
Multi-Static Radar Code Design using
Information-Theoretic Criteria
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Abstract

In this chapter, we study the problem of code design to improve the detection performance of
multi-static radar in the presence of clutter (i.e., a signal-dependent interference). To this end,
we briefly present a discrete-time formulation of the problem as well as the optimal detector in
the presence of Gaussian clutter. Due to the lack of analytical expression for receiver operation
characteristic (ROC), code design based on ROC is not feasible. Therefore, we consider several
popular information-theoretic criteria including Bhattacharyya distance, Kullback-Leibler (KL)
divergence, J-divergence, and mutual information (MI) as design metrics. The code optimiza-
tion problems associated with different information-theoretic criteria are obtained and cast un-
der a unified framework. We propose two general methods based on Majorization-Minimization
to tackle the optimization problems in the framework. The first method provides optimal so-
lutions via successive majorizations whereas the second one consists of a majorization step, a
relaxation, and a synthesis stage. Moreover, derivations of the proposed methods are extended
to tackle the code design problems with a peak-to-average ratio power (PAR) constraint. Using
numerical investigations, a general analysis of the coded system performance, computational
efficiency of the proposed methods, and the behavior of the information-theoretic criteria is
provided.

Keywords: Code design, information-theoretic criteria, multi-static radar, majorization-

minimization, peak-to-average power ratio (PAR)

11.1 Introduction
Signal design for detection performance improvement has been a long-term
research topic in the radar literature.

Active radars deal with both signal-dependent as well as signal-independent
interferences. Indeed, the signals backscattered from undesired obstacles (kn-
own as clutter) depend on the transmit signal, whereas noise, unwanted emis-
sions, and jammer emissions do not depend on the transmit signal.

The effect of the clutter has been considered in early studies for single-
input single-output (SISO) systems [155–159]. The aim of these studies is to
maximize the signal-to-interference-plus-noise-ratio (SINR) by means of joint
optimization of the transmit signal and the receive filter. The results of [219]
and [220] are recent extensions of [159] which use different methods to tackle
some related problems. In [160], a solution for the optimal energy spectral
density (ESD) of the transmit signal as well as a method for approximate syn-
thesis of the signal have been presented for SISO systems. Problems related
to that of [160] have been considered in [161] and [176] for cases where prac-
tical constraints such as low peak-to-average-power ratio (PAR) and similarity
to a given code are imposed in the design stage. The work of [221] employs
mutual information (MI) as design metric for target detection and estimation.
In [164], two signal design approaches based on MI and SINR have been stud-
ied for extended target recognition in SISO systems. KL-divergence has been
considered in [222] for target classification.

In multi-static scenarios, the interpretation of the detection performance
is not easy in general and in several cases expressions for detection perfor-



mance are too complicated to be amenable to utilization as design metrics (see
e.g. [182] [184]). In such circumstances, information-theoretic criteria can be
considered as design metrics to guarantee some types of optimality for the ob-
tained signals. For example, in [184] an approach similar to that of [160] has
been applied to the case of multi-static radars with one transmit antenna, and a
concave approximation of the J-divergence has been used as the design metric.
MI has been considered as a design metric for non-orthogonal multiple-input
multiple-output (MIMO) radar signal design in [171] for clutter-free scenarios.
A problem related to that of [171] has been studied in [223] where Kullback-
Leibler (KL) divergence and J-divergence are used as design metrics. In [169],
KL-divergence and MI have been taken into account for MIMO radar signal
design in the absence of clutter. Information-theoretic criteria have also been
used in research subjects related to the detection problem. The authors in [168]
study the target classification for MIMO radars using minimum mean-square
error (MMSE) and the MI criterion assuming no clutter. The reference [183]
employs Bhatacharyya distance, KL-divergence, and J-divergence for signal
design of a communication system with multiple transmit antennas. MI has
also been used to investigate the effect of the jammer on MIMO radar perfor-
mance in clutter-free situations in [170].

In this chapter, we provide a unified framework for multi-static radar code
design in the presence of clutter. Although closed-form expressions for the
probability of detection and the probability of false alarm of the optimal de-
tector are available, the analytical receiver operating characteristic (ROC) does
not exist. As such, we employ several information-theoretic criteria that are
widely used in the literature (see e.g. [169, 171, 183]), namely Bhattacharyya
distance, KL-divergence, J-divergence, and MI as metrics for code design.
In particular, we express these metrics in terms of the code vector and then
present corresponding optimization problems. We show that the arising opti-
mization problems can be conveniently dealt with using a unified framework.
To tackle the code design problem, two novel methods based on Majorization-
Minimization (MaMi) technique are devised. In the first method (which we
call Sv-MaMi) successive majorizations are employed, whereas the second
one (which we call Re-MaMi) is based on majorizations, a relaxation, and
a synthesis stage. We also extend the proposed methods to the code design
problem with PAR constraints and to the case of multiple transmitters (with
orthogonal transmission). To the best of our knowledge, no study of code de-
sign with PAR constraints using information-theoretic criteria was conducted
prior to this work.

The rest of this chapter is organized as follows. In Section 11.2, we present
a discrete-time formulation of the detection problem as well as the optimal
detector. We briefly review different information-theoretic criteria in Section
11.3 and cast the associated optimization problems under a unified framework.
Section 11.4 contains the derivations of the steps of Sv-MaMi to deal with the
optimization problems formulated in the unified framework presented in Sec-
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tion 11.3. Re-MaMi is introduced in Section 11.5 as an alternative approach
to obtain optimized codes of the arising optimization problems. Extensions
of the design problem to the cases of PAR-constrained design and multiple
transmitters (with orthogonal transmission) are discussed in Section 11.6. Nu-
merical examples are provided in Section 11.7. Finally, conclusions are drawn
in Section 11.8.

Notation: We use bold lowercase letters for vectors and bold uppercase let-
ters for matrices. (.)T , (.)∗ and (.)H denote the vector/matrix transpose, the
complex conjugate, and the Hermitian transpose, respectively. IIIN represents
the identity matrix in CN×N . ‖XXX‖F denotes the Frobenius norm of a matrix
XXX . The notations µmax(·) and µmin(·) indicate the principal and the minor
eigenvalues of a Hermitian matrix, respectively. The l2-norm of a vector x is
denoted by ‖x‖2. tr(.) is the trace of a square matrix argument. blkDiag(.) de-
notes the block diagonal matrix formed by its arguments. We write AAA� BBB iff
AAA−BBB is positive semi-definite, and AAA≻ BBB iff AAA−BBB is positive-definite. E{.}
stands for the statistical expectation operator. CN (ω ,ΣΣΣ) denotes the circu-
larly symmetric complex Gaussian distribution with mean ω and covariance
ΣΣΣ. The symbol∼ is used to show the distribution of a random variable/vector.
Finally, ℜ(.) denotes the real-part of the complex-valued argument.

11.2 Data Modeling and the Optimal Detector
11.2.1 Data Modeling
We consider a multi-static pulsed-radar with one transmitter and Nr widely
separated receive antennas. The baseband transmit signal can be formulated
as

s(t) =
N

∑
n=1

anφ(t− [n−1]TP) (11.1)

where φ(t) is the basic unit-energy transmit pulse (with time duration τp), TP is
the pulse repetition period (TP≫ τp), and {an}N

n=1 are the deterministic coef-
ficients that are to be “optimally” determined. The vector aaa , [a1 a2 . . . aN ]

T

is referred to as the code vector of the radar system.
The baseband signal received at the kth antenna backscattered from a sta-

tionary target can be written as

rk(t) = αks(t− τk)+ ck(t)+wk(t) (11.2)

where αk is the amplitude of the target return (including the channel effects),
ck(t) is the clutter component, wk(t) is a Gaussian random process represent-
ing the signal-independent interference component (including various types of
noise, interference, and jamming), and τk is the time corresponding to propa-
gation delay for the path from the transmitter to the target and thereafter to the
kth receiver.
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In what follows, we consider a few typical assumptions in the radar litera-
ture which are key to the derivations that will appear in this chapter.

Assumption 1. We assume that the clutter component at the kth receiver is

composed of signal echoes produced by many stationary point scatterers (lo-

cated within unambiguous-range with respect to the kth receiver [192]). The

amplitudes and arrival times of the echoes are assumed to be statistically in-

dependent [175, 225].

According to Assumption 1, the clutter component can be expressed as

ck(t) =
Nc

∑
v=1

ρk,vs(t− τk,v) (11.3)

where Nc is the number of point scatterers, ρk,v is the “amplitude” of the vth

scatterer observed by the kth receive antenna, and τk,v is the propagation delay
at the kth receiver corresponding to the vth scatterer for which we have τk,v ≤
Tp.

At the kth receiver, the received signal is matched filtered by φ ∗(−t). Then
range-gating is performed by sampling the output of the matched filter at time
slots corresponding to a specific radar cell. Note that the detection for a spe-
cific radar cell can be accomplished using a successive chain of operations in-
cluding directional transmission and reception as well as range-gating at each
receiver [226].

The discrete-time signal corresponding to a certain radar cell for the kth

receiver can be described as (see Appendix A):

rk,n = αkan + ρ̃kan +wk,n (11.4)

where rk,n is the output of the matched filter at the kth receiver sampled at
t = (n−1)Tp+τk, ρ̃k is a zero-mean complex Gaussian random variable (RV)
with variance σ 2

c,k associated with the clutter scatterers, and wk,n denotes the

nth sample of wk(t) when filtered by φ ∗(−t) at the kth receiver. Using a vector
notation, we can write

rk , sk + ck +wk = αka+ ρ̃ka+wk (11.5)

where rk , [rk,1 rk,2 · · · rk,N ]
T , wk , [wk,1 wk,2 · · · wk,N ]

T , sssk , αkaaa, and
ccck , ρ̃kaaa.

We further make the following assumptions:

Assumption 2. The Swerling-I model is used for the amplitude of the target

echo, i.e. αk ∼ CN (0,σ 2
k ) for any stationary target [160, 184].
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Assumption 3. The second-order statistics of the target, clutter, and interfer-

ence components at the kth receiver (i.e. σ 2
k ,σ

2
c,k, and E{wwwkwwwH

k }) are assumed

to be known.

The above assumption is common for radar systems using cognitive (knowledge-
aided) methods that employ geographical, meteorological, National Land Cover
Data (NLCD), and the information of the previous scan to interactively learn
and extract the characteristics of the environment (see e.g. [162,176,177,227,
228]).

Assumption 4. The random variables in the set {αk}Nr
k=1 are statistically in-

dependent. Such a statistical independence is also considered for random

variables/vectors in the sets {ρ̃k}Nr
k=1 and {wwwk}Nr

k=1.

Assumption 4 is well-justified, due to the fact that the receivers are widely
separated [171, 184].

11.2.2 Optimal Detector
Using all the received signals, the target detection leads to the following binary
hypothesis problem {

H0 : r = c+w

H1 : r = s+ c+www
(11.6)

where r, s, c, and www are defined by column-wise stacking of rk,sk,ck, and
wk for k = 1,2, ...,Nr; more precisely, r , [rT

1 · · · rT
Nr
]T , s , [sT

1 · · · sT
Nr
]T ,

c , [cT
1 · · · cT

Nr
]T , and w , [wT

1 · · · wT
Nr
]T .

Let {MMMk} denote the covariance matrices of Gaussian random vectors {wwwk}.
Further let SSS,CCC, and MMM represent the the covariance matrices of sss,ccc, and www,
respectively. Using the aforementioned assumptions we have that

S = blkDiag(σ 2
1 aaH ,σ 2

2 aaH , . . . ,σ 2
Nr

aaH)

C = blkDiag(σ 2
c,1aaH ,σ 2

c,2aaH , . . . ,σ 2
c,Nr

aaH)

MMM = blkDiag(M1,M2, . . . ,MNr ). (11.7)

Consequently, the underlying detection problem can be equivalently ex-
pressed as {

H0 : x∼ CN (0,I)

H1 : x∼ CN (0,DSD+ I)
(11.8)

where x,Dr, D, (C+MMM)−
1
2 = blkDiag(DDD1,DDD2, . . . ,DDDNr) with Dk , (σ 2

c,kaaH+

Mk)
− 1

2 . Note that both DDD and SSS in (11.8) depend on the transmit code aaa.
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The optimal detector for (11.8) can be obtained by applying the estimator-
correlator theorem [178, chapter 13] as:

Nr

∑
k=1

σ 2
k xH

k DkaaHDk(σ
2
k DkaaHDk + I)−1xk

H0
≶
H1

η (11.9)

where η is the detection threshold, and

xk = Dkrk . (11.10)

In particular, by defining

λk , σ 2
k aaaHDDD2

kaaa, (11.11)

θk ,
aHDkxk

‖aaaHDDDk‖2
,

the canonical form of the detector in (11.9) can be obtained as

T (θθθ),
Nr

∑
k=1

λk|θk|2
1+λk

H0
≶
H1

η (11.12)

where θθθ , [θ1 θ2 · · · θNr ]
T .

11.3 Optimal Code Design
In this section, we aim to obtain the optimal transmit signals by judiciously
designing the code vector aaa. A reasonable approach to code design is to ex-
ploit the knowledge of the analytical receiver operating characteristic (ROC)
which enables the designer to obtain the largest possible value of the proba-
bility of detection Pd for a given value of the probability of false alarm Pf a via
optimal selection of the design parameters. However, this method cannot be
used if the analytical ROC is not amenable to a closed-form expression which
is the case for the problem considered in this chapter. Particularly, even though
closed-form expressions for Pd and Pf a can be obtained by applying the results
of [182], derivation of the analytical ROC is not possible. In such cases, one
can resort to information-theoretic criteria including Bhattacharyya distance,
KL-divergence, J-divergence, and MI (see the Introduction). In what follows,
the goal is to improve the detection performance by maximizing the aforemen-
tioned information-theoretic criteria over the code vector aaa. Interestingly, the
corresponding optimization problems can be dealt with conveniently using a
unified optimization framework.

11.3.1 Information-Theoretic Design Metrics
• Bhattacharyya distance: Bhattacharyya distance B measures the distance
between two probability density functions (pdf). In a binary hypothesis testing
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problem T (H0,H1), the design parameters can be chosen such that the Bhat-
tacharyya distance B between the pdfs of the observation under H0 and H1

is maximized. Note that the Bhattacharyya distance provides an upper bound
on Pf a, and at the same time yields a lower bound on Pd [183]. Therefore,
maximization of the Bhattacharyya distance minimizes the upper bound on
Pf a while it maximizes the lower bound on Pd

1.
The Bhattacharyya distance B for two multivariate Gaussian distributions,

C N (0,ΣΣΣ1) and CN (0,ΣΣΣ2), can be expressed as [183]:

B = log

(
det(0.5(ΣΣΣ1 +ΣΣΣ2))√

det(ΣΣΣ1)det(ΣΣΣ2)

)
. (11.13)

By applying (11.13) to the problem in (11.8) we obtain

B = log

(
det(III +0.5DDDSSSDDD)√

det(III +DDDSSSDDD)

)

=
Nr

∑
k=1

log


det(I+0.5σ 2

k DkaaHDk)√
det(I+σ 2

k DkaaHDk)




=
Nr

∑
k=1

log

(
1+0.5λk√

1+λk

)
. (11.14)

The second equality in (11.14) holds due to the block-diagonal structure of the
matrices SSS and DDD. The last equality follows from the fact that the eigenvalues
of the matrix I+σ 2

k DkaaHDk include (N− 1) ones and the maximum eigen-
value which is given by 1+σ 2

k aaaHD2
ka = 1+ λk. Eventually the underlying

code design problem can be formulated as

max
a,λk

Nr

∑
k=1

log

(
1+0.5λk√

1+λk

)

subject to λk = σ 2
k aaaH(σ 2

c,kaaH +Mk)
−1aaa (11.15)

‖aaa‖2
2 6 e,

where e denotes the total transmit energy.
• KL-divergence: The KL-divergence D( f0‖ f1) is another metric to mea-

sure the “distance" between two pdfs f0 and f1. Consider a binary hypothesis
testing problem with f0 = f (rrr|H0) and f1 = f (rrr|H1). The Stein Lemma states
that for any fixed Pf a [183]

D ( f (rrr|H0)‖ f (rrr|H1)) = lim
N→∞

(
− 1

N
log(1−Pd)

)
(11.16)

1This is due to the fact that Pd ≥ 1−δ−1/2e−B and Pf a ≤ δ 1/2e−B where δ is the likelihood
threshold [229].
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which implies that (for any fixed Pf a) the maximization of the KL-divergence
metric leads to an asymptotic maximization of Pd (we refer the interested
reader to [230, Chapter 4], [183], [231, Theorem 1], [232], and references
therein for some bounds on the detection performance associated with the KL-
divergence). In addition, we have that [183]

D( f (rrr|H0)‖ f (rrr|H1)) =−E{log(L ) |H0} (11.17)

where L is the likelihood ratio defined as

L ,
f (rrr|H1)

f (rrr|H0)
.

Using (11.12), (11.17) and the identity log(L ) = T (θθθ)− logdet(I+DSD)
[178], the KL-divergence associated with (11.8) can be obtained as

D ( f (rrr|H0)‖ f (rrr|H1)) =
Nr

∑
k=1

{
log(1+λk)−

λk

1+λk

}
.

As a result, the problem of code design by maximizing the KL-divergence
metric can be stated as:

max
a,λk

Nr

∑
k=1

{
log(1+λk)−

λk

1+λk

}

subject to λk = σ 2
k aaaH(σ 2

c,kaaH +Mk)
−1aaa (11.18)

‖aaa‖2
2 6 e.

• J-divergence: The J-divergence metric, denoted herein as J , is another
measure of the distance between two pdfs and it is defined as

J , D( f0‖ f1)+D( f1‖ f0). (11.19)

According to Stein Lemma [230, Chapter 4], in a binary hypothesis testing
problem (with f0 = f (rrr|H0) and f1 = f (rrr|H1)), and for any fixed Pd , we can
write

D ( f (rrr|H1)‖ f (rrr|H0)) = lim
N→∞

(
− 1

N
log(Pf a)

)
. (11.20)

Eq. (11.16) and (11.20) along with other properties and bounds associated
with the J-divergence (see e.g [230, Chapter 4], [231, Theorem 1], [233],
[183], and references therein) have motivated several authors to consider J
as the design metric for radar signal design (see [184], [183], [234], and ref-
erences therein). For the binary hypothesis testing problem in (11.8) with
f0 = f (rrr|H0) and f1 = f (rrr|H1), we have that [183]

J = E{(L −1) log(L )|H0}

=

(∫
f (rrr|H1)

f (rrr|H0)
log(L ) f (rrr|H0)drrr

)
−E{log(L )|H0}

= E{log(L )|H1}−E{log(L )|H0}.
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Using (11.21) along with similar calculations as in the case of KL-divergence,
the J-divergence metric associated with (11.8) can be obtained as

J =
Nr

∑
k=1

λ 2
k

1+λk
. (11.21)

Consequently, the corresponding code design problem can be expressed as

max
a,λk

Nr

∑
k=1

λ 2
k

1+λk

subject to λk = σ 2
k aaaH(σ 2

c,kaaH +Mk)
−1aaa (11.22)

‖aaa‖2
2 6 e.

• Mutual information: MI is another metric that has been used for radar
transmit signal design (see the Introduction). The MI between the amplitude
of the target return and the received signal is often considered as a design
criterion. For the relationship between MI and minimum mean-square error
(MMSE) estimation see e.g. [235]. Note that the larger the MI the better
the MMSE estimation [201, Chapter 2]. Note also that, the optimal detector
for Gaussian pdfs has a close relationship to the MMSE estimation (see e.g.
the estimator-correlator theorem in [178, Chapter 5 and 13]) in the sense that
better estimation leads to detection performance improvements [171]. Fur-
thermore, a comprehensive mathematical motivation for using MI as a metric
in radar signal design is provided in [201, Chapter 2] and [221] using rate-
distortion function, Fano’s inequality, and Shannon’s noisy channel coding
theorem. Additionally, the results of [236] relate the MI and Bayes risk in
statistical decision problems. An analysis of the connection between Bayesian
classification performance and MI has also been performed in [237]. The MI
metric associated with (11.8) is given by [238]

M = log
(
(πe)N det(I+DSD)

)
− log

(
(πe)N det(I)

)

=
Nr

∑
k=1

log
(
det(I+σ 2

k DkaaHDk)
)
−

Nr

∑
k=1

log(det(I))

=
Nr

∑
k=1

log(1+λk) (11.23)

where the second equality follows from the block-diagonal structures of D

and S, and the third equality holds due to the fact that
{

σ 2
k DkaaHDk

}
are

rank-one. Therefore, the M -optimal code aaa is the solution to the following
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maximization problem:

max
a,λk

Nr

∑
k=1

log(1+λk)

subject to λk = σ 2
k aaaH(σ 2

c,kaaH +Mk)
−1aaa (11.24)

‖aaa‖2
2 6 e.

11.3.2 Unified Framework
Herein we cast the optimization problems corresponding to various information-
theoretic criteria discussed earlier under a unified optimization framework. In-
deed, we consider the following general form of the optimization problems in
(11.15), (11.18), (11.22), and (11.24):

max
a,λk

Nr

∑
k=1

fI (λk)+gI (λk)

subject to λk = σ 2
k aaaH(σ 2

c,kaaH +Mk)
−1aaa (11.25)

‖aaa‖2
2 6 e,

where I ∈ {B,D ,J ,M }, and fI (.) and gI (.) are concave and convex
functions for any I , respectively. More precisely, we have that





fB(λk) = log(1+0.5λk), gB(λk) =−1
2 log(1+λk),

fD (λk) = log(1+λk), gD(λk) =
1

1+λk
−1,

fJ (λk) = 0, gJ (λk) =
λ 2

k
1+λk

,

fM (λk) = log(1+λk), gM (λk) = 0.

Remark 1: In the case of spatially wide-sense stationary (up to a power scale)
signal-independent interferences, we have that Mk = σ 2

w,kM̃MM, k = 1,2, ..,Nr

(see e.g. [171]). In such a situation, a closed-form solution to the optimiza-
tion problem (11.25) can be obtained. In particular, note that for any MMMk, a
simplified expression of λk can be obtained using the matrix inversion lemma
as:

λk = σ 2
k aaaH

(
MMM−1

k −σ 2
c,k

MMM−1
k aaHMMM−1

k

1+σ 2
c,kaHMMM−1

k a

)
aaa

=
σ 2

k aaaHMMM−1
k aaa

1+σ 2
c,kaaaHMMM−1

k aaa
. (11.26)
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Therefore, one can recast (11.25) as the following optimization problem:

max
a

Nr

∑
k=1

qI

(
σ 2

k aaaHMMM−1
k aaa

1+σ 2
c,kaaaHMMM−1

k aaa

)

subject to ‖aaa‖2
2 ≤ e, (11.27)

where qI (.) = fI (.)+gI (.). Let v⋆ denote the optimal value of (11.27). We
have that

v⋆ ≤
Nr

∑
k=1

qI (ãaak,I ) (11.28)

with ãaak,I being the maximizer of qI (.) subject to ‖aaa‖2 ≤ e for fixed k. Now
we claim that aaa⋆ =

√
euuu with uuu being the minor eigenvector of M̃MM is an optimal

solution to the optimization problem in (11.27). To observe this fact, note
that the aaa⋆ maximizes λk, for any k, subject to the energy constraint because
λk is an increasing function of aaaHMMM−1

k aaa. Moreover, qI (λk) is an increasing
function of λk for all I ∈ {B,D ,J ,M } (see Appendix B) and hence ãaak,I =
aaa⋆ for all k,I . Consequently, aaa = aaa⋆ yields the upper bound on v⋆ for all
I ∈ {B,D ,J ,M }. �

We use the Majorization-Minimization (or Minorization-Maximization) tech-
niques to tackle the non-convex problems in (11.25). Majorization-Minimization
(MaMi) is an iterative technique that can be used for obtaining a solution to
the general minimization problem [209] [239]:

min
zzz

f̃ (zzz) (11.29)

subject to c(zzz)≤ 0

where f̃ (.) and c(.) are non-convex functions. Each iteration (say the lth iter-
ation) of MaMi consists of two steps:
• Majorization Step: Finding p(l)(zzz) such that its minimization is simpler

than that of f̃ (zzz) and p(l)(zzz) majorizes f̃ (zzz), i.e.,

p(l)(zzz) ≥ f̃ (zzz), ∀zzz (11.30)

p(l)
(

zzz(l−1)
)

= f̃
(

zzz(l−1)
)

with zzz(l−1) being the value of zzz at the (l−1)th iteration.
• Minimization Step: Solving the optimization problem,

min
zzz

p(l)(zzz) (11.31)

subject to c(zzz)≤ 0.

to obtain zzz(l).
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Note that applying the Majorization-Minimization technique to the opti-
mization problem in (11.29) decreases the value of the objective function f̃ (zzz)
at each iteration. Indeed, we have

f̃
(

zzz(l−1)
)
= p(l)

(
zzz(l−1)

)
≥ p(l)

(
zzz(l)
)

(11.32)

≥ f̃
(

zzz(l)
)
.

The first inequality above follows from the minimization step in (11.31) and
the second inequality holds true due to the majorization step in (11.30). The
descent property in (11.32) guarantees the convergence of the sequence{ f̃ (zzz(l))}
(assuming f̃ (zzz) is bounded from below). Generally, the goodness of the ob-
tained solution (i.e. zzz after the convergence) depends on the employed start-
ing point. The optimality of the obtained solution zzz has been addressed in
[209,239,240], where the solution zzz was shown to be a stationary point of f̃ (zzz)
(under some mild conditions). It is worth mentioning that a similar monoton-
ically increasing behavior is guaranteed for Minorization-Maximization tech-
nique. Such a behavior of the values of the objective function is important
when considering the objective as a measure of the code performance.

Remark 2: Note that the objective function ∑
Nr
k=1 qI (λk) in the problem

(11.25) is bounded from above. To observe this fact, note that λk for all k can
be upper bounded (considering (11.26)) as

λk =
σ 2

k aaaHMMM−1
k aaa

1+σ 2
c,kaaaHMMM−1

k aaa
≤ σ 2

k ‖aaa‖2
2µmax(MMM

−1
k )

1+σ 2
c,k‖aaa‖2

2µmin(MMM
−1
k )

(11.33)

≤ σ 2
k e µ−1

min(MMMk)

1+σ 2
c,k e µ−1

max(MMMk)
.

Due to the fact that qI (λk) is a monotonically increasing function of λk for
all k and I (see Appendix B), the above equation leads to an upper bound on
the objective function in (11.25) for all k and I . �

In the following sections, we propose two novel algorithms based on MaMi
to yield optimized solutions to (11.25).

11.4 Code Design using Successive Majorizations
In this section, we propose a novel algorithm based on successive majoriza-
tions (which we call Sv-MaMi) to obtain an optimal code aaa. In particular,
we apply successive majorizations to the optimization problem in (11.25) and
show the following:

Theorem 1. (Sv-MaMi algorithm) The solution aaa = aaa⋆ of (11.25) can be ob-

tained iteratively by solving the following convex quadratically constrained
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quadratic program (QCQP) (at the (l+1)th iteration):

min
a

aaaH

(
Nr

∑
k=1

φ
(l)
k,I MMM−1

k

)
aaa−ℜ



(

Nr

∑
k=1

ddd
(l)
k,I

)H

aaa




subject to ‖aaa‖2
2 6 e, (11.34)

where the positive constant {φ (l)
k,I } and the vectors {ddd(l)

k,I } depend on I ∈
{B,D ,J ,M } and will be given below.

In the sequel, we provide a proof of Theorem 1. We begin by noting that
the convex function gI (.) can be minorized using its supporting hyperplane

at any given λk = λ
(l)
k , viz.

gI (λk)≥ gI

(
λ
(l)
k

)
+g′I

(
λ
(l)
k

)(
λk−λ

(l)
k

)
(11.35)

which implies that

Nr

∑
k=1

gI (λk)≥
Nr

∑
k=1

gI

(
λ
(l)
k

)
+

Nr

∑
k=1

g′I
(

λ
(l)
k

)(
λk−λ

(l)
k

)
. (11.36)

Herein λ
(l)
k denote the λk obtained at the lth iteration and g′I (.) denote the

first-order derivative of gI (.) for I ∈ {B,D ,J ,M }.
Now observe that using (11.26), the optimal code aaa = aaa⋆ can be obtained

in an iterative manner solving the following maximization at the (l+1)th iter-
ation:

max
a,λk

Nr

∑
k=1

fI (λk)+g′I
(

λ
(l)
k

)
λk (11.37)

subject to λk = γk−
γk

1+βkaaaHMMM−1
k aaa

(11.38)

‖aaa‖2
2 ≤ e, (11.39)

where γk =
σ2

k

σ2
c,k

and βk = σ 2
c,k. Note that the above problem is non-convex due

to the non-affine equality constraint (11.38).
The following Lemmas pave the way toward the derivation of the convex

QCQPs of Theorem 1 corresponding to I ∈ {B,D ,J ,M }.

Lemma 1. If f (x) is twice differentiable and if there exists U > 0 such that

f ′′(x)≤U for all x, then for any given x̃, the convex quadratic function

f (x̃)+ f ′(x̃)(x− x̃)+
1
2

U(x− x̃)2 (11.40)

majorizes f at x̃.
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Proof: See [239, Section 3.4]. �

Lemma 2. Let f (x) be an even function (i.e. f (x) = f (−x) for all x ∈R), and

assume that
f ′(x)

x
is decreasing over the interval [0,∞). Then the function

f (x̃)+
f ′(x̃)
2x̃

(x2− x̃2) (11.41)

majorizes f at x̃.

Proof: See [241, Theorem 4.5]. �

Lemma 3. Let f (x) =− log(1+µ− µ
1+ηx2 ) for some µ ,η > 0. Then for all

x, x̃ ∈ R we have that

f (x)≤ f (x̃)+
η

1+η x̃2 (x
2− x̃2)− 2η x̃(1+µ)

1+η(1+µ)x̃2(x− x̃)+η(1+µ)(x− x̃)2.

Proof: We can rewrite f (x) as

f (x) = log(1+ηx2)− log(1+ηx2+µηx2). (11.42)

The first term satisfies the conditions in Lemma 11.4 and hence its majorizer
is given by

log(1+ηx2)≤ log(1+η x̃2)+
η

1+η x̃2 (x
2− x̃2).

Moreover, let f2(x) = − log(1+ηx2 + µηx2). It is straightforward to verify
that

f ′′2 (x) =
4η2(1+µ)2x2−2η(1+µ)(1+ηx2(1+µ))

1+η2(1+µ)2x4 +2η(1+µ)x2

≤ 2η(1+µ)
2η(1+µ)x2

1+2η(1+µ)x2 ≤ 2η(1+µ).

Consequently, f2(x) can be majorized using Lemma 11.4, and hence the proof
is concluded. �
• Bhattacharyya distance: For I = B, substituting {λk} of (11.38) into

the objective function of (11.37) leads to the following expression for the ob-
jective function:

Nr

∑
k=1

[
log

(
1+0.5γk−0.5

γk

1+βkaaaHMMM−1
k aaa

)
(11.43)

+
0.5

1+λ
(l)
k

(
γk

1+βkaaaHMMM−1
k aaa

)]
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where

λ
(l)
k = γk−

γk

1+βky
(l)
k

. (11.44)

A minorizer of the logarithmic term can be obtained immediately by employ-

ing Lemma 11.4 with xk =
√

aaaHMMM−1
k aaa, µ = 0.5γk, and η = βk. To deal with

the expression γk

1+βkaaaH MMM−1
k

aaa
in (11.43) conveniently, we use the convexity of

the function 1
1+βx

for β > 0 which implies

1
1+βx

≥ 1
1+β x̃

− β

(1+β x̃)2 (x− x̃), ∀ x, x̃. (11.45)

As a result, a minorizer of γk

1+βkaaaH MMM−1
k

aaa
can be obtained by considering the

above inequality for xk = aaaHMMM−1
k aaa and β = βk. Furthermore, by replacing

the summation terms in (11.43) for each k with the obtained minorizers (using
Lemma 11.4 and eq. (11.45)) and removing the constants, the criterion in
(11.43) turns to:

Nr

∑
k=1

[
−
(

βk

1+βky
(l)
k

+βk(1+0.5γk)+
0.5γk

1+λ
(l)
k

βk

(1+βky
(l)
k )2

)
aaaHMMM−1

k aaa

+


2βk(1+0.5γk)

√
y
(l)
k

1+βky
(l)
k (1+0.5γk)

+2βk(1+0.5γk)

√
y
(l)
k



√

aaaHMMM−1
k aaa

]
(11.46)

where
y
(l)
k = (aaa(l))HMMM−1

k aaa(l). (11.47)

Yet, due to the non-concavity of the terms

{√
aaaHMMM−1

k aaa

}
, dealing with the

maximization of the criterion in (11.46) appears to be complicated. However,√
aaaHMMM−1

k aaa can be minorized using its supporting hyperplane at any given ãaa;
more precisely,

√
aaaHMMM−1

k aaa≥
√

ãaaHMMM−1
k ãaa+ℜ


 ãaaHMMM−1

k√
ãaaHMMM−1

k ãaa

(aaa− ãaa)


 . (11.48)

The above inequality holds true due to the convexity of the function h(x) =
‖x‖2 and the fact that the gradient of h(x) is given by ∇h(x) = x

‖x‖2 . Ulti-
mately, by using eq. (11.46) and (11.48) as well as removing the constants,
the optimization problem associated with the (l + 1)th iteration of Sv-MaMi
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for I = B is as follows:

min
a

aaaH

(
Nr

∑
k=1

φ
(l)
k,BMMM−1

k

)
aaa−ℜ



(

Nr

∑
k=1

ddd
(l)
k,B

)H

aaa




subject to ‖aaa‖2
2 6 e, (11.49)

where

φ
(l)
k,B ,

(
βk

1+βky
(l)
k

+βk(1+0.5γk)+
0.5γk

1+λ
(l)
k

βk

(1+βky
(l)
k )2

)

ddd
(l)
k,B ,

(
2βk(1+0.5γk)

1+βky
(l)
k (1+0.5γk)

+2βk(1+0.5γk)

)
MMM−1

k aaa(l). (11.50)

Note that as φ
(l)
k,B > 0 and MMMk ≻ 000, the above problem is a convex QCQP.

• KL-Divergence: In the case of I = D , using (11.37) and (11.38) (and
dropping the constants) leads to the following expression for the correspond-
ing objective function:

Nr

∑
k=1

[
log

(
1+ γk−

γk

1+βkaaaHMMM−1
k aaa

)
+

(
1

1+λ
(l)
k

)2(
γk

1+βkaaaHMMM−1
k aaa

)]
.

(11.51)

The logarithmic term in (11.51) can be handled via Lemma 11.4 by setting

xk =
√

aaaHMMM−1
k aaa,µ = γk, and η = βk. Moreover, the expression γk

1+βkaaaHMMM−1
k aaa

can be minorized using (11.48). Consequently, using a similar approach as
in the case of the Bhattacharrya distance, the optimization problem associated
with the (l+1)th iteration of Sv-MaMi for I = D is given by:

min
a

aaaH

(
Nr

∑
k=1

φ
(l)
k,DMMM−1

k

)
aaa−ℜ



(

Nr

∑
k=1

ddd
(l)
k,D

)H

aaa




subject to ‖aaa‖2
2 6 e, (11.52)

where

φ
(l)
k,D ,


 βk

1+βky
(l)
k

+βk(1+ γk)+

(
γk

1+λ
(l)
k

)2(
βk

(1+βky
(l)
k )2

)


ddd
(l)
k,D ,

(
2βk(1+ γk)

1+βky
(l)
k (1+ γk)

+2βk(1+ γk)

)
MMM−1

k aaa(l).

267



• J-Divergence: In this case, (11.37) boils down to the following non-
convex optimization problem:

min
a

Nr

∑
k=1

γkw
(l)
k

(
1

1+βkaaaHMMM−1
k aaa

)

subject to ‖aaa‖2
2 ≤ e, (11.53)

with w
(l)
k = 1− 1

(1+λ
(l)
k )2

> 0. Note that in contrast to the case of Bhattacharyya

distance and KL-divergence (see eqs. (11.43) and (11.51)), the expression
1

1+βkaaaH MMM−1
k aaa

appears in a minimization problem. We consider a majorization

of the function 1
1+ηx2 (note that 1

1+ηx2 = 1
1+βkaaaH MMM−1

k aaa
when xk =

√
aaaHMMM−1

k aaa,

η = βk). One can derive a majorizer for the aforementioned function via
Lemma 11.4, viz.

1
1+ηx2 ≤

1
1+η x̃2 −

2η x̃

(1+η x̃2)2 (x− x̃)+
1
2

U(x− x̃)2. (11.54)

Note that we have

d2

dx2

(
1

1+ηx2

)
=

6η2x2−2η

(1+ηx2)3 ≤ 6η

which implies that (11.54) holds true for U = 6η . Therefore, by minorizing√
aaaHMMM−1

k aaa using (11.48), the following QCQP is obtained for the (l + 1)th

iteration of Sv-MaMi for I = J :

min
a

aaaH

(
Nr

∑
k=1

φ
(l)
k,J MMM−1

k

)
aaa−ℜ



(

Nr

∑
k=1

ddd
(l)
k,J

)H

aaa




subject to ‖aaa‖2
2 6 e, (11.55)

where

φ
(l)
k,J , 3βkγkw

(l)
k (11.56)

ddd
(l)
k,J ,

(
2βkγkw

(l)
k

(1+βky
(l)
k )2

+6βk

)
MMM−1

k aaa(l).

• Mutual Information: The derivation of the QCQP corresponding to
I =M is straightforward. In particular, using Lemma 11.4 as well as (11.48)
we obtain the following QCQP:

min
a

aaaH

(
Nr

∑
k=1

φ
(l)
k,M MMM−1

k

)
aaa−ℜ



(

Nr

∑
k=1

ddd
(l)
k,M

)H

aaa




subject to ‖aaa‖2
2 6 e, (11.57)
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Table 11.1. The Sv-MaMi Algorithm for I ∈ {B,D ,J ,M }
Step 0: Initialize aaa with a random vector in CN and set the iteration number
l to 0.
Step 1: Solve the QCQP problem in (11.34) to obtain aaa(l+1); set l← l +1.

Step 2: Compute φ
(l)
k,I and ddd

(l)
k,I corresponding to the metric I .

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied, e.g.
‖aaa(l+1)−aaa(l)‖2 ≤ ξ for some ξ > 0.

where

φ
(l)
k,M ,

(
βk

1+βky
(l)
k

+βk(1+ γk)

)
(11.58)

ddd
(l)
k,M ,

(
2βk(1+ γk)

1+βky
(l)
k (1+ γk)

+2βk(1+ γk)

)
MMM−1

k aaa(l).

Table 11.1 summarizes the steps of Sv-MaMi. Note that the convex QCQP
of the first step can be solved very efficiently (see e.g. [195]). Moreover, the
derivations of Sv-MaMi algorithm can be extended to tackle code design prob-
lems in which a PAR-constrained code is required. Such an extension is dis-
cussed in Section VI.

Remark 3 (Saturation Phenomenon): It might be of interest to investigate
the behavior of the considered information-theoretic criteria when the transmit
energy e grows large. Let āaa represent the unit-norm version of aaa (i.e. aaa =√

e āaa) and note that:

lim
e→∞

qI

(
γk−

γk

1+ eβkāaaHMMM−1
k āaa

)
= qI (γk). (11.59)

In light of the above equality, one can observe that all information-theoretic
criteria qI for I ∈ {B,D ,J ,M } tend to constant values in R+ as e→ ∞.
We refer to this behavior of the considered metrics as the saturation phe-
nomenon, meaning that for sufficiently large values of the transmit energy
e, the performance improvement obtained by choosing aaa or by increasing e

is negligible. Interestingly, it might still be reasonable to increase the trans-
mit energy of the system. Indeed our previous arguments rely on the fact that
a fixed radar cell is considered; however, increasing e extends the detection
range (or coverage) of the system. �

11.5 Code Design using MaMi and Relaxation
In this section, we propose another algorithm based on MaMi to tackle the
optimization problems formulated in (11.25). The suggested algorithm (which
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we call Re-MaMi) employs a relaxation of the rank constraint on the code
matrix AAA = aaaaaaH such that each iteration of MaMi can be handled as a convex
optimization problem. In particular, we have the following result:

Theorem 2. (Re-MaMi algorithm) The solution code matrix AAA = AAA⋆ (with

relaxed rank constraint) can be obtained iteratively by solving the following

convex problem (at the (l+1)th iteration):

max
A

Nr

∑
k=1

[
fI
(
Nγk− γk tr{(MMMk +βkAAA)−1MMMk}

)
+h

(l)
k,I (AAA)

]

subject to tr{AAA}6 e (11.60)

AAA� 000,

where h
(l)
k,I (AAA) denotes a concave function of AAA, for I ∈ {B,D ,J ,M }, that

will be given in explicit form below.

In what follows, we present a proof of Theorem 2 and then discuss the
synthesis of optimized aaa⋆ from the obtained AAA⋆. First note that using matrix
inversion lemma, λk can be rewritten as

λk = σ 2
k aaaH(σ 2

c,kaaaaaaH +MMMk)
−1aaa = σ 2

k tr{(σ 2
c,kaaaaaaH +MMMk)

−1aaaaaaH} (11.61)

= σ 2
k tr{(σ 2

c,kAAA+MMMk)
−1AAA}= σ 2

k

σ 2
c,k

tr{III− (III+σ 2
c,kMMM−1

k AAA)−1}

= N
σ 2

k

σ 2
c,k

− σ 2
k

σ 2
c,k

tr{(MMMk +σ 2
c,kAAA)−1MMMk}, Nγk− γk tr{(MMMk +βkAAA)−1MMMk}

where AAA = aaaaaaH . As a result, using (11.61) and (11.36), the optimal code ma-
trix AAA = AAA⋆ can be obtained iteratively via solving the following optimization
problem at the (l+1)th iteration:

max
A,λk

Nr

∑
k=1

fI (λk)+g′I
(

λ
(l)
k

)
λk (11.62)

subject to λk = Nγk− γk tr
{
(MMMk +βkAAA)−1MMMk

}
(11.63)

tr{AAA}6 e (11.64)

AAA� 000 (11.65)

rank(AAA) = 1. (11.66)

Note that the above problem is non-convex due to the non-affine equality con-
straints in (11.63) and (11.66). Hereafter, we relax the rank-one constraint

(11.66). Moreover, when the term
{

g′I
(

λ
(l)
k

)
λk

}
is not concave (with re-

spect to AAA), a further minorization will be needed in order to make the prob-

lem convex. Let h
(l)
k,I (AAA) (to be discussed shortly) denote a concave function
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that minorizes g′I
(

λ
(l)
k

)
λk (we let h

(l)
k,I = g′I

(
λ
(l)
k

)
λk when g′I

(
λ
(l)
k

)
λk

is concave itself).
Remark 4: Note that for AAA� 000 of rank δ , there exists a VVV ∈CN×δ such that

AAA =VVVVVV H . As a result, considering (11.61) we have

Nγk− γk tr{(MMMk +βkAAA)−1MMMk} = σ 2
k tr{(σ 2

c,kAAA+MMMk)
−1AAA}

= σ 2
k tr{VVV H(σ 2

c,kAAA+MMMk)
−1VVV}> 0

which implies that the argument of the function fI (.) in (11.62) remains pos-
itive even in the case in which no rank constraint on AAA is imposed. More-
over, note that tr{(MMMk +βkAAA)−1MMMk} is a convex function of AAA. Consequently,
fI
(
Nγk− γk tr{(MMMk +βkAAA)−1MMMk}

)
is a concave function of AAA as fI (.) is an

increasing function (for all I ). �

Selecting a suitable function h
(l)
k,I (AAA) depends on the code design metric:

• Bhattacharyya distance: By substituting λk of (11.63) as well as g′B
(

λ
(l)
k

)
,

the objective function in (11.62) for I =B can be rewritten (by omitting con-
stants) as

Nr

∑
k=1

[
log
(
1+0.5Nγk−0.5γk tr{(MMMk +βkAAA)−1MMMk}

)

+
0.5γk

1+λ
(l)
k

tr{(MMMk +βkAAA)−1MMMk}
]

where λ
(l)
k =Nγk−γk tr{(MMMk+βkAAA(l))−1MMMk}with AAA(l) being the AAA obtained at

the lth iteration. As mentioned in Remark 4 the logarithmic term is concave;
however, the second term is convex with respect to (w.r.t.) AAA, and hence a
minorization is needed to tackle the problem.

Lemma 4. Let h(AAA) = tr{(MMMk +βkAAA)−1MMMk}. A minorizer of h(AAA) at AAA = ÃAA is

given by

h̃(AAA) = tr{(MMMk+βkÃAA)−1MMMk}−βk tr{(MMMk+βkÃAA)−1MMMk(MMMk+βkÃAA)−1(AAA−ÃAA)}.

Proof: See Appendix C. �
By applying Lemma 11.5 to (11.67), we can recast the maximization step

at the (l+1)th iteration of Re-MaMi for I = B as follows:

max
A

Nr

∑
k=1

[
log
(
1+0.5Nγk−0.5γk tr{(MMMk +βkAAA)−1MMMk}

)
+h

(l)
k,B(AAA)

]

subject to tr{AAA}6 e (11.67)

AAA� 000,
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where

h
(l)
k,B(AAA),− tr

{
FFF
(l)
k,BAAA

}
, (11.68)

FFF
(l)
k,B ,

0.5 γkβk

1+λ
(l)
k

(
MMMk +βkAAA(l)

)−1
MMMk

(
MMMk +βkAAA(l)

)−1
.

• KL-divergence: By substituting λk and g′D(λ
(l)
k ) in (11.62), it can be

easily verified that (11.62) includes the expression tr{(MMMk +βkAAA)−1MMMk} with
positive sign. Therefore, similar to the case of Bhattacharyya distance, the
following convex problem can be derived (using Lemma 11.5) at the (l +1)th

iteration of Re-MaMi for I = D :

max
A

Nr

∑
k=1

[
log
(
1+Nγk− γk tr{(MMMk +βkAAA)−1MMMk}

)
+h

(l)
k,D(AAA)

]

subject to tr{AAA}6 e (11.69)

AAA� 000,

where

h
(l)
k,D(AAA),− tr

{
FFF

(l)
k,DAAA

}
,

FFF
(l)
k,D ,

γkβk(
1+λ

(l)
k

)2

(
MMMk +βkAAA(l)

)−1
MMMk

(
MMMk +βkAAA(l)

)−1
.(11.70)

• J-divergence: For the case of I = J , the relaxed version of the maxi-
mization in (11.62)-(11.66) is equivalent to the optimization problem:

min
A

Nr

∑
k=1

γkw
(l)
k tr

{
(MMMk +βkAAA)−1MMMk

}

subject to tr{AAA}6 e (11.71)

AAA� 000,

where w
(l)
k = 1− ( 1

1+λ
(l)
k

)2 and h
(l)
k,J =−γkw

(l)
k tr

{
(MMMk +βkAAA)−1MMMk

}
.

Note that Remark 4 ensures that w
(l)
k > 0 for all (k, l), and hence (11.71) is

a convex optimization problem due to the convexity of tr{XXX−1} w.r.t. XXX ≻ 000.
Note also that the optimization problem in (11.71) can be recast as a semi-
definite program (SDP) by considering an SDP representation of the tr{XXX−1}
minimization (see e.g. [167]).
• Mutual information: Using the relaxation of the rank-one constraint

for the case of I = M , one obtains the following form of the optimization
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problem in (11.62)-(11.66):

max
A

Nr

∑
k=1

log
(
1+Nγk− γk tr{(MMMk +βkAAA)−1MMMk}

)

subject to tr{AAA}6 e (11.72)

AAA� 000.

Note that the above relaxed version of the optimization in (11.62)-(11.66) is
a convex problem that can be solved in one iteration of Re-MaMi (as no ma-

jorization is required, i.e. h
(l)
k,M (AAA) = 0).

We end this section by discussing the synthesis stage required for Re-MaMi.
Once the proposed Re-MaMi algorithm converges to AAA⋆, the corresponding
code aaa⋆ can be obtained as follows. If rank(AAA⋆) = 1, the local optimum ob-
tained for the relaxed problem in (11.60) yields a local optimum of (11.25) via
AAA⋆ = aaa⋆aaaH

⋆ . Otherwise, a synthesis loss is unavoidable due to the rank of AAA⋆

being larger than 1. The rank behavior of the matrix obtained from the relaxed
problem and the associated rank-one approximations have been discussed in
the literature particularly for semi-definite relaxations (see e.g. [212, 213] and
references therein). Least-squares (LS) synthesis is a common approach to
synthesize the optimized codes [212]. The LS criterion can be formulated as:

min
aaa
‖AAA⋆−aaaaaaH‖2

F subject to ‖aaa‖2
2 = e. (11.73)

The solution to the above problem is simply given by
√

eb̃bb where b̃bb is the prin-
cipal eigenvector of AAA⋆. Inspired by the randomization technique in the litera-
ture (see e.g. [212] and the references therein), here we employ randomization
as an alternative approach of code synthesis. In the randomization technique,
several feasible random vectors {aaam}L

m=1 are generated (e.g. according to the
distribution CN (000,AAA⋆)) and aaa⋆ is obtained as

aaa⋆ = argmax
m
{q̃I (aaam)} (11.74)

where q̃I (·) denotes the objective function in (11.60).
The steps of Re-MaMi algorithm are summarized in Table 11.2. Note that

the first step of Re-MaMi (for all I ∈ {B,D ,J ,M }) contains a convex
problem which can be solved efficiently via interior point methods [188].
Modification of Re-MaMi to obtain optimized codes under a PAR constraint
is discussed in the next section.

11.6 Extensions of the Design Methods
In this section we provide two extensions of the previous design methods to
PAR-constrained codes and the case of multiple transmitters. In order to use

273



Table 11.2. The Re-MaMi Algorithm for I ∈ {B,D ,J ,M }
Step 0: Initialize AAA with a random matrix in CN×N and set the iteration
number l to 0.
Step 1: Solve the convex problem in (11.60) to obtain AAA(l+1); set l← l+1.

Step 2: Compute h
(l)
k,I (AAA) corresponding to the metric I .

Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied, e.g.
‖AAA(l+1)−AAA(l)‖F ≤ ξ for some ξ > 0.
Step 4 (Synthesis stage): Synthesize the optimized code aaa⋆ using the ap-
proaches in (11.73) or (11.74).

the power resources efficiently and to avoid non-linear effects at the trans-
mitter, codes with low PAR values are of practical interest in many applica-
tions [173] [126]. To the best of our knowledge, no study of code design with
PAR constraints using information-theoretic criteria was conducted prior to
this work. This section also includes the extension of the design methods to
deal with the case of multiple transmitters with orthogonal transmission.

11.6.1 PAR-Constrained Code Design
In this subsection, we extend the derivations of Sv-MaMi and Re-MaMi for
code design with an arbitrary PAR constraint, viz.

PAR(aaa) =
max

n
{|an|2}

1
N
‖aaa‖2

2

≤ ζ . (11.75)

For Sv-MaMi the PAR constrained problem that must be solved is:

min
a

aaaH

(
Nr

∑
k=1

φ
(l)
k,I MMM−1

k

)
aaa−ℜ



(

Nr

∑
k=1

ddd
(l)
k,I

)H

aaa


 (11.76)

subject to max
n=1,...,N

{|an|2} ≤ ζ

‖aaa‖2
2 = N.

For Re-MaMi, one can consider the PAR constraint in the synthesis stage,
which for LS synthesis leads to the following optimization problem:

max
aaa

aaaHAAAaaa (11.77)

subject to max
n=1,...,N

{|an|2} ≤ ζ

‖aaa‖2
2 = N.

Note that the QCQPs in (11.76) and (11.77) are non-convex optimization prob-
lems and known to be NP-hard [173]. Also note that the problem in (11.76)
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can be recast in a form similar to (11.77), viz.

min
aaa

âaa
H

JJJ âaa (11.78)

subject to max
n=1,···,N

{|an|2} ≤ ζ

‖aaa‖2
2 = N

where âaa = [aaa 1]T , and

JJJ =




(
∑

Nr
k=1 φ

(l)
k,I MMM−1

k

)
−0.5

(
∑

Nr
k=1 ddd

(l)
k,I

)

−0.5
(

∑
Nr
k=1 ddd

(l)
k,I

)H

0


 .

In what follows, we will explain how to solve (11.76) but, of course, (11.77)
can be tackled in the same way. Let KKK = µIIIN+1−JJJ for any µ > µmax(JJJ). Next
observe that the problem in (11.78) is equivalent to:

max
aaa

âaa
H

KKK âaa (11.79)

subject to max
n=1,···,N

{|an|2} ≤ ζ

‖aaa‖2
2 = N.

The above problem can be tackled using the power-method in [190]. More
precisely, the code vector aaa at the (p+ 1)th iteration can be obtained from
aaa(p), via solving the optimization problem

max
aaa(p+1)

‖aaa(p+1)− ăaa(p)‖ (11.80)

subject to max
n=1,···,N

{|a(p+1)
n |2} ≤ ζ

‖aaa(p+1)‖2
2 = N

where ăaa(p) represents the vector containing the first N entries of KKK âaa
(p). The

optimization problem (11.80) is a “nearest-vector" problem with PAR con-
straint. Such PAR constrained problems can be tackled using an algorithm
proposed in [191]. Note that the codes obtained as above can be scaled to fit
any desired level of transmit energy as a scaling does not affect the PAR metric
(see (11.75)). We refer the interested reader to [173] for using the randomiza-
tion technique when a PAR constraint is imposed.

11.6.2 The Case of Multiple Transmitters
Here we discuss the extension of the design problem to the case of multiple
transmit antennas that emit orthogonal signals. Let s̃m(t) and aaam denote the
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passband version and associated code vector of the mth transmit signal, respec-
tively. Assume that {s̃m(t)}Nt

m=1 are well-separated in the frequency domain
such that the signal echoes corresponding to each transmitter can be extracted
at the kth receiver. Then, the discrete-time signal at the kth receiver due to the
mth transmitter can be expressed as

rk,m = αk,mam + ρ̃k,mam +wk,m, m = 1,2, ...,Nt ;k = 1,2, ...,Nr (11.81)

where αk,m denotes the “amplitude” of the target return and ρ̃k,m is associated
with the clutter, both corresponding to the kth receiver and the mth transmitter,
and wwwk,m denotes the interference at the kth receive antenna corresponding to
the mth frequency band. Making assumptions similar to those stated in Section
I leads to the following optimal detector:

Nt

∑
m=1

Nr

∑
k=1

λk,m|θk,m|2
1+λk,m

H0
≶
H1

η ′ (11.82)

with λk,m , σ 2
k,maaaH

mDDD2
k,maaam, and

θk,m ,
aH

mD2
k,mrk,m

‖aaaH
mDDDk,m‖2

, (11.83)

DDDk,m ,
(

σ 2
c,(k,m)aaamaaaH

m +MMMk,m

)−1/2
. (11.84)

Herein σ 2
c,(k,m) and MMMk,m denote the variance of ρ̃k,m and covariance matrix of

wwwk,m, respectively.
It is now straightforward to verify that the code design problem for the case

of multiple transmitters can be dealt with using a modified version of (11.25):

max
{am},{λk,m}

Nt

∑
m=1

Nr

∑
k=1

fI (λk,m)+gI (λk,m)

subject to λk,m = σ 2
k,maaaH

m(σ
2
c,(k,m)amaH

m +Mk,m)
−1aaam, (11.85)

‖aaam‖2
2 6 em ∀m,

where em denotes the maximum available transmit energy for the mth transmit
antenna. Next observe that the above optimization problem is separable w.r.t
m. Therefore, the code design procedure associated with each transmitter can
be independently handled using the proposed methods in this chapter.

11.7 Simulation Results
In this section, we present several numerical examples to examine the per-
formance of the proposed algorithms. In particular, we compare the system
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performance for coded and uncoded (employing the code vector aaa =
√

e
N

1)
scenarios. Comparisons between the computational costs of Sv-MaMi and Re-
MaMi are also included. Moreover, the behavior of the information-theoretic
criteria is assessed when e varies.

Throughout this section, we assume the code length N = 10, the number of
receivers Nr = 4, variances of the target components given by σ 2

k = 1 (for 1≤
k≤ 4), and variances of the clutter components given by (σ 2

c,1,σ
2
c,2,σ

2
c,3,σ

2
c,4)=

(0.125,0.25, .5,1). Furthermore, we assume that the kth interference covari-
ance matrix MMMk is given by [MMMk]m,n = (1− 0.15k)|m−n|. The ROC is used
to evaluate the detection performance of the system. Particularly, Pd and Pf a

are calculated using their analytical expressions (see eqs. (32)-(34) in [182]).
Then the ROC is plotted by numerically eliminating the detection threshold.
The CVX toolbox [193] is used for solving the MaMi convex optimization
problems.

Fig. 11.1(a)-(d) show the ROCs associated with the coded system (em-
ploying the optimized codes) as well as the uncoded system for e = 10 and
I ∈ {B,D ,J ,M }. The plotted ROCs correspond to the obtained codes us-
ing Sv-MaMi, Re-MaMi with either randomization (with L = 50) or LS, and
the uncoded system. Theses figures also show the results of PAR-constrained
code design with PAR= 1 (i.e. constant modulus) for Sv-MaMi and Re-MaMi
(LS). It can be observed that the performance of the coded system (for all
I ) outperforms that of the uncoded system significantly. Furthermore, the
codes obtained by Sv-MaMi lead to slightly better performance compared to
the codes provided by Re-MaMi as Sv-MaMi circumvents the synthesis loss.
Note also the superiority of synthesis via randomization when compared to
the LS synthesis. As to the constrained design, it can be seen that imposing
the PAR constraint leads to a minor performance degradation (for all criteria)
when compared to the unconstrained design. The fact that Sv-MaMi (PAR= 1)
outperforms Re-MaMi (PAR= 1) complies with the related observation for the
unconstrained case. In this example, the detection performances correspond-
ing to various criteria are similar. However, this behavior does not generally
hold true (see e.g. [183, 230, 231] and [223] for details on this aspect).

In Fig. 11.2 (a)-(d), the error norm has been depicted versus the iteration
number for both Sv-MaMi and Re-MaMi. The error norm for Sv-MaMi and
Re-MaMi is defined as ‖aaa(l+1)− aaa(l)‖2 and ‖AAA(l+1)−AAA(l)‖F , respectively. It
can be observed that Re-MaMi converges much faster than Sv-MaMi. This
observation can be explained by noting that in Sv-MaMi several majorizations
have been applied successively. However, the complexity per iteration of Sv-
MaMi is less than that of Re-MaMi because each iteration of Sv-MaMi can be
handled efficiently by solving a convex QCQP. Another observation is that for
the metrics B and D , both algorithms require more iterations for convergence
when compared to J and M . This might be due to the more complicated
form of the objective functions associated with B and D . Note that for I =
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M , Re-MaMi not only needs just one iteration to converge but also it provides
the globally optimal solution to the relaxed optimization problem owing to its
convexity (see (11.72)).

The required computation time of Sv-MaMi and Re-MaMi (employing ran-
domization with L = 50) for various criteria is shown in Table 11.3. Due to
the fact that the convergence time is dependent on the starting point as well
as the stop criterion, the reported times are averaged for 100 random starting
points on a standard PC (with Intel Core i5 2.8GHz CPU and 8GB memory)
assuming ξ = 10−4. It can be observed from this table that for I ∈ {J ,M },
Re-MaMi converges much faster than it does in the case of I ∈ {B,D}. This
can be explained by considering the required iteration numbers for different
I . Furthermore, the computational times of Sv-MaMi are almost the same
for all criteria. In sum, from a computational point of view, it can be con-
cluded that Re-MaMi is preferable for I ∈ {J ,M } whereas Sv-MaMi is
more suitable for I ∈ {B,D}. It is also practically observed that there is no
considerable difference between computational time of Re-MaMi with either
LS or randomization with L = 50.

The behavior of various information-theoretic criteria versus the transmit
energy e is investigated in Fig. 11.3 (a)-(d) for the coded system (using Sv-
MaMi with PAR= 1, and without PAR constraint) as well as the uncoded sys-
tem. This figure also illustrates the saturation phenomenon. We observe from
Fig. 11.3 that a saturation of the coded system always occurs before that in the
uncoded system, which was expected: employing an optimized code enables
the system to perform closer to the best possible performance at lower values
of e. For all criteria, an approximate decrease of 14.5 dB in the required trans-
mit energy of the coded system (with PAR= 1) is observed for e = 10 as for
Fig. 11.1 (see above).

Table 11.3. Comparison of the average computational times (in sec.) of Sv-MaMi and

Re-MaMi on a standard PC

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

Algorithm
Criterion

B D J M

Sv-MaMi 20.31 20.86 16.88 18.91
Re-MaMi 49.01 27.71 2.51 3.16

11.8 Conclusions
Multi-static radar code design schemes based on information-theoretic crite-
ria were considered in the presence of clutter. Two general methods were
proposed to tackle the highly non-linear and non-convex design optimization
problems using the Majorization-Minimization (MaMi) technique. The main
results can be summarized as follows:
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• A discrete-time formulation of the problem as well as the associated
optimal detector were presented. Due to the lack of analytical ROC,
information-theoretic criteria were used as design metrics, viz. the Bhat-
tacharyya distance, KL-divergence, J-divergence, and the Mutual infor-
mation. Using these metrics, optimization problems corresponding to
the original code design problem were derived.
• A unified framework was proposed to describe all the arising optimiza-

tion problems. Two methods called Sv-MaMi and Re-MaMi (based on
the MaMi technique) were devised to solve these optimization problems:

i) Sv-MaMi uses successive (linear as well as quadratic) majoriza-
tions such that each iteration of the algorithm can be handled using
a convex QCQP.

ii) Re-MaMi consists of majorization steps, rank-one constraint relax-
ation, and a synthesis stage. A least-squares approach and a ran-
domization technique were used for code synthesis.

• The proposed methods were extended to PAR-constrained code design
problems and to the case of multiple transmitters (with orthogonal trans-
mission).
• Numerical examples were provided to examine the proposed methods. It

was observed that Re-MaMi is computationally more efficient for I ∈
{J ,M }. On the other hand, for I ∈ {B,D} Sv-MaMi is preferable.
The metric’s saturation phenomenon, as the transmit energy increases,
was also investigated.

Note that stationary targets were considered in this work. Optimal code design
using information-theoretic criteria in the case of moving targets can be an
interesting topic for future research.

11.9 Appendices
11.9.1 Appendix A: Derivation of the Discrete-Time Model
It follows from (11.1) and (11.2) that the nth sample of the output of the
matched filter at the kth receiver can be written as

rk,n = rk(t)⋆φ ∗(−t)
∣∣∣
t=(n−1)Tp+τk

=
∫ +∞

−∞
rk(τ)φ

∗(τ− [n−1]Tp− τk)dτ

=
∫ +∞

−∞
αk

N

∑
i=1

aiφ(τ− [i−1]Tp− τk)φ
∗(τ− [n−1]Tp− τk)dτ

+
∫ +∞

−∞

Nc

∑
v=1

ρk,v

N

∑
i=1

aiφ(τ− [i−1]Tp− τk,v)φ
∗(τ− [n−1]Tp− τk)dτ

+
∫ +∞

−∞
wk(τ)φ

∗(τ− [n−1]Tp− τk)dτ . (11.86)
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Let Qu denote the uth integral in the right-hand side of the above equation.
Since {φ(t− [n−1]Tp)}N

n=1 are non-overlapping and have unit energy, Q1 can
be simplified as

Q1 = αk

N

∑
i=1

aiδ [i−n] = anαk. (11.87)

Furthermore, we have that

Q2 =
Nc

∑
v=1

ρk,v

(
N

∑
i=1

aiΨn,i(τk− τk,v)

)
(11.88)

where Ψn,i(t) is the cross-correlation function of φ(τ − [i− 1]Tp) and φ(τ−
[n−1]Tp) defined by

Ψn,i(t),
∫ +∞

−∞
φ(τ− [i−1]Tp− t)φ ∗(τ− [n−1]Tp)dτ . (11.89)

For unambiguous-range clutter scatterers (i.e. scatterers with τk,v ≤ Tp) [192],
Ψn,i(τk− τk,v) is zero for i 6= n because φ(t− [i− 1]Tp− τk,v) and φ(t− [n−
1]Tp− τk) are non-overlapping2. Therefore, Q2 can be rewritten as

Q2 = an

(
Nc

∑
v=1

ρk,vΨn,n(τk− τk,v)

)
, anρ̃k. (11.90)

Note that wk,n , Q3 represents the filtered version of the interference. Finally,
we can simplify (11.86) as

rk,n = anαk +anρ̃k +wk,n, for k = 1,2, ..,Nr and n = 1,2, ..,N

According to Assumption 3, βk,v , ρk,vΨn,n(τk− τk,v) are independent RVs,
for v = 1,2, ...,Nc. Consequently, ρ̃k = ∑

Nc
v=1 βk,v can be modeled, using the

central limit theorem [225], as a zero-mean complex Gaussian RV with vari-
ance σ 2

c,k. Note that σ 2
c,k can be calculated using Ψn,n(·) and the distribution

of the (τk− τk,v) [156].

11.9.2 Appendix B: Monotonically Increasing Behavior of the
Function qI (λk)

For I = B, we have qI (λk) = log 1+.5λk√
1+λk

. Therefore, the first-order deriva-

tive of qB(λk) is given by

d

dλk
qB(λk) =

0.25λk

(1+λk)(1+0.5λk)
. (11.91)

2Note that τk ≥ τp, otherwise τk corresponds to a blind range of the system [192].
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Similarly, for the first-order derivative of qD(λk) we have

d

dλk

qD(λk) =
λk

(λk +1)2 . (11.92)

As to the J-divergence, one can easily verify that

d

dλk
qJ (λk) =

λ 2
k +2λk

(1+λk)2 . (11.93)

Due to the fact that the right-hand side in eqs. (11.91), (11.92), and (11.93)
are non-negative for λk ≥ 0, the function qI (λk) is monotonically increasing
for I in {B,D ,J }. Moreover, the case of I = M simply leads to the
monotonically increasing function qM (λk) = log(1+λk).

11.9.3 Appendix C: Proof of Lemma 4

First note that h̃(ÃAA) = h(ÃAA). In addition, h̃(AAA) ≤ tr{(MMMk + βkAAA)−1MMMk} for
every pair of positive semidefinite matrices AAA, ÃAA ∈ CN×N if

(MMMk +βkAAA)−1− (MMMk +βkÃAA)−1 +(MMMk +βkÃAA)−1(βkAAA−βkÃAA)(MMMk +βkÃAA)−1 � 000.

(11.94)

Observe that (βkAAA−βkÃAA) = (MMMk +βkAAA)− (MMMk +βkÃAA). Therefore, using the
variables XXX = (MMMk +βkAAA) and YYY = (MMMk +βkÃAA), one can rewrite the left-hand
side of (11.94) as

XXX−1−YYY−1 +YYY−1(XXX−YYY )YYY−1 = (III−YYY−1XXX)XXX−1(III−XXXYYY−1).

Now it is straightforward to verify that the right-hand side of the above equa-
tion is always positive semi-definite as XXX−1≻ 000 and (III−XXXYYY−1)= (III−YYY−1XXX)H .
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Figure 11.1. ROCs corresponding to the obtained codes using Sv-MaMi and Re-

MaMi (both PAR-constrained and unconstrained) as well as the uncoded system for

different design metrics: a) B, b) D , c) J , and d) M . For unconstrained design

using Re-MaMi algorithm, results of both LS synthesis and randomization are shown.
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Figure 11.2. Error norm versus iteration number for Sv-MaMi/Re-MaMi and different
design metrics: a) B, b) D , c) J , and d) M . For the case of M , Re-MaMi converges
in one iteration.
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Figure 11.3. Behavior of various information-theoretic criteria versus transmit energy
e for the coded and the uncoded systems: a) B, b) D , c) J , and d) M . Results for
Sv-MaMi with PAR= 1 and with no PAR constraint are shown.
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12. Search for Costas Arrays via Sparse
Representation
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Figure 12.1. A Costas array of size 8×8.

Abstract

Costas arrays are mainly known as a certain type of optimized time-frequency coding pattern for
sonar and radar. In order to fulfill the need for effective computational approaches to find Costas
arrays, in this chapter, we propose a sparse formulation of the Costas array search problem. The
new sparse representation can pave the way for using an extensive number of methods offered
by the sparse signal recovery literature. It is further shown that Costas arrays can be obtained
using an equivalent quadratic program with linear constraints. A numerical approach is devised
and used to illustrate the performance of the proposed formulations.

Keywords: Code design, Costas arrays, frequency hopping, radar codes, sparsity

12.1 Introduction
Costas arrays have been studied in engineering and mathematics for around
half a century— however, many related fundamental questions are not yet an-
swered [242] [243]. The definition of a Costas array is fairly straightforward:

Definition 1. A Costas array is a set of n points lying on the squares of an n×n

checkerboard, such that each row and column contains only one point, and all

of the
(

n
2

)
displacement vectors1 between each pair of points are distinct.

Fig. 12.1 shows an example of a Costas array of size 8× 8. Costas arrays
are mainly known as time-frequency coding patterns that optimize the perfor-
mance of sonars and radars. They have also shown promising applications in
data hiding and mobile radio [244] [245]. The usefulness of Costas arrays in
sonar and radar applications can be seen more clearly by the following alter-
native definition of Costas arrays:

1Note that the points in the checkerboard can be associated with position vectors (initiated from
an arbitrary origin). Then the displacement vectors are the differences of such position vectors.



Definition 2. A permutation matrix PPP of size n×n represents a Costas array

if and only if for any pair of integers (r,s) 6= (0,0), |r| ≤ n, |s| ≤ n, the two-

dimensional (2D) correlation function c(r,s) associated with PPP satisfies

c(r,s) =
n

∑
k=1

n

∑
l=1

PPP(k, l)PPP(k+ r, l+ s)≤ 1 (12.1)

where PPP is extended with zeros when required.

Note that the low 2D correlation character described in (12.1) leads to a
low ambiguity in detection of moving targets. Due to their importance, several
analytical construction methods have been proposed for Costas arrays [246].
Thanks to such constructions, Costas arrays are known for an infinite number
of orders n. On the other hand, it is not yet known whether Costas arrays exist
for all n.

Using computer clusters, the enumeration of Costas arrays has been accom-
plished via brute-force computational methods for all n≤ 29 [247]. However,
the size of the search space is reported to grow exponentially with n, which
makes the problem of finding Costas arrays impossible to tackle via exhaus-
tive search when n grows large [248]. With such issues in mind, in this chapter
(Sections 12.2 and 12.3), we propose a sparse formulation of the Costas array
search problem:
• We believe that the sparse formulation introduced in this chapter lays the

ground for using the many methods offered by the extensive literature
on sparse signal recovery— which can lead to more effective numerical
approaches than the exhaustive search.
• To the best of our knowledge, this work is the first to cast the Costas

array search problem as an optimization problem, in a form which is
well-known in the signal processing community.

Based on the proposed formulation, and in order to show its performance, a
numerical approach is devised and used to find a Costas array in Section 12.4.

Notation: We use bold lowercase letters for vectors and bold uppercase
letters for matrices. (·)T denotes the vector/matrix transpose. 1 and 000 are
the all-one and all-zero vectors/matrices. eeek and ẽeek are the kth standard basis
vectors in Rn, and Rn2

, respectively. vec(XXX) is a vector obtained by stacking
the columns of XXX successively. ‖x‖n or the ln-norm of the vector x is defined

as (∑k |x(k)|n)
1
n where {x(k)} are the entries of x; for n = 0, ‖x‖0 is given

by the number of nonzero entries of x. Finally, the symbol ⊗ stands for the
Kronecker product of matrices.

12.2 Costas Arrays: A Linear Formulation
In this section, we introduce a linear interpretation of the Costas array con-
straints. Particularly, we show that such constraints can be expressed as an

289



under-determined linear system of equations along with some linear inequali-
ties. To this end, we propose the following geometrically equivalent definition
of Costas arrays:

Definition 3. A Costas array is a set of n points lying on the squares of an n×n

checkerboard, such that (i) each row and column contains only one point (per-

mutation property), and that (ii) no four points form a parallelogram; more-

over no three equidistant points occur on the same line (distinctness property).

Let the binary matrix XXXn×n (with entries in {0,1}) denote a Costas array,
and let x = vec(XXX). Assuming binary variables, the permutation property in
Definition 3 can be expressed by the linear equality constraint:

AAAx = 12n×1 , bbb (12.2)

where

AAA2n×n2 =

(
OOO1 OOO2 · · · OOOn

III III · · · III

)
(12.3)

and OOOk = eeek⊗1T
n . We further note that the distinctness property in Definition

3 can be formulated using a number of linear inequalities. Suppose that the
location indices {i1, i2, i3, i4} in x represent the vertices of a parallelogram in
XXX . To avoid forming such a parallelogram, it is sufficient to add the inequality

x(i1)+x(i2)+x(i3)+x(i4)≤ 3, (12.4)

i.e. (ẽeei1 + ẽeei2 + ẽeei3 + ẽeei4)
T x≤ 3

to the constraint set. Furthermore, any pattern of equidistant points on the
same line, represented by the location indices {i1, i2, i3} in x, can be avoided
by the linear inequality constraint

x(i1)+x(i2)+x(i3)≤ 2, (12.5)

i.e. (ẽeei1 + ẽeei2 + ẽeei3)
T x≤ 2.

By including the linear constraints associated with all possible parallelograms
and three equidistant points on a same line in the checkerboard, one can for-
mulate the distinctness property in the following unified form:

AAA′x≤ bbb′. (12.6)

Note that although AAA′ and bbb′ can be hardly formulated in an explicit form,
they are easy to generate algorithmically. An example of such an algorithmic
construction of (AAA′,bbb′) is given in Table 12.1. Finally, a binary vector xn2×1
represents a Costas array if and only if it is a solution to the linear system

{
AAAx = bbb,
AAA′x≤ bbb′.

(12.7)
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Table 12.1. An algorithmic construction of (AAA′,bbb′)

Step 1: For all triples (i1, i2, i3) (not on the same row/column)
sorted by their row number in the checkerboard do:
Step 1-1: If i2 is in the middle of i1 and i3,
Step 1-1-1: Add the row vector (ẽeei1 + ẽeei2 + ẽeei3)

T at the bottom
of AAA′, and 2 at the bottom of bbb′.
Step 1-2: Else,
Step 1-2-1: Find the 4th vertices {i4} corresponding to the two
parallelograms that can be formed using the available vertices
(i1, i2, i3) with i1 as the vertex with the minimum row number.
Step 1-2-2: For any of the two possible locations {i4} which
occur inside the checkerboard, include the row vector (ẽeei1 + ẽeei2 +
ẽeei3 + ẽeei4)

T at the bottom of AAA′, and 3 at the bottom of bbb′.

As indicated earlier, the linear system in (12.7) contains 2n equality con-
straints. We refer the interested reader to the Appendix for enumeration results
regarding the inequality constraints in (12.7).

12.3 Sparse Representation of Costas Arrays
It is interesting to observe that the binary constraint on x can be omitted if
one seeks for the sparsest solution of the linear system in (12.7). Consider the
following optimization problem:

P0 : min
x∈Rn2

‖x‖0 (12.8)

s.t.





AAAx = bbb,
AAA′x≤ bbb′,
000≤ x≤ 1

(12.9)

Theorem 1. Every solution of P0 represents a Costas array, and vice versa.

Proof: According to the equality constraint in (12.9), every solution of
P0 has at least one nonzero element in the location indices corresponding to
each row/column of the checkerboard. This implies that every solution x to P0

has an l0-norm of at least n. On the other hand, if ‖x‖0 = n, the satisfaction of
the equality constraint in (12.9) implies that x denotes a permutation matrix,
and as a result, the satisfaction of the inequality constraint in (12.9) shows that
x represents a Costas array. Moreover, any x representing a Costas array is a
feasible solution to the linear system in (12.9) with the minimum l0-norm, i.e.
n. �

Note that the sparse formulation above paves the way for employing many
existing, as well as emerging sparse signal recovery techniques in the liter-
ature. The recovery of sparse signals subject to linear constraints has been
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studied widely in the past decade, see [249]- [255] and the references therein.
We note that as the l1-norm of any feasible x ≥ 000 of P0 is constant, it is not
possible to employ the convex l1 minimization alternative of P0, although it
is a common practice in sparse signal recovery [252]. From a geometrical
point of view, the solutions to P0, i.e. the sparsest solutions to (12.7), have the
maximum Euclidean distance from the origin. In other words, P0 is equivalent
to

P2 : max
x∈Rn2

‖x‖2 (12.10)

s.t.





AAAx = bbb,
AAA′x≤ bbb′,
000≤ x≤ 1

(12.11)

To observe this fact, we recall that the equality constraint AAAx = bbb implies a
constant sum of entries corresponding to each row/column of XXX . Using such a
constant-sum property, the connection between the solutions of P0 and P2 can
be studied in a constructive way. Let x(k)≥ x(l), and α > 0. Then it is easy
to verify that

(x(k)+α)2+(x(l)−α)2 > (x(k))2+(x(l))2. (12.12)

The latter inequality implies that the l2-norm of x can be increased monotoni-
cally by decreasing the small elements of x and increasing the large elements
of x at the same rate— i.e. enhancing sparsity while increasing the l2-norm.
The latter result can be applied to a feasible x of P0, meaning that a solution
x of P0 has the minimal l0-norm (i.e. n) and at the same time the maximal
l2-norm (i.e.

√
n) among all feasible candidates in the search space of P0.

We end this section with two remarks. First of all, the linear system in
(12.9) and (12.11) describes a convex polytope, which we call the Costas ball

in the sequel. Based on the above discussion, Costas arrays can be viewed as
the farthest subset (in Euclidean sense) of vertices of the Costas ball from the
origin, that intersect with the n2-sphere

BBBn2 = {x ∈ Rn2
: ‖x‖2

2 = n}. (12.13)

This observation is illustrated in Fig. 12.2. Second, both optimization prob-
lems P0 and P2 are NP-hard in general; see [255], and [256], [257]. Neverthe-
less, such new formulations might be employed to devise numerical methods
that can handle the Costas array search problems more effectively than the
brute-force methods.
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Figure 12.2. An intuitive illustration of the Costas ball and the Costas arrays ({xk},
shown by the blue dots) possessing maximal l2-norm. Costas arrays intersect with the
n2-sphere BBBn2 .

12.4 A Numerical Approach— Along with an
Illustrative Example

In order to show the potential of the proposed sparse formulation, we consider
a reweighted iterative approach to tackle P2. More precisely, starting from a
random positive weight vector www(1) ∈ Rn2

, we obtain the variable x(k) (at the
kth iteration) using the linear program:

P2− reweighted : max
x(k)∈Rn2

wwwT (k)x(k) (12.14)

s.t.





AAAx(k) = bbb,

AAA′x(k) ≤ bbb′,
000≤ x(k) ≤ 1

(12.15)

where the weight vector is updated as

www(k+1) = x(k)+ εεε , k ≥ 1 (12.16)

and εεε is a random vector in Rn2
consisting of elements with i.i.d. standard

Gaussian distribution N (0,σ). Note that P2− reweighted aims to (approxi-
mately) maximize the l2-norm, while it also provides a randomized leverage
to skip the local optima of P2 (corresponding to some vertices of the Costas
ball with an l2-norm less than

√
n). We stop the iterations when x becomes

binary, and hence will represent a Costas array.
We note that, the reweighted method in (12.14)-(12.16) typically requires

more iterations until convergence as n grows large. As an example, we con-
sider using the proposed iterative approach to find a Costas array of size 8×8;

293



a size which enables us to present the results through iterations. Due to the
binary (i.e. 0/1) nature of the ultimate results, we use a standard deviation σ

of 0.5. The resultant 2D patterns XXX (k) = vec−1
(

x(k)
)

are shown in Fig. 12.3.

In this example, the algorithm finds a Costas array after 6 iterations. It is worth
observing that the 2D patterns obtained from successive iterations appear to
be rather correlated (i.e. similar); at the same time, the obtained Costas array
looks rather different from the pattern obtained at the end of the first iteration.

Finally, it is worthwhile to mention that, for large n, efficient implemen-
tation of the proposed approaches is crucial, and may be considered as an
interesting topic for future works.

12.5 Appendix
12.5.1 Appendix A: The Number of Inequality Constraints in

(12.7)
We begin by observing that the number of distinct (k, l)-vectors2 in an n× n

checkerboard is given by (n− |k|+ 1)(n− |l|+ 1). Note that (i) the pattern
described by three equidistant points on the same line is also a parallelogram
whose two vertices share the same location. Moreover, (ii) each parallelogram
including a (k, l)-edge is uniquely determined by placing two (k, l) vectors in
the checkerboard. The number of all parallelograms including a (k, l)-edge in
the n×n checkerboard is thus given by

(
(n−|k|+1)(n−|l|+1)

2

)
. (12.17)

Now we should exclude the parallelograms which have two vertices on the
same row/column, except those for which the two mentioned vertices are ex-
actly at the same location. The number of such parallelograms with two ver-
tices on the same row is given by the number of (t,2l)-vectors with −(n−
2|l|+ 2) ≤ t ≤ n. Similarly, the number of such parallelograms with two
vertices on the same column is given by the number of (2k, t)-vectors with
−(n− 2|k|+ 2) ≤ t ≤ n. On the other hand, the number of parallelograms
with a (k, l)-edge and two vertices sharing the same location is given by the
number of (2k,2l)-vectors in the checkerboard. In sum, the number of paral-
lelograms including a (k, l)-edge for which no two vertices occur on the same

2i.e. the displacement vectors that map a point location (i, j) to the location (i+ k, j+ l) in the
checkerboard.
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row/column unless they share a same location is equal to

fk,l =

(
(n−|k|+1)(n−|l|+1)

2

)
(12.18)

−
n

∑
t=−(n−2|l|+2)

(n−2|l|+1)(n−|t|+1)

−
n

∑
t=−(n−2|k|+2)

(n−2|k|+1)(n−|t|+1)

+2(n−2|k|+1)(n−2|l|+1)

We note that by considering all 1≤ k ≤ n−1 and 1≤ |l| ≤ n−1, each paral-
lelogram (except those with two vertices in the same location) will be counted
two times in { fk,l}. Therefore, the number of all parallelograms (correspond-
ing to the linear inequality constraints) becomes

Tn =
1
2

n−1

∑
k=1

∑
1≤|l|≤n−1

fk,l (12.19)

+
1
2

n−1

∑
k=1

∑
1≤|l|≤n−1

(n−2|k|+1)(n−2|l|+1).

Finally, it is worthwhile to observe that fk,l = O(n4) which implies that Tn =
O(n6) according to (12.19).
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after 1 iteration

(a)

after 2 iterations

(b)

after 3 iterations

(c)

after 4 iterations

(d)

after 5 iterations

(e)

after 6 iterations

(f)

Figure 12.3. The 2D patterns XXX (k) = vec−1
(

x(k)
)

obtained using the iterative

reweighted approach proposed in (12.14)-(12.16). The values are shown using
grayscale intensity. In this example, the method finds a Costas array after 6 iterations.
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Abstract

Owing to the inherent sparsity of the target scene, compressed sensing (CS) has been success-
fully employed in radar applications. It is known that the performance of target scene recovery
in CS scenarios depends highly on the coherence of the sensing matrix (CSM), which is de-
termined by the radar transmit waveform. In this chapter, we present a cyclic optimization
algorithm to effectively reduce the CSM via a judicious design of the radar waveform. The pro-
posed method provides a reduction in the size of the Gram matrix associated with the sensing
matrix, and moreover, relies on the fast Fourier transform (FFT) operations to improve the com-
putation speed. As a result, the suggested algorithm can be used for large dimension designs
(with & 100 variables) even on an ordinary PC. The effectiveness of the proposed algorithm is
illustrated through numerical examples.

Keywords: Compressed sensing, mutual coherence, radar, sensing matrix, sparsity, wave-

form synthesis

13.1 Introduction and System Modeling
A primary interest in radar is the inverse problem of recovering the target
scene from the noisy measurements. For a radar working under the conven-
tional Nyquist-Shannon sampling framework, the sampling rate is constrained
to be at least twice the highest frequency component in the received signal,
in order to reconstruct the target scene accurately. In many cases, particularly
for ultra wide band (UWB) radar, such a requirement is hardly achieved using
the currently employed analog to digital converters (ADCs); not to mention
the large computational burden caused by the processing of the data with high
sampling rates.

The new framework of compressed sensing (CS) may promise a solution
to such difficulties [258, 259]. To observe how, note that in practical radar
applications, the target scene is typically sparse— i.e. there is usually a small
number of targets that we are concerned with. In order to recover the data
with lower sampling rates, CS relies on two criteria: (i) sparsity, which is
related to the signal of interest (i.e. the target scene), and (ii) incoherence,
which is related to the sensing modality to be designed. Note that CS-based
formulations have been successfully developed for MIMO radar [261, 262],
synthetic aperture radar (SAR) [263], as well as the inverse synthetic aperture
radar (ISAR) [264].

In radar applications, the sensing modality is determined by the transmit
sequence sss. The design problem can be formulated as follows. Suppose the
target scene (in the range-Doppler plane) is discretized via a Nr×Nd grid, and



define the time delay and Doppler shift matrices as

TTT r =




000r×N

IIIN×N

000(Nr−r−1)×N


 , r = 0,1, · · · ,Nr−1, (13.1)

FFFd =




ω0
M 0 · · · 0

0 ω1
M · · · 0

...
...

. . .
...

0 0 · · · ωN−1
M




d

,d = 0,1, · · · ,Nd−1,

where N is the length of transmit sequence sss, ωM = e j 2π
M is the Mth root-of-

unity. Thus, the discrete received signal can be formulated as (see [265–267]
for details)

xxx =
Nd−1

∑
d=0

Nr−1

∑
r=0

αr,d TTT rFFFdsss︸ ︷︷ ︸
,,,ϕϕϕr,d

+eee (13.2)

where αr,d denotes the complex scattering coefficient corresponding to the
(r,d)th element of the grid, and eee accounts for noise and all other unwanted
interferences. Note that (13.2) can be recast in matrix form as

xxx = ΦΦΦααα + eee (13.3)

where ΦΦΦ = (ϕϕϕ0,0,ϕϕϕ0,1, . . . ,ϕϕϕNr−1,Nd−1) and ααα = (α0,0,

α0,1, . . . ,αNr−1,Nd−1)
T . The goal of a radar system is to estimate the location,

speed, and the radar cross-section (RCS) of the targets; in other words, to find
the vector ααα in the above equation. As discussed earlier, ααα in (13.3) is usually
sparse. Therefore, different methods from the CS literature can be used for
designing sss (equivalently an optimized sening matrix ΦΦΦ), as well as to seek
for the sparse ααα in (13.3).

Notation: We use bold lowercase letters for vectors and bold uppercase let-
ters for matrices. (.)T and (.)H denote the vector/matrix transpose and the
Hermitian transpose, respectively. 000 is the all-zero vector/matrix. vec(XXX) is
a vector obtained by stacking the columns of XXX successively. ‖x‖n or the

ln-norm of the vector x is defined as (∑k |x(k)|n)
1
n where {x(k)} are the en-

tries of x. The Frobenius norm of a matrix XXX (denoted by ‖XXX‖F) is equal to
‖vec(XXX)‖2. Finally, C represents the set of complex numbers.

13.2 Mutual Coherence
The mutual coherence, also known as the coherence of the sensing matrix
(CSM) [269], is a useful metric to measure the incoherence required by CS,
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which can be defined as

µ(ΦΦΦ), max
(r,d)6=(r′,d′)

|ϕϕϕH
r,dϕϕϕr′,d′ |

‖ϕϕϕ r,d‖2‖ϕϕϕr′,d′‖2
. (13.4)

Suppose that the number of non-zero entries associated with the target scene
α̃αα satisfies the following inequality

‖α̃αα‖0 <
1
2

(
1+

1
µ(ΦΦΦ)

)
. (13.5)

Then α̃αα is necessarily the sparsest solution of the linear equation xxx = ΦΦΦααα .
Moreover, fast greedy algorithms such as the basis pursuit (BP) or the or-
thogonal matching pursuit (OMP) are guaranteed to find the correct solution
ααα [259, 267]. A suitable approach to describe µ(ΦΦΦ) is via the Gram matrix

GGG , Φ̃ΦΦ
H

Φ̃ΦΦ, where Φ̃ΦΦ is the column-normalized version of ΦΦΦ. Consequently,
µ(ΦΦΦ) can be stated as

µ(ΦΦΦ) = max
k 6=l
|GGG(k, l)| (13.6)

where {|GGG(k, l)|}k 6=l are the coherence coefficients associated with the sensing
matrix ΦΦΦ.1

Note that a matrix ΦΦΦ with low coherence corresponds to a Gram matrix GGG

which is close to identity IIINrNd
. As a result, one can reduce the incoherence

conveniently via the optimization problem:

min
ΦΦΦ
‖GGG− III‖2

F . (13.7)

Due to its quartic objective, (13.7) is deemed to be easier to tackle compared to
(13.6); however, a large number of variables can make the problem prohibitive.
In the next section, we will discuss a more effective approach that formulates a
quadratic alternative of (13.7), and particularly facilitates using the fast Fourier
transform (FFT) operations to tackle the problem.

13.3 Waveform Synthesis
Due to practical constraints, unimodular sequences (with |sss(k)|= 1, ∀ k) are
very desirable for transmission purposes [89]. As a result, we consider the
design of unimodular transmit sequences sss in the following.

We begin the design formulation noting that the coherence between any
two arbitrary columns of the matrix Φ̃ΦΦ (and equivalently the corresponding

1We note that, according to the formulation in (13.2), the coherence coefficients can also be
associated with the transmit sequence sss.

300



element in the Gram matrix GGG) can be written as

ϕ̃ϕϕH
r,dϕ̃ϕϕ r′,d′ =

(
1√
N

TTT rFFFdsss

)H( 1√
N

TTT r′FFFd′sss

)

=
1
N

(
sssHFFFd HTTT r H

)(
TTT r′FFFd′sss

)

=
1
N

sssHFFFd H T̃TT ∆rFFF
d′sss (13.8)

where T̃TT ∆r = TTT rHTTT r′ , and ∆r = r′− r. Based on the above equation, it is easy
to verify that the terms formulated in (13.8) are identical for all (r,r′) with
the same ∆r. Therefore, the Gram matrix GGG has a specific structure that can
be exploited. Namely, using (13.8) the objective function in (13.7) can be
rewritten as

‖GGG− III‖2
F =

∥∥∥∥∥∥∥∥∥




G̃GG0 G̃GG1 · · · G̃GGNr−1

G̃GG−1 G̃GG0 · · · G̃GGNr−2
...

...
. . .

...
G̃GG1−Nr G̃GG2−Nr · · · G̃GG0


− III

∥∥∥∥∥∥∥∥∥

2

F

=
N−1

∑
r=−(N−1)

γ2
r ‖G̃GGr− IIIδr‖2

F (13.9)

where

G̃GGr = XXXH T̃TT rXXX , (13.10)

XXX = (xxx0,xxx1, . . . ,xxxNd−1), (13.11)

xxxd =
1√
N

FFFdsss , d = 0,1, . . . ,Nd−1, (13.12)

γ2
r =

{
Nr−|r|, |r|< Nr,

0, otherwise,
(13.13)

and δr denotes the Kronecker delta function which is one if r = 0, and is zero
otherwise. It is worth observing that (13.9) contributes a significant reduction
in the size of the matrix variables.

Next note that T̃TT r is a shifting matrix, and hence G̃GGr can be viewed as the
covariance matrix of the vectors {xd} corresponding to the time lag r. Based
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on this observation, the following Parseval-type equality holds [270]:

‖GGG− III‖2
F =

N−1

∑
r=−(N−1)

γ2
r ‖G̃GGr− IIIδr‖2

F

=
1

2N

2N

∑
p=1

∥∥∥∥ΨΨΨ

(
2π p

2N

)
− γ0III

∥∥∥∥
2

F

(13.14)

in which

ΨΨΨ(ω) =
N−1

∑
r=−(N−1)

γrXXX
H T̃TT rXXX e− jωr. (13.15)

Interestingly, the frequency domain criterion in (13.14) has the same form
as (28) in [270]. Therefore, we employ a similar approach to tackle the prob-
lem herein. In particular, the ΨΨΨ(ω) defined in (13.15) can also be written in
the form

ΨΨΨ(ω) = ZZZH(ω)ΓΓΓZZZ(ω) (13.16)

with

ZZZ(ω) = (zzz(1)e− jω , . . . ,zzz(N)e− jωN)T , (13.17)

zzz(n) = (xxx0(n), . . . ,xxxNd−1(n))
T (13.18)

for 1≤ n≤ N, and

ΓΓΓ =




γ0 γ1 · · · γN−1

γ−1 γ0 · · · ...
...

...
. . . γ1

γ−N+1 . . . γ−1 γ0


 . (13.19)

As a result, we have that

‖GGG− III‖2
F =

1
2N

2N

∑
p=1

‖ZZZH
p ΓΓΓZZZ p− γ0III‖2

F (13.20)

where ZZZ p , ZZZ(2π p/(2N)). Now note that ‖G̃GG0− III‖2
F is a constant, and thus, a

diagonal loading of ΓΓΓ does not change the solution to (13.7). Let Γ̃ΓΓ = ΓΓΓ+λ III,
with λ being a non-negative scalar that can ensure Γ̃ΓΓ ≥ 0. Consequently, one
can reduce the incoherence of ΦΦΦ conveniently using the following quadratic
almost-equivalent form of (13.20), see [89, 270]:

min
sss,UUU p

2N

∑
p=1

‖CCCZZZp−
√

γ0UUU p‖2
F

s.t. |sssn|= 1, n = 1, . . . ,N,

UUUH
p UUU p = III, p = 1, . . . ,2N, (13.21)
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where CCC is the Hermitian square root of Γ̃ΓΓ, i.e. CCCHCCC = Γ̃ΓΓ.
To tackle the minimization problem in (13.21), we adopt a cyclic method

as follows. For given {ZZZp}2N
p=1 (equivalently a given transmit sequence sss), let

ZZZH
p CCCH = UUU1ΣΣΣUUUH

2 represent the economy-size singular value decomposition

(SVD) of ZZZH
p CCCH , with UUU1 being an Nd×Nd unitary matrix, ΣΣΣ being an Nd×

Nd diagonal matrix and UUU2 being an N×Nd semi-unitary matrix. Then the
minimizer UUU p of (13.21) is given by [270]

UUU p =UUU2UUUH
1 . (13.22)

Similar to the WeCAN algorithm in [270], the computation of CCCZZZp can be
performed using the FFT operation. To observe how, let

X̃XXm =CCCT ⊙ (xxxm,xxxm, . . . ,xxxm)N×N (13.23)

for 0≤ m≤ Nd−1, and

FFF =
√

2NAAAH F̃FF, F̃FF =

(
X̃XX0 . . . X̃XXNd−1

000N×N . . . 000N×N

)
(13.24)

where AAA denotes the 2N× 2N (inverse) DFT matrix, whose (l, p)-element is
given by

[A]l,p =
1√
2N

e j2πl p/(2N), l, p = 1, . . . ,2N. (13.25)

Using the above formulations, one can observe that the N×Nd matrix CCCZZZp

may be obtained by reshaping the NNd × 1 vector fff p into each column of

CCCZZZp, where fff T
p represents the pth row of FFF .

Next we discuss the minimization of (13.21) with respect to sss for given
{UUU p}2N

p=1. Let

VVV 2N×NNd
= (vvv1,vvv2, . . . ,vvv2N)

T (13.26)

where vvvp =
√

γ0 vec(UUU p), 1 ≤ p ≤ 2N. Then the criterion in (13.21) can be
written as

2N

∑
p=1

‖CCCZZZ p−
√

γ0UUU p‖2
F =

∥∥∥
√

2NAAAH F̃FF−VVV

∥∥∥
2

F

= 2N

∥∥∥∥F̃FF− 1√
2N

AAAVVV

∥∥∥∥
2

F

. (13.27)

Note that (13.27) can be minimized with respect to each element of sss in a sep-
arate manner. Particularly, we can consider minimizing the following criterion
with respect to s (a generic element of sss):

NNd

∑
k=1

|µks−νk|2 = const−2ℜ

[(
NNd

∑
k=1

µ∗k νk

)
s∗
]

(13.28)
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Table 13.1. The Proposed Algorithm for Sparsity-Aided Transmit Sequence Design

Step 0: Initialize the transmit sequence sss with a random uni-
modular sequence (or by a good existing sequence). Calculate
the Hermitian square root CCC of Γ̃ΓΓ.

Step 1: Fix sss (equivalently {ZZZ p}2N
p=1) and compute {UUU p}2N

p=1
using (13.22).

Step 2: Fix {UUU p}2N
p=1 and compute sss using (13.29).

Step 3: Repeat steps 1 and 2 until a stop criterion is satisfied,
e.g. ‖sss(t+1)− sss(t)‖F < ε for some given ε > 0, where t denotes
the total iteration number.

where {µk} are given by the elements of F̃FF that contain s, and νk is given by
the element of 1√

2N
AAAVVV whose position is the same as that of µk in F̃FF . Hence,

the unimodular s minimizing (13.28) is

s = e jϕ , ϕ = arg

(
NNd

∑
k=1

µ∗k νk

)
. (13.29)

Finally, the steps of the proposed algorithm for designing the transmit se-
quence sss are summarized in Table 13.1.

13.4 Numerical Examples
13.4.1 Incoherence
We consider employing the proposed method to design a transmit sequence
sss of length N = 127, using the Alltop sequence as initialization, for a target
scene with Nr = 20 range and Nd = 15 Doppler bins. The Alltop sequence is
known to yield a desirable incoherence property of the sensing matrix ΦΦΦ [266],
and is defined for prime lengths N > 5 as

sss(n) = e j 2π
N n3

, n = 1,2, . . . ,N. (13.30)

In a type of example inspired by [267], we compare the coherence coef-
ficients associated with the Alltop sequence, and those of the optimized se-
quence obtained by the proposed method. Furthermore, we include the results
obtained by using the coherence reduction approach in [267] initialized by the
Alltop sequence. The results are shown in Fig. 13.1. It can be observed from
Fig. 13.1 that the proposed method in this work and the approach in [267]
can lead to a similar coherence distribution. On the other hand, both methods
outperform the Alltop sequence in terms of incoherence.
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13.4.2 Target Scene Recovery
In order to verify the effectiveness of the optimized sequences, we examine
the root mean-square errors (RMSEs) of the target scene recovery for differ-
ent sparsity orders K = ‖ααα‖0. We construct the sparse vectors ααα by choosing
K non-zero locations in the vector, with identical chance for all

(
NdNr

K

)
assign-

ments of the non-zero locations, and consider random positive RCS values
for the non-zero locations. We let N = 127, Nr = 20, Nd = 15, and set the
signal-to-noise ratio to 0dB. Based on these settings, we use the OMP algo-
rithm for the recovery of ααα . The results leading to Fig. 13.2 are obtained by
averaging the RMSE values for 500 Monte Carlo experiments (with different
random initializations). Once again, the proposed method and the approach
in [267] present a very similar performance. However, according to Fig. 13.2,
the optimized sequences obtained by both methods can yield a smaller RMSE
compared to that of Alltop sequence; particularly when the sparsity order K

grows large. We note that for larger values of K, a low incoherence of the
sensing matrix ΦΦΦ becomes more crucial to an accurate reconstruction of the
target scene; see (13.5).

13.4.3 Computation Time
Finally, we compare the computation times required by the proposed method
and the coherence reduction approach devised in [267], when performing the
sequence design for various lengths N of the transmit sequence. Herein, we
set M = 10, Nd = 8, and Nr = N. It can be observed from Fig. 13.3 that the
computation time of the design algorithm in [267] is growing rapidly as N

grows large. In contrary, the proposed algorithm can be used for comparably
large lengths of the transmit sequence, e.g. N & 100. The results leading to
Fig. 13.3 were obtained by averaging the computation times over 100 exper-
iments (with different random initializations) using a PC with Intel Core i5
CPU 750 @2.67GHz, and 8GB memory.
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Figure 13.1. Distribution of the coherence coefficients associated with (a) Alltop se-
quence, and (b-c) the optimized sequences obtained by the proposed method and the
coherence reduction approach in [267], respectively, using the Alltop sequence as ini-
tialization.
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Figure 13.2. Comparison of the recovery error for sensing matrices built based on the
Alltop sequence and the optimized sequences obtained by the proposed method and
the approach in [267], for different sparsity orders K of the target scene ααα .
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Figure 13.3. Comparison of the computation times corresponding to the proposed
method and the design algorithm devised in [267], for different lengths N of the trans-
mit sequence.
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Part V:
Beam-Pattern Matching Metrics





14. Single-Stage Transmit Beamforming
Design for MIMO Radar
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Abstract

MIMO radar beamforming algorithms usually consist of a signal covariance matrix synthesis
stage, followed by signal synthesis to fit the obtained covariance matrix. In this chapter, we
propose a radar beamforming algorithm (called Beam-Shape) that performs a single-stage radar
transmit signal design; i.e. no prior covariance matrix synthesis is required. Beam-Shape’s
theoretical as well as computational characteristics, include: (i) the possibility of considering
signal structures such as low-rank, discrete-phase or low-PAR, and (ii) the significantly reduced
computational burden for beampattern matching scenarios with large grid size. The effective-
ness of the proposed algorithm is illustrated through numerical examples.

Keywords: Beamforming, multi-input multi-output (MIMO) radar, peak-to-average-power

ratio (PAR), signal design

14.1 Introduction
A key problem in the radar literature is the transmit signal design for match-
ing a desired beampattern. In contrast to conventional phased-array radar,
multiple-input multiple-output (MIMO) radar uses its antennas to transmit
independent waveforms, and thus provides extra degrees of freedom (DOF)
[273] [274]. As a result, MIMO radars can achieve beampatterns which might
be impossible for phased-arrays [275] [276]. The MIMO radar transmit beam-
pattern design approaches in the literature require two stages in general (see,
e.g. [275]- [284]). The first stage consists of the design of the transmit co-
variance matrix RRR. The design of RRR can be typically performed using convex
optimization tools. Next, the transmit signals (under practical constraints) are
designed in order to fit the obtained covariance matrix.

In this chapter, we present a novel approach (which we call Beam-Shape)
for “shaping" the transmit beam of MIMO radar via a single-stage trans-
mit signal design. We consider the transmit beamspace processing (TBP)
scheme [281] [286] for system modeling (see Section 14.2 for details). Due to
different practical (or computational) demands, two optimization problems are
considered for both TBP weight matrix design as well as a direct design of the
transmit signal. In comparison to the two-stage framework of beamforming
approaches in the literature:
• Beam-Shape is able to directly consider in its formulation the matrix

rank or signal constraints (such as low peak-to-average-power ratio (PAR),
or discrete-phase); an advantage which generally is not shared with the
covariance matrix design. As a result, the matching optimization prob-
lem will produce optimized solutions considering all the constraints of
the original problem at once, and may thus avoid the optimality losses
imposed by a further signal synthesis stage. See Section 14.4 for some
numerical illustrations.
• In beamforming scenarios with large grid size, Beam-Shape appears to

have a significantly smaller computational burden compared to the two-
stage framework. See the related discussions in Sections 14.3 and 14.4.



Notation: We use bold lowercase letters for vectors and bold uppercase
letters for matrices. (·)T , (·)∗ and (·)H denote the vector/matrix transpose,
the complex conjugate, and the Hermitian transpose, respectively. 1 and 000
are the all-one and all-zero vectors/matrices. The symbol ⊙ stands for the
Hadamard (element-wise) product of matrices. ‖x‖n or the ln-norm of the

vector x is defined as (∑k |x(k)|n)
1
n where {x(k)} are the entries of x. The

Frobenius norm of a matrix XXX (denoted by ‖XXX‖F ) with entries {XXX(k, l)} is

equal to
(
∑k,l |XXX(k, l)|2

) 1
2 . We use ℜ(XXX) and ℑ(XXX) to denote the matrices

obtained by collecting the real parts, and respectively, the imaginary parts of
the entries of XXX . Finally, Qp(XXX) yields the closest p-ary phase matrix with
entries from the set {2kπ/p : k = 0,1, · · · , p−1}, in an element-wise sense, to
an argument phase matrix XXX .

14.2 Problem Formulation
Consider a MIMO radar system with M antennas and let {θl}L

l=1 denote a fine
grid of the angular sector of interest. Under the assumption that the transmitted
probing signals are narrow-band and the propagation is non-dispersive, the
steering vector of the transmit array (at location θl) can be written as

aaa(θl) =
(

e j2π f0τ1(θl),e j2π f0τ2(θl), . . . ,e j2π f0τM(θl)
)T

, (14.1)

where f0 denotes the carrier frequency of the radar, and τm(θl) is the time
needed by the transmitted signal of the mth antenna to arrive at the target loca-
tion θl .

In lieu of transmitting M partially correlated waveforms, the TBP technique
employs K orthogonal waveforms that are linearly mixed at the transmit array
via a weighting matrix WWW ∈ CM×K . The number of orthogonal waveforms K

can be determined by counting the number of significant eigenvalues of the
matrix [286]:

AAA =
L

∑
l=1

aaa(θl)aaa
H(θl). (14.2)

The parameter K can be chosen such that the sum of the K dominant eigen-
values of AAA exceeds a given percentage of the total sum of eigenvalues [286].
Note that usually K≪M (especially when M is large) [286] [288]. Let ΦΦΦ be
the matrix containing K orthonormal TBP waveforms, viz.

ΦΦΦ = (ϕϕϕ1,ϕϕϕ2, . . . ,ϕϕϕK)
T ∈ CK×N , K ≤M (14.3)

where ϕϕϕk ∈CN×1 denotes the kth waveform (or sequence). The transmit signal
matrix can then be written as SSS =WWW ΦΦΦ ∈ CM×N , and the transmit beampattern
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becomes

P(θl) = ‖SSSHaaa(θl)‖2
2

= aaaH(θl)WWWΦΦΦΦΦΦHWWW Haaa(θl)

= aaaH(θl)WWWWWW Haaa(θl)

= ‖WWW Haaa(θl)‖2
2. (14.4)

Eq. (14.4) sheds light on two different perspectives for radar beampattern
design. Observe that matching a desired beampattern may be accomplished
by considering WWW as the design variable. Doing so, one can control the rank
(K) of the covariance matrix RRR = SSSSSSHHH = WWWWWW HHH by fixing the dimensions of
WWW ∈CM×K . This idea becomes of particular interest for the phased-array radar
formulation with K = 1. Note that considering the optimization problem with
respect to WWW for small K may significantly reduce the computational costs. On
the other hand, imposing practical signal constraints (such as discrete-phase or
low PAR) while considering WWW as the design variable appears to be difficult.
In such cases, one can resort to a direct beampattern matching by choosing SSS

as the design variable.
In light of the above discussion, we consider beampattern matching prob-

lem formulations for designing either WWW or SSS as follows. Let Pd(θl) denote
the desired beampattern. According to the last equality in (14.4), Pd(θl) can
be synthesized exactly if and only if there exist a unit-norm vector ppp(θl) such
that

WWW Haaa(θl) =
√

Pd(θl)ppp(θl). (14.5)

Therefore, by considering {ppp(θl)}l as auxiliary design variables, the beam-
pattern matching via weight matrix design can be dealt with conveniently via
the optimization problem:

min
WWW ,α ,{ppp(θl)}

∑L
l=1

∥∥∥WWW Haaa(θl)−α
√

Pd(θl)ppp(θl)
∥∥∥

2

2
(14.6)

s.t. (WWW ⊙WWW ∗)111 = E
M

111, (14.7)

‖ppp(θl)‖2 = 1, ∀ l, (14.8)

where (14.7) is the transmission energy constraint at each transmitter with E

being the total energy, and α is a scalar accounting for the energy difference
between the desired beampattern and the transmitted beam. Similarly, the
beampattern matching problem with SSS as the design variable can be formulated
as

min
SSS,α ,{ppp(θl)}

∑L
l=1

∥∥∥SSSHaaa(θl)−α
√

Pd(θl)ppp(θl)
∥∥∥

2

2
(14.9)

s.t. (SSS⊙SSS∗)111 = E
M

111, (14.10)

‖ppp(θl)‖2 = 1, ∀ l, (14.11)

SSS ∈Ψ, (14.12)
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where Ψ is the desired set of transmit signals. The above beampattern match-
ing formulations pave the way for an algorithm (which we call Beam-Shape)
that can perform a direct matching of the beampattern with respect to the
weight matrix WWW or the signal SSS, without requiring an intermediate synthe-
sis of the covariance matrix.

14.3 Beam-Shape
We begin by considering the beampattern matching formulation in (14.6). For
fixed WWW and α , the minimizer ppp(θl) of (14.6) is given by

ppp(θl) =
WWW Haaa(θl)

‖WWW Haaa(θl)‖2
. (14.13)

Let P , ∑L
l=1 Pd(θl). For fixed WWW and {ppp(θl)} the minimizer α of (14.6) can

be obtained as

α = ℜ

{(
L

∑
l=1

√
Pd(θl)pppH(θl)WWW

Haaa(θl)

)
/P

}
. (14.14)

Using (14.13), the expression for α can be further simplified as

α =

(
L

∑
l=1

√
Pd(θl)

∥∥WWW Haaa(θl)
∥∥

2

)
/P. (14.15)

Now assume that {ppp(θl)} and α are fixed. Note that

Q(WWW ) =
L

∑
l=1

‖WWW Haaa(θl)−α
√

Pd(θl)ppp(θl)‖2
2

= tr(WWWWWW HAAA)−2ℜ{tr(WWW BBB)}+Pα2 (14.16)

where AAA is as defined in (14.2), and

BBB =
L

∑
l=1

α
√

Pd(θl)ppp(θl)aaa
H(θl). (14.17)

By dropping the constant part in Q(WWW ), we have

Q̃(WWW ) = tr(WWWWWW HAAA)−2ℜ{tr(WWWBBB)} (14.18)

= tr




(
WWW

III

)H(
AAA −BBBH

−BBB 000

)

︸ ︷︷ ︸
,CCC

(
WWW

III

)

︸ ︷︷ ︸
,W̃WW


 .
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Therefore, the minimization of (14.6) with respect to WWW is equivalent to

min
WWW

tr
(

W̃WW
H

CCCW̃WW
)

(14.19)

s.t. (WWW ⊙WWW ∗)111 = E
M

111, (14.20)

W̃WW =
(
WWW T III

)T
. (14.21)

As a result of the energy constraint in (14.20), W̃WW has a fixed Frobenius norm,
and hence a diagonal loading of CCC does not change the solution to (14.19).
Therefore, (14.19) can be written in the following equivalent form:

max
WWW

tr
(

W̃WW
H

C̃CCW̃WW
)

(14.22)

s.t. (WWW ⊙WWW ∗)111 = E
M

111, (14.23)

W̃WW =
(
WWW T III

)T
(14.24)

where C̃CC = λ III−CCC, with λ being larger than the maximum eigenvalue of CCC.
In particular, an increase in the objective function of (14.22) leads to a de-

crease of the objective function in (14.6). Although (14.22) is non-convex, a
monotonically increasing sequence of the objective function in (14.22) may
be obtained (see Appendix A for a proof) via a generalization of the power

method-like iterations proposed in [84] and [85], namely:

WWW (t+1) =

√
E

M
η

((
IIIM×M

000

)T

C̃CCW̃WW
(t)

)
(14.25)

where the iterations may be initialized with the latest approximation of WWW

(used as WWW (0)), t denotes the internal iteration number, and η(·) is a row-
scaling operator that makes the rows of the matrix argument have unit-norm.

Next we study the optimization problem in (14.9). Thanks to the similarity
of the problem formulation to (14.6), the derivations of the minimizers {ppp(θl)}
and α of (14.9) remain the same as for (14.6). Moreover, the minimization of
(14.9) with respect to the constrained SSS can be formulated as the following
optimization problem:

max
SSS

tr
(

S̃SS
H

C̃CCS̃SS
)

(14.26)

s.t. (SSS⊙SSS∗)111 = E
M

111, (14.27)

S̃SS =
(
SSST III
)T

, SSS ∈Ψ (14.28)

with C̃CC being the same as in (14.22). An increasing sequence of the objec-
tive function in (14.26) can be obtained via power method-like iterations that
exploit the following nearest-matrix problem (see Appendix A for a sketched

316



proof):

min
SSS(t+1)

∥∥∥∥∥SSS(t+1)−
(

IIIM×M

000

)T

C̃CC S̃SS
(t)

∥∥∥∥∥
F

(14.29)

s.t. (SSS(t+1)⊙SSS∗ (t+1))111 = E
M

111, SSS(t+1) ∈Ψ. (14.30)

Obtaining the solution to (14.29) for some constraint sets Ψ such as real-
valued, unimodular, or p-ary matrices is straightforward (see Appendix B),
viz.

SSS(t+1) =





√
E
M

η

(
ℜ

{
ŜSS
(t)
})

, Ψ = real-values matrices,

e
j arg

(
ŜSS
(t)
)

, Ψ = unimodular matrices,

e
jQp

(
arg

(
ŜSS
(t)
))

, Ψ = p-ary matrices,

(14.31)

where

ŜSS
(t)

=

(
IIIM×M

000

)T

C̃CC S̃SS
(t)
. (14.32)

Furthermore, the case of PAR-constrained SSS can be handled efficiently via a
recursive algorithm devised in [289].

Finally, the Beam-Shape algorithm for beampattern matching via designing
the weight matrix WWW or the transmit signal SSS is summarized in Table 14.1.
Note that the focus of signal design formulation in (9) is on the beampattern
matching in MIMO scenarios. In particular, (9) does not take into account the
signal and beampattern auto/cross-correlation properties which are of interest
in some radar applications using match filtering. Nevertheless, the numerical
results in Section IV show that the signals obtained from (9) can also have
desirable correlation/ambiguity properties presumably due to their pseudoran-
dom appearance in the N-dimensional space. We refer the interested reader
to Part I of this thesis for several computational methods related to (MIMO)
signal design with good correlation properties.

Remark: A brief comparison of the computational complexity of the Beam-
Shape algorithm and the two-stage beamforming approaches in the literature
is as follows. The design of the covariance matrix RRR ∈ CM×M for the two-
stage framework can be done using a semi-definite program (SDP) represen-
tation with O(L) constraints. The corresponding SDP may be solved with
O(max{M,L}4M1/2 log(1/ε)) complexity, where ε > 0 denotes the solution
accuracy [2]. Using the formulation in [276], the design of WWW or SSS (for fitting
the given covariance matrix) leads to an iterative approach with an iteration
complexity of O(M2K +KM2 +K3), or O(M2N +NM2 +N3), respectively.
On the other hand, Beam-Shape is an iterative method with an iteration com-
plexity of O(M(L+KH)(M+K)) for designing WWW , and O(M(L+NH)(M+
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Table 14.1. The Beam-Shape algorithm for MIMO radar beamforming

Step 0: Calculate the matrix AAA using (14.2). Choose random α and
{ppp(θl)} and initialize the matrix BBB using (14.17).
Step 1: Use the power method-like iterations in (14.25) (until con-
vergence) to obtain WWW , or (14.29) to obtain SSS.
Step 2: Update {ppp(θl)}, α , and BBB using (14.13), (14.15), and
(14.17), respectively.
Step 3: Repeat steps 1 and 2 until a stop criterion is satisfied, e.g.
‖WWW (v+1)−WWW (v)‖F < ε for some given ε > 0, where v denotes the
total iteration number.

N)) for designing SSS; where H denotes the number of required internal itera-
tions of the power method-like methods discussed in (14.25) or (14.29). The
above results suggest that Beam-Shape may be more computationally efficient

when the grid size (L) grows large. The next section provides numerical ex-
amples for further computational efficiency comparison between the two ap-
proaches. �

14.4 Numerical Examples with Discussions
In this section, we provide several numerical examples to show the potential
of Beam-Shape in applications. Consider a MIMO radar with a uniform lin-
ear array (ULA) comprising M = 32 antennas with half-wavelength spacing
between adjacent antennas. The total transmit power is set to E = MN. The
angular pattern covers [−90◦,90◦] with a mesh grid size of 1◦ and the desired
beampattern is given by

Pd(θ ) =

{
1, θ ∈ [θ̂k−∆, θ̂k +∆]

0, otherwise
(14.33)

where θ̂k denotes the direction of a target of interest and 2∆ is the chosen
beamwidth for each target. In the following examples, we assume 3 targets
located at θ̂1 = −45◦, θ̂2 = 0◦ and θ̂3 = 45◦ with a beamwidth of 24◦ (∆ =
12◦). The results are compared with those obtained via the covariance matrix
synthesis-based (CMS) approach proposed in [275] and [276]. For the sake of
a fair comparison, we define the mean square error (MSE) of a beampattern
matching as

MSE ,
L

∑
l=1

∣∣aaaH (θl)RRRaaa(θl)−Pd(θl)
∣∣2 (14.34)

which is the typical optimality criterion for the covariance matrix synthesis in
the literature (including the CMS in [275] and [276]).
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We begin with the design of the weight matrix WWW using the formulation in
(14.6). In particular, we consider K = M corresponding to a general MIMO
radar, and K = 1 which corresponds to a phased-array. The results are shown
in Fig. 14.1. For K = M, The MSE values obtained by Beam-Shape and CMS
are 1.79 and 1.24, respectively. Note that a smaller MSE value was expected
for CMS in this case, as CMS obtains RRR (or equivalently WWW ) by globally min-
imizing the MSE in (14.34). On the other hand, in the phased-array example
(Fig. 14.1(b)), Beam-Shape yields an MSE value of 3.72, whereas the MSE
value obtained by CMS is 7.21. Such a behavior was also expected due to the
embedded rank constraint when designing WWW by Beam-Shape, while CMS ap-
pears to face a considerable loss during the synthesis of the rank-constrained
WWW .

Next we design the transmit signal SSS using the formulation in (14.9). In
this example, SSS is constrained to be unimodular (i.e. |SSS(k, l)| = 1), which
corresponds to a unit PAR. Fig. 14.2 compares the performances of Beam-
Shape and CMS for two different lengths of the transmit sequences, namely
N = 8 (Fig. 14.2(a)) and N = 128 (Fig. 14.2(b)). In the case of N = 8, Beam-
Shape obtains an MSE value of 1.80 while the MSE value obtained by CMS
is 2.73. For N = 128, the MSE values obtained by Beam-Shape and CMS are
1.74 and 1.28, respectively. Given the fact that M = 32, the case of N = 128
provides a large number of DOFs for CMS when fitting SSSSSSH to the obtained
RRR in the covariance matrix synthesis stage, whereas for N = 8 the number of
DOFs is rather limited.

As discussed earlier, the range/Doppler resolution properties of the obtained
signals are of interest in some radar applications. Therefore, we also show the
(normalized) average absolute value of M = 32 discrete ambiguity functions
(AFs) associated with the transmit signals in SSS (Fig. 14.3(a)), as well as the
(normalized) average absolute value of

(
M
2

)
= 496 discrete cross ambiguity

functions (CAFs) associated with SSS (Fig. 14.3(b)), both for N = 128. The
discrete-CAF of two signal vectors sss1 and sss2 of length N is defined as [89]

r(k, p),
N

∑
n=1

sss1(n)sss
∗
2(n− k)e− j2π

(n−k)p
N , (14.35)

−N +1≤ k ≤ N−1, −N/2≤ p≤ N/2−1.

It is interesting to observe that the signals in this example have satisfactory
ambiguity properties, which is likely due to their pseudorandom character in
the N-dimensional space.

Finally, it can be interesting to examine the performance of Beam-Shape
in scenarios with large grid size L. To this end, we compare the computation
times of Beam-Shape and CMS for different L, using the same problem setup
for designing SSS (as the above example) but for N = M = 32. According to Fig.
14.4, the overall CPU time of CMS is growing rapidly as L increases, which
implies that CMS can hardly be used for beamforming design with large grid
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sizes (e.g. L & 103). In contrast, Beam-Shape runs well for large L, even for
L ∼ 106 on a standard PC. The results leading to Fig. 14.4 were obtained by
averaging the computation times for 100 experiments (with different random
initializations) using a PC with Intel Core i5 CPU 750 @2.67GHz, and 8GB
memory.

14.5 Appendices
14.5.1 Appendix A: Power Method-Like Iterations

Monotonically Increase the Objective Functions in
(14.22) and (14.26)

In the following, we study the power method-like iterations for designingWWW in
(14.22). The extension of the results to the design of SSS in (14.26) is straightfor-
ward. For fixed WWW (t), observe that the update matrix WWW (t+1) is the minimizer
of the criterion

∥∥∥W̃WW (t+1)−C̃CCW̃WW
(t)
∥∥∥

2

2
= const−2ℜ

{
tr
(

W̃WW
(t+1)H

C̃CCW̃WW
(t)
)}

(14.36)

or, equivalently, the maximizer of the criterion

ℜ
{

tr
(

W̃WW
(t+1)H

C̃CCW̃WW
(t)
)}

(14.37)

in the search space satisfying the given fixed-norm constraint on the rows of
WWW (for SSS, one should also consider the constraint set Ψ). Therefore, for the

optimizer W̃WW
(t+1)

of (14.22) we must have

ℜ
{

tr
(

W̃WW
(t+1)H

C̃CCW̃WW
(t)
)}
≥ tr

(
W̃WW

(t)H
C̃CCW̃WW

(t)
)
. (14.38)

Moreover, as C̃CC is positive-definite:

tr

((
W̃WW

(t+1)−W̃WW
(t)
)H

C̃CC
(

W̃WW
(t+1)−W̃WW

(t)
))
≥ 0 (14.39)

which along with (14.38) implies

tr
(

W̃WW
(t+1)H

C̃CCW̃WW
(t+1)

)
≥ tr

(
W̃WW

(t)H
C̃CCW̃WW

(t)
)
, (14.40)

and hence, a monotonic increase of the objective function in (14.22).
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14.5.2 Appendix B: Derivation of the Constrained Solutions in
(14.31)

• Ψ = real-values matrices: In this case, the objective function of (14.29)
can be reformulated as

∥∥∥∥SSS(t+1)− ŜSS
(t)
∥∥∥∥

2

F

=

∥∥∥∥SSS(t+1)−ℜ

{
ŜSS
(t)
}∥∥∥∥

2

F

+

∥∥∥∥ℑ

{
ŜSS
(t)
}∥∥∥∥

2

F︸ ︷︷ ︸
const.

. (14.41)

As a result, similar to (14.25) the minimizer SSS(t+1) of (14.29) can be
obtained via a scaling as

SSS(t+1) =

√
E

M
η

(
ℜ

{
ŜSS
(t)
})

. (14.42)

• Ψ = unimodular matrices: The closest element on the unit-circle to a
given complex number may be obtained by scaling (i.e. projecting)
the number on the unit-circle (and keeping its phase argument). The
minimizing unimodular signal SSS(t+1) of (14.29) can be computed in an
element-wise manner, due to the fact that all elements of SSS(t+1) are then
optimal, namely

SSS(t+1) = e
j arg

(
ŜSS
(t)
)

. (14.43)

• Ψ = p-ary matrices: Similar to the previous case, the minimizing p-ary
signal SSS(t+1) of (14.29) can be computed in an element-wise manner,
which yields

SSS(t+1) = e
jQp

(
arg

(
ŜSS
(t)
))

. (14.44)
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Figure 14.1. Comparison of radar beampattern matchings obtained by CMS and
Beam-Shape using the weight matrix WWW as the design variable: (a) K =M correspond-
ing to a general MIMO radar, and (b) K = 1 which corresponds to a phased-array.
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Figure 14.2. Comparison of MIMO radar beampattern matchings obtained by CMS
and Beam-Shape using the signal matrix SSS as the design variable: (a) N = 8, (b)
N = 128.
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(a)

(b)

Figure 14.3. (a) normalized average absolute value of M = 32 discrete-AFs associated
with the transmit signals in SSS; (b) normalized average absolute value of

(
M
2

)
= 496

discrete-CAFs associated with SSS.
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Figure 14.4. Comparison of computation times for Beam-Shape and CMS with dif-
ferent grid sizes L.
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SAMMANFATTNING
Signaldesign för
aktiv avkänning och kommunikation

Längtan efter interaktion med vår omgivning och andra av vår sort ligger i den
mänskliga naturen— en viktig flaskhals som begränsar denna interaktion är
vår informationsinsamlingsförmåga eller avkänningskapacitet. Genom histo-
rien har vi försökt att komma på smarta sätt att känna av vår miljö. Moderna
sensorsystem kan kategoriseras som

• Aktiva system, dvs sensoriska system som fungerar genom att sondera
miljön med självproducerad energi.

• Passiva system, dvs sensoriska system som förlitar sig på detektering av
den naturligt förekommande energin inom miljön.

Aktiva sensorsystem som människan konstruerat, såsom aktiv radar och sonar,
har varit en viktig del av vår civilisations framsteg inom navigation, försvar,
meteorologi och utforskning av rymden. I djurriket används aktiva sensorsys-
tem för positioneringsändamål av bland annat fladdermöss och delfiner. In-
tressant är att våra syntetiska sensorsystem använder en uppsättning tekniker
som liknar de som används av fladdermöss och delfiner för att samla in in-
formation om målen (t.ex. läge och hastighet). En aktiv radar sänder ut ra-
diovågor (kallade radarsignaler) mot målen. En del av den överförda energin
reflekteras från målen och tas emot av antennen i radarmottagaren. Tack vare
att hastigheten hos de elektromagnetiska vågorna är känd kan radarsystemet
uppskatta placeringen av målen genom att mäta tidsskillnaden mellan utsänd-
ningen av radarsignalen och mottagningen av den reflekterade signalen.

Stående på giganters axlar så är utvecklingen av moderna aktiva sensorsys-
tem starkt beroende av de betydande framsteg inom vetenskap och kommu-
nikationsteknik som gjorts under det senaste århundradet. Men det är inte
speciellt förvånande att det snabbväxande kommunikationsteknikfältet även
har förändrat många aspekter av vår vardag. Denna avhandling handlar om
signaldesign för att förbättra prestandan hos aktiva analys och kommunika-
tionssystem: de aktiva sensorsystemens förmåga att upptäcka mål och skatta
deras position och hastighet kan förbättras avsevärt genom noggrann design av
de utsända signalerna. På liknande sätt har signaldesignen även en avgörande
betydelse för konstruktionen av, och effektiviteten hos, kommunikationssys-
tem.
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Teoretiska och empiriska resultat inom signaldesign har under de senaste
decennierna intresserat både ingenjörer och matematiker. Problemet att des-
igna en signal inom aktiv avkänning eller kommunikation kokar oftast ner
till optimering av ett signalkvalitetsmått. Faktum är att flera olika mått på
kvaliteten används inom signaloptimering för aktiv avkänning och kommu-
nikation, nämligen:

• Korrelation och spektralt innehåll

• Signal-brus-förhållande (SNR) och Mean-Square-Error (MSE)

medelkvadratfel

• Informationsteoretiska kriterier

• gleshetsrelaterade mått

• Matchning av Beam-Pattern (lobmönster)

Denna avhandling är uppdelad i fem delar, var och en tillägnade en av
ovanstående klasser av kvalitetsmått. Dessutom behandlas designproblem som
inkluderar en uppsättning signalbegränsningar, en utmaning som uppstår i
praktiska scenarier. Typiska exempel på sådana signalbegränsningar är be-
gränsad energi, begränsat alfabet, och begränsningar på förhållandet mellan
signalens topp- och medeleffekt. En sådan mångfald, både i mått på kvalitet
och typer av problem, banar väg för många utmanande forskningsprojekt inom
signaldesign— redan idag finns det en hel del öppna problem inom detta
forskningsområde som är ganska lätt att beskriva, men bedöms som mycket
svåra att ta itu med!

Avhandlingen är skriven inom ämnesområdet elektroteknik med inriktning

mot signalbehandling.
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